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Design and Analysis of Planar Shape Deformation �

Siu�Wing Chengy� Herbert Edelsbrunnerz� Ping Fux and Ka�Po Lamy

Abstract

Shape deformation refers to the continuous change of
one geometric object to another� We develop a software
tool for planning� analyzing� and visualizing deforma�
tions between two shapes in R

�� The deformation is
generated automatically without any user intervention
or speci�cation of feature correspondences� A unique
property of the tool is the explicit availability of the
two�dimensional shape space� which can be used for de�
signing the deformation either automatically by follow�
ing constraints and objectives or manually by drawing
deformation paths�

� Introduction

This paper describes a method for the deformation of
one geometric shape in the plane to another and a soft�
ware tool that implements it� In computer graphics this
operation is commonly referred to as morphing� In that
area the focus is on the creation of image sequences that
display the morph ��� �� ��	� In contrast� this paper
constructs the deformation as a ��dimensional family of
genuine geometric objects�

Rationale� This paper follows the general ideas
about shape representation and deformation laid out
in �
� �	� It focuses on the special case of two shapes
in two dimensions� Even in this simplest of all inter�
esting cases there is a frightening amount of freedom
and an abundant variety of possible deformations� It
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has been suggested we follow the general trend of mak�
ing up an evaluation function and compute the optimal
deformation de�ned by that function� The authors of
this paper believe that this strategy fails to rationalize
the process as it only shifts the irrational decisions one
level higher� Instead� we follow a path of deformation
design that permits e�cient quantitative analysis� The
deformations satisfy basic requirements� such as econ�
omy in shape variation� local smoothness� and geomet�
ric integrity� Other than that the method employs nat�
ural geometric operations� such as lifting� taking con�
vex hulls� slicing� and projecting� All constructions are
global and mathematically de�ned� The full description
of these constructions and higher�dimensional interpre�
tations is beyond the scope of this paper and we refer
the interested reader to �
	�

The criticism of lacking an optimality criterion and
the above response apply only to the automatic recon�
struction of deformations� Section  explains how the
system permits the speci�cation of evaluation functions
and the optimization within a 
�dimensional space of
shapes�

Summary of results� The software tool described in
this paper constructs and deforms 
�dimensional shapes
and it rationalizes the process through analysis and vi�
sualization� Some of the features of that tool are now
listed�

� The source and target shapes are regular sets in R��
each set is the closure of its interior� The sets can
have arbitrarily many components and holes� The
chosen data structure places no principle limita�
tions on the kind of shapes although it is better in
representing some types than others� The appear�
ance of the shapes for small data sets is similar to
the blobby models introduced by Blinn ��	�

� The deformation can be computed fully automat�
ically� which means that also the topology of the



shape is changed without user intervention� See
�gure � for an example where a ��� with one hole
is deformed into a ��� without hole�

� Each intermediate shape is determined by a time
parameter� t � ��� �	� and a size parameter� �� � R�
In the automatic and unconstrained deformation
the size is a function of t and the initial and ��
nal size values� Deformation paths satisfying shape
constraints can be designed in the 
�dimensional
shape space of time and size�

� The deformation is monitored by keeping track of
quantitative information� such as the area� bound�
ary length� number of components� and number of
holes� Constraints guiding the automatic design of
a deformation can be formulated in terms of these
quantities�

The tool provides VCR functionalities for the interac�
tive visualization� such as play� reverse� step forward�
step backward� etc�

Rami�cations� The widespread use of image morph�
ing in the movie and advertisement industries justi�es
the related research� maybe also the one reported in
this paper� The particular properties and features of
the method described in this paper suggests additional
applications�

� The shape is well de�ned at every moment during
the deformation� If we stack up all 
�dimensional
shapes we get a pipe�like ��dimensional shape that
smoothly starts� branches� joins� and ends� Such
pipes are good models of blood vessels� Another
example are complicated exhaust systems� and the
constrained deformation option can be used to
maintain� say� a constant cross�section area�

� The automatic deformation between two given
shapes is canonical� The kind and amount of
change can be used to de�ne a distance measure
between shapes useful for example in automatic
pattern recognition� It might be worth trying out
this idea in the classi�cation of printed and possi�
bly even handwritten Chinese characters�

� The shape space embedding the deformations is
explicitly given as a 
�dimensional strip of pairs
�t� ��� � ��� �	� R� If the source and target shapes
are signi�cantly di�erent then this space is an in�
dex into a rich variety of shapes� This suggests
applications in shape compression and the design
of shape databases�

Figure �� Read the pictures from left to right and top to

bottom as a deformation from ��� to ����

Outline� Section 
 reviews the two basic ingredients
to our deformation tool� the shape representation of ��	
and the deformation technique of �
	� Section � explains
the various geometric concepts used in the construction
and visualized by the software tool� Section  discusses
the structure of the shape space and how it is exploited
in the design of special deformation paths� Section �
concludes the paper�

� Shape and Deformation

The full details of the shape representation and the
shape deformation methods can be found in ��	 and in
�
	� This section explains the minimum of both for�
malisms and relies on illustrations to provide an in�
tuition for the ideas� Every shape is represented by
two data structures� a complex that captures struc�
ture and connectivity and a set with smooth boundary
that serves as the appearance of the shape� We explain



�rst the two data structures and second the deformation
method�

Structure and connectivity� We begin by specify�
ing the input data� which is a set of weighted points
or disks� and the Voronoi decomposition of the plane
this set de�nes� Each disk in the input set B �
fb�� b�� � � � � bng is speci�ed by its center and its radius�
bi � �zi� �i� with zi � R� and �i

� � R� We permit neg�
ative �i� which corresponds to an imaginary radius� �i�
and an imaginary disk� bi� The �weighted� distance of

a point x � R� from bi is �i�x� � kx� zik� � �i
�� and

the �weighted� Voronoi cell of bi is the set of points no
closer to any other disk�

Vi � fx � R� j �i�x� � �j�x�� for all jg�

see �gure 
� The Voronoi cells decompose the union of

Figure 
� The Voronoi cells of � disks� � with positive and

� with imaginary radius� Two of the centers do not lie in

their Voronoi cells�

disks into convex cells�
S
B �

Sn

i���Vi � bi�� Any two
of these cells are either disjoint or they meet along a
portion of their boundaries�

The complex data structure is denoted as DsxB and
records the overlap between the cells Ri � Vi � bi�
Speci�cally� zi is a vertex in DsxB i� Ri �� � and zizj is
an edge i� Ri�Rj �� �� Furthermore� conv fzi j i � Ig
is a 
�dimensional cell� for I a set of three or more disk
indices� i�

T
i�I Ri �� � and I is maximalwith this prop�

erty� For B in general position all cells in DsxB are tri�
angles� However� we cannot reasonably make this sim�
plifying assumption because the deformation method
described shortly systematically creates degenerate disk
sets� such as the one shown in �gure 
� Even if we have

general position at times t � � and t � � there are par�
allelograms in the intermediate complexes� see �gure ��

Figure �� The Voronoi decomposition and complex of the

union of disks in 	gure �� The complex contains only two

cells� namely the shaded triangles� The white parallelo


gram would belong to the complex� along with other cells�

if the disks were larger�

Shape appearance� The body is de�ned as a union
of an in�nite family of disks� and the skin is its bound�
ary� which is the envelope of an in�nite family of circles�
To de�ne these families observe that bi � �i

������ �	
and its bounding circle is �i������ The weighted dis�
tance functions span the usual vector space de�ned by
function addition and scaling� Let � � f�i j � � i � ng
be the collection of weighted distance functions� The
a�ne hull of � is the family of combinations

P
�i 	 �i�

where the �i add up to �� The convex hull is the sub�
family de�ned by non�negative scaling factors�

conv � � f
nX

i��

�i 	 �i j
nX

i��

�i � �� �i 
 � for all ig�

The convex hull is an in�nite family of paraboloid func�
tions and we construct the skin and body by shrinking
each � � conv� using a parameter � � s � �� For
��x� � kx� zk� � �� de�ne the shrunken function as

�s�x� �
�

s
	 kx� zk� � ���

The zero�set of �s is the circle with center z and radiusp
s�� The envelope and union of the in�nite family

of shrunken disks is now de�ned with the help of the
pointwise minimum function� �s�x� � minf�s�x� j � �



conv �g�

sknsB � ���s ����

bdysB � ���s ���� �	�

They are referred to as the s�skin and the s�body of B�
see �gure �

Figure � The skins for s � ���� ���� �������� ��� of the

same set of disks as in 	gures � and �� Observe that the

complex is contained in the 	ve bodies and they are all

connected the same way� with two components of which

one has a hole and the other does not�

Shape deformation� Let B and C be two �nite sets
of disks de�ning the initial and the �nal shapes of the
deformation� Intermediate shapes are constructed by
interpolating between the two sets� It is convenient to
project a cross�section of the vector space of weighted
distance functions onto the set of disks� Formally� if b
and c are disks with weighted distance functions � and
� and �� � �� � � then a � �� 	 b � �� 	 c is the disk
with weighted distance function �� 	 � � �� 	 �� With
this introduction de�ne

At � ��� t� 	B � t 	C
� f��� t� 	 b� t 	 c j b � B� c � Cg

for every t � ��� �	� Clearly A� � B and A� � C� For a
given value of s� we thus have a one�parameter family
of shapes�

Xt � bdysAt�

that deforms the initial shape� X� � bdysB� into the
�nal shape� X� � bdysC� see �gure ��

Observe the automatic change of topology that hap�
pens synchronously for the skin and the complex� In �g�
ure � there is a change in topology between all contigu�
ous snapshots except for the last three� Even though the
seventh and the eight snapshot have the same topology�
the latter is obtained from the former by two changes�
one �lling a hole and one opening a hole� The second�
third� fourth� and sixth snapshots are taken right at the
time of a topology change when two components or two
portions of the same component reach each other in a
point and locally separate the complement�

� Visualization of Concepts

The display panel of the software tool can be used to
visualize all geometric concepts mentioned in section 

and more�

Basic structures� Let B be a �nite set of disks as
before� The �weighted� Voronoi complex� denoted as
VorB� is the collection of 
�dimensional Voronoi cells
together with common intersections among them� The
�weighted� Delaunay complex� denoted as DelB� records
the overlap among 
�dimensional Voronoi cells� see the
rightmost example in �gure ��

Next we discuss a nested sequence of subcomplexes
of the Delaunay complex� Let �� � R and de�ne bi���

as the disk with center zi and radius
p
�i� � ��� We

have bi��� � bi� and if �i� � � then the radius of bi���
is �� Let B��� � fbi��� j bi � Bg and observe that
the Voronoi complex of B��� is the same as that of B�
In other words� the Voronoi complex and the Delaunay
complex do not vary with ��� The cells of the convex
decomposition of

S
B��� grow with ��

Ri���� � Vi � bi���� � Vi � bi���� � Ri����

if �� � ��� We call Dsx�B � DsxB��� the ��complex
of B� The collection of such complexes is nested and
the last one is the Delaunay complex�

� � Dsx��
B � Dsx��

B � Dsx��
B � DelB�

where ��
�
� ��

�
� ��

�
� ��

�
is su�ciently small� and ��

�
is

su�ciently large� see �gure ��

Decomposed skin and body� Similar to the union
of disk we can decompose the skin and the body into
simple pieces� The complex that produces the de�
composition consists of 
�dimensional Voronoi cells� 
�
dimensional Delaunay cells� and rectangles that are



Cartesian products of matching Voronoi and Delaunay
edges� All these cells are shrunk so they �t together to
form a decomposition of R�� To describe this complex
let � � s � � be arbitrary but �xed� Let I be a subset
of indices with

�I �
�

i�I

Vi � VorB�

�I � conv fzi j i � Ig � DelB�

The dimension of �I is k � f�� �� 
g and that of �I is

 � k� The corresponding �
�dimensional� cell in the
complex is

	I
s � s 	 �I � ��� s� 	 �I �

where addition and scaling refer to the operations in
the vector space of points in R�� The s�mixed complex�
denoted as MixsB� consist of all cells 	Is and all non�
empty common intersections among them� see �gure ��

Figure �� The ���
skin of the disk set in 	gure � is de


composed into circle and hyperbola arcs by the ���
mixed

complex�

Observe that Mix�B � DelB and Mix�B � VorB�
For all other values of s� MixsB contains a shrunken
copy of every Voronoi and Delaunay cell� The copy of
Vi intersects skn

sB in a collection of arcs that all belong
to a common circle� namely the zero�set of �is� Simi�
larly� the copy of a Delaunay cell intersects the skin in
a collection of arcs that all belong to a common circle�
but this circle is not the boundary of any shrunken disk
in B� This can be seen from the fact that the body lies
outside every circle of the latter type� The remaining

�dimensional cells in MixsB are rectangles� and each
rectangle intersects the skin in a collection of arcs that

belong to a common hyperbola� A more detailed de�
scription of the skin decomposition including formulas
for all circles and hyperbolas can be found in ��	�

Complementarity� We develop an explicit expres�
sion of the symmetry between shape and complement
by introducing another set of disks� Call two disks
bi � �zi� �i� and b�j � �yj � 
j� orthogonal if

kzi � yjk� � �i
� � 
j

��

and further than orthogonal if the square distance be�
tween the centers exceeds the sum of square radii� In
case of real radii the bounding circles of two orthogonal
disks meet at right angles� We construct a new set of
disks� B� � fb�

�
� b�
�
� � � � � b�mg� that cover the part of R�

outside
S
B and overlap the disks in B orthogonally or

less� Speci�cally� for each vertex yj of VorB choose the
radius 
j so b�j � �yj � 
j� is orthogonal to all bi with

yj � Vi� By de�nition of Voronoi complex� b�j is further
than orthogonal from all other disks in B� For com�
pleteness� we stipulate a Voronoi vertex at in�nity in
the direction of each unbounded Voronoi edge and de�
�ne the corresponding disk as a half�plane� It is not dif�
�cult to see that VorB � DelB� and DelB � VorB��
and therefore �B��� � B� Two additional noteworthy
properties are�

bdysB � bdy��sB� � R
��

bdysB � bdy��sB� � sknsB � skn��sB��

Figure � illustrates the relationship between B and B�

by showing three skins of B� for s � �� ���� �� The
��body of B is the closed complement of a union of
disks� namely the complement of the interior of

S
B��

The ����skin shrinks away from the boundaries of
S
B

and of
S
B� and lies between skn�B � skn�B� and

skn�B � skn�B��

Deformation and topology change� We return to
the deformation constructed by interpolating disk sets�
At � ���t�	B�t	C� see section 
� Let � � s � � be �xed
and let t vary inside ��� �	 and generate a ��parameter
family of shapes� Xt � bdysAt� We focus on the local
picture of a change in topology as t varies continuously�
Each change occurs at a particular moment in time and
a particular point in the plane� Let this point be z and
distinguish three cases depending on the type of cell in
the mixed complex that contains z�

Case I � fig� Point z lies inside the shrunken Voronoi
cell 	Is� The cell speci�es the portion of the circle
de�ned by bi that belongs to the skin� This circle is



Figure �� The boundary of
S
B� the boundary of

S
B��

and the common ���
skin of B and B� separating the two

boundaries�

the zero�set of �is� In the non�degenerate case the
radius of this circle is either imaginary or positive
real� The topology change happens at the transi�
tion from the former case to the latter or vice versa�
This transition either creates a new component by
growing a disk from z or it removes a component
by shrinking a disk to z�

Case I � fi� jg� Point z lies inside the rectangle 	I
s�

The rectangle speci�es the portion of the hyperbola
de�ned by bi and bj that belongs to the skin� The
hyperbola consists of two branches living in diago�
nally opposite quadrants de�ned by the two asymp�
totic lines� see �gure �� In the non�degenerate case
the two branches either locally separate or locally
sandwich the body� The topology change happens
at the transition when the hyperbola equals the two
asymptotic lines and �ips from on pair of opposite
quadrants into the other� The transition either cre�
ates a bridge by locally joining two portions of the
body at z� or it removes a bridge by locally sepa�
rating two portions at z�

Case I � fi� j� kg� Point z lies inside the shrunken De�
launay triangle 	I

s� In degenerate con�gurations I
may contain more than three indices and 	I

s may
have more than three sides� The triangle speci�es
the portion of the circle de�ned by b�� orthogonal
to bi� bj� bk that belongs to the skin� Observe the
symmetry to card I � �� The non�degenerate cases
are again when the radius of the circle is either
positive real or imaginary� The transition either
removes a hole by shrinking a disk to z or it cre�
ates a hole by growing a disk from z�

Asymmetry of deformation� For a �xed t � ��� �	�
At � ��� t� 	B� t 	C is a set of disk and we consider its
Voronoi and Delaunay complexes� see �gure ��� Com�
binatorially� the Delaunay complex changes only twice�
from t � � to t � ��� �� to t � �� Geometrically� it
moves all the time as the cells gradually change shape�
Interestingly� the situation is di�erent for the Voronoi
complex� and this in spite of the symmetry between the
two complexes noted above� The Voronoi complexes
of the At are the same for all t � ��� ��� Speci�cally�
each such Voronoi complex is the overlay of VorA� and
VorA�� see again �gure ��� The asymmetry is explained
by the asymmetry of the deformation� An alternative
de�nition of deformation uses the shapes de�ned by the
complementary disk sets�

D�
t � ��� t� 	B� � t 	C��

D�
t is di�erent from A�

t except at the beginning� at
t � �� and at the end� at t � �� To see that the two are
indeed di�erent� in general� note that �A�

t �
� � At� So

when A�
t changes as t increases� the Voronoi complex

changes and the Delaunay complex is invariant� On
the other hand� when D�

t changes as t increases� the
Delaunay complex changes and the Voronoi complex is
invariant�

� Deformation Design

The control panel of the software tool contains the VCR
buttons that drive the deformation through the selec�
tion and alteration of time and size� The explicit repre�
sentation of the 
�dimensional shape space permits the
rational design of deformations�

Shape space� Let the two disk sets B and C de�ne
the initial and the �nal shape of a deformation problem�
We have an intermediate shape de�ned for each value
t � ��� �	 of the time parameter and each value �� � R
of the size parameter� Speci�cally� the shape is de�ned
by the set of disks At���� where At � ��� t� 	B � t 	C�
We use �t� ��� as a coordinate pair to specify shapes in

� � ��� �	� R�

which we refer to as shape or state space� � is a 
�
dimensional strip that can be decomposed into regions
within which the shape variation is insigni�cant� As an
example consider the decomposition into shapes whose
complexes are the same� X� � bdyAt����� and X� �
bdyAt����� are similar if Dsx��

At� � Dsx��
At� �



Since the moments in time the two shapes exist are
in general di�erent this needs some clari�cation� Al�
though the Delaunay complex moves with time� its com�
binatorial structure is the same during the entire open
time interval� We therefore have an unambiguous no�
tion of sameness for Delaunay cells over time and it
makes sense to refer to a Delaunay cell �I without spec�
ifying the time� which can be anywhere in ��� ��� Two
complexes at di�erent moments in time are the same if
they contain the same cells� Similarity among shapes is
therefore well de�ned and it is an equivalent relation�

Curve arrangement� We gain insight into the de�
composition of � by considering a single Delaunay cell�
�I � For each time t � ��� �� let fI�t� be the smallest
real number so �I �t� belongs to Dsx�At i� �� 
 fI �t��
For each 
�dimensional �I the discriminating function
is linear�

fI�t� � a� 	 t� a��

For Delaunay edges and vertices the description of fI is
made complicated by the somewhat technical distinc�
tion between attached and unattached cells� see e�g� ��	�
A cell �I is attached at time t if for every �� � R the
presence of �I �t� in Dsx�At implies the presence of a
higher�dimensional cell� �J � that contains �I as a face�
Since �J cannot be in the complex without its faces this
implies fI �t� � fJ �t� for this value of t� The interest�
ing case is when �I �t� is unattached� For example if �I
is 
�dimensional then it is unattached during the entire
open time interval� In general� �I is unattached during a
single and possibly empty time interval� In that time in�
terval the discriminating function is at most quadratic�

fI �t� � a� 	 t� � a� 	 t� a��

with a� � �� We picture � and its decomposition by
drawing time from left to right and size from bottom
to top� The graphs of the discriminating functions are
lines that pass through the strip from left to right and
upside�down parabolas that begin and end on the strip
boundary or on graphs of other discriminating func�
tions� see �gure ��� The graphs decompose � into re�
gions of similar shapes� It can however happen that two
similar shapes correspond to points in di�erent regions�
In this case there is no deformation representable in �
that transforms one shape to the other and uses only
similar shapes�

Designing in shape space� The initial shape corre�
sponds to the point P� � ��� �� in � and the �nal shape
corresponds to P� � ��� ��� Every continuous deforma�
tion between the two shapes that can be represented

t = 0 t = 1

Figure ��� The decomposition of � into regions of similar

shapes� All curves are pieces of lines and parabolas�

in our framework corresponds to a path p � ��� �	  �

with p��� � P� and p��� � P�� For example the basic
deformation described in section 
 corresponds to the
straight line segment connecting P� with P�� which is
the image of the path p�u� � �u� ��� It may be that
more complicated paths give better deformations and
we describe how the decomposition of � is used to �nd
such paths�

An important �rst step in the rational design of defor�
mations is the computation of signatures that are func�
tions from � to R� An example is the area signature
that maps each �t� ��� to the area of the corresponding
body� Strictly speaking that area also depends on the
value of the parameter s and we have a signature for
each � � s � �� Another example is the connectivity
of shapes captured by two signatures� ��� �� � �  R�
counting components and holes� �� and �� are inde�
pendent of s and can be computed directly from the
complex� which is homotopy equivalent to the body of
the shape ��	�

Let G be the dual graph of the decomposition of �
created by the arrangement of lines and parabolas de�
scribed above� Let ����� be the number of components
and ����� be the number of holes of any one shape rep�
resented by the region or node � in G� Let 	� and 	�
be the nodes whose regions contain P� and P� in their
boundaries� A non�degenerate path� p � ��� �	  ��
traces out a sequence of regions and thus translates into
a discrete path in G� 	� � ��� ��� � � � � �� � 	�� Suppose
we are interested in a deformation that goes through
as few topological changes as possible� The number of
such changes that occur along the path p is a sum of
absolute di�erences�

�X

i��

j����i�� ����i���j� j����i� � ����i���j�

Think of the term inside the sum as the length of the



arc connecting nodes �i�� and �i� The problem of �nd�
ing a path in� with minimum topological changes thus
reduces to �nding a shortest path in G� which can be
solved by standard graph algorithms� An improvement
of this approach based on the monotonicity of minimiz�
ing paths is described in ��	�

� Discussion

This paper describes a method for the automatic defor�
mation of shapes in R� and a software tool that imple�
ments it�

Algorithms� The basic algorithmic problem raised
by the deformation method is the construction of the
��parameter family of Delaunay complexes DelAt� for
t � ��� �	� As explained in �
	� this problem reduces
to computing a �dimensional convex hull� or equiva�
lently a ��dimensional �weighted� Delaunay complex�
In the latter interpretation the third coordinate is time
and DelAt is the cross�section at x� � t� DsxAt is
a subcomplex of DelAt and the body and skin of the
shape are computed from that subcomplex� Our soft�
ware tool uses the ��dimensional Delaunay complex al�
gorithm mentioned in ��	 and selects subcomplexes as
explained in the same reference�

A second interesting algorithmic problem is the con�
struction of the line and parabola arrangement that de�
composes the shape space� We implement the incre�
mental algorithm of �	� The decomposition is typically
too �ne to be of much use within the user interface�
We plan to add a coarse version of the decomposition
to the control panel for visualization purposes and to
support the manual design of deformation paths� Such
coarsenings can be construction with the snap�rounding
method described in ��	�

Extensions� There are means to impose structure on
the shape space other than the arrangement of lines
and parabolas described in section � Take for example
the area signature� a � �  R� say for s � ���� It is
continuous and increases with growing ��� Each level
set� a���c�� is therefore a monotone path connecting a
point on the left with a point on the right boundary
of �� If P� and P� are these two points then a���c�
describes an area preserving deformation between the
two corresponding shapes�

Any application to imagemorphing will almost surely
require a way to carry color and pattern along with
the shape through the deformation� Maybe one of the

background structures� such as the mixed complex that
decomposes the body and moves with it� can be used
for that purpose�

Applications in data compression and databases for
shapes will �nd the restriction to two base shapes un�
reasonably limiting� As explained in �
	� the mathemat�
ical framework for deformation readily extends to any
�xed number of base shapes� However� all algorithmic
problems get signi�cantly harder as the dimension of
the shape space increases�
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Figure �� Ten snapshots of a deformation with complex and skin displayed� The parameter s for all shapes is ���� The

set of disks that generates the complex and the skin in the 	fth snapshot is the same as in 	gures �� �� ��



Figure �� Decomposed disk union and �
complex for four values of �� In the second example we have � � � and therefore

the same complex as in 	gure �� In the fourth example we have � suciently large so that the �
complex is the Delaunay

complex�

Figure �� From left to right the sequence illustrates the creation of a bridge through �ipping a hyperbola� From right to

left it illustrates the removal of that bridge�

Figure ��� The Vornonoi and Delaunay complexes at times t � �� ��
�� ���������� during the deformation�


