
The Pennsylvania State University

The Graduate School

DESIGN AND ANALYSIS OF SCHEDULING TECHNIQUES FOR

THROUGHPUT PROCESSORS

A Dissertation in

Computer Science and Engineering

by

Adwait Jog

c© 2015 Adwait Jog

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2015

The dissertation of Adwait Jog was reviewed and approved∗ by the following:

Chita R. Das

Distinguished Professor of Computer Science and Engineering

Dissertation Advisor, Chair of Committee

Mahmut T. Kandemir

Professor of Computer Science and Engineering

Dissertation Co-Advisor

Yuan Xie

Professor of Computer Science and Engineering

W. Kenneth Jenkins

Professor of Electrical Engineering Department

Ravishankar Iyer

Senior Principal Engineer, Intel Labs

Special Member

Onur Mutlu

Associate Professor of Electrical and Computer Engineering

Carnegie Mellon University

Special Member

Lee D. Coraor

Associate Professor of Computer Science and Engineering

Director of Academic Affairs

∗Signatures are on file in the Graduate School.

Abstract

Throughput Processors such as Graphics Processing Units (GPUs) are becoming
an inevitable part of every computing system because of their ability to
accelerate applications consisting of abundant parallelism. They are not only
used to accelerate big data analytics in cloud data centers or high-performance
computing (HPC) systems, but are also employed in mobile and wearable devices
for efficient execution of multimedia rich applications and smooth rendering of
display. In spite of the highly parallel structure of GPUs and their ability to
execute multiple threads concurrently, they are far from achieving their
theoretically achievable peak performance. This is attributed to several reasons
such as contention for limited shared resources (e.g., caches and memory), high
control-flow divergence, and limited off-chip memory bandwidth. Another reason
for the low utilization and subpar performance is that the current GPUs are not
well-equipped to efficiently and fairly execute multiple applications concurrently,
potentially originating from different users. This dissertation is focused on
managing contention in GPUs for shared cache and memory resources caused by
concurrently executing threads. This contention causes severe loss in
performance, fairness, locality, and parallelism. To manage this contention, this
dissertation proposes techniques that are employed at two different places: core
and memory. First, this dissertation shows that by intelligently scheduling the
threads at the core, the generated memory request patterns can be more
amenable for existing resource management techniques such as cache replacement
and memory scheduling as well as performance enhancement techniques such as
data prefetching. Second, this dissertation shows that considering criticality and
other application characteristics to schedule memory requests at the memory
controller is an effective way to manage contention at the memory.

iii

Table of Contents

List of Figures x

List of Tables xv

Acknowledgments xvii

Chapter 1
Introduction 1

Chapter 2
Graphics Processing Units (GPUs): A Primer 7

Chapter 3
Cache and Memory Aware Warp Scheduling Techniques 12

3.1 Introduction . 13

3.2 Motivation and Workload Analysis 16

3.3 The OWL Scheduler . 18

3.3.1 CTA-Aware: CTA-aware two-level warp scheduling 18

3.3.2 CTA-Aware-Locality : Locality aware warp scheduling 20

3.3.3 CTA-Aware-Locality-BLP : BLP aware warp scheduling . . . 24

iv

3.3.4 Opportunistic Prefetching 28

3.3.5 Hardware Overheads . 30

3.4 Experimental Methodology . 31

3.4.1 Workloads and Metrics . 31

3.5 Experimental Results . 32

3.5.1 Performance Results . 33

3.5.2 Sensitivity Studies . 36

3.6 Related Work . 37

3.7 Chapter Summary . 40

Chapter 4
Prefetch Aware Warp Scheduling Techniques 41

4.1 Introduction . 42

4.2 Interaction of Scheduling and Prefetching: Motivation and Basic
Ideas . 46

4.2.1 Shortcomings of the State-of-the-Art Warp Schedulers 47

4.2.1.1 Round-robin (RR) warp scheduling 47

4.2.1.2 Round-robin (RR) warp scheduling and inter-warp
prefetching . 48

4.2.1.3 Two-level (TL) warp scheduling 49

4.2.1.4 Two-level (TL) warp scheduling and intra-fetch-
group prefetching 50

4.2.1.5 Two-level (TL) warp scheduling and inter-fetch-
group prefetching 50

4.2.2 Orchestrating Warp Scheduling and Data Prefetching 51

4.2.2.1 Prefetch-aware (PA) warp scheduling 51

4.2.2.2 Prefetch-aware (PA) warp scheduling and
inter-fetch-group prefetching 52

v

4.3 Mechanism and Implementation . 53

4.3.1 Prefetch-Aware Scheduling Mechanism 53

4.3.2 Spatial Locality Detection Based Prefetching 54

4.3.3 Hardware Overhead . 57

4.4 Evaluation Methodology . 58

4.5 Experimental Results . 59

4.6 Related Work . 64

4.7 Chapter Summary . 66

Chapter 5
Criticality Aware Memory Scheduling Techniques 68

5.1 Introduction . 69

5.2 Background and Motivation . 72

5.3 Core Criticality: Basic Ideas and Metrics 74

5.3.1 Latency Tolerance as a Measure of Core-Criticality 74

5.3.2 Understanding Variation of Criticality Across Cores 76

5.3.2.1 Analysis of the PCC metric. 77

5.4 Analyzing Criticality in the Memory System 78

5.5 CLAMS: Design and Implementation 81

5.5.1 Design Challenges of CLAMS 81

5.5.2 Design Overview of CLAMS 82

5.5.3 Design of Static-CLAMS Memory Scheduler 84

5.5.4 Design of Semi-Dyn-CLAMS Memory Scheduler 85

5.5.5 Design of Dyn-CLAMS Memory Scheduler 87

5.5.6 Hardware Overheads . 89

5.6 Evaluation Methodology . 91

vi

5.7 Experimental Results . 91

5.8 Related Work . 96

5.9 Chapter Summary . 98

Chapter 6
Concurrent Kernel Execution in GPUs: Problems and Some

Solutions 99

6.1 Introduction . 100

6.2 Background and Experimental Methodology 102

6.2.1 Baseline GPU Architecture 103

6.2.2 Evaluation Methodology . 104

6.2.3 Evaluation Metrics . 105

6.3 Concurrent Kernel Execution Challenges 106

6.3.1 Fairness considerations . 107

6.3.2 Throughput considerations 109

6.4 Application-Aware Memory Scheduling 110

6.4.1 Designing Application-aware Memory Scheduler 111

6.4.2 Hardware Complexity . 112

6.5 Experimental Results . 113

6.5.1 Fairness Results . 113

6.5.2 Performance Results . 114

6.6 Related Work . 115

6.7 Chapter Summary . 118

Chapter 7
Anatomy of Multi-Application Execution in GPUs 119

7.1 Introduction . 120

7.2 Background . 122

vii

7.2.1 Baseline Architecture . 122

7.2.2 Evaluation Metrics and Application Suite 123

7.3 Performance Characterization of Many-threaded Architectures . . . 124

7.3.1 A Model for Many-threaded
Architectures . 124

7.3.2 Application Characterization 126

7.4 Analyzing Memory System Interference 127

7.4.1 The Problem: Application Interference 128

7.4.2 Limitations of Existing Memory Schedulers 131

7.5 A Performance Model for Concurrently Executing Applications . . . 133

7.5.1 Analyzing Instruction Throughput 134

7.5.2 Analyzing Weighted Speedup 136

7.6 Mechanism and Implementation Details 138

7.7 Infrastructure and Evaluation Methodology 139

7.8 Experimental Results . 141

7.8.1 Evaluation of ITS . 142

7.8.2 Evaluation of WEIS . 144

7.8.3 Performance Summary . 145

7.8.4 Scalability Analysis . 146

7.9 Related Work . 147

7.10 Chapter Summary . 149

Chapter 8
Conclusions and Future Research Directions 151

8.1 Summary of Dissertation Contributions 151

8.2 Future Research Directions . 153

viii

Bibliography 156

ix

List of Figures

2.1 (A) GPGPU architecture, (B) CTA data layout, and (C) Main
memory layout with CTA’s data mapped. 8

2.2 GPGPU application hierarchy. 9

3.1 Fraction of total execution cycles (of all the cores) during which
all the warps launched on a core are waiting for their respective
data to come back from L2 cache/DRAM. This chapter defines
the number of cycles where all warps are stalled due to memory
as MemoryBlockCycles. AVG-T1 is the average (arithmetic mean)
value across all Type-1 applications. AVG is the average value
across all 38 applications. 16

3.2 An illustrative example showing the working of (A) CTA-aware
two-level warp scheduling (CTA-Aware) (B) Locality aware warp
scheduling (CTA-Aware-Locality). Label in each box refers to the
corresponding CTA number. 21

3.3 An example illustrating (A) the under-utilization of DRAM banks
with CTA-Aware-Locality, (B) improved bank-level parallelism
with CTA-Aware-Locality-BLP, (C1, C2) the positive effects of
Opportunistic Prefetching. 25

3.4 Effect of CTA-Aware-Locality-BLP on DRAM bank-level
parallelism and row locality, compared to CTA-Aware-Locality. . . . 27

3.5 Performance impact of the schemes on Type-1 applications. Results
are normalized to RR. 27

3.6 Impact of different scheduling schemes on MemoryBlockCycles for
Type-1 applications. Results are normalized to the total execution
cycles with baseline RR scheduling. 33

x

3.7 Sensitivity of IPC to group size (normalized to RR). 37

3.8 Sensitivity of IPC to the number of banks (normalized to RR). . . . 37

3.9 Prefetch degree and throttling threshold sensitivity. 38

4.1 IPC improvement when L1 cache is made perfect on a GPGPU that
employs (1) round-robin (RR) warp scheduling policy, (2) two-level
(TL) warp scheduling policy, (3) data prefetching together with RR,
and (4) data prefetching together with TL. Section 4.4 describes the
evaluation methodology and workloads. 43

4.2 An illustrative example showing the working of various scheduling
and prefetching mechanisms, motivating the need for the design of
the prefetch-aware warp scheduler. 48

4.3 The distribution of main memory requests, averaged across all
fetch groups, that are to macro-blocks that have experienced,
respectively, 1, 2, and 3-4 unique cache misses. Section 4.4
describes the methodology and workloads. 55

4.4 IPC performance impact of different scheduling and prefetching
strategies. Results are normalized to the IPC with the RR scheduler. 59

4.5 (a) Prefetch accuracy, (b) Fraction of late prefetches, and (c)
Reduction in L1 data cache miss rate when prefetching is
implemented with each scheduler. The results are averaged across
all applications. 60

4.6 Effect of various scheduling strategies on DRAM bank-level
parallelism (BLP) . 60

4.7 Effect of various scheduling and prefetching strategies on L1D miss
rate. Results are normalized to miss rates with the TL scheduler. . 61

4.8 Effect of different scheduling and prefetching strategies on DRAM
row buffer locality . 62

4.9 Effect of prefetching on Evicted Block Reference Rate (EBRR) for
various L1 data cache sizes . 62

5.1 Average Coefficient of Variation (COV) in average memory access
latencies and IPCs across different GPU cores. 73

xi

5.2 Illustrative example to demonstrate PCC. 77

5.3 Variation of criticality across cores with different criticality-rank
thresholds. This variation is measured using the PCC metric. . . . 78

5.4 Effect of increase in peak memory bandwidth on PCC. 78

5.5 Variation of criticality across requests at different levels of
criticality-rank thresholds. This variation is measured using the
PCR. 80

5.6 Distribution of criticality-rank differences across requests. 80

5.7 Distribution of requests in different criticality-rank states. 85

5.8 Execution of CONS and SCP to illustrate the working of Semi-Dyn-
CLAMS. ThCR values are calculated dynamically. 86

5.9 Execution of CONS and SCP to illustrate the working of Dyn-
CLAMS. ThSM is dynamically updated based on ThCR. 89

5.10 Performance results normalized to FR-FCFS. 92

5.11 Effect on (a) DRAM page hit rates, (b) memory latencies for critical
requests, (c) core stall cycles. Results are normalized to FR-FCFS. 93

5.12 Changes in ThCR are observed when Semi-Dyn-CLAMS is
employed. When ThCR=8, scheduler is in locality mode. 93

5.13 Changes in ThSM are observed with Dyn-CLAMS. 94

5.14 Effect of Dyn-CLAMS on DRAM bandwidth distribution. 96

6.1 Baseline GPU architecture executing: (A) Single kernel, (B)
Multiple kernels concurrently. 101

6.2 Weighted speedup (Application throughput) for the evaluated
workloads. The 1st APP and 2nd APP are the first and second
applications in the workload, respectively, as mentioned in Table 6.3. 107

6.3 Fairness Index for the evaluated workloads when the memory
scheduler adopts the baseline FR-FCFS scheduling policy. 107

6.4 DRAM bandwidth utilization distribution across various
workloads when memory scheduler adopts the baseline FR-FCFS
memory scheduling policy. 109

xii

6.5 Conceptual example showing the working of (A) baseline
FR-FCFS memory scheduling, (B) proposed FR-RR-FCFS
memory scheduling. 110

6.6 Effect on DRAM page hit rates. The proposed scheduler FR-RR-
FCFS preserves the DRAM page hit rates obtained by the baseline
FR-FCFS memory scheduler. 111

6.7 Fairness index (FI) of the evaluated workloads when memory
scheduler adopts FR-FCFS (baseline, 1st bar) and FR-RR-FCFS
(proposed, 2nd bar) scheduling techniques. 115

6.8 DRAM bandwidth utilization distribution across selected workloads
when memory scheduler adopts FR-FCFS (baseline, 3rd bar) and
FR-RR-FCFS (proposed, 4th bar) scheduling techniques. 115

6.9 Improvement in instruction throughput (IT) across the evaluated
workloads. Results are normalized to the case when memory
scheduler adopts the baseline FR-FCFS scheduling policy. 116

6.10 Improvement in weighted speedup (WS) across the evaluated
workloads. Results are normalized to the case when memory
scheduler adopts the baseline FR-FCFS scheduling policy. 116

7.1 Overview of the baseline architecture capable of executing multiple
applications. 122

7.2 Application performance obtained via simulation and the model.
IPC is normalized with respect to the maximum achievable IPC
supported by the architecture. 127

7.3 Absolute relative error between IPCs obtained from real hardware
(NVIDIA Kepler K20m) and the model. 127

7.4 Different performance slowdowns obtained when BLK is
co-scheduled with three different applications: GUPS, QTC, and NN.
Memory scheduling policy is FR-FCFS. 130

7.5 Different performance slowdowns experienced when different
memory scheduling schemes are employed. 131

xiii

7.6 An illustrative example showing IT and WS for two applications
running together. The shaded boxes represent system and
application properties. The peak memory bandwidth is 50 units.
Application 1 and 2 use 30 and 40 units bandwidth, respectively,
when they execute alone. Their MPKIs are 20 and 5, respectively. 133

7.7 The effect of FR-FCFS, RR, and ITS on BW1−BW2 andMPKI1−
MPKI2. 142

7.8 IT results normalized with respect to FR-FCFS for 25
representative workloads. 142

7.9 Effect of FR-FCFS, RR, and WEIS on WS and BW1 − BW2. . . . 144

7.10 WS results normalized with respect to FR-FCFS for 25
representative workloads. 144

7.11 Summary IT and WS results for 100 workloads, normalized with
respect to FR-FCFS. 145

7.12 HS results for 100 workloads normalized with respect to FR-FCFS. 146

7.13 Core partitioning results. 147

7.14 Evaluation of ITS and WEIS with three GPU applications. 147

xiv

List of Tables

3.1 GPGPU application characteristics: (A) PMEM: IPC
improvement with perfect memory (All memory requests are
satisfied in L1 caches), Legend: H = High (>= 1.4x) , L = Low
(< 1.4x); (B) CINV: The ratio of inactive cycles to the total
execution cycles of all the cores. 15

3.2 Reduction in L1 miss rates with the proposed warp scheduling
mechanisms over baseline RR scheduling. 19

3.3 GPGPU application characteristics: Consecutive CTA row sharing:
Fraction of consecutive CTAs (out of all CTAs) accessing the same
DRAM row. CTAs/Row: Average number of CTAs accessing the
same DRAM row. 24

3.4 Baseline configuration . 32

4.1 Simulated baseline GPGPU configuration 57

4.2 Evaluated GPGPU applications . 59

5.1 Pseudo code for the proposed schemes 88

5.2 Key configuration parameters of the simulated GPU configuration. . 90

5.3 Evaluated applications. Table also shows: 1) Average occupancy
(occ) in terms of warps, 2) Average ThCR and ThSM calculated
using Semi-Dyn-CLAMS and Dyn-CLAMS, respectively, and 3) %
of critical requests (%-cri) served in the criticality-mode. 90

6.1 Simulated baseline GPU configuration 103

xv

6.2 Evaluated applications, along with their DRAM bandwidth
utilization when they are executed alone on the entire baseline
GPU architecture. 105

6.3 Evaluated 2-application GPU workloads. 106

7.1 Application characteristics: (A) MPKI: L2 cache misses per kilo-
instructions. (B) BW/C: The ratio of attained bandwidth to the
peak bandwidth of the system. 128

7.2 Key configuration parameters of the simulated GPU configuration.
See GPGPU-Sim v3.2.1 [116] for full list. 139

xvi

Acknowledgments

This dissertation would not have been possible without the help and support of
many people with whom I regularly interacted throughout my Ph.D. tenure. First
and foremost, I would like to thank my dissertation advisor, Prof. Chita Das. He
has been a constant source of inspiration for me. He always inspired me to do
excellent research, submit papers in the best venues, take challenging courses, and
most importantly to be a humble citizen. I am highly indebted to him for what he
has given me so far. I also thank his entire family for their unconditional support.

I would like to thank my dissertation co-advisor, Prof. Mahmut Kandemir,
for his constant support. He has been a great critic of my work. I deeply admire
his dedication towards research and I hope to imitate that as I continue my
career in academia. The chats over coffee with him along with Prof. Das, Prof.
Sivasubramaniam, and other HPCL members on a variety of topics (sometimes
also on research) were refreshing, and I will remember them for long time.

My first interaction with Prof. Mutlu was during my internship at Intel back in
2012. Since then, we have been involved in many fruitful research collaborations. I
deeply admire his work ethics and care towards making the research work polished
and more accessible to the readers. I appreciate the time he spent in making this
dissertation stronger, clearer, and more readable, in addition to making me more
methodical and organized in doing research. I deeply thank Prof. Xie and Dr.
Iyer for serving on my committee. I appreciate their support and guidance during
my entire Ph.D. tenure. I also thank Prof. Jenkins, Prof. Narayanan, and Prof.
Sampson for commenting on my work and sharing their thoughts.

My internship experiences at Intel and NVIDIA had been great learning
experiences for me. I would like to thank my internship mentors for providing a
lively environment for me to work. In this regard, I thank Ramadass Nagarajan,
Xiaowei Jiang, Li Zhao, Ravi Iyer, Srihari Makineni, Evgeny Bolotin, Zvika Guz,
Mike Parker, and Steve Keckler. In addition, I would like to thank all my

xvii

research collaborators and colleagues with whom I have interacted.

My Ph.D. journey had been incredibly enjoyable because of the support and a
friendly environment provided by my lab mates. I have developed a real
camaraderie with Onur Kayiran after collaborating with him on so many research
projects. His research acumen really helped in making this dissertation stronger.
I do not even remember how many impossible ideas I have brainstormed with
him. I admire his patience to listen those and more importantly his patience to
provide really good feedback on all of that. I deeply thank Asit Mishra for being
my first research mentor and teaching me how to do research. My overlap with
Bikash Sharma was for four years. Although we never collaborated on the same
research project, we used to talk through the obstacles as they came in our
respective projects. We were apartment-mates for four years, and I thank him for
his friendship. I also thank Nachiappan CN for being a good friend of mine and
giving his dollars (not 2 cents) whenever I was stuck at something. The great
company of Kashyap Dixit and Ashutosh Pattnaik helped me sail thorough the
end years of my Ph.D. Also, special thanks to Neha Sharma for all her support
during my Ph.D. tenure.

Much of my research was at the mercy of the compute clusters hosted by my
department. I thank the entire CSE department technical staff for managing those
clusters. In particular, I thank Eric Prescott for helping me with my requests even
at the wee hours on the weekends. I also thank the entire administrative staff of
CSE department for being so efficient and getting my paper-work going. Special
thanks to Annie Royer for patiently handling tons of my travel reimbursement
paper-work.

There have been lots of other people whose company made my experience at
Penn State memorable. In this regard, I would like to thank Reetuparna Das,
Seung-Hwan Lim, Sai Prashanth, Akbar Sharifi, Niranjan Soundararajan,
Abhradeep Guha Thakurta, Shrawan C. Surendar, Emre Kultursay, Prashanth
Thinakaran, Tulika Parija, Xulong Tang, Haibo Zhang, Jihyun Ryoo, Mahshid
Sedghi, Tuba Kesten, Jagadish Kotra, Diana Guttman, Amin Jadidi, Di Wang,
Karthik Swaminathan, Narges Shahidi, Harshal Patanakar, Vivek Kaushal,
Abhishek Kar, Anushree Dash, Debanjan Das, Shashank Singhai, Suchismita
Sarangi, Berkey Cellik, Giuseppe Salento, Nandhini Chandramoorthy, Nirupama
Talele, Cong Xu, Bhaskar Prabhala, Praveen Yedlapalli, Sushama Karumanchi.
If you are reading this page and think that your name is missing, excuse me for
that and assume it is written with an invisible ink.

Finally, I am running short of words in thanking my parents, grandparents,

xviii

cousins, and other family members for providing unconditional support.

Thank you all.

xix

Dedication

To my dear parents and grandparents for being a constant source
of inspiration and support.

xx

Chapter 1

Introduction

Graphics Processing Units (GPUs) have recently emerged as a cost-effective

throughput computing paradigm for a wide range of areas such as science,

engineering, medicine, social media, gaming, and finance, due to their immense

computing power compared to CPUs [1–10]. Many of the world’s Top 500

computers [11, 12] use GPUs both for performance and energy-efficiency.

Similarly, orders of magnitude improvements in application performance in

medical science [13–15], finance [16–18], and social media [19] have been reported

recently by offloading computation to GPUs. It is not only expected that GPUs

will play a critical role in the foreseeable computing landscape ranging from

supercomputing machines to handheld devices, but they also could be a natural

choice for processing big-data to advance science and engineering. As an example,

US healthcare data reached 150 Exabytes in 2011 and is likely to grow to

Zettabytes/Yottabytes soon [20]. Similar trends in data explosion are predicted

in many domains such as the environment, traffic control, manufacturing, climate

prediction and astrophysics [21]. Mining information in such large datasets

requires scalable parallel computing capabilities for which GPUs provide a very

promising fit.

Modern GPUs are characterized by numerous programmable computational cores

and thousands of simultaneously active fine-grained threads. To facilitate ease of

programming on these systems, programming models like CUDA [4, 22, 23] and

2

OpenCL [24] have been developed. GPU applications are typically divided into

several kernels, where each kernel is capable of spawning many threads. The

threads are usually grouped together into thread blocks, also known as cooperative

thread arrays (CTAs). When an application starts its execution on a GPU, the

CTA scheduler initiates scheduling of CTAs onto the available GPU cores. All

the threads within a CTA are executed on the same core typically in groups of

32 threads. This collection of threads is referred to as a warp and all the threads

within a warp typically share the same instruction stream, which forms the basis

for the term single instruction multiple threads, SIMT [3,25,26].

The Problem: In spite of having numerous resident threads and theoretically

high thread-level parallelism (TLP), GPU cores still suffer from high periods of

idle times, resulting in under-utilization of hardware resources. These idle times

are primarily a result of the inability of the commonly-employed warp scheduling

policies in facilitating a GPU core to completely tolerate the long memory fetch

latencies, which are primarily attributed to: (1) contention in caches caused by

multiple concurrent threads, (2) DRAM contention caused by various concurrent

threads from multiple GPU cores, and (3) limited off-chip DRAM bandwidth

available in GPUs. With the commonly-employed warp scheduling policies, for

example, round-robin (RR) scheduler, the GPGPU core becomes inactive

because there may be no warps that are not stalling due to a memory operation,

which significantly reduces the capability of hiding long memory latencies. Such

inactive periods are especially prominent in memory-intensive applications. It is

observed that out of 38 applications covering various GPGPU application

benchmark suites, 19 applications suffer from very high core inactive times (on

average 62% of total cycles are spent with no warps executing). In addition to

the inefficiencies in warp schedulers, the modern memory access schedulers in

GPUs (for example, first-ready, first-come-first-serve (FR-FCFS)) also possess

limitations. Typically, they are only optimized for DRAM access locality to

enhance memory bandwidth utilization, and implicitly assume all requests from

different GPU cores are equally important. Hence, these schedulers do not

prioritize critical memory requests over non-critical requests, thereby exhibiting

sub-optimal performance.

3

Dissertation Contributions: This dissertation research addresses the above

issues by focusing on the problem of cache and memory resource contention. In

this context, this dissertation proposes techniques that are employed at two

different places: core and memory. First, this dissertation shows that by

intelligently scheduling the threads at the core, the generated memory request

patterns can be more amenable for existing resource management techniques

such as cache replacement and memory scheduling as well as performance

enhancement techniques such as data prefetching. Second, this dissertation shows

that considering criticality and other application characteristics to schedule

memory requests at the memory controller is an effective way to manage

contention at the memory.

(A) Managing Contention from Cores via Warp Scheduling

This dissertation shows that the existing warp scheduling techniques employed

at the core are oblivious to the underlying shared resource management policies,

and therefore, the warp scheduling decisions taken at the core might not always

be in harmony with the shared resource management scheduling policies. In this

context, this dissertation proposes two warp scheduling techniques: 1) cache and

memory-aware warp scheduling; and 2) data prefetching-aware warp scheduling.

Both of these schedulers exploit an important property of GPUs that there is no

ordering restriction among the execution of warps and the warp scheduler can

efficiently choose the desired warps without incurring significant overhead.

Contribution I: Cache and Memory-Aware Warp Scheduling [7]. The

key problem with the traditional round-robin warp scheduling policy is that it

allows a large number of warps to concurrently access the cache. This makes it

harder for the underlying cache management policies to leverage the locality

present in many CUDA applications. In order to manage the contention in

caches, this dissertation proposes a cache-aware warp scheduler that essentially

reduces the number of warps that can benefit from caches in a given time

interval. Although this scheduler improves the cache hit rates significantly, it

turns out that it is not aware of the warp scheduling decisions taken at the other

cores. This unawareness causes the schedulers at different cores to schedule warps

such that they happen to concurrently access a limited set of global memory

4

banks, consequently leading to inefficient utilization of the available memory

bandwidth. To this end, this dissertation proposes a memory-aware warp

scheduler called OWL by extending the cache-aware warp scheduler such that it

can facilitate better coordination between warp scheduling decisions taken at

different cores. OWL enabled the warps across different cores to collectively

access a larger number of memory banks concurrently, thereby improving the

memory-level parallelism and easing the job of the memory scheduler in

managing contention at the banks.

Contribution II: Prefetch-Aware Warp Scheduling [27]. Effectiveness of

data prefetching is dependent on the prefetching accuracy as well as timeliness of

prefetches. The analyses of the existing warp schedulers show that they do not

coordinate well with the prefetching mechanisms because they happen to

schedule consecutive warps accessing nearby cache blocks in close succession.

Therefore, a simple prefetcher that could have prefetched nearby cache blocks

with high accuracy will not contribute significantly to the performance because

many of them will be tagged as late prefetches. To this end, this dissertation

proposes a prefetch-aware warp scheduling policy that can coordinate with

prefetching decisions in GPUs to better tolerate long memory latencies. This

scheduler separates the scheduling of consecutive warps in time, and by not

executing them in close succession, it enables effective incorporation of simple

prefetching techniques for improving the overall GPU performance.

(B) Managing Contention at Memory via Memory Scheduling

Memory access schedulers employed in GPUs implicitly assume that all requests

from different cores are equally important. This dissertation shows that this

assumption does not necessarily help in achieving: 1) the best performance when

GPU cores concurrently execute threads belonging to a single application; and 2)

the best system throughput and fairness when GPU cores concurrently execute

threads belonging to multiple applications. To address these two scenarios, this

dissertation proposes criticality-aware and application-aware memory scheduling

techniques, respectively.

Contribution III: Criticality-Aware Memory Scheduling. Shared resource

5

contention causes significant variation in average memory latencies experienced

by individual GPU cores. Due to this variation, the number of stalling warps

belonging to the cores that suffer from higher memory access latencies is typically

higher than that of other cores, making the former type of cores less latency

tolerant, i.e., more critical. This implies that because different GPU cores have

varying degrees of tolerance to latency during the execution of an application,

their corresponding memory requests have varying degrees of criticality. Based on

this observation, this dissertation proposes a criticality-aware scheduler that

takes into account the criticality of memory requests, i.e., the latency-tolerance of

the cores that generate memory requests, thereby improving the overall GPU

performance over existing schedulers.

Contribution IV: Application-Aware Memory Scheduling [28, 29]. This

dissertation finds that an uncoordinated allocation of GPU resources among

concurrently executing multiple applications can lead to significant degradation

in system throughput and fairness. Therefore, it is imperative to make the GPU

memory system aware of the application characteristics. To this end, this

dissertation proposes two different application-aware memory scheduling policies.

The first scheduler is developed with the aim of sharing the memory bandwidth

across concurrent applications in a fair and efficient manner. The second

scheduler is more sophisticated and is based on an analytical performance model

for GPUs. This dissertation proposes that the common use of

misses-per-instruction (MPI) as a proxy for performance is not accurate for

many-threaded architectures and memory scheduling decisions based on both

MPI and attained DRAM bandwidth are more effective in enhancing system

throughput and fairness. This dissertation evaluates both schedulers on a

newly-developed simulated GPU platform supporting execution of multiple

applications.

The rest of this dissertation is organized as follows. Chapter 2 provides

preliminaries for GPU architectures. Then, the OWL warp scheduler is presented

in Chapter 3. Prefetch-aware warp scheduler is discussed in Chapter 4, followed

by the description of the criticality-aware memory scheduler in Chapter 5.

Chapters 6 and 7 looks at application-aware memory system design issues for

6

GPUs. Chapter 7 concludes this dissertation and presents a few directions for

future work.

Chapter 2

Graphics Processing Units (GPUs):

A Primer

This chapter provides preliminaries for GPU architectures, application design, and

typical scheduling and prefetching strategies employed in GPUs.

GPU Architecture: A General Purpose Graphics Processing Unit

(GPGPU) consists of many simple cores (streaming multiprocessors), with each

core typically having a SIMT width of 8 to 32 (NVIDIA’s Fermi series has 16

streaming multiprocessors with a SIMT width of 32 [4]). A typical GPU

architecture (as shown in Figure 2.1 (A)) consists of many shader cores

connected to memory controllers via an on-chip interconnect. This configuration

is similar to the ones studied in prior works [30, 31]. Each core is associated with

a private L1 data cache and read-only texture and constant caches along with a

low latency shared memory (scratchpad memory). Every memory controller is

associated with a slice of the shared L2 cache for faster access to the cached data.

Canonical GPGPU Application Design: A typical CUDA application

consists of many kernels (or grids) as shown in Figure 2.2 (A). These kernels

implement specific modules of an application. Each kernel is divided into groups

of threads, called cooperative thread arrays (CTAs) (Figure 2.2 (B)). A CTA is

an abstraction which encapsulates all synchronization and barrier primitives

8

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

CTA Data Layout

On Chip Network

C

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

A(0,0) A(0,1) A(0,2) A(0,3)

:

:

DRAM Data Layout (Row Major)

Bank 1 Bank 2 Bank 3 Bank 4

A(1,0) A(1,1) A(1,2) A(1,3)

:

:

A(2,0) A(2,1) A(2,2) A(2,3)

:

:

A(3,0) A(3,1) A(3,2) A(3,3)

:

:

L1

C
L1

C
L1

C
L1

C
L1

C
L1

Core 1 Core 28

(A) (B)

(C)

mapped to

Bank 1

mapped to

Bank 2

mapped to

Bank 3

mapped to

Bank 4

CTA 1 CTA 2

CTA 3 CTA 4

Figure 2.1: (A) GPGPU architecture, (B) CTA data layout, and (C) Main memory
layout with CTA’s data mapped.

among a group of threads [1]. Having such an abstraction allows the underlying

hardware to relax the execution order of the CTAs to maximize parallelism. The

underlying architecture in turn, sub-divides each CTA into groups of threads

(called warps) (Figure 2.2 (C) and (D)). This sub-division is transparent to the

application programmer and is an architectural abstraction.

CTA, Warp, and Thread Scheduling: Execution on GPGPUs starts with

the launch of a kernel. All kernels can either execute sequentially or concurrently.

In case kernels are executed sequentially, after a kernel is launched, the CTA

scheduler schedules available CTAs associated with the kernel in a round-robin

and load balanced fashion on all the cores [31]. For example, CTA 1 is assigned to

core 1, CTA 2 is assigned to core 2 and so on. After assigning at least one CTA to

each core (provided that enough CTAs are available), if there are still unassigned

CTAs, more CTAs can be assigned to the same core in a similar fashion. The

maximum number of CTAs per core (N) is limited by core resources (number of

threads, size of shared memory, register file size, etc. [1, 31]). Given a baseline

architecture, N may vary across kernels depending on how much resources are

needed by a CTA of a particular kernel. If a CTA of a particular kernel needs

9

CTA 1

CTA 2

Kernel 1

Kernel Application

Kernel 2

Kernel 3

CTA 3

Warp 1

CTA

Warp 2

Warp 3

Warp 4

Threads

(A)

(B)

(C)
(D)

Figure 2.2: GPGPU application hierarchy.

more resources, N will be smaller compared to that of another kernel whose CTAs

need fewer resources. For example, if a CTA of kernel X needs 16KB of shared

memory and the baseline architecture has 32KB of shared memory available, a

maximum of 2 CTAs of kernel X can be executed simultaneously.

The above CTA assignment policy is followed by per-core GPGPU warp

scheduling. Warps associated with CTAs are scheduled in a round-robin (RR)

fashion on the assigned cores [8, 31] and get equal priority. In traditional GPU

architecture, every 4 cycles, a warp ready for execution is selected in a

round-robin fashion and fed to the 8-way SIMT pipeline of a GPGPU core. At

the memory stage of the core pipeline, if a warp gets blocked on a long latency

memory operation, the entire warp (32 threads) is scheduled out of the pipeline

and moved to the pending queue. At a later instant, when the data for the warp

arrives, it proceeds to the write-back stage, and then fetches new instructions.

When multiple kernels from multiple applications are executed concurrently on

a GPU, they can be assigned to the SMs using an equal partitioning mechanism. If

two kernels from different applications are concurrently executed, this mechanism

assigns half of the SMs to the first application and the second half to the other

application. The CTA assignment for each kernel follows the same load-balanced

distribution strategy as described before; the only difference is that each kernel is

now assigned to only half of the SMs of the baseline GPU architecture.

CTA Data Layout: Current GPU chips support ∼10× higher memory

10

bandwidth compared to CPU chips [7]. In order to take full advantage of the

available DRAM bandwidth and to reduce the number of requests to DRAM, a

kernel must arrange its data accesses so that each request to the DRAM is for a

large number of consecutive DRAM locations. With the SIMT execution model,

when all threads in a warp execute a memory operation, the hardware typically

detects if the threads are accessing consecutive memory locations; if they are, the

hardware coalesces all these accesses into a single consolidated access to DRAM

that requests all consecutive locations at once. To understand how data blocks

used by CTAs are placed in the DRAM main memory, consider Figure 2.1 (B).

This figure shows that all locations in the DRAM main memory form a single,

consecutive address space. The matrix elements that are used by CTAs are

placed into the linearly addressed locations according to the row major

convention as shown in Figure 2.1 (B). That is, the elements of row 0 of a matrix

are first placed in order into consecutive locations (see Figure 2.1 (C)). The

subsequent row is placed in another DRAM bank. Note that, this example is

simplified for illustrative purposes only, and the data layout may vary across

applications.

Memory Scheduling in GPUs: First-ready FCFS (FR-FCFS) [32–34] is

the commonly employed memory scheduling technique in GPUs. This scheme

is targeted at improving DRAM row hit rates, so request prioritization order is

as follows: 1) row-hit requests are prioritized over other requests; then 2) older

requests are prioritized over younger requests. Among row-hit requests, older

requests are prioritized over younger requests.

Prefetching in GPGPUs: Inter-thread L1 data prefetching [35] was recently

proposed as a latency hiding technique in GPGPUs. In this technique, a group

of threads prefetch data for threads that are going to be scheduled later. This

inter-thread prefetcher can also be considered as an inter-warp prefetcher, as the

considered baseline architecture attempts to coalesce the memory requests of all

the threads in a warp as a single cache block request (e.g., 4B requests per thread

× 32 threads per warp = 128B request per warp, which equals the cache block

size). The authors propose that prefetching data for other warps (in turn, threads)

can eliminate cold misses, as the warps for which the data is prefetched will find

11

their requested data in the cache. In the case where the threads demand their

data before the prefetched data arrives, the demand requests can be merged with

the already-sent prefetch requests (if accurate) via miss status handling registers

(MSHRs). In this case, the prefetch can partially hide some of the memory latency.

In the next sections, this dissertation will detail the developed warp and

memory scheduling techniques.

Chapter 3

Cache and Memory Aware Warp

Scheduling Techniques

Emerging GPGPU architectures, along with programming models like CUDA and

OpenCL, offer a cost-effective platform for many applications by providing high

thread level parallelism at lower energy budgets. Unfortunately, for many general-

purpose applications, available hardware resources of a GPGPU are not efficiently

utilized, leading to lost opportunity in improving performance. A major cause of

this is the inefficiency of current warp scheduling policies in tolerating long memory

latencies.

This chapter identifies that the scheduling decisions made by such policies are

agnostic to thread-block, or cooperative thread array (CTA), behavior, and as a

result inefficient. This chapter presents a coordinated CTA-aware scheduling

policy that utilizes four schemes to minimize the impact of long memory

latencies. The first two schemes, CTA-aware two-level warp scheduling and

locality aware warp scheduling, enhance per-core performance by effectively

reducing cache contention and improving latency hiding capability. The third

scheme, bank-level parallelism aware warp scheduling, improves overall GPGPU

performance by enhancing DRAM bank-level parallelism. The fourth scheme

employs opportunistic memory-side prefetching to further enhance performance

by taking advantage of open DRAM rows. Evaluations on a 28-core GPGPU

13

platform with highly memory-intensive applications indicate that the proposed

mechanism can provide 33% average performance improvement compared to the

commonly-employed round-robin warp scheduling policy.

3.1 Introduction

The goal of this work is to tackle the under-utilization of cores for improving

the overall GPGPU performance. In this context, the c(O)operative thread array

a(W)are warp schedu(L)ing policy, called OWL1 is developed. OWL is based

on the concept of focused CTA-aware scheduling, which attempts to mitigate the

various components that contribute to long memory fetch latencies by focusing on

a selected subset of CTAs scheduled on a core (by always prioritizing them over

others until they finish). The proposed OWL policy is a four-pronged concerted

approach and the associated contributions are:

• First, a CTA-aware two-level warp scheduler is developed that exploits the

architecture and application interplay to intelligently schedule CTAs onto the

cores. This scheme groups all the available CTAs (N CTAs) on a core into

smaller groups (of n CTAs) and schedules all groups in a round-robin fashion. As

a result, it performs better than the commonly-used baseline RR warp scheduler

because 1) it allows a smaller group of warps/threads to access the L1 cache in a

particular interval of time, thereby reducing cache contention, 2) improves

latency hiding capability and reduces inactive periods as not all warps reach long

latency operations around the same time. This technique improves the average

L1 cache hit rate by 8% over RR for 19 highly memory intensive applications,

providing a 14% improvement in IPC performance.

• Second, a locality aware warp scheduler is developed to improve upon the CTA-

aware two-level warp scheduler, by further reducing L1 cache contention. This is

achieved by always prioritizing a group of CTAs (n CTAs) in a core over the rest

1Owl is a bird known for exceptional vision and focus while it hunts for food. The proposed
scheduling policy also follows an owl’s philosophy. It intelligently selects (visualizes) a subset
of CTAs (out of many CTAs launched on a core) and focuses on them to achieve performance
benefits.

14

of the CTAs (until they finish). Hence, unlike the base scheme, where each group

of CTAs (consisting of n CTAs) is executed one after another and thus, does not

utilize the caches effectively, this scheme always prioritizes one group of CTAs over

the rest whenever a particular group of CTA is ready for execution. The major goal

is to take advantage of the locality between nearby threads and warps (associated

with the same CTA) [36]. With this scheme, average L1 cache hit rate is further

improved by 10% over the CTA-aware two-level warp scheduler, leading to an 11%

improvement in IPC performance.

• Third, the first two schemes are aware of different CTAs but do not exploit any

properties common among different CTAs. Across 38 GPGPU applications, there

is significant DRAM page locality between consecutive CTAs. On average, the

same DRAM page is accessed by consecutive CTAs 64% of the time. Hence, if

two consecutive CTA groups are scheduled on two different cores and are always

prioritized according to the locality aware warp scheduling, they would access a

small set of DRAM banks more frequently. This increases the queuing time at

the banks and reduces memory bank level parallelism (BLP) [37]. On the other

hand, if non-consecutive CTA groups are scheduled and always prioritized on two

different cores, they would concurrently access a larger number of banks. This

reduces the contention at the banks and improves BLP. This proposed scheme

(called the bank-level parallelism aware warp scheduler), increases average BLP by

11% compared to the locality aware warp scheduler, providing a 6% improvement

in IPC performance.

• Fourth, a drawback of the previous scheme is that it reduces DRAM row

locality. This is because rows opened by a CTA cannot be completely utilized by

its consecutive CTAs since consecutive CTAs are not scheduled simultaneously

any more. To recover the loss in DRAM row locality, an opportunistic

prefetching mechanism is developed, in which some of the data from the opened

row is brought to the nearest on-chip L2 cache partition. The mechanism is

opportunistic because the degree of prefetching depends upon the number of

pending demand requests at the memory controller.

The performance of the OWL scheduler is evaluated on a 28-core GPGPU

platform simulated via GPGPU-Sim [31] and a set of 19 highly memory intensive

15

applications. The results show that OWL improves GPGPU performance by 33%

over the baseline RR warp scheduling policy. OWL also outperforms the recently-

proposed two-level scheduling policy [8] by 19%.

Table 3.1: GPGPU application characteristics: (A) PMEM: IPC improvement
with perfect memory (All memory requests are satisfied in L1 caches), Legend: H
= High (>= 1.4x) , L = Low (< 1.4x); (B) CINV: The ratio of inactive cycles to
the total execution cycles of all the cores.

App. Suite Type-1 Applications Abbr. PMEM CINV
1 Parboil Sum of Abs. Differences SAD H (6.39x) 91%
2 MapReduce PageViewCount PVC H (4.99x) 93%
3 MapReduce SimilarityScore SSC H (4.60x) 85%
4 CUDA SDK Breadth First Search BFS H (2.77x) 81%
5 CUDA SDK MUMerGPU MUM H (2.66x) 72%
6 Rodinia CFD Solver CFD H (2.46x) 66%
7 Rodinia Kmeans Clustering KMN H (2.43x) 65%
8 CUDA SDK Scalar Product SCP H (2.37x) 58%
9 CUDA SDK Fast Walsh Transform FWT H (2.29x) 58%
10 MapReduce InvertedIndex IIX H (2.29x) 65%
11 Parboil Sparse-Matrix-Mul. SPMV H (2.19x) 65%
12 3rd Party JPEG Decoding JPEG H (2.12x) 54%
13 Rodinia Breadth First Search BFSR H (2.09x) 64%
14 Rodinia Streamcluster SC H (1.94x) 52%
15 Parboil FFT Algorithm FFT H (1.56x) 37%
16 Rodinia SRAD2 SD2 H (1.53x) 36%
17 CUDA SDK Weather Prediction WP H (1.50x) 54%
18 MapReduce PageViewRank PVR H (1.41x) 46%
19 Rodinia Backpropogation BP H (1.40x) 33%
20 CUDA SDK Separable Convolution CON L (1.23x) 20%
21 CUDA SDK AES Cryptography AES L (1.23x) 51%
22 Rodinia SRAD1 SD1 L (1.17x) 20%
23 CUDA SDK Blackscholes BLK L (1.16x) 17%
24 Rodinia HotSpot HS L (1.15x) 21%
25 CUDA SDK Scan of Large Arrays SLA L (1.13x) 17%
26 3rd Party Denoise DN L (1.12x) 22%
27 CUDA SDK 3D Laplace Solver LPS L (1.10x) 12%
28 CUDA SDK Neural Network NN L (1.10x) 13%
29 Rodinia Particle Filter (Native) PFN L (1.08x) 10%
30 Rodinia Leukocyte LYTE L (1.08x) 15%
31 Rodinia LU Decomposition LUD L (1.05x) 64%
32 Parboil Matrix Multiplication MM L (1.04x) 4%
33 CUDA SDK StoreGPU STO L (1.02x) 3%
34 CUDA SDK Coulombic Potential CP L (1.01x) 4%
35 CUDA SDK N-Queens Solver NQU L (1.01x) 95%
36 Parboil Distance-Cutoff CP CUTP L (1.01x) 2%
37 Rodinia Heartwall HW L (1.01x) 9%
38 Parboil Angular Correlation TPAF L (1.01x) 6%

16

0%

20%

40%

60%

80%

100%

S
A

D
P

V
C

S
S

C
B

F
S

M
U

M
C

F
D

K
M

N
S

C
P

F
W

T
II

X
S

P
M

V
J
P

E
G

B
F

S
R

S
C

F
F

T
S

D
2

W
P

P
V

R
B

P
C

O
N

A
E

S
S

D
1

B
L

K
H

S
S

L
A

D
N

L
P

S
N

N
P

F
N

L
Y

T
E

L
U

D
M

M
S

T
O

C
P

N
Q

U
C

U
T

P
H

W
T

P
A

F

A
V

G
A

V
G

-T
1P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
C

y
c
le

s

Figure 3.1: Fraction of total execution cycles (of all the cores) during which all the
warps launched on a core are waiting for their respective data to come back from
L2 cache/DRAM. This chapter defines the number of cycles where all warps are
stalled due to memory as MemoryBlockCycles. AVG-T1 is the average (arithmetic
mean) value across all Type-1 applications. AVG is the average value across all 38
applications.

3.2 Motivation and Workload Analysis

Round robin (RR) scheduling of warps causes almost all warps to execute the

same long latency memory operation (with different addresses) at roughly the same

time, as previous work has shown [8]. For the computation to resume in the warps

and the core to become active again, these long-latency memory accesses need

to be completed. This inefficiency of RR scheduling hampers the latency hiding

capability of GPGPUs. To understand it further, let us consider 8 CTAs that

need to be assigned to 2 cores (4 CTAs per core). According to the load-balanced

CTA assignment policy described in Section 2, CTAs 1, 3, 5, 7 are assigned to core

1 and CTAs 2, 4, 6, 8 are assigned to core 2. With RR, warps associated with

CTAs 1, 3, 5 and 7 are executed with equal priority on core 1 and are executed

in a round-robin fashion. This execution continues until all the warps are blocked

(when they need data from main memory). At this point, there may be no ready

warps that can be scheduled, making core 1 inactive. Typically, this inactive time

is very significant in memory intensive applications, as multiple requests are sent

to the memory subsystem by many cores in a short period of time. This increases

network and DRAM contention, which in turn increases queuing delays, leading

to very high core inactive times.

To evaluate the impact of RR scheduling on GPGPU applications, this

17

chapter first characterizes the application set. This work quantifies how much

IPC improvement each application gains if all memory requests magically hit in

the L1 cache. This improvement, called PMEM, is depicted in Table 3.1, where

the 38 applications are sorted in descending order of PMEM. Applications that

have high PMEM (>= 1.4×) are classified as Type-1, and the rest as Type-2.

This work observed that the warps of highly memory intensive applications

(Type-1) wait longer for their data to come back than warps of Type-2

applications. If this wait is eliminated, the performance of SAD, PVC, and SSC

would improve by 6.39×, 4.99× and 4.60×, respectively (as shown by the PMEM

values for these applications).

Across Type-1 applications, average core inactive time (CINV) is 62% of the

total execution cycles of all cores (Table 3.1). During this inactive time, no threads

are being executed in the core. The primary reason behind this high core inactivity

is MemoryBlockCycles, which is defined as the number of cycles during which all

the warps in the core are stalled waiting for their memory requests to come back

from L2 cache/DRAM (i.e., there are warps on the core but they are all waiting

for memory). Figure 3.1 shows the fraction of MemoryBlockCycles of all the cores

out of the total number of cycles taken to execute each application. Across all 38

applications, MemoryBlockCycles constitute 32% of the total execution cycles, i.e.,

70% of the total inactive cycles. These results clearly highlight the importance

of reducing the MemoryBlockCycles to improve the utilization of cores, and thus

GPGPU performance.

Another major constituent of inactive cycles is NoWarpCycles, which is defined

as number of cycles during which a core has no warps to execute, but an application

has not completed its execution as some other cores are still executing warps. This

might happen due to two reasons: (1) availability of a small number of CTAs

within an application (due to an inherently small amount of parallelism) [9] or

(2) the CTA load imbalance phenomenon [31], where some of the cores finish

their assigned CTAs earlier than the others. This work finds that NoWarpCycles

is prominent in LUD and NQU, which are Type-2 applications. Table 3.1 shows

that although core inactive time is very high in LUD and NQU (64% and 95%,

respectively), MemoryBlockCycles is very low (Figure 3.1).

18

Note that Type-1 applications are present across all modern workload suites

like MapReduce, Parboil, Rodinia, and CUDA SDK, indicating that memory stalls

are a fundamental bottleneck in improving the performance of these applications.

This work finds that Type-1 applications are most affected by limited off-chip

DRAM bandwidth, which leads to long memory stall times. The goal of this work

is to devise new warp scheduling mechanisms to both reduce and tolerate long

memory stall times in GPGPUs.

3.3 The OWL Scheduler

This section describes OWL, c(O)operative thread array a(W)are warp

schedu(L)ing policy, which consists of four schemes: CTA-aware two-level warp

scheduling, locality aware warp scheduling, bank-level parallelism aware warp

scheduling, and opportunistic prefetching, where each scheme builds on top of

the previous.

3.3.1 CTA-Aware: CTA-aware two-level warp scheduling

To address the problem posed by RR scheduling, a CTA-aware two-level warp

scheduler is proposed, where all the available CTAs launched on a core (N CTAs)

are divided into smaller groups of n CTAs. Assume that the size of each CTA

is k warps (which is pre-determined for an application kernel). This corresponds

to each group having n × k warps. CTA-Aware selects a single group (having n

CTAs) and prioritizes the associated warps (n×k) for execution over the remaining

warps ((N − n) × k) associated with the other group(s). Warps within the same

group have equal priority and are executed in a round-robin fashion. Once all the

warps associated with the first selected group are blocked due to the unavailability

of data, a group switch occurs giving opportunity to the next CTA group for

execution (and this process continues in a round-robin fashion among all the CTA

groups). This is an effective way to hide long memory latencies, as now, a core

can execute the group(s) of warps that are not waiting for memory while waiting

for the data for the other group(s).

19

Table 3.2: Reduction in L1 miss rates with the proposed warp scheduling
mechanisms over baseline RR scheduling.

App. CTA-Aware CTA-Aware-Locality # App. CTA-Aware CTA-Aware-Locality

1 SAD 6% 42% 11 SPMV 0% 8%
2 PVC 89% 90% 12 JPEG 0% 0%
3 SSC 1% 8% 13 BFSR 2% 16%
4 BFS 1% 17% 14 SC 0% 0%
5 MUM 1% 2% 15 FFT 1% 1%
6 CFD 1% 2% 16 SD2 0% 0%
7 KMN 27% 49% 17 WP 0% 0%
8 SCP 0% 0% 18 PVR 1% 2%
9 FWT 0% 0% 19 BP 0% 0%
10 IIX 27% 96% AVG-T1 8% 18%

How to choose n: A group with n CTAs should have enough warps to keep

the core pipeline busy in the absence of long latency operations [8]. Based on

the GPU core’s scheduling model described in Section 2, the minimum number of

warps in a group is set to the number of pipeline stages (5 in this case). It means

that, the minimum value of n × k should be 5. Since k depends on the GPGPU

application kernel, the group size can vary for different application kernels. As

each group can only have integral number of CTAs (n), the initial value of n = 1.

If n×k is still smaller than the minimum number of warps in a group, n is increased

by 1 until there are enough warps in the group for a particular application kernel.

After the first group is formed, remaining groups are also formed in a similar

fashion. For example, assume that the total number of CTAs launched on a core

is N = 10. Also, assume that the number of pipeline stages is 5, and the number

of warps in a CTA (k) is 2. In this case, the size of the first group (n) will be

set to 3 CTAs, as now, a group will have 6 (3× 2) warps, satisfying the minimum

requirement of 5 (number of pipeline stages). The second group will follow the

same method and have 3 CTAs. Now, note that the third group will have 4 CTAs

to include the remaining CTAs. The third group cannot have only 3 CTAs (n = 3),

because that will push the last CTA (10th CTA) to become the fourth group by

itself, violating the minimum group size (in warps) requirement for the fourth

group. This scheme is called as CTA-aware two-level scheduling (CTA-Aware),

as the groups are formed taking CTA boundaries into consideration and a two-

level scheduling policy is employed, where scheduling within a group (level 1) and

switching among different groups (level 2) are both done in a round-robin fashion.

20

The need to be CTA-aware: Two types of data locality are primarily present

in GPGPU applications [8,36,38]: (1) Intra-warp data locality, and (2) Intra-CTA

(inter-warp) data locality. Intra-warp locality is due to the threads in a warp that

share contiguous elements of an array, which are typically coalesced to the same

cache line. This locality is exploited by keeping the threads of a warp together.

Intra-CTA locality results from warps within the same thread-block sharing blocks

or rows of data. Typically, data associated with one CTA is first moved to the

on-chip memories and is followed by the computation on it. Finally, the results

are written back to the main global memory. Since the difference between access

latencies of on-chip and off-chip memories is very high [31], it is critical to optimally

utilize the data brought on-chip and maximize reuse opportunities. Prioritizing

some group of warps agnostic to the CTA boundaries may not utilize the data

brought on-chip to the full extent (because it may cause eviction of data that

is reused across different warps in the same CTA). Thus, it is important to be

CTA-aware when forming groups.

3.3.2 CTA-Aware-Locality : Locality aware warp

scheduling

Although CTA-Aware scheduling is effective in hiding the long memory fetch

latencies, it does not effectively utilize the private L1 cache capacity associated

with every core. Given the fact that L1 data caches of the state-of-the art

GPGPU architectures are in the 16-64 KB range [4] (as well as in CMPs [39]), in

most cases, the data brought by a large number of CTAs executing

simultaneously does not fit into the cache (this is true for a majority of the

memory-intensive applications). This hampers the opportunity of reusing the

data brought by warps, eventually leading to a high number of L1 misses. In fact,

this problem is more severe with the RR scheduling policy, where the number of

simultaneously executing CTAs taking advantage of the caches in a given interval

of time is more than that with the CTA-Aware scheduling policy. One might

argue that, this situation can be addressed by increasing the size of L1 caches,

but that would lead to (1) higher cache access latency, and (2) reduced hardware

21

(A)

(B)

Data for CTA 1 arrives.

Switch to CTA 1.

Data for CTA 1 arrives.

No switching.

1 3 7 1 3

1 3 1 3 5 5 5

5 5 7

7 7

T

Figure 3.2: An illustrative example showing the working of (A) CTA-aware two-
level warp scheduling (CTA-Aware) (B) Locality aware warp scheduling (CTA-
Aware-Locality). Label in each box refers to the corresponding CTA number.

resources dedicated for computation, thereby hampering parallelism and the

ability of the architecture to hide memory latency further.

Problem: In order to understand the problem with CTA-Aware scheme,

consider Figure 3.2 (A). Without the loss of generality, let us assume that the

group size is equal to 1. Further, assume that at core 1, CTA 1 belongs to group

1, CTA 3 belongs to group 2, etc., and each CTA has enough warps to keep the

core pipeline busy (1× k ≥ number of pipeline stages). According to CTA-Aware,

the warps of group 1 are prioritized until they are blocked waiting for memory.

At this point, the warps of CTA 3 are executed. If the warps of CTA 1 become

ready to execute (because their data arrives from memory) when the core is

executing warps of CTA 5 (Figure 3.2 (A)), CTA-Aware will keep executing the

warps of CTA 5 (and will continue to CTA 7 after that). It will not choose the

warps from CTA 1 even though they are ready because it follows a strict

round-robin policy among different CTAs. Thus, the data brought by the warps

of CTA 1 early on (before they were stalled) becomes more likely to get evicted

by other CTAs’ data as the core keeps on executing the CTAs in a round-robin

fashion. This strict round robin scheduling scheme allows larger number of

threads to bring data to the relatively small L1 caches, thereby increasing cache

contention due to the differences in the data sets of different CTAs and

hampering the effective reuse of data in the caches. Although CTA-Aware

performs better in utilizing L1 caches compared to RR (because it restricts the

number of warps sharing the L1 cache simultaneously), it is far from optimal.

22

Solution: To achieve better L1 hit rates, this scheme strives to reduce the

number of simultaneously executing CTAs taking advantage of L1 caches in a

particular time interval. Out of N CTAs launched on a core, the goal is to always

prioritize only one of the CTA groups of size n. n is chosen by the method

described in Section 3.3.1. In general, on a particular core, CTA-Aware-Locality

starts scheduling warps from group 1. If warps associated with group 1 (whose

size is n CTAs) are blocked due to unavailability of data, the scheduler can

schedule warps from group 2. This is essential to keep the core pipeline busy.

However, as soon as any warps from group 1 are ready (i.e., their requested data

has arrived), CTA-Aware-Locality again prioritizes these group 1 warps. If all

warps belonging to group 1 have completed their execution, the next group

(group 2) is chosen and is always prioritized. This process continues until all the

launched CTAs finish their execution.

The primary motivation of using this scheme is that, in a particular time

interval, only n CTAs are given higher priority to keep their data in the private

caches such that they get the opportunity to reuse it. Since this scheme reduces

contention and increases reuse in the L1 cache, it is called as locality aware warp

scheduling (CTA-Aware-Locality). Note that, as n is closer to N ,

CTA-Aware-Locality degenerates into RR, as there can be only one group with N

CTAs.

Typically, a GPGPU application kernel does not require fairness among the

completion of different CTAs. CTAs can execute and finish in any order. The only

important metric from the application’s point of view is the total execution time

of the kernel. A fair version of CTA-Aware-Locality can also be devised, where

the CTA group with highest priority is changed (and accordingly, priorities of all

groups will change) in a round-robin fashion (among all the groups) after a fixed

interval of time. The design of such schemes is left as a part of the future work.

Figure 3.2 (B) shows how CTA-Aware-Locality works. Again, without loss of

generality, let us assume that the group size is equal to 1. The

CTA-Aware-Locality scheme starts choosing warps belonging to CTA 1

(belonging to group 1) once they become ready, unlike CTA-Aware, where

scheduler keeps on choosing warps from CTA 5 (group 3), 7 (group 4) and so on.

23

In other words, this scheme always prioritize a small group of CTAs (in this case,

group 1 with n = 1) and shift the priority to the next CTA only after CTA 1

completes its execution. During time interval T , this scheme observes that only 3

CTAs are executing and taking advantage of the private caches, contrary to 4

CTAs in the baseline system (Figure 3.2 (A)). This implies that a smaller

number of CTAs gets the opportunity to use the L1 caches concurrently,

increasing L1 hit rates and reducing cache contention.

Discussion: CTA-Aware-Locality aims to reduce the L1 cache misses.

Table 3.2 shows the reduction in L1 miss rates (over baseline RR) when

CTA-Aware and CTA-Aware-Locality schemes are incorporated. On average, for

Type-1 applications, CTA-Aware reduces the overall miss rate by 8%.

CTA-Aware-Locality is further able to reduce the overall miss rate (by 10%) by

scheduling warps as soon as the data arrives for them, rather than waiting for

their turn, thereby reducing the number of CTAs currently taking advantage of

the L1 caches. With CTA-Aware-Locality, this scheme observes maximum

benefits with Map-Reduce applications PVC and IIX, where the reduction in L1

miss rates is 90% and 96%, respectively, leading to significant IPC improvements

(see Section 3.5). Since these applications are very memory intensive (highly

ranked among Type-1 applications in Table 3.1) and exhibit good L1 data reuse

within CTAs, they significantly benefit from CTA-Aware-Locality. Interestingly,

this scheme finds that 8 out of 19 Type-1 applications show negligible reduction

in L1 miss rates with both CTA-Aware and CTA-Aware-Locality. Detailed

analysis shows that these applications do not exhibit significant cache sensitivity,

thus, do not provide sufficient L1 data reuse opportunities. In WP, because of

resource limitations posed by the baseline architecture (Section 2), there are only

6 warps that can be simultaneously executed. This restriction eliminates the

possibility of getting benefits from CTA-Aware-Locality, as only one group (with

6 warps) can be formed, and no group switching/prioritization occurs.

24

3.3.3 CTA-Aware-Locality-BLP : BLP aware warp

scheduling

The previous section discussed how CTA-Aware-Locality helps in hiding memory

latency along with reducing L1 miss rates. This section proposes CTA-Aware-

Locality-BLP, which not only incorporates the benefits of CTA-Aware-Locality,

but also improves DRAM bank-level parallelism (BLP) [37].

Table 3.3: GPGPU application characteristics: Consecutive CTA row sharing:
Fraction of consecutive CTAs (out of all CTAs) accessing the same DRAM row.
CTAs/Row: Average number of CTAs accessing the same DRAM row.

App. Cons. CTA row.share CTAs/Row # App. Cons. CTA row.share CTAs/Row
1 SAD 42% 32 11 SPMV 98% 6
2 PVC 36% 2 12 JPEG 99% 16
3 SSC 20% 2 13 BFSR 71% 8
4 BFS 23% 5 14 SC 1% 2
5 MUM 17% 32 15 FFT 14% 5
6 CFD 81% 10 16 SD2 98% 35
7 KMN 66% 2 17 WP 93% 7
8 SCP 0% 1 18 PVR 38% 2
9 FWT 85% 2 19 BP 99% 4
10 IIX 36% 2 AVG 64% 15

Problem: In the study of 38 applications, the observation is that the same

DRAM row is accessed (shared) by consecutive CTAs 64% of the time. Table 3.3

shows these row sharing percentages for all the Type-1 applications. This metric

is determined by calculating the average fraction of consecutive CTAs (out of total

CTAs) accessing the same DRAM row, averaged across all rows. For example, if a

row is accessed by CTAs 1, 2, 3, and 4, its consecutive CTA row sharing percentage

is deemed to be 100% (as all CTAs are consecutive). The observation is that for

many GPGPU applications, the consecutive CTA row sharing percentages are

very high (up to 99% in JPEG). For example, in Figure 2.1 (B), the observation

is that the row sharing percentage is 100%, as CTA 1 opens 2 rows in Bank 1

(A(0,0) and A(0,1)) and Bank 2 (A(1,0) and A(1,1)); and, CTA 2 opens the same

rows again as the data needed by it to execute is also mapped to the same rows.

These high consecutive CTA row sharing percentages are not surprising, as CUDA

programmers are encouraged to form CTAs such that the data required by the

consecutive CTAs is mapped to the same DRAM row for high DRAM row locality,

improving DRAM bandwidth utilization [1].

25

Bank

1

Bank

2

Bank

3

Bank

4

L2

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

High BLP

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Low Row Locality

Low BLP

High Row Locality

High BLP

High Row Locality

(A) (B) (C1)

Bank

1

L2 L2

Bank

2

Bank

3

Bank

4

Idle! Idle!

Bank

1

Bank

2

Bank

3

Bank

4

Prefetch

Bank

1

Bank

2

Bank

3

Bank

4

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Prefetch hits at L2

L2

(C2)

Figure 3.3: An example illustrating (A) the under-utilization of DRAM banks
with CTA-Aware-Locality, (B) improved bank-level parallelism with CTA-Aware-
Locality-BLP, (C1, C2) the positive effects of Opportunistic Prefetching.

Section 3.3.2 proposed CTA-Aware-Locality where a subset of CTAs (one

group) is always prioritized over others. Although this scheme is effective at

reducing cache contention and improving per-core performance, it takes decisions

agnostic to inter-CTA row sharing properties. Consider a scenario where two

consecutive CTA groups are scheduled on two different cores and are being

always prioritized according to CTA-Aware-Locality. Given that the consecutive

CTAs (in turn warps) share DRAM rows, the CTA groups access a small set of

DRAM banks more frequently. This increases the queuing time at the banks and

reduces the bank level parallelism (BLP). To understand this problem in-depth,

let us revisit Figure 2.1 (C), which shows the row-major data layout of CTAs in

DRAM [1]. The elements in row 0 of the matrix in Figure 2.1 (B) are mapped to

a single row in bank 1, elements in row 1 are mapped to bank 2, and so on. To

maximize row locality, it is important that the row that is loaded to a row buffer

in a bank is utilized to the maximum, as row buffer hit latency (10 DRAM cycles

(tCL)) is almost twice cheaper than row closed latency (22 DRAM cycles (tRCD +

tCL)), and almost three times cheaper than row conflict latency (32 DRAM cycles

(tRP + tRCD + tCL)) [37]. CTA-Aware-Locality prioritizes CTA 1 (group 1) at

core 1 and CTA 2 (also, group 1) at core 2. When both the groups are blocked,

their memory requests access the same row in both bank 1 and bank 2, as CTA 1

and CTA 2 share the same rows (row sharing = 100%).

Figure 3.3 (A) depicts this phenomenon pictorially. Since consecutive CTAs

(CTAs 1 and 2) share the same rows, prioritizing them in different cores enables

26

them to access these same rows concurrently, thereby providing high row buffer

hit rate. Unfortunately, for the exact same reason, prioritizing consecutive CTAs

in different cores leads to low BLP because all DRAM banks are not utilized as

consecutive CTAs access the same banks (In Figure 3.3 (A), two banks stay idle).

The goal is to develop a series of techniques that achieve both high BLP and

high row buffer hit rate. First, a bank-level parallelism aware warp scheduling

mechanism, CTA-Aware-Locality-BLP, is described which improves BLP at the

expense of row locality.

Solution: To address the above problem, CTA-Aware-Locality-BLP is

proposed, which not only inherits the positive aspects of CTA-Aware-Locality

(better L1 hit rates), but also improves DRAM bank level parallelism. The key

idea is to still always prioritize one CTA group in each core, but to ensure that

non-consecutive CTAs (i.e., CTAs that do not share rows) are always prioritized

in different cores. This improves the likelihood that the executing CTA groups

(warps) in different cores access different banks, thereby improving bank level

parallelism.

Figure 3.3 (B) depicts the working of CTA-Aware-Locality-BLP pictorially with

an example. Instead of prioritizing consecutive CTAs (CTAs 1 and 2) in the two

cores, CTA-Aware-Locality-BLP prioritizes non-consecutive ones (CTAs 1 and 4).

This enables all four banks to be utilized concurrently, instead of two banks staying

idle, which was the case with CTA-Aware-Locality (depicted in Figure 3.3 (A)).

Hence, prioritizing non-consecutive CTAs in different cores leads to improved BLP.

Note that this comes at the expense of row buffer locality, which will be restored

with the next proposal, Opportunistic Prefetching (Section 3.3.4).

One way to implement the key idea of CTA-Aware-Locality-BLP is to

prioritize different-numbered CTA groups in consecutive cores concurrently,

instead of prioritizing the same-numbered CTA groups in each core concurrently.

In other words, the warp scheduler in each core prioritizes, for example, the first

CTA group in core 1, the second CTA group in core 2, the third CTA group in

core 3, and so on. Since different-numbered CTA groups are unlikely to share

DRAM rows, this technique is likely to maximize parallelism. Algorithm 1 more

formally depicts the group formation and group priority assignment strategies for

27

-50%

-30%

-10%

10%

30%

50%

S
A

D

P
V

C

S
S

C

B
F

S

M
U

M

C
F

D

K
M

N

S
C

P

F
W

T

II
X

S
P

M
V

J
P

E
G

B
F

S
R

S
C

F
F

T

S
D

2

W
P

P
V

R

B
P

A
V

G
-T

1

Im
p

ro
v
e

m
e

n
t

Bank Level Parallelism Row Locality

-6
2
%

0%

0%

11%

14%

Figure 3.4: Effect of CTA-Aware-Locality-BLP on DRAM bank-level parallelism
and row locality, compared to CTA-Aware-Locality.

0.5

1.0

1.5

2.0

2.5

3.0

S
A

D

P
V

C

S
S

C

B
F

S

M
U

M

C
F

D

K
M

N

S
C

P

F
W

T

II
X

S
P

M
V

J
P

E
G

B
F

S
R

S
C

F
F

T

S
D

2

W
P

P
V

R

B
P

A
V

G
 -

T
1

N
o

rm
a

liz
e

d
 I
P

C

CTA-Aware CTA-Aware-Locality CTA-Aware-Locality-BLP OWL Perfect-L2 Perfect-L1 (PMEM)

6
.3

9

4
.9

9

4
.6

0

Figure 3.5: Performance impact of the schemes on Type-1 applications. Results
are normalized to RR.

the three schemes discussed so far.

Discussion: Figure 3.4 shows the change in BLP and row buffer hit rate

with CTA-Aware-Locality-BLP compared to CTA-Aware-Locality. Across Type-

1 applications, there is an 11% average increase in BLP (AVG-T1), which not

only reduces the DRAM queuing latency by 12%, but also reduces overall memory

fetch latency by 22%. In JPEG, the BLP improvement is 46%. When CTA-Aware-

Locality-BLP is incorporated, this scheme observes 14% average reduction in row

locality among all Type-1 applications. Even though there is a significant increase

in BLP, the decrease in row locality (e.g., in JPEG, SD2) is a concern, because

reduced row locality adversely affects DRAM bandwidth utilization. To address

this problem, the final scheme, memory-side Opportunistic Prefetching is proposed.

28

Algorithm 1 Group formation and priority assignment
⊲ k is the number of warps in a CTA

⊲ N is the number of CTAs scheduled on a core
⊲ n is the minimum number of CTAs in a group

⊲ g size is the minimum number of warps in a group
⊲ g core is the number of groups scheduled on a core
⊲ num cores is the total number of cores in GPGPU

⊲ group size[i] is the group size (in number of CTAs) of the ith group
⊲ g pri[i][j] is the group priority of the ith group scheduled on the jth core.

⊲ The lower the g pri[i][j], the higher the scheduling priority. Once a group is chosen, the scheduler
cannot choose warps from different group(s) unless all warps of the already-chosen group are blocked because
of unavailability of data.
procedure Form Groups

n← 1
while (n× k) < g size do

n← n+ 1

g core← ⌊N/n⌋
for g num = 0→ (g core− 1) do

group size[g num]← n

if (N mod n) 6= 0 then
group size[g core− 1]← group size[g core− 1] + (N mod n)

procedure CTA-Aware

Form Groups

for core ID = 0→ (num cores− 1) do
for g num = 0→ (g core− 1) do

g pri[g num][core ID]← 0

⊲ All groups have equal priority and executed in RR fashion.

procedure CTA-Aware-Locality

Form Groups

for core ID = 0→ (num cores− 1) do
for g num = 0→ (g core− 1) do

g pri[g num][core ID]← g num

procedure CTA-Aware-Locality-BLP

Form Groups

for core ID = 0→ (num cores− 1) do
for g num = 0→ (g core− 1) do

g pri[g num][core ID]← (g num− core ID) mod g core

3.3.4 Opportunistic Prefetching

The previous section discussed how CTA-Aware-Locality-BLP improves bank-level

parallelism, but this comes at the cost of row locality. The evaluations show that,

on average, 15 CTAs access the same DRAM row (shown under CTAs/row in

Table 3.3). If these CTAs do not access the row when the row is fetched into the

row buffer the first time, data in the row buffer will not be efficiently utilized. In

fact, since CTA-Aware-Locality-BLP tries to schedule different CTAs that access

the same row at different times to improve BLP, these different CTAs will need

to re-open the row over and over before accessing it. Hence, large losses in row

29

locality are possible (as shown in Figure 3.4), which can hinder performance. The

goal is to restore row buffer locality (and hence efficiently utilize an open row as

much as possible) while keeping the benefits of improved BLP.

Solution: The observation is that prefetching cache blocks of an already open

row can achieve this goal: if the prefetched cache blocks are later needed by other

CTAs, these CTAs will find the prefetched data in the cache and hence do not

need to access DRAM. As such, in the best case, even though CTAs that access

the same row get scheduled at different times, they would not re-open the row over

and over because opportunistic prefetching would prefetch all the needed data into

the caches.

The key idea of opportunistic prefetching is to prefetch the so-far-unfetched

cache lines in an already open row into the L2 caches, just before the row is

closed (i.e., after all the demand requests to the row in the memory request buffer

are served). This is called as opportunistic because the prefetcher, sitting in the

memory controller, takes advantage of a row that was already opened by a demand

request, in an opportunistic way. The prefetched lines can be useful for both

currently executing CTAs, as well as, CTAs that will be launched later. Figure 3.3

(C1, C2) depicts the potential benefit of this scheme. In Figure 3.3 (C1), during the

execution of CTAs 1 and 4, this proposal prefetches the data from the open rows

that could potentially be useful for other CTAs (CTAs 2 and 3 in this example).

If the prefetched lines are useful (Figure 3.3 (C2)), when CTAs 2 and 3 execute

and require data from the same row, their requests will hit in the L2 cache and

hence they will not need to access DRAM for the same row.

Implementation: There are two key design decisions in the opportunistic

prefetcher: what cache lines to prefetch and when to stop prefetching. This section

explores simple mechanisms to provide an initial study. However, any previously

proposed prefetching method can be employed (as long as they generate requests

to the same row that is open) – the exploration of such sophisticated techniques

are left as a part of the future work.

What to prefetch? The evaluated prefetcher starts prefetching when there

are no more demand requests to an open row. It sequentially prefetches the cache

30

lines that were not accessed by demand requests (after the row was opened the last

time) from the row to the L2 cache slice associated with the memory controller.

When to stop opportunistic prefetching? Two possible schemes are

studied, although there are many design choices possible. In the first scheme, the

prefetcher stops immediately after a demand request to a different row arrives.

The intuition is that a demand request is more critical than a prefetch, so it

should be served immediately. However, this intuition may not hold true because

servicing useful row-hit prefetch requests before row-conflict demand requests can

eliminate future row conflicts, thereby improving performance (also shown by Lee

et al. [40]). In addition, additional latency incurred by the demand request if

prefetches were continued to be issued to the open row even after the demand

arrives can be hidden in GPGPUs due to the existence of a large number of

warps. Hence, it may be worthwhile to keep prefetching even after a demand to a

different row arrives. Therefore, the second scheme prefetches at least a minimum

number of cache lines (C) regardless of whether or not a demand arrives. The

value of C is set to a value lower initially. The prefetcher continuously monitors

the number of demand requests at the memory controller queue. If that number

is less than a threshold, the value of C is set to a value higher. The idea is that if

there are few demand requests waiting, it could be beneficial to keep prefetching.

In the baseline implementation, the lower is set to 8, higher to 16, and threshold

to the average number of pending requests at the memory controller.

Section 3.5.1 explores sensitivity to these parameters. More sophisticated

mechanisms are left as part of future work.

3.3.5 Hardware Overheads

CTA-aware scheduling: The nVIDIA warp scheduler has low warp-switching

overhead [25] and warps can be scheduled according to their pre-determined

priorities. The proposed schemes take advantage of such priority-based warp

scheduler implementations already available in existing GPGPUs. Extra

hardware is needed to dynamically calculate the priorities of the warps using the

proposed schemes (Algorithm 1). In addition, every core should have a group

31

formation mechanism similar to Narasiman et al.’s proposal [8]. The RTL design

of the hardware required for the proposed warp scheduler using the 65nm TSMC

libraries in the Synopsys Design Compiler is synthesized. For a 28-core system,

the area overhead is 0.18 mm2.

Opportunistic prefetching: Opportunistic prefetching requires the

prefetcher to know which cache lines in a row were already sent to the L2. To

keep track of this for the currently-open row in a bank, n bits are added to the

memory controller, corresponding to n cache lines in the row. When the row is

opened, the n bits are reset. When a cache block is sent to the L2 cache from a

row, its corresponding bit is set. For 8 MCs, each controlling 4 banks, with a row

size of 32 cache blocks (assuming column size of 64B), the hardware overhead is

1024 bits (8 × 4 × 32 bits). The proposed second prefetching mechanism also

requires extra hardware to keep track of the average number of pending requests

at the memory controller. This range of this register is 0-127 and its value is

computed approximately with the aid of shift registers.

3.4 Experimental Methodology

3.4.1 Workloads and Metrics

Application Suite: There is increasing interest in executing various

general-purpose applications on GPGPUs in addition to the traditional graphics

rendering applications [31, 41]. In this spirit, this work considers a wide range of

emerging GPGPU applications implemented in CUDA, which include NVIDIA

SDK [23], Rodinia [42], Parboil [43], MapReduce [44], and a few third party

applications. In total, this work studies 38 applications. While Rodinia

applications are mainly targeted for heterogeneous platforms, Parboil

benchmarks primarily stress throughput computing focused architectures.

Data-intensive MapReduce and third party applications are included for diversity.

The applications are executed on GPGPU-Sim, which simulates the baseline

architecture described in Table 3.4. The applications are run until completion or

32

Table 3.4: Baseline configuration

Shader Core Config. 1300MHz, 5-Stage Pipeline, SIMT width = 8
Resources / Core Max. 1024 Threads, 32KB Shared memory,

32684 Registers
Caches / Core 32KB 8-way L1 Data cache, 8KB 4-way Texture cache

8KB 4-way Constant cache, 64B line size
L2 Cache 16-way 512 KB/Memory channel, 64B line size
Scheduling Round-robin warp scheduling,

(among ready warps), Load balanced CTA scheduling
Features Memory coalescing enabled, 32 MSHRs/core,

Immediate post dominator based
branch divergence handling

Interconnect 2D Mesh (6× 6; 28 cores + 8 Memory controllers),
650MHz, 32B channel width

DRAM Model FR-FCFS (Maximum 128 requests/MC), 8MCs,
4 DRAM banks/MC, 2KB row size

GDDR3 Timing 800MHz, tCL = 10, tRP = 10, tRC = 35, tRAS = 25
tRCD = 12, tRRD = 8, tCDLR = 6, tWR = 11

for 1 billion instructions (whichever comes first), except for IIX where it is

executed only for 400 million instructions because of infrastructure limitations.

Evaluation Metrics: In addition to using instructions per cycle (IPC) as

the primary performance metric for evaluation, auxiliary metrics like bank level

parallelism and row buffer locality are also considered. Bank level parallelism

(BLP) is defined as the number of average memory banks that are accessed when

there is at least one outstanding memory request at any of the banks [37, 45–

47]. Improving BLP enables better utilization of DRAM bandwidth. Row-buffer

locality (RBL) is defined as the average hit-rate of the row buffer across all memory

banks [45]. Improving RBL increases the memory service rate and hence also

enables better DRAM bandwidth utilization.

3.5 Experimental Results

This section evaluates the proposed scheduling and memory-side prefetching

schemes with 19 Type-1 applications, where main memory is the main cause of

core idleness.

33

0%

20%

40%

60%

80%

100%

S
A

D

P
V

C

S
S

C

B
F

S

M
U

M

C
F

D

K
M

N

S
C

P

F
W

T

II
X

S
P

M
V

J
P

E
G

B
F

S
R

S
C

F
F

T

S
D

2

W
P

P
V

R

B
P

A
V

G
-T

1

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
C

y
c
le

s RR CTA-Aware CTA-Aware-Locality CTA-Aware-Locality-BLP

Figure 3.6: Impact of different scheduling schemes on MemoryBlockCycles for
Type-1 applications. Results are normalized to the total execution cycles with
baseline RR scheduling.

3.5.1 Performance Results

This section starts with evaluating the performance impact of the proposed

scheduling schemes (in the order of their appearance in the chapter) against the

Perfect-L2 case, where all memory requests are L2 cache hits. This section also

shows results with Perfect-L1 (PMEM), which is the ultimate upper bound of the

proposed optimizations. Recall that each scheme builds on top of the previous.

Effect of CTA-Aware: Section 3.3.1 discussed that this scheme not only

helps in hiding memory latency, but also partially reduces cache contention.

Figure 3.5 shows the IPC improvements of Type-1 applications (normalized to

RR). Figure 3.6 shows the impact of the scheduling schemes on

MemoryBlockCycles as described in Section 3.2. On average (arithmetic mean),

CTA-Aware provides 14% (9% harmonic mean (hmean), 11% geometric mean

(gmean)) IPC improvement, with 9% reduction in memory waiting time

(MemoryBlockCycles) over RR. The primary advantage comes from the reduction

in L1 miss rates and improvement in memory latency hiding capability due to

CTA grouping. Significant IPC improvements are observed in PVC (2.5×) and

IIX (1.22×) applications, as the miss rate drastically reduces by 89% and 27%,

respectively. As expected, significant performance improvements are not observed

in SD2, WP, and SPMV as there is no reduction in miss rate compared to RR.

Improvements are observed in JPEG (6%) and SCP (19%), even though there is no

reduction in miss-rates (see Table 3.2). Most of the benefits in these benchmarks

34

are due to the better hiding of memory latency, which comes inherently from the

CTA-aware two-level scheduling. It is further observed (not shown) that

CTA-Aware achieves similar performance benefits compared to the recently

proposed two-level warp scheduling [8]. In contrast to [8], by introducing

awareness of CTAs, the CTA-Aware warp scheduling mechanism provides a

strong foundation for the remaining three developed schemes.

Effect of CTA-Aware-Locality : The main advantage of this scheme is

further reduced L1 miss rates. This scheme observes 11% average IPC

improvement (6% decrease in MemoryBlockCycles) over CTA-Aware, and 25%

(17% hmean, 21% gmean) over RR. This scheme observes 81% IPC improvement

in IIX, primarily because of 69% in L1 miss rates. Because of the row locality

and BLP trade-off (this scheme sacrifices BLP for increased row locality), this

scheme observes that some applications may not attain optimal benefit from

CTA-Aware-Locality. For example, in SC, IPC decreases by 4% and

MemoryBlockCycles increases by 3% compared to CTA-Aware, due to a 26%

reduction in BLP (7% increase in row locality). This scheme also observes similar

results in MUM: 1% increase in row locality, 10% reduction in BLP, which causes

3% reduction in performance compared to CTA-Aware. In SD2, this scheme

observes a 7% IPC improvement over CTA-Aware on account of a 14% increase

in row-locality, with a 21% reduction in BLP. Nevertheless, the primary

advantage of CTA-Aware-Locality is the reduced number of memory requests due

to better cache utilization (Section 3.3.2), and as a result of this, this scheme also

observes an improvement in DRAM bandwidth utilization due to reduced

contention in DRAM banks.

Effect of CTA-Aware-Locality-BLP : This scheme strives to achieve better

BLP at the cost of row locality. On average, this scheme observes 6% IPC (4%

hmean, 4% gmean) improvement, and 3% decrease in MemoryBlockCycles over

CTA-Aware-Locality. BLP increases by 11%, which also helps in the observed 22%

reduction in overall memory fetch latency (12% reduction in queuing latency). In

SD2, this scheme sees a significant increase in BLP (48%) over CTA-Aware-Locality,

but performance still reduces (by 10%) compared to CTA-Aware-Locality, due to a

46% reduction in row locality. In contrast, in JPEG, the effects of the 62% reduction

35

in row locality is outweighed by the 46% increase in BLP, yielding a 10% IPC

improvement over CTA-Aware-Locality. This shows that both row locality and

BLP are important for GPGPU performance.

Combined Effect of OWL (Integration of

CTA-Aware-Locality-BLP and opportunistic prefetching): The fourth

bar from the left in Figure 3.5 shows the performance of the system with OWL.

Four main conclusions can be drawn from this graph. First, using opportunistic

prefetching on top of CTA-Aware-Locality-BLP consistently either improves

performance or has no effect. Second, on average, even a simple prefetching

scheme like ours can provide an IPC improvement of 2% over

CTA-Aware-Locality-BLP, which is due to a 12% improvement in L2 cache hit

rate. Overall, OWL achieves 19% (14% hmean, 17% gmean) IPC improvement

over CTA-Aware and 33% (23% hmean, 28% gmean) IPC improvement over RR.

Third, a few applications, such as JPEG, gain significantly (up to 15% in IPC)

due to opportunistic prefetching, while others, such as FWT, SPMV, and SD2, gain

only moderately (around 5%), and some do not have any noticeable gains, e.g.,

SAD, PVC, and WP. The variation seen in improvements across different

applications can be attributed to their different memory latency hiding

capabilities and memory access patterns. It is interesting to note that, in SCP,

FWT, and KMN, some rows are accessed by only one or two CTAs. The required

data in these rows are demanded when they are opened for the first time. In

these situations, even if we prefetch all the remaining lines, significant

improvements are not observed. Fourth, the scope of improvement available for

opportunistic prefetching over CTA-Aware-Locality-BLP is limited: Perfect-L2

can provide only 13% improvement over CTA-Aware-Locality-BLP. This is

mainly because if an application inherently has a large number of warps ready to

execute, the application will also be able to efficiently hide the long memory

access latency. This scheme observes that prefetching might not be beneficial in

these applications even if the prefetch-accuracy is 100%.

This section concludes that the proposed schemes are effective at improving

GPGPU performance by making memory less of a bottleneck. As a result, OWL

enables the evaluated GPGPU to have performance within 11% of a hypothetical

36

GPGPU with a perfect L2.

3.5.2 Sensitivity Studies

This section describes the critical sensitivity studies performed related to group

size, DRAM configuration and opportunistic prefetching.

Sensitivity to group size: Section 3.3.1 mentioned that the minimum

number of warps in a group should be at least equal to the number of pipeline

stages. Narasiman et al. [8] advocated that, if the group size is too small, the

data fetched in DRAM row buffers is not completely utilized, as fewer warps are

prioritized together. If the group size is too large, the benefits of two-level

scheduling diminishes. Figure 3.7 shows the effect of the group size on

performance. The results are normalized to RR and averaged across all Type-1

applications. The observation is that when the minimum group size is 8 warps,

best IPC improvements (14% for CTA-Aware, 25% for CTA-Aware-Locality and

31% for CTA-Aware-Locality-BLP over RR) are achieved, and thus, throughout

this work, a minimum group size of 8 is used, instead of 5 (which is the number

of pipeline stages).

Sensitivity to the number of DRAM banks: Figure 3.8 shows the

change in performance of CTA-Aware-Locality-BLP with the number of DRAM

banks per MC. The observation is that as the number of banks increases, the

effectiveness of CTA-Aware-Locality-BLP also increases. This is because having

additional banks enables more benefits from exposing higher levels of BLP via

the proposed techniques. As a result, the performance improvement of the

proposal is 2% higher with 8 banks per MC than with 4 banks per MC (baseline

system). It is envisioned that the proposed techniques are likely to become more

effective in future systems with more banks.

Sensitivity to Opportunistic Prefetching Parameters: Experiments are

performed with all combinations of lower and upper values for the prefetch degree

in the range of 0 (no-prefetching) to 32 (prefetching all the columns in a row) with

a step size of 8. The value of threshold is also varied similarly, along with the case

37

0.8

0.9

1

1.1

1.2

1.3

1.4

5 8 10 15

N
o

rm
a

li
z
d

 I
P

C

Figure 3.7: Sensitivity of IPC to group size (normalized to RR).

0.8

0.9

1

1.1

1.2

1.3

1.4

2 4 8

Figure 3.8: Sensitivity of IPC to the number of banks (normalized to RR).

when it is equal to the average memory controller queue length. Figure 3.9 shows

the best case values achieved across all evaluated combinations (Best OWL). The

average performance improvement achievable by tuning these parameter values

is only 1% (compare Best OWL vs. OWL). This can possibly be achieved by

implementing a sophisticated prefetcher that can dynamically adjust its parameters

based on the running application’s characteristics, which comes at the cost of

increased hardware complexity. The design of such application-aware memory-

side prefetchers are left as a part of the future work, along with more sophisticated

techniques to determine what parts of a row to prefetch.

3.6 Related Work

This section briefly describes and compares to the closely related works.

Scheduling in GPGPUs: The two-level warp scheduling mechanism

proposed by Narasiman et al. [8] increases the core utilization by creating larger

warps and employing a two-level warp scheduling scheme. This mechanism is not

aware of CTA boundaries. This work proposes CTA-aware warp scheduling

policies, which improve not only L1 hit rates, but also DRAM bandwidth

38

0.9

1

1.1

1.2

B
F

S

M
U

M

C
F

D

S
C

P

F
W

T

S
P

M
V

J
P

E
G

S
D

2

B
P

A
V

G
-T

1

N
o

rm
a

liz
e

d
 I
P

C

CTA-Aware-Locality-BLP OWL Best OWL

Figure 3.9: Prefetch degree and throttling threshold sensitivity.

utilization. This work finds that the combination of all of the techniques, OWL,

provides approximately 19% higher performance than two-level warp scheduling.

Gebhart et al. [48] also proposed a two-level warp scheduling technique. Energy

reduction is the primary purpose of their approach. Even though this work does

not evaluate it, OWL is also likely to provide energy benefits as reduced

execution time (with low hardware overhead) is likely to translate into reduced

energy consumption. Concurrent work by Rogers et al. [38] proposed a

cache-conscious warp scheduling policy. Their work improves L1 hit rates for

cache-sensitive applications. OWL not only reduces cache contention, but also

improves DRAM bandwidth utilization for a wide range of applications. Work

from Kayiran et al. [9] dynamically estimates the amount of thread-level

parallelism that would improve GPGPU performance by reducing cache and

DRAM contention. The approach of this work is orthogonal to theirs as the

CTA-aware scheduling techniques improve cache and DRAM utilization for a

given amount of thread-level parallelism.

BLP and Row Locality: Bank-level parallelism and row buffer locality are

two important characteristics of DRAM performance. Several memory request

scheduling [34, 37, 45, 46, 49–51] techniques have been proposed to improve one or

both within the context of multi-core, GPGPU, and heterogeneous CPU-GPU

systems [51]. This work can be combined with these approaches. Mutlu and

Moscibroda [37] describe parallelism-aware batch scheduling, which aims to

preserve each thread’s BLP in a multi-core system. Hassan et al. [52] suggest

that optimizing BLP is more important than improving row buffer hits, even

though there is a trade-off. This chapter uses this observation to focus on

enhancing BLP, while restoring the lost row locality by memory-side prefetching.

39

This is important because, in some GPGPU applications, both BLP and row

locality are important. Similar to this work, Jeong et al. [53] observe that both

BLP and row locality are important for maximizing benefits in multi-core

systems. The memory access scheduling proposed by Yuan et al. [49] restores the

lost row access locality caused by the in-order DRAM scheduler, by incorporating

an arbitration mechanism in the interconnection network. The staged memory

scheduler of Ausavarungnirun et al. [51] batches memory requests going to the

same row to improve row locality while also employing simple in-order request

scheduling at the DRAM banks. Lakshminarayana et al. [50] propose a potential

function that models the DRAM behavior in GPGPU architectures and a SJF

DRAM scheduling policy. The scheduling policy essentially chooses between SJF

and FR-FCFS at run-time based on the number of requests from each thread and

their potential of generating a row buffer hit. This work proposes low-overhead

warp scheduling and prefetching schemes to improve both row locality and BLP.

Exploration of the combination of the warp scheduling techniques with memory

request scheduling and data partitioning techniques is a promising area of future

work.

Data Prefetching: This work uses a memory-side prefetcher in GPUs. The

opportunistic prefetcher complements the CTA-aware scheduling schemes by

taking advantage of open DRAM rows. The most relevant work on hardware

prefetching in GPUs is the L1 prefetcher proposed by Lee et al. [35]. Carter et

al. [54] present one of the earliest works done in the area of memory-side

prefetching in the CPU domain. Many other prefetching mechanisms

(e.g., [55–57]) have been proposed within the context of CPU systems. The

contribution in this work is a specific prefetching algorithm (in fact, the proposal

can potentially use the algorithms proposed in literature), but to employ the idea

prefetching in conjunction with new BLP-aware warp scheduling techniques to

restore row buffer locality and improve L1 hit rates in GPGPUs.

40

3.7 Chapter Summary

This work proposes a new warp scheduling policy, OWL, to enhance GPGPU

performance by overcoming the resource under-utilization problem caused by

long latency memory operations. The key idea in OWL is to take advantage of

characteristics of cooperative thread arrays (CTAs) to concurrently improve

cache hit rate, latency hiding capability, and DRAM bank parallelism in

GPGPUs. OWL achieves these benefits by 1) selecting and prioritizing a group

of CTAs scheduled on a core, thereby improving both L1 cache hit rates and

latency tolerance, 2) scheduling CTA groups that likely do not access the same

memory banks on different cores, thereby improving DRAM bank parallelism,

and 3) employing opportunistic memory-side prefetching to take advantage of

already-open DRAM rows, thereby improving both DRAM row locality and

cache hit rates. The experimental evaluations on a 28-core GPGPU platform

demonstrate that OWL is effective in improving GPGPU performance for

memory-intensive applications: it leads to 33% IPC performance improvement

over the commonly-employed baseline round-robin warp scheduler, which is not

aware of CTAs.

Chapter 4

Prefetch Aware Warp Scheduling

Techniques

This chapter presents techniques that coordinate the thread scheduling and

prefetching decisions in a General Purpose Graphics Processing Unit (GPGPU)

architecture to better tolerate long memory latencies. This chapter demonstrates

that existing warp scheduling policies in GPGPU architectures are unable to

effectively incorporate data prefetching. The main reason is that they schedule

consecutive warps, which are likely to access nearby cache blocks and thus

prefetch accurately for one another, back-to-back in consecutive cycles. This

either 1) causes prefetches to be generated by a warp too close to the time their

corresponding addresses are actually demanded by another warp, or 2) requires

sophisticated prefetcher designs to correctly predict the addresses required by a

future “far-ahead” warp while executing the current warp.

This chapter proposes a new prefetch-aware warp scheduling policy that

overcomes these problems. The key idea is to separate in time the scheduling of

consecutive warps such that they are not executed back-to-back. This policy not

only enables a simple prefetcher to be effective in tolerating memory latencies

but also improves memory bank parallelism, even when prefetching is not

employed. Experimental evaluations across a diverse set of applications on a

30-core simulated GPGPU platform demonstrate that the prefetch-aware warp

42

scheduler provides 25% and 7% average performance improvement over baselines

that employ prefetching in conjunction with, respectively, the

commonly-employed round-robin scheduler or the recently-proposed two-level

warp scheduler. Moreover, when prefetching is not employed, the prefetch-aware

warp scheduler provides higher performance than both of these baseline

schedulers as it better exploits memory bank parallelism.

4.1 Introduction

The memory subsystem is a critical determinant of performance in General

Purpose Graphics Processing Units (GPGPUs). And, it will become more so as

more compute resources continue to get integrated into the GPGPUs and as the

GPGPUs are placed onto the same chip with CPU cores and other accelerators,

resulting in higher demands for memory performance.

Traditionally, GPGPUs tolerate long memory access latencies by concurrently

executing many threads. These threads are grouped into fixed-sized batches

known as warps or wavefronts. Threads within a warp share the same instruction

stream and execute the same instruction at the same time, forming the basis for

the term single instruction multiple threads, SIMT [3, 25, 26]. The capability to

rapidly context switch between warps in the state-of-the-art GPGPUs allows the

execution of other warps when one warp stalls (on a long-latency memory

operation), thereby overlapping memory access latencies of different warps. The

effectiveness of the warp scheduling policy, which determines the order and time

in which different warps are executed, has a critical impact on the memory

latency tolerance and memory bandwidth utilization, and thus the performance,

of a GPGPU. An effective warp scheduling policy can facilitate the concurrent

execution of many warps, potentially enabling all compute resources in a

GPGPU to be utilized without idle cycles (assuming there are enough threads).

Unfortunately, commonly-employed warp schedulers are ineffective at tolerating

long memory access latencies, and therefore lead to significant underutilization of

compute resources, as shown in previous work [7–9,35]. The commonly-used round-

43

2
.1

9
1
.8

8
2
.2

0

1
.8

4

0

1

2

3

4

5

6

7

8

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L

K

F
W

T

J
P

E
G

G
M

E
A

N

IP
C

 I
m

p
ro

v
e
m

e
n
t
fa

c
to

r
w

it
h

p
e
rf

e
c
t
L
1
 c

a
c
h
e

Round-robin (RR) Two-level (TL) RR + Prefetching TL + Prefetching

Figure 4.1: IPC improvement when L1 cache is made perfect on a GPGPU that
employs (1) round-robin (RR) warp scheduling policy, (2) two-level (TL) warp
scheduling policy, (3) data prefetching together with RR, and (4) data prefetching
together with TL. Section 4.4 describes the evaluation methodology and workloads.

robin (RR) policy schedules consecutive warps1 in consecutive cycles, assigning all

warps equal priority in scheduling. As a result of this policy, most of the warps

arrive at a long-latency memory operation roughly at the same time [7, 8]. The

core can therefore become inactive as there may be no warps that are not stalling

due to a memory operation. To overcome this disadvantage of the RR policy, the

two-level (TL) warp scheduling policy [8] was proposed. This scheduler divides all

warps into fetch groups and prioritizes warps from a single fetch group until they

reach a long-latency operation. When one fetch group stalls due to a long-latency

memory operation, the next fetch group is scheduled. The scheduling policy of

warps within a fetch group is round robin, and so is the scheduling policy across

fetch groups. The primary insight is that each fetch group reaches the long-latency

operations at different points in time. As a result, when warps in one fetch group

are stalled on memory, warps in another fetch group can continue to execute,

thereby effectively tolerating the memory latency in a fetch group by performing

computation in another.

The leftmost two bars for each application in Figure 4.1 show the potential

performance improvement achievable if the L1 caches were perfect on 1) a GPGPU

that employs the RR policy and 2) the same GPGPU but with the TL policy,

across a set of ten diverse applications. The two-level warp scheduler reduces the

1Two warps that have consecutive IDs are called consecutive warps. Due to the way data is
usually partitioned across different warps, it is very likely that consecutive warps access nearby
cache blocks [1, 7, 8, 36].

44

performance impact of L1 cache misses on performance, as shown by the lower

IPC improvement obtained by making the L1 data cache perfect on top of the TL

policy. However, a significant performance potential remains: IPC would improve

by 1.88× if the L1 cache were perfect, showing that there is significant potential

for improving memory latency tolerance in GPGPU systems.

Data prefetching, commonly employed in CPU systems (e.g., [56, 58–60]), is a

fundamental latency hiding technique that can potentially improve the memory

latency tolerance of GPGPUs and achieve the mentioned performance potential.2

However, this work finds that employing prefetching naively does not

significantly improve performance in GPGPU systems. The effect of this is shown

quantitatively in the rightmost two bars for each application in Figure 4.1:

employing a data prefetcher (based on a spatial locality detector [61], as

described in detail in Section 4.3.2) with either the RR or the TL scheduling

policy does not significantly improve performance.

This chapter observes that existing warp scheduling policies in GPGPUs are

unable to effectively incorporate data prefetching mechanisms. The main reason

is that they schedule consecutive warps, which are likely to access nearby cache

blocks and thus prefetch accurately for one another, back to back in consecutive

cycles. Consider the use of a simple streaming prefetcher with the RR policy:

when one warp stalls and generates its demand requests, the prefetcher generates

requests for the next N cache blocks. Soon after, and long before these prefetch

requests complete, the succeeding warps get scheduled and likely require these

cache blocks due to the high spatial locality between consecutive

warps [1, 7, 8, 36]. Unfortunately, these succeeding warps cannot take advantage

of the issued prefetches because the prefetch requests were issued just before the

warps were scheduled. The TL scheduling policy suffers from the same problem:

since consecutive warps within a fetch group are scheduled consecutively, the

prefetches issued by a preceding warp are immediately demanded by the

succeeding one, and as a result, even though prefetches are accurate, they do not

provide performance improvement as they are too late. One could potentially

2A form of data prefetching was developed in [35] for GPGPUs, where one warp prefetches
data for another.

45

solve this problem by designing a prefetcher that prefetches data for a

“far-ahead”, non-consecutive warp that will be scheduled far in the future while

executing the current warp such that the prefetch requests are complete by the

time the “far-ahead” warp gets scheduled. Unfortunately, this requires a more

sophisticated prefetcher design: accurately predicting the addresses required by a

“far-ahead”, non-consecutive warp is fundamentally more difficult than

accurately predicting the addresses required by the next consecutive warp due to

two reasons: 1) non-consecutive warps do not exhibit high spatial locality among

each other [7, 8]; in fact, the sets of addresses required by two non-consecutive

warps may have no relationship with each other, 2) the time at which the

far-ahead warp gets scheduled may vary depending on the other warp scheduling

decisions that happen in between the scheduling of the current and the far-ahead

warps.

This work observes that orchestrating the warp scheduling and prefetching

decisions can enable a simple prefetcher to provide effective memory latency

tolerance in GPGPUs. To this end, this work proposes a new prefetch-aware

(PA) warp scheduling policy. The core idea is to separate in time the scheduling

of consecutive warps such that they are not executed back-to-back, i.e., one

immediately after another. This way, when one warp stalls and generates its

demand requests, a simple prefetcher can issue prefetches for the next N cache

blocks, which are likely to be completed by the time the consecutive warps that

need them are scheduled. While the prefetch requests are in progress, other

non-consecutive warps that do not need the prefetched addresses are executed.

The prefetch-aware warp scheduling policy is based on the TL scheduler, with

a key difference in the way the fetch groups are formed. Instead of placing

consecutive warps in the same fetch group as the TL scheduler does, the PA

scheduler places non-consecutive warps in the same fetch group. In addition to

enabling a simple prefetcher to be effective, this policy also improves memory

bank-level parallelism because it enables non-consecutive warps, which are likely

to access different memory banks due to the lack of spatial locality amongst each

other, to generate their memory requests concurrently. Note that the PA

scheduler causes a loss in row buffer locality due to the exact same reason, but

46

the use of simple spatial prefetching can restore the row buffer locality by issuing

prefetches to an already-open row.

This work coordinates thread scheduling and prefetching decisions for

improving memory latency tolerance in GPGPUs. The major contributions are

as follows:

• This work shows that the state-of-the-art warp scheduling policies in GPGPUs

are unable to effectively take advantage of data prefetching to enable better

memory latency tolerance.

• This work proposes a prefetch-aware warp scheduling policy, which not only

enables prefetching to be more effective in GPGPUs but also improves memory

bank-level parallelism even when prefetching is not employed.

• This work shows that the proposed prefetch-aware warp scheduler can work in

tandem with a simple prefetcher that uses spatial locality detection [61].

• The conducted experimental results show that this orchestrated scheduling and

prefetching mechanism achieves 25% and 7% average IPC improvement across a

diverse set of applications, over state-of-the-art baselines that employ the same

prefetcher with the round-robin and two-level warp schedulers, respectively.

Moreover, when prefetching is not employed, the proposed prefetch-aware warp

scheduler provides respectively 20% and 4% higher IPC than these baseline

schedulers as it better exploits memory bank parallelism.

4.2 Interaction of Scheduling and Prefetching:

Motivation and Basic Ideas

This section first illustrates the shortcomings of state-of-the-art warp scheduling

policies in integrating data prefetching effectively. Then it illustrates the proposal,

the prefetch-aware warp scheduling policy, which aims to orchestrate scheduling

and prefetching.

The illustrations revolve around Figure 4.2. The left portion of the figure shows

47

the execution and memory request timeline of a set of eight warps, W1-W8, with

eight different combinations of warp scheduling and prefetching. The right portion

shows the memory requests generated by these eight warps and the addresses and

banks accessed by their memory requests. Note that consecutive warps W1-W4

access a set of consecutive cache blocks X, X+1, X+2, X+3, mapped to DRAM

Bank 1, whereas consecutive warps W5-W8 access another set of consecutive cache

blocks Y, Y+1, Y+2, Y+3, mapped to DRAM Bank 2. The legend of the figure,

shown on the rightmost side, describes how different acronyms and shades should

be interpreted.

4.2.1 Shortcomings of the State-of-the-Art Warp

Schedulers

4.2.1.1 Round-robin (RR) warp scheduling

Figure 4.2 (A) shows the execution timeline of the eight warps using the commonly-

used round-robin (RR) warp scheduling policy, without data prefetching employed.

As described before in Section 4.1, since all warps make similar amounts of progress

due to the round robin nature of the policy, they generate their memory requests

(D1-D8) roughly at the same time, and as a result stall roughly at the same time

(i.e., at the end of the first compute phase, C1, in the figure). Since there are

no warps to schedule, the core remains idle until the data for at least one of

the warps arrives, which initiates the second compute phase, C2, in the figure.

The stall time between the two compute phases is called as MemoryBlockCycles.

Figure 4.2 (A’) shows the effect of RR scheduling on the DRAM system. The RR

policy exploits both row buffer locality (RBL) and bank-level parallelism (BLP)

in DRAM because: i) as consecutive warps W1-W4 (W5-W8) access consecutive

cache blocks, their requests D1-D4 (D5-D8) access the same row in Bank 1 (Bank

2), thereby exploiting RBL, ii) warp sets W1-W4 and W5-W8 access different

banks and generate their requests roughly at the same time, thereby exploiting

BLP.

48

Time

DRAM

requests

C1 C1 C2
Saved

cycles

C2

A

C1

D1
D2

D3
D4

D5
D6

D7
D8

DRAM

requests

D1
P2

D3
P4

D5
P6

D7
P8

DRAM

requests

D1
D2

D3
D4

D5
D6

D7
D8

C2

C1 C1 C2

Saved

cycles

C2

DRAM

requests

D1
P2

D3
P4

D5
P6

D7
P8

C2C1
Round-robin

(RR) Warp

Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

Inter-warp

Prefetching with

Round-robin

(RR) Warp

Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 D2 D3 D4 D5 D6 D7 D8

Fetch

Group 1

Demand

Warp (W)

1st Compute

Phase (C1)

2nd Compute

Phase (C2)

Fetch

Group 2

Legend

D1 P2 D3 P4 D5 P6 D7 P8

D1 D2 D3 D4 Idle for

a period

Intra-fetch-group

Prefetching with

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 P2 D3 P4 Idle for

a period

Memory
Addresses

X X
+

1

X
+

2

X
+

3

Y Y
+

1

Y
+

2

Y
+

3

A’

B B’

C C’

D D’

Time

Time

Time

C1 C1 C2

Saved

cycles

C2

DRAM

requests

D1
D2

D3
D4

P5
P6

P7
P8

C1 C1 C2
Saved

cycles

C2

DRAM

requests

D1
D3

D5
D7

P2
P4

P6
P8

C1 C1 C2
Saved

cycles

C2

DRAM

requests

D1
D3

D5
D7

D2
D4

D6
D8

C1 C1 C2
Saved

cycles

C2

DRAM

requests

D1
D2

D3
D4
UP1

UP2
UP3
UP4

D5
D6

D7
D8

Inter-fetch-group

Sophisticated

Prefetching with

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

Request (D)

Prefetch

Request (P)

D1 D2 D3 D4 P5 P6 P7 P8

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 D3 D5 D7

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 P2 D3 P4 D5 P6 D7 P8

Prefetch-aware

(PA) Warp

Scheduler

Inter-fetch-group

Simple

Prefetching with

Prefetch-aware

(PA) Warp

Scheduler

Inter-fetch-group

Simple

Prefetching with

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 D2 D3 D4 UP1 UP2 UP3 UP4

Useless

Prefetch

Request

(UP)

E E’

F F’

G G’

H H’

Time

Time

Time

Time

Figure 4.2: An illustrative example showing the working of various scheduling and
prefetching mechanisms, motivating the need for the design of the prefetch-aware
warp scheduler.

4.2.1.2 Round-robin (RR) warp scheduling and inter-warp prefetching

Figures 4.2 (B) and (B’) show the execution timeline and DRAM state when an

inter-warp prefetcher is incorporated on top of the baseline RR scheduler. The

goal of the inter-warp prefetcher is to reduce MemoryBlockCycles. When a warp

generates a memory request, the inter-warp prefetcher generates a prefetch

request for the next warp (in this example, for the next sequential cache block).

49

The prefetched data is placed in a core’s private L1 data cache, which can serve

the other warps. For example, the issuing of demand request D1 (to cache block

X) by W1 triggers a prefetch request P1 (to cache block X+1) which will be

needed by W2. Figure 4.2 (B) shows that, although the prefetch requests are

accurate, adding prefetching on top of RR scheduling does not improve

performance (i.e., reduce MemoryBlockCycles). This is because the

next-consecutive warps get scheduled soon after the prefetch requests are issued

and generate demand requests for the same cache blocks requested by the

prefetcher, long before the prefetch requests are complete (e.g., W2 generates a

demand request to block X+1 right after W1 generates a prefetch request for the

same block). Hence, this example illustrates that RR scheduling cannot

effectively take advantage of simple inter-warp prefetching.

4.2.1.3 Two-level (TL) warp scheduling

Figure 4.2 (C) shows the execution timeline of the eight warps using the recently-

proposed two-level round-robin scheduler [8], which was described in Section 4.1.

The TL scheduler forms smaller fetch groups out of the concurrently executing

warps launched on a core and prioritizes warps from a single fetch group until they

reach long-latency operations. The eight warps in this example are divided into

two fetch groups, each containing 4 warps. The TL scheduler first executes warps

in group 1 (W1-W4) until these warps generate their memory requests D1-D4 and

stall. After that, the TL scheduler switches to executing warps in group 2 (W5-W8)

until these warps generate their memory requests D5-D8 and stall. This policy thus

overlaps some of the latency of memory requests D1-D4 with computation done

in the second fetch group, thereby reducing MemoryBlockCycles and improving

performance compared to the RR policy, as shown via Saved cycles in Figure 4.2

(C). Figure 4.2 (C’) shows the effect of TL scheduling on the DRAM system.

The TL policy exploits row buffer locality but it does not fully exploit bank-level

parallelism because there are times when a bank remains idle without requests

because not all warps generate memory requests at roughly the same time: during

the first compute period of fetch group 2, bank 2 remains idle.

50

4.2.1.4 Two-level (TL) warp scheduling and intra-fetch-group

prefetching

Figures 4.2 (D) and (D’) show the effect of using an intra-fetch-group prefetcher

along with the TL policy. The prefetcher used is the same inter-warp prefetcher

as the one described in Section 4.2.1.2, where one warp generates a prefetch

request for the next-consecutive warp in the same fetch group. Adding this

prefetching mechanism on top of TL scheduling does not improve performance

since the warp that is being prefetched for gets scheduled immediately after the

prefetch is generated. This limitation is the same as what it has been observed

when adding simple inter-warp prefetching over the RR policy in Section 4.2.1.2.

This work concludes that prefetching for warps within the same fetch group

is ineffective because such warps will be scheduled soon after the generation of

prefetches.3 Henceforth, this work assumes that the prefetcher employed is an

inter-fetch-group prefetcher.

4.2.1.5 Two-level (TL) warp scheduling and inter-fetch-group

prefetching

The idea of an inter-fetch-group prefetcher is to prefetch data for the next (or

a future) fetch group. There are two cases. First, if the prefetch requests are

accurate, in which case a sophisticated prefetching mechanism is required as the

addresses generated by the next fetch group may not have any easy-to-predict

relationship to the addresses generated by the previous one, they can potentially

improve performance because the prefetches would be launched long before they

are needed. However, if the prefetches are inaccurate, which could be the case

with a simple prefetcher, such an inter-fetch group prefetcher will issue useless

prefetches.

Figures 4.2 (E) and (E’) depict the latter case: they show the effect of using

a simple inter-fetch-group prefetcher along with the TL policy. Since the simple

3Note that in RR warp scheduling, although there is no fetch group formation, all the launched
warps can be considered to be part of a single large fetch group.

51

prefetcher cannot accurately predict the addresses to be accessed by fetch group 2

(Y, Y+1, Y+2, Y+3) when observing the accesses made by fetch group 1 (X, X+1,

X+2, X+3), it ends up issuing useless prefetches (UP1-UP4). This not only wastes

valuable memory bandwidth and cache space, but may also degrade performance

(although the example in the figure shows no performance loss).

Figures 4.2 (F) and (F’) depict the former case: they show the effect of using

a sophisticated inter-fetch-group prefetcher along with the TL policy. Since the

sophisticated prefetcher can accurately predict the addresses to be accessed by fetch

group 2 (Y, Y+1, Y+2, Y+3) when observing the accesses made by fetch group

1 (X, X+1, X+2, X+3), it improves performance compared to the TL scheduler

without prefetching. Unfortunately, as explained in Section 4.1, designing such

a sophisticated prefetcher is fundamentally more difficult than designing a simple

(e.g., next-line [62] or streaming [63]) prefetcher because non-consecutive warps (in

different fetch groups) do not exhibit high spatial locality among each other [7,8].

In fact, the sets of addresses required by two non-consecutive warps may have

no predictable relationship with each other, potentially making such sophisticated

prefetching practically impossible.

The next two sections illustrate the working of the proposed prefetch-aware

warp scheduling policy which enables the benefits of a sophisticated prefetcher

without requiring the implementation of one.

4.2.2 Orchestrating Warp Scheduling and Data

Prefetching

4.2.2.1 Prefetch-aware (PA) warp scheduling

Figures 4.2 (G) and (G’) show the execution timeline, group formation, and DRAM

state of the eight warps using the proposed prefetch-aware (PA) scheduler. The

PA policy is based on the TL scheduler (shown in Figures 4.2 (C and C’)), with

a key difference in the way the fetch groups are formed: the PA policy groups

non-consecutive warps in the same group. Figure 4.2 (G’) shows that warps W1,

W3, W5, W7 are in fetch group 1 and warps W2, W4, W6, W8 are in fetch group

52

2. Similar to the TL policy, since a group is prioritized until it stalls, this policy

enables the overlap of memory access latency in one fetch group with computation

in another, thereby improving performance over the baseline RR policy. Different

from the TL policy, the PA policy exploits bank-level parallelism but may not fully

exploit row buffer locality. This is because non-consecutive warps, which do not

have spatial locality, generate their memory requests roughly at the same time,

and exactly because these requests do not have spatial locality, they are likely to

access different banks. In this example, D1 and D3, which access the same row in

Bank 1, are issued concurrently with D5 and D7, which access Bank 2, enabling

both banks to be busy with requests most of the time when there are outstanding

requests. However, D2 and D4, which access the same row D1 and D3 access, are

issued much later, which can degrade row buffer locality if the row is closed since

the time D1 and D3 accessed it. A detailed description of the PA scheduler will

be provided in Section 4.3.1.

4.2.2.2 Prefetch-aware (PA) warp scheduling and inter-fetch-group

prefetching

Figures 4.2 (H) and (H’) show the execution timeline and DRAM state of the

eight warps using the proposed prefetch-aware (PA) scheduler along with a

simple inter-fetch-group prefetcher. The simple prefetcher is a simple next-line

prefetcher, as assumed in earlier sections. Adding this prefetching mechanism on

top of PA scheduling improves performance compared to TL scheduling, and in

fact achieves the same performance as TL scheduling combined with a

sophisticated, and likely difficult-to-design prefetcher, since the warp that is being

prefetched for gets scheduled long after the warp that prefetches for it.

Concretely, consecutive warps (e.g., W1 and W2) that have high spatial locality

are located in different fetch groups. When the preceding warp (W1) generates

its prefetch (P2 to address X+1), the succeeding warp (W2) does not get

scheduled immediately afterwards but after the previous fetch group completes.

As a result, there is some time distance between when the prefetch is generated

and when it is needed, leading to the prefetch covering the memory access

latency partially or fully, resulting in a reduction in MemoryBlockCycles and

53

execution time. Figure 4.2 (H’) also shows that using the PA policy in

conjunction with a simple prefetcher fully exploits both row buffer locality and

bank-level parallelism.

Conclusion: This illustration concludes that the prefetch-aware warp

scheduling policy can enable a simple prefetcher to provide significant

performance improvements by ensuring that consecutive warps, which are likely

to accurately prefetch for each other with a simple prefetcher, are placed in

different fetch groups. The next section delves into the design of the

prefetch-aware warp scheduling policy and a simple prefetcher that can take

advantage of this policy.

4.3 Mechanism and Implementation

This section describes the mechanism and implementation of the prefetch-aware

warp scheduler (Section 4.3.1), describe a simple spatial locality detector based

prefetcher that can take advantage of it (Section 4.3.2), and provide a hardware

overhead evaluation of both techniques (Section 4.3.3).

4.3.1 Prefetch-Aware Scheduling Mechanism

As discussed earlier, the PA scheduler is based on the TL scheduler, but its primary

difference is in the way the fetch groups are formed. The main goal of the fetch

group formation algorithm is to ensure consecutive warps are not in the same group

such that they can effectively prefetch for each other by executing far apart in

time. A second goal of this algorithm is to improve memory bank-level parallelism

by enabling non-consecutive warps, which do not have good spatial locality, to

generate their memory requests roughly at the same time and spread them across

DRAM banks. However, to enable the better exploitation of row buffer locality

within a group, the developed algorithm can assign some number of consecutive

warps into the same group. Algorithm 2 depicts how group formation is performed

in the experiments. This section briefly describes its operation using an example.

54

Group formation depends on the number of warps available on the core

(n warps), and the number of warps in a fetch group (g size). The number of

fetch groups is equal to n warps
g size

. To understand how fetch groups are formed,

consider 32 as the maximum number of warps launched on a core, and the group

size to be 8 warps. In this case, 4 fetch groups (n grp) are formed. Warps are

enumerated from 0 to 31, and fetch groups are enumerated from 0 to 3. W0

(warp 0) is always assigned to G0 (group 0). The 8th (as group size is equal to 8)

warp (W8) is also assigned to G0. Similarly, W16 and W24 are assigned to G0,

in a modular fashion until W31 is reached. Since G0 has only 4 warps, 4 more

warps need to be assigned to G0. The modular assignment procedure continues

with the first unassigned warp, which is W1 in this case, and places it in G0

along with W9, W17 and W25. Note that, in this example, two consecutive

warps belong to the same fetch group, e.g., G0 contains both W0 and W1. The

number of consecutive warps in a fetch group, n cons warps, is equal to ⌊g size
n grp

⌋.

Having placed 8 warps in G0, in order to form G1, the algorithm starts from W2.

In a similar manner, first, W2, W10, W18 and W26, and then, W3, W11, W19

and W27 are assigned to G1. The group assignment policy exemplified above can

be formulated by g num[i] = ⌊ i mod g size
n cons warps

⌋, where g num[i] denotes the group

number of warp i. If there are no consecutive warps in the same group, the above

formula simplifies to g num[i] = i mod g size. Algorithm 2 more formally depicts

how the evaluated PA scheduler forms fetch groups.4 Note that, in the

evaluations, the fetch group size of 8 is used.5 The number of warps on the cores

depends on the application and the programming model, and is limited by the

core resources.

4.3.2 Spatial Locality Detection Based Prefetching

This work developes a simple prefetching algorithm that tries to prefetch for

consecutive warps (which belong to different fetch groups in the PA scheduler).

The key idea of the algorithm is to first detect the regions of memory that are

4Note that the group formation used in Figure 4.2 is for illustrative purposes only and does
not strictly follow this algorithm.

5Past works [7,8] that developed scheduling algorithms that form groups showed that a group
size of 8 provides the best performance on experimental setups similar to ours.

55

Algorithm 2 Fetch group formation in the PA scheduler
⊲ warp and fetch group numbers start from 0

⊲ n warp is the number of concurrently-executing warps on a core
⊲ g size is the number of warps in a fetch group

⊲ n warp is assumed to be divisible by g size
⊲ n grp is the number of fetch groups

⊲ n cons warps is the number of consecutive warps in a group. Its minimum value 1.
⊲ g num[i] is the fetch group number of warp i

procedure Form Groups(n warp, g size)
n grp← n warp

g size

n cons warps← ⌊ g size
n grp

⌋

for i = 0→ n warp− 1 do
g num[i]← ⌊ i mod g size

n cons warps
⌋

return g num

0%

20%

40%

60%

80%

100%

Two-level Prefetch-aware

P
e
rc

e
n
ta

g
e
 o

f
 R

e
q
u
e
s
ts

1 miss 2 misses 3-4 misses

(a) Average across all
applications

0%

20%

40%

60%

80%

100%

Two-level Prefetch-aware

P
e
rc

e
n
ta

g
e
 o

f
R

e
q
u
e
s
ts

1 miss 2 misses 3-4 misses

(b) PVC (MapReduce)

0%

20%

40%

60%

80%

100%

Two-level Prefetch-aware

P
e
rc

e
n
ta

g
e
 o

f
R

e
q
u
e
s
ts

1 miss 2 misses 3-4 misses

(c) BFSR (Rodinia)

Figure 4.3: The distribution of main memory requests, averaged across all fetch
groups, that are to macro-blocks that have experienced, respectively, 1, 2, and 3-4
unique cache misses. Section 4.4 describes the methodology and workloads.

frequently accessed (i.e., hot regions), and based on this information predict the

addresses that are likely to be requested soon.

Spatial locality detection: In order to detect the frequently-accessed

memory regions, a spatial locality detector (SLD) similar to the one used in [61]

is used. This technique involves the tracking of cache misses that are mapped to

the same macro-block, which is defined as a group of consecutive cache blocks. In

the evaluations, the size of a macro-block is 512 bytes (i.e., 4 cache blocks). SLD

maintains a fixed number of macro-block entries in a per-core SLD table (which

is organized as a fully-associative 64-entry table in the evaluations). After a main

memory request is generated, its macro-block address is searched in the SLD

table. The SLD table entry records, using a bit vector, which cache blocks in the

macro-block have already been requested. If no matching entry is found, the

least-recently-used entry is replaced, a new entry is created, and the

corresponding bit in the bit vector is set. If a matching entry is found, simply the

56

corresponding bit in the bit vector is set. The number of bits that are set in the

bit vector indicate the number of unique cache misses to the macro-block.

Prefetching mechanism: The key idea is to issue prefetch requests for the

cache lines in the hot macro-block that have not yet been demanded. The

prefetching mechanism considers a macro-block hot if at least C cache blocks in

the macro-block were requested. The value of C is set to 2 in the conducted

experiments. For example, if the macro-block size is 4 cache blocks and C is 2, as

soon as the number of misses to the macro-block in the SLD table reaches 2, the

prefetcher issues prefetch requests for the remaining two cache blocks belonging

to that macro-block. Note that this SLD based prefetcher is relatively

conservative, as it has a prefetch degree of 2 and a low prefetch distance, because

it is optimized to maximize accuracy and minimize memory bandwidth wastage

in a large number of applications running on a GPGPU where memory

bandwidth is at premium.

Analysis: This work analyzes the effect of warp scheduling, the TL and PA

schedulers in particular, on macro-block access patterns. Figure 4.3 shows the

distribution of main memory requests, averaged across all fetch groups, that are

to macro-blocks that have experienced, respectively, 1, 2, and 3-4 cache misses.

Figure 4.3 (a) shows this distribution averaged across all applications, (b) shows

it on PVC, and (c) shows it on BFSR. These two applications are chosen as they

show representative access patterns – PVC exhibits high spatial locality, BFSR does

not. Several observations are in order. First, with the TL scheduler, on average

across all applications, 36% of memory requests of a fetch group access all cache

blocks of a particular macro-block. This means that 36% of the requests from a

fetch group have good spatial locality. This confirms the claim that the warps in

a fetch group have good spatial locality when the TL scheduler is used. However,

this percentage goes down to 17% in the PA scheduler. This is intuitive because

the PA scheduler favors non-consecutive warps to be in the same fetch group. This

results in a reduction in spatial locality between memory requests of a fetch group,

but on the flip side, spatial locality can be regained by issuing prefetch requests (as

explained in Section 4.2.2.2) to the unrequested cache blocks in the macro-block.

Second, 38% of the memory requests from a fetch group access only one cache

57

Table 4.1: Simulated baseline GPGPU configuration

Core Configuration 1300MHz, SIMT width = 8
Resources / Core Max. 1024 threads (32 warps, 32 threads/warp)

32KB shared memory, 32684 registers
Caches / Core 32KB 8-way L1 data cache, 8KB 4-way texture cache

8KB 4-way constant cache, 128B cache block size
L2 Cache 16-way 128 KB/memory channel, 128B cache block size
Default Warp Scheduling Round-robin warp scheduling (among ready warps)
Advanced Warp Scheduling Two-level warp scheduling [8] (fetch group size = 8 warps)
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Interconnect 1 crossbar/direction (30 cores, 8 MCs), concentration = 3, 650MHz
Memory Model 8 GDDR3 Memory Controllers (MC), FR-FCFS scheduling,

8 DRAM-banks/MC, 2KB row size, 1107 MHz memory clock
GDDR3 Timing [64] tCL = 10, tRP = 10, tRC = 35, tRAS = 25

tRCD = 12, tRRD = 8, tCDLR = 6, tWR = 11

block of a particular macro-block with the TL scheduler. In BFSR, the percentage

of such requests goes up to 85%. If an application has a high percentage of such

requests, macro-block prefetching is not useful, because these request patterns do

not exhibit high spatial locality.

4.3.3 Hardware Overhead

Thjs work evaluates the hardware overhead of the PA scheduler and the spatial

locality based prefetcher. Thjs work implemented the two mechanisms in RTL

using Verilog HDL and synthesized them using the Synopsys Design Compiler on

65nm TSMC libraries [65].

Scheduling: Lindholm et al. [25] suggest that the warp scheduler used in

NVIDIA GPUs has zero-cycle overhead, and warps can be scheduled according to

their pre-determined priorities. Since the difference between PA and TL schedulers

is primarily in the fetch group formation approach, the hardware overhead of the

proposal is similar to that of the TL scheduler. The implementation of the PA

scheduler requires assignment of appropriate scheduling priorities (discussed in

Section 4.3.1) to all warps on a core. Thjs work synthesized the RTL design of the

PA scheduler and found that it occupies 814 µm2 on each core.

Prefetching: This work implemented the spatial locality detection based

prefetcher as described in Section 4.3.2. This work modeled a 64-entry SLD table

58

and 4 cache blocks per macro-block. This design requires 0.041 mm2 area per

core. Note that the prefetcher is not on the critical path of execution.

Overall Hardware Overhead: For a 30-core system, the required hardware

occupies 1.25 mm2 chip area. This overhead, calculated using a 65nm design,

corresponds to 0.27% of the area of the Nvidia GTX 285, which is also a 30-core

system, yet is implemented in a smaller, 55nm process technology.

4.4 Evaluation Methodology

The proposed schemes are evaluated using an extensively modified GPGPU-Sim

2.1.2b [31], a cycle-accurate GPGPU simulator. Table 4.1 provides the details of

the simulated platform. This work studies 10 CUDA applications derived from

representative application suites (shown in Table 4.2). These applications get

significant performance improvement over the baseline, when presented with

perfect L1 cache, as shown in Figure 4.1. These applications are executed until

they complete their execution or reach 1B instructions, whichever comes first.

In addition to using instructions per cycle (IPC) as the primary performance

metric for evaluation, this work also considers auxiliary metrics such as bank-level

parallelism (BLP) and row buffer locality (RBL). BLP is defined as the average

number of memory banks that are accessed when there is at least one outstanding

memory request at any of the banks [37, 45–47]. Improving BLP enables better

utilization of DRAM bandwidth. RBL is defined as the average hit-rate of the

row buffer across all memory banks [45]. Improving RBL increases the memory

service rate and also enables better DRAM bandwidth utilization. This work also

measures the L1 data cache miss rates when prefetching is employed. Accurate

and timely prefetches can lead to a reduction in miss rates.

59

Table 4.2: Evaluated GPGPU applications

Suite Application Abbr.

1 MapReduce [7, 44] SimilarityScore SSC
2 MapReduce [7, 44] PageViewCount PVC
3 Rodinia [42] Kmeans Clustering KMN
4 Parboil [43] Sparse Matrix Multiplication SPMV
5 Rodinia [42] Breadth First Search BFSR
6 Parboil [43] Fast Fourier Transform FFT
7 CUDA SDK [23] Scalar Product SCP
8 CUDA SDK [23] Blackscholes BLK
9 CUDA SDK [23] Fast Walsh Transform FWT
10 Third Party JPEG Decoding JPEG

1
.0

1 1
.1

6 1
.1

9
1
.2

0
1
.2

6

0.5

1

1.5

2

2.5

3

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L

K

F
W

T

J
P

E
G

G
M

E
A

N

N
o
rm

a
liz

e
d
 I
P

C

RR+Prefetching TL TL+Prefetching Prefetch-aware (PA) PA+Prefetching

Figure 4.4: IPC performance impact of different scheduling and prefetching
strategies. Results are normalized to the IPC with the RR scheduler.

4.5 Experimental Results

Figure 4.4 shows the IPC improvement of five different combinations of warp

scheduling and prefetching normalized to the baseline RR scheduler: 1) RR

scheduler with data prefetching, 2) TL scheduler, 3) TL scheduler with spatial

locality detection based prefetching, 4) PA scheduler, 5) PA scheduler with

prefetching. Overall, without prefetching, the PA scheduler provides 20% average

IPC improvement over the RR scheduler and 4% over the TL scheduler. When

prefetching is employed, the PA scheduler provides 25% improvement over the

RR scheduler and 7% over the TL scheduler, leading to performance within

1.74× of a perfect L1 cache. The rest of this section analyzes the different

combinations of scheduling and prefetching.

Effect of prefetching with the RR scheduler: On average, adding the

SLD-based prefetcher over the RR scheduler provides only 1% IPC improvement

60

0%

20%

40%

60%

80%

100%

RR+Prefetching TL+Prefetching PA+Prefetching

P
re

fe
tc

h
 A

c
c
u

ra
c
y

(a) Prefetch
accuracy

0%

20%

40%

60%

80%

100%

RR+Prefetching TL+Prefetching PA+Prefetching

F
ra

c
ti
o

n
 o

f
L

a
te

P

re
fe

tc
h

e
s

(b) Fraction of late
prefetches

0%

5%

10%

15%

20%

RR+Prefetching TL+Prefetching PA+Prefetching

R
e
d
u
c
ti
o
n
 i
n
 L

1
D

 M
is

s

R
a
te

(c) Normalized miss
rate improvement

Figure 4.5: (a) Prefetch accuracy, (b) Fraction of late prefetches, and (c) Reduction
in L1 data cache miss rate when prefetching is implemented with each scheduler.
The results are averaged across all applications.

0

5

10

15

20

25

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L
K

F
W

T

J
P

E
G

A
V

GB
a
n
k
 L

e
v
e
l
P

a
ra

ll
e
li
s
m

RR TL PA

Figure 4.6: Effect of various scheduling strategies on DRAM bank-level parallelism
(BLP)

over the RR scheduler without prefetching. The primary reason is that the

prefetcher cannot lead to timely transfer of data as described in Section 4.2.1.2.

Figure 4.5 shows that even though 85% of the issued prefetches are accurate with

the RR scheduler, 89% of these accurate prefetches are late (i.e., are needed

before they are complete), and as a result the prefetcher leads to an L1 data

cache miss reduction of only 2%.

Effect of the TL scheduler: As discussed in Section 4.2.1.3, the TL scheduler

improves latency tolerance by overlapping memory stall times of some fetch groups

with computation in other fetch groups. This leads to a 16% IPC improvement

over the RR scheduler due to better core utilization. One of the primary limitations

of TL scheduling is its inability to maximize DRAM bank-level parallelism (BLP).

Figure 4.6 shows the impact of various scheduling strategies on BLP. The TL

scheduler leads to an average 8% loss in BLP over the RR scheduler. In FFT,

this percentage goes up to 25%, leading to a 15% performance loss over the RR

scheduler.

Effect of prefetching with the TL scheduler: Figure 4.7 shows the L1

data cache miss rates when prefetching is incorporated on top of the TL

61

0.4

0.6

0.8

1

1.2

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L

K

F
W

T

J
P

E
G

G
M

E
A

N

N
o
rm

a
liz

e
d

L
1
D

 M
is

s
 R

a
te

TL+Prefetching PA+Prefetching

Figure 4.7: Effect of various scheduling and prefetching strategies on L1D miss
rate. Results are normalized to miss rates with the TL scheduler.

scheduler. Using the spatial locality detection based prefetcher decreases the L1

miss rate by 4% over the TL scheduler without prefetching. In KMN and JPEG,

this reduction is 15% and 2%, respectively. This L1 miss rate reduction leads to a

3% performance improvement over the TL scheduler. Note that the performance

improvement provided by prefetching on top of the TL scheduler is relatively low

because the issued prefetches are most of the time too late, as described in

Section 4.2.1.4. However, the performance improvement of prefetching on top of

the TL scheduler is still higher than that on top of the RR scheduler because the

proposed prefetcher is not too simple (e.g., not as simple as a next-line

prefetcher) and its combination with the TL scheduler enables some

inter-fetch-group prefetching to happen. Figure 4.5 shows that 89% of the issued

prefetches are accurate with the TL scheduler. 85% of these accurate prefetches

are still late, and as a result the prefetcher leads to an L1 data cache miss

reduction of only 4%.

Effect of the PA scheduler: As described in Section 4.2.2.1, the PA scheduler

is likely to provide high bank-level parallelism at the expense of row buffer locality

because it concurrently executes non-consecutive warps, which are likely to access

different memory banks, in the same fetch group. Figures 4.6 and 4.8 confirm

this hypothesis: on average, the PA scheduler improves BLP by 18% over the TL

scheduler while it degrades RBL by 24%. The PA scheduler is expected to work

well in applications where the loss in row locality is less important for performance

than the gain in bank parallelism. For example, the PA scheduler provides a 31%

increase in IPC (see Figure 4.4) over the TL scheduler in FFT due to a 57% increase

in BLP, even though there is a 44% decrease in row locality compared to the TL

scheduler. On the contrary, in PVC, there is 4% reduction in IPC compared to

62

0

2

4

6

8

10

12

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L
K

F
W

T

J
P

E
G

A
V

G

R
o
w

 B
u
ff

e
r

L
o
c
a
lit

y

TL TL+Prefetching PA PA+Prefetching

Figure 4.8: Effect of different scheduling and prefetching strategies on DRAM row
buffer locality

0

0.1

0.2

0.3

0.4

0.5

0.6

16KB 32KB 64KB

E
B

R
R

L1D Cache Size

PA PA+Prefetching

Figure 4.9: Effect of prefetching on Evicted Block Reference Rate (EBRR) for
various L1 data cache sizes

TL scheduler due to a 31% reduction in row-locality, even though there is a 62%

increase in BLP. This shows that both row locality and bank-level parallelism are

important for GPGPU applications, which is in line with the observations made

in [53] and [7]. On average, the PA scheduler provides 20% IPC improvement over

the RR scheduler and 4% improvement over the TL scheduler.

Effect of prefetching with the PA scheduler: The use of prefetching

together with the proposed PA scheduler provides two complementary benefits:

(1) the PA scheduler enables prefetching to become more effective by ensuring

that consecutive warps that can effectively prefetch for each other get scheduled

far apart in time from each other, (2) prefetching restores the row buffer locality

loss due to the use of the PA scheduler. This dissertation work evaluates both

sources of benefits in Figures 4.7 and 4.8, respectively: (1) the use of prefetching

together with the PA scheduler reduces the L1 miss rate by 10% compared to the

TL scheduler with prefetching, (2) the addition of prefetching over the PA scheduler

improves RBL such that the RBL of the resulting system is within 16% of the RBL

63

of the TL scheduler with prefetching. Figure 4.5 shows that the PA scheduler

significantly improves prefetch timeliness compared to the TL and RR schedulers

while also slightly increasing prefetch accuracy: with the PA scheduler, 90% of

the prefetches are accurate, of which only 69% are late (as opposed to the 85%

late prefetch fraction with the TL prefetcher). Overall, the orchestrated spatial

prefetching and prefetch-aware scheduling mechanism improves performance by

25% over the RR scheduler with prefetching and by 7% over the TL scheduler with

prefetching (as seen in Figure 4.4). This work concludes that the new prefetch-

aware warp scheduler effectively enables latency tolerance benefits from a simple

spatial prefetcher.

Case analyses of workload behavior: In KMN, prefetching with the PA

scheduler provides 10% IPC improvement over prefetching with the TL scheduler

on account of a 31% decrease in L1 miss rate and 6% increase in row locality

over the PA scheduler. Note that in KMN, prefetching on top of the PA scheduler

leads to the restoration of 100% of the row-locality lost by the PA scheduler over

the TL scheduler. In SPMV, the use of prefetching improves row buffer locality

by 2× over the TL scheduler. This enhancement, along with a 9% increase in

BLP over the TL scheduler leads to 3% higher IPC over TL+Prefetching. In

BFSR, this work does not observe any significant change in performance with the

proposal because of the high number of unrelated memory requests that do not

have significant spatial locality: in this application, many macro-blocks have only

one cache block accessed, as was shown in Figure 4.3 (c). In FFT, adding prefetching

on top of the PA scheduler provides 3% additional performance benefit. Yet, as

described earlier, FFT benefits most from the improved BLP provided by the PA

scheduler. In FFT, the combination of prefetching and PA scheduling actually

increases the L1 miss rate by 1% compared to the combination of prefetching and

TL scheduling (due to higher cache pollution), yet the former combination has 3%

higher performance than the latter as it has much higher bank-level parallelism.

This shows that improving memory bank-level parallelism, and thereby reducing

the cost of each cache miss by increasing the overlap between misses can actually

be more important than reducing the L1 cache miss rate, as was also observed

previously for CPU workloads [66].

64

Analysis of cache pollution due to prefetching: One of the drawbacks of

prefetching is the potential increase in cache pollution, which triggers early

evictions of cache blocks that are going to be needed later. The cache pollution is

calculated using the Evicted Block Reference Rate (EBRR) Equation 4.1. This

metric indicates the fraction of read misses that are to cache blocks that were in

the cache but were evicted due to a conflict.

EBRR =
#read misses to already evicted cache blocks

#read misses
(4.1)

Figure 4.9 shows that prefetching causes a 26% increase in EBRR when a

32KB L1 data cache (as in the evaluations) is used. When cache size is increased

to 64KB, the increase in EBRR goes down to 10%. This is intuitive as a large

cache will have fewer conflict misses. One can thus reduce pollution by increasing

the size of L1 caches (or by incorporating prefetch buffers), but that would lead to

reduced hardware resources dedicated for computation, thereby hampering thread-

level parallelism and the ability of the architecture to hide memory latency via

thread-level parallelism. Cache pollution/contention can also be reduced via more

intelligent warp scheduling techniques, as was shown in prior work [7,67]. This work

leaves the development of warp scheduling mechanisms that can reduce pollution

in the presence of prefetching as a part of future work.

4.6 Related Work

This section briefly describes and compares to the closely related works.

Scheduling techniques in GPUs: The two-level warp scheduler proposed by

Narasiman et al. [8] splits the concurrently executing warps into groups to improve

memory latency tolerance. This work has already provided extensive qualitative

and quantitative comparisons of this proposal to the two-level scheduler. Rogers et

al. [67] propose cache-conscious wavefront scheduling to improve the performance of

cache-sensitive GPGPU applications. Gebhart et al. [48] propose a two-level warp

scheduling technique that aims to reduce energy consumption in GPUs. Kayiran

et al. [9] propose a CTA scheduling mechanism that dynamically estimates the

65

amount of thread-level parallelism to improve GPGPU performance by reducing

cache and DRAM contention. Jog et al. [7] propose OWL, a series of CTA-aware

scheduling techniques to reduce cache contention and improve DRAM performance

for various GPGPU applications. None of these works consider the effects of warp

scheduling on data prefetching. This dissertation work examines the interaction

of scheduling and prefetching, and develops a new technique to orchestrate these

two methods of latency tolerance.

Data prefetching: Lee et al. [35] propose a many-thread aware prefetching

strategy in the context of GPGPUs. The prefetch-aware warp scheduling

technique can be synergistically combined with this prefetcher for better

performance. Jog et al. [7] propose a memory-side prefetching technique that

improves L2 cache hit rates in GPGPU applications. This dissertation work

describes how a spatial locality detection mechanism can be used to perform

core-side data prefetching. Lee et al. [68] evaluate the benefits and limitations of

both software and hardware prefetching mechanisms for emerging high-end

processor systems. Many other prefetching and prefetch control mechanisms

(e.g., [55–57,69,70]) have been proposed within the context of CPU systems. The

proposed prefetch-aware scheduler is complementary to these techniques. This

work also provides a specific core-side prefetching mechanism for GPGPUs that

is based on spatial locality detection [61].

Row buffer locality and bank-level parallelism: Several memory request

scheduling techniques for improving bank-level parallelism and row buffer

locality [34, 37, 45, 46, 49–51, 71–73] have been proposed. In particular, the work

by Hassan et al. [52] quantifies the trade-off between BLP and row locality for

multi-core systems, and concludes that bank-level parallelism is more important.

The results show that the prefetch-aware warp scheduler, which favors bank-level

parallelism, provides higher average performance than the two-level scheduler [8],

which favors row buffer locality (but this effect could be due to the

characteristics of the evaluated applications.). On the other hand, Jeong et

al. [53] observe that both bank-level parallelism and row buffer locality are

important in multi-core systems. This work also finds that improving row locality

at the expense of bank parallelism improves performance in some applications yet

66

reduces performance in others, as evidenced by the two-level scheduler

outperforming the prefetch-aware scheduler in some benchmarks and vice versa

in others. Lakshminarayana et al. [50] propose a DRAM scheduling policy that

essentially chooses between Shortest Job First and FR-FCFS [33, 34] scheduling

policies at run-time, based on the number of requests from each thread and their

potential of generating a row buffer hit. Yuan et al. [49] propose an arbitration

mechanism in the interconnection network to restore the lost row buffer locality

caused by the interleaving of requests in the network when an in-order DRAM

request scheduler is used. Ausavarungnirun et al. [51] propose a staged memory

scheduler that batches memory requests going to the same row to improve row

locality while also employing a simple in-order request scheduler at the DRAM

banks. Lee et al. [71, 72] explore the effects of prefetching on row buffer locality

and bank-level parallelism in a CPU system, and develop memory request

scheduling [71, 72] and memory buffer management [71] techniques to improve

both RBL and BLP in the presence of prefetching. Mutlu and

Moscibroda [37, 73] develop mechanisms that preserve and improve bank-level

parallelism of threads in the presence of inter-thread interference in a multi-core

system. None of these works propose a warp scheduling technique that exploits

bank-level parallelism, which this dissertation work does. This work explores the

interplay between row locality and bank parallelism in GPGPUs, especially in

the presence of prefetching, and aim to achieve high levels of both by intelligently

orchestrating warp scheduling and prefetching.

4.7 Chapter Summary

This chapter shows that state-of-the-art thread scheduling techniques in GPGPUs

cannot effectively integrate data prefetching. The main reason is that consecutive

thread warps, which are likely to generate accurate prefetches for each other as

they have good spatial locality, are scheduled closeby in time with each other.

This gives the prefetcher little time to hide the memory access latency before the

address prefetched by one warp is requested by another warp.

To orchestrate thread scheduling and prefetching decisions, this chapter

67

introduces a prefetch-aware (PA) warp scheduling technique. The main idea is to

form groups of thread warps such that those that have good spatial locality are

in separate groups. Since warps in different thread groups are scheduled at

separate times, not immediately after each other, this scheduling policy enables

the prefetcher to have more time to hide the memory latency. This scheduling

policy also better exploits memory bank-level parallelism, even when employed

without prefetching, as threads in the same group are more likely to spread their

memory requests across memory banks.

Experimental evaluations show that the proposed prefetch-aware warp

scheduling policy improves performance compared to two state-of-the-art

scheduling policies, when employed with or without a hardware prefetcher that is

based on spatial locality detection. This chapter concludes that orchestrating

thread scheduling and data prefetching decisions in a GPGPU architecture via

prefetch-aware warp scheduling can provide a promising way to improve memory

latency tolerance in GPGPU architectures.

Chapter 5

Criticality Aware Memory

Scheduling Techniques

Modern memory access schedulers employed in GPUs typically optimize for

throughput and implicitly assume that all requests from different cores are

equally important. However, different cores have different amounts of tolerance

to latency during execution. In particular, cores with a larger fraction of warps

waiting for data to come back from DRAM are less likely to tolerate the latency

of an outstanding memory request. Requests from such cores are more critical

than requests from others. Based on this observation, new memory scheduler is

developed, called (C)ritica(L)ity (A)ware (M)emory (S)cheduler (CLAMS),

which takes into account the latency-tolerance of the cores that generate memory

requests. The key idea is to use the percentage of critical requests in the memory

request buffer to switch between scheduling policies optimized for criticality and

locality. If the percentage is below a threshold, CLAMS prioritizes critical

requests to ensure cores that cannot tolerate latency are serviced faster.

Otherwise, CLAMS optimizes for locality anticipating that there are too many

critical requests and prioritizing one over another would not significantly benefit

performance. A core-criticality estimation mechanism is first developed for

determining critical cores and requests, and then various issues are discussed

related to finding a balance between criticality and locality in the memory

69

scheduler. The results indicate that a GPU memory system that considers both

core-criticality and DRAM request locality can provide significant improvement

in performance.

5.1 Introduction

Graphics Processing Units (GPUs) are becoming increasingly popular for general

purpose computing because of their capability in providing large improvements in

performance and energy efficiency compared to CPUs [74–83]. Although

high-bandwidth memory systems have increased GPU performance substantially,

memory bandwidth is still precious and a critical performance

determinant [7,9,84–86]. In fact, it will be more so as compute resources increase

on GPUs [7, 9, 28, 87]. To address this, a large body of work has focused on

improving bandwidth utilization (e.g., [7, 26, 27, 51]), and caching efficiency in

GPUs (e.g., [7, 36, 67]). However, all these works primarily focus on improving

application performance by treating all threads and memory requests with equal

importance. This phenomenon stems from the fact that GPUs typically focus on

improving the collective performance of multiple concurrently executing threads.

In the same vein, the commonly-used memory scheduling policy – First-ready

FCFS (FR-FCFS) [32–34], implicitly assumes that all memory requests are

equally critical for overall performance, and hence, it optimizes for throughput

rather than for latency of specific requests. However, this work observes that

because of the contention of memory requests from different cores in the memory

system, and the inability of the FR-FCFS memory scheduler to distinguish

between the memory requests originating from different cores, they experience

significant variation in average memory access latencies. Due to such variation,

the number of stalling warps that belong to the cores that suffer from higher

memory access latencies is typically higher than that of other cores, making the

former type of cores less latency tolerant, i.e., more critical for overall

performance. This implies that because different cores have varying degrees of

tolerance to latency during execution, their corresponding memory requests have

varying degrees of criticality.

70

In contrast to the purely locality-focused memory schedulers, the goal in this

work is to design a memory scheduler that is cognizant of the latency tolerance

of cores. One simple idea based on the observation is to always prioritize critical

requests over non-critical requests. As the cores that lack enough warps to hide the

long memory latencies are more likely to quickly stall for the data to come back,

prioritizing requests from such cores in the memory controller provides a way of

proactively avoiding them from getting stalled. However, this work finds that

such a memory scheduler that is focused purely on core criticality degrades DRAM

access locality significantly. This motivates us to explore more intelligent memory

scheduling schemes that consider both criticality and locality. In this context, this

chapter introduces a (C)ritica(L)ity (A)ware (M)emory (S)cheduler (CLAMS) for

GPUs, which achieves a fine balance between core criticality and DRAM access

locality.

There are four steps in designing CLAMS. First, this work periodically

calculates the current level of latency tolerance of a GPU core. This work does so

by periodically calculating the fraction of short-latency warps on the core.1 A

core is expected to be more latency tolerant if most of the launched warps are

short-latency warps that execute compute (ALU) instructions or that find their

required data in privates caches. Second, this work periodically ranks the cores

based on their current level of latency tolerance, and tag the memory requests

with the core’s rank. The ranking is done in such a way that the cores that have

lower latency tolerance are ranked lower. Third, based on the value of the rank,

this work determines if a request should be considered critical or not. To do so,

this work uses a criticality-rank threshold (ThCR), which specifies up to which

rank a request should be considered as critical. Fourth, this work decides if a

critical request should be prioritized or not by the memory scheduler by also

taking DRAM access (row-buffer) locality into account. This work does so by

periodically calculating the percentage of requests that are considered as critical

in the memory request buffer, and comparing it with the scheduling-mode

threshold (ThSM). If the percentage of critical requests is below ThSM , CLAMS

goes into criticality mode, where it prioritizes critical requests to ensure cores

1Section 5.3 details the procedure to measure the latency tolerance of a core.

71

that cannot tolerate latency are serviced faster. Otherwise, CLAMS goes into

locality mode, where it optimizes for locality anticipating that there are too

many critical requests to prioritize one over another.

This work observes latency tolerance differences between GPU cores and

exploits differences in such tolerance to improve GPU resource management. In

this context, this chapter makes the following contributions,

• This work introduces the concept of core-criticality in GPUs. This work shows

that all GPU cores do not possess the same latency tolerance at all times, and this

variation in latency tolerance across cores is one of the key reasons for different

levels of criticality among memory requests, which is not exploited by current GPU

memory schedulers.

• This work introduces the first GPU memory scheduler, CLAMS to take into

account core-criticality and achieves a fine balance between criticality and locality

via proposed dynamic criticality estimation mechanism. This work proposes three

different designs for CLAMS: static, semi-dynamic (Semi-Dyn) and dynamic (Dyn)

based on how required thresholds (ThCR and ThSM) are computed, and find that

the Dyn-CLAMS is the best performer because of its ability to compute these

thresholds at runtime and thereby adapt dynamically to application demands.

• This work presents a comprehensive experimental evaluation of three CLAMS

designs along with FR-FCFS and FR-FCFS-Cap using a variety of CUDA

workloads. The results show that Dyn-CLAMS reduces latency of critical

memory requests by 35%, resulting in an average 9% IPC improvement

(maximum 15%) over the FR-FCFS scheduler, and is within 1% of the scheduler

that uses best threshold values profiled separately for each application. Further,

performance of none of the evaluated applications degrades with the final scheme.

72

5.2 Background and Motivation

A typical GPU consists of multiple simple cores, also called

streaming-multiprocessors2 [4] in NVIDIA terminology. Each core is associated

with private L1 data, texture and constant caches, along with software-managed

scratchpad memory. The cores are connected to memory channels (partitions)

via an interconnection network. Each memory partition is associated with a

shared L2 cache, and its associated memory requests are handled by GDDR5

memory controller. When an application kernel is launched on a GPU, the

memory requests originating from different cores interfere at various levels of the

GPU hierarchy, such as interconnect, last-level caches and main-memory. At each

of these levels, the underlying shared resource management policies do not

consider the source core-ids of the requests while making decisions, and therefore

might allocate shared resources across different cores in an uneven fashion. The

detailed analysis shows that such uneven allocation can lead to significant

variation in average memory latencies across different GPU cores. To understand

this variation, coefficient of variation (COV) in memory access latencies is

calculated, which is defined as the ratio of standard deviation to arithmetic mean

of the average memory access latencies experienced by different cores.

Figure 5.1 shows the COV in memory access latencies as well as IPCs across

different cores for 11 different CUDA applications, averaged across fixed epochs3,

for three different scenarios: applications when executed on a GPU that has 1)

equal to (1xB), 2) double (2xB), and 3) quadruple (4xB) the peak memory

bandwidth of the baseline GPU architecture. In the baseline scenario (1xB),

significant COV in latencies is observed across cores for applications like LUH

(13%), RAY (33%), SCAN (19%), and RED (18%). Because of such variation, many

GPU cores experience higher memory access latencies than the others. Therefore,

such cores have high number of stalling warps on memory, making them less

latency tolerant than other cores. This might also result in higher stall times for

these cores, leading to also significant COV in IPCs across different cores as

2This chapter uses the term core for streaming-multiprocessor (SM).
3Epoch length is 10K cycles.

73

0

0.1

0.2

0.3

0.4

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

1
x
B

2
x
B

4
x
B

LUH RED SCAN LPS RAY CONS SCP BLK HS CFD GAUSS AVG.

A
v
e
ra

g
e
 C

o
e
ff

ic
ie

n
t

o
f

V
a
ri

a
ti

o
n

 (
C

O
V

)

Latency IPC

Figure 5.1: Average Coefficient of Variation (COV) in average memory access
latencies and IPCs across different GPU cores.

shown in Figure 5.1.

Significant COV both in latencies and IPCs is observed for RAY, LUH, and RED,

stressing the fact that variation in latencies can lead to significant variation in IPCs

across cores. In addition to this observation, two contrasting cases are noticed.

First, in SCAN, variation in latencies across cores is higher than variation in IPCs.

This is because SCAN is able to tolerate higher latencies up to certain level, thereby

reducing the variation in IPCs. Second, in LPS and CFD, much lower variation in

latencies across cores is present compared to variation in IPCs. This is because

CTA and instruction-mix load imbalance [9,31,88,89] across cores also causes IPC

variation during application execution. It is further observed that increasing peak

memory bandwidth causes significant decrease in COV in latencies as well as IPCs,

leading to the conclusion that contention of different cores in the memory system

is the major cause of COV in latencies as well as IPCs.

The goal is to develop a mechanism that prioritizes the cores that suffer

from lower latency tolerance. Improving the performance of these cores would

improve overall system performance by enabling these cores to make progress

(Section 5.3.1). Such mechanism is expected to specifically benefit those

applications that have significant COV both in latencies and IPCs (e.g., RAY,

LUH, and RED), and not so for those applications (e.g., BLK, HS) that have limited

variation. Such a mechanism can be employed at various levels. For example, a

warp scheduler can be employed to control the progress of each core separately.

However, since the cores contend for the memory system resources, a memory

scheduling mechanism can be more effective to expedite the requests of cores

with lower latency tolerance, and is the focus of this chapter. Thus, in this work,

74

a new GPU memory scheduler is designed that is aware of the latency tolerance

of individual cores.

5.3 Core Criticality: Basic Ideas and Metrics

This section provides details on the metrics to gauge the latency tolerance of a

core and its variance across cores.

5.3.1 Latency Tolerance as a Measure of Core-Criticality

Each GPU core is capable of executing multiple warps concurrently. The advantage

of this is that if some of the warps are blocked, for example, because of pending

DRAM accesses, the remaining warps can continue their execution and potentially

mask the performance penalties of the blocked warps. However, the number of

warps is not always enough to keep the core busy with useful work. There are

various reasons for this. For example, some warps cannot be issued to the SIMT

pipelines at a given time, because of data and control dependencies, or pipeline

register stalls. This implies that only a fraction of the total warps launched on a

core can actually be used to provide latency tolerance at a given time.

In order to define a metric to gauge the criticality of a core, this work employs

a two-step strategy. The first step is to classify the issued warps as long-latency

and short-latency warps. The number of issued warps is equal to the number of

unique warps that reserve a register in the scoreboard. The long-latency warps are

the issued warps that have at-least one pending L1 miss. The remaining issued

warps are called short-latency warps because either they contain ALU instructions

or all the data required by them is present in the L1 caches. These short-latency

warps finish their instructions faster compared to the long-latency warps, whose

executions are dependent on data that needs to be fetched from the memory-

partition/DRAM. As observed, the warp classification mechanism is purely based

on warps’ memory behavior and their thread-level parallelism.

75

After classifying the warps, the second step is to periodically4 calculate the

ratio of short-latency warps to the total issued warps. Note that the sum of short-

latency and long-latency warps is always equal to the total issued warps, and thus

this ratio can take any value between 0 and 1. This work uses this ratio as a

metric to gauge the latency tolerance of a core. Note that this work calculates this

metric separately for each core. The lower the value of this ratio, the lower is the

latency tolerance of the core. The intuition is that, if the ratio is high, the core

has high percentage of short-latency warps, and the latencies of long-latency warps

can potentially be completely masked, leading to high core performance. On the

other hand, if the ratio is low, even if the core has short-latency warps that are

ready to execute, the majority of the issued warps are long-latency warps, and the

core is more likely to stall soon.

The observation is that relative change in IPC and relative change in the

latency tolerance metric has an average correlation of 74% across the application

suite. This means that improving the latency tolerance of a core might improve

its IPC. However, a mechanism that prefers memory requests of cores that have

lower latency tolerance might have higher impact on the overall performance. For

example, it is more advantageous to make one more additional warp ready to

execute in a core with zero short-latency warps (i.e., no latency tolerance)

compared to a core with a large number of short-latency warps (there is already

enough latency tolerance).

This work quantizes the latency tolerance metric into eight equal parts.5 Based

on this value, this work assigns a criticality rank to a core. Essentially, each equal

part of the ratio corresponds to a rank. For example, if this ratio is less than or

equal to 1
8
, the core is considered to be the most critical and is in rank-1 state.

Similarly, if it is greater than 7
8
, that core is considered to be the least critical, and

is in rank-8 state.

Formally, this work considers a core to be critical if the current rank of the

4This work calculates this ratio over an epoch of 32 cycles.
5The proposed scheme could have divided this ratio into more than eight parts to get a finer

granularity picture of the current latency tolerance of a core, but the detailed studies show that
eight parts provide sufficient granularity to understand and distinguish the latency tolerance of
different cores.

76

core is less than or equal to a Criticality-Rank-Threshold (ThCR). In other words,

the value of ThCR specifies up to which rank the core should be considered as

critical. For example, a ThCR value of 4 implies that the core is considered critical

only if its current rank is less than or equal to rank 4.

5.3.2 Understanding Variation of Criticality Across Cores

Not only the latency tolerance of a core can change during execution, but it is

observed that there is a wide variation of latency tolerance across GPU cores. To

measure this variation, a new metric is introduced, called percentage of critical

cores (PCC), which is defined as the percentage of GPU cores that are in the

critical state. Since, a core is treated as critical based on the chosen value of

Criticality-Rank-Threshold (ThCR), PCC needs to be defined for a particular

value of ThCR. Hence, PCC(ThCR) is defined as the percentage of critical cores

(PCC) for a particular ThCR, where ThCR can take any integer from 1 to 8. If

PCC(ThCR) is equal to 100%, it means that all the cores are critical, and have

similar tolerance to latencies. Similarly, if PCC(ThCR) is equal to 0%, it means

that all cores are non-critical. In both the cases, the variation in criticality across

cores is insignificant. On the other hand, if the value of PCC(ThCR) is in

mid-range, then some cores are treated as critical and the remaining cores are

not. Therefore, the value of PCC(ThCR) gives a notion of the variation in

criticality across cores. For a better understanding of the PCC metric, consider

Figure 5.2 that hypothetically shows the current rank of cores in a 3-core GPU

system.

It is noticed that if ThCR is chosen as 1, PCC is equal to 0%, as all the cores

have higher rank than 1 and none of the cores are considered as critical. With

ThCR equal to 4, the value of PCC is equal to 33%, as the rank of core-3 is less

than the chosen value of ThCR, making it the only critical core in the system.

With ThCR equal to 7, the value of is PCC is equal to 100%, as all the cores are

considered critical because ranks of all the cores are less than the ThCR.

It is observed that as ThCR increases, the number of critical cores also increases

(or remains the same). Therefore, PCC(ThCR) also increases (or remains the same)

77

0

1

2

3

4

5

6

7

8

Core-1 Core-2 Core-3
R

a
n

k

ThCR = 7, PCC(7)=100%

ThCR = 4,
PCC(4)=33%

ThCR = 1,
PCC(1)=0%

Figure 5.2: Illustrative example to demonstrate PCC.

as ThCR increases from 1 to 8. Formally, [PCC(a) ≥ PCC(b)], if (a > b).

5.3.2.1 Analysis of the PCC metric.

Figure 5.3 shows PCC(ThCR) over time (sampled at every 1K cycles) for four

applications, at three different levels of ThCR (ThCR = {1, 4, 7}), over time.

Three main observations from this figure are:

Observation-I: PCC is dependent on the chosen criticality-rank

threshold. During the application execution, the instantaneous PCC(ThCR) is a

function of the chosen ThCR value. For example, in SCP, values of PCC(ThCR =

1) and PCC(ThCR = 7) at a given time are very different. This is by definition

from the previous discussion that, as ThCR increases, the number of critical cores

increases, leading to high PCC values. The other three applications (LUH, RAY,

CONS) also exhibit this trend.

Observation-II: PCC varies within an application over time. Even for a

fixed value of ThCR, PCC(ThCR) may not be constant throughout the execution.

For example, as observed prominently in LUH and RAY, PCC(ThCR = 4) can be

different over time, implying that the number of critical cores for the same value of

ThCR is not constant over time. In CONS, the change in PCC(ThCR) over time is

not very prominent, and PCC(ThCR = 4) is in the mid-range (40-60%), implying

that roughly half the cores are in critical state.

78

0%

20%

40%

60%

80%

100%
P

e
rc

e
n

ta
g

e
 o

f
C

o
re

s PCC(1) PCC(4) PCC(7)

Time

(a) SCP

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
C

o
re

s PCC(1) PCC(4) PCC(7)

Time

(b) LUH

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

C
o

re
s

PCC(1) PCC(4) PCC(7)

Time

(c) RAY

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
C

o
re

s

PCC(1) PCC(4) PCC(7)

Time

(d) CONS

Figure 5.3: Variation of criticality across cores with different criticality-rank
thresholds. This variation is measured using the PCC metric.

0%

20%

40%

60%

80%

A
v
e

ra
g

e
 P

C
C

(1
) 1xB 2xB 4xB

Figure 5.4: Effect of increase in peak memory bandwidth on PCC.

Observation-III: PCC varies across applications. Across applications,

even for the same value of ThCR, PCC(ThCR) can be very different. For example,

at ThCR = 4, RAY and SCP have very different PCC(ThCR = 4) values (SCP’s is

fairly high than RAY’s). It implies that, with ThCR = 4, higher number of critical

cores exist in SCP compared to RAY application.

Another Observation. Figure 5.4 shows that the PCC metric6 reduces

significantly with increase in memory bandwidth in the system. This trend is

consistent with the discussions from Section 5.2 that the variation average

memory latencies observed by different cores (i.e., variation in criticality across

different cores) is alleviated with increased bandwidth.

5.4 Analyzing Criticality in the Memory System

Cores with low latency tolerance are less likely to tolerate the latency of an

outstanding memory request, making their requests more critical. Thus, the goal

is to design a criticality-aware memory-scheduler that takes advantage of

6Results for PCC with ThCR equals to 1 are shown because the critical cores at this ThCR

have the least latency tolerance, and reducing PCC(1) by preferring the memory requests of such
cores is advantageous to improve the overall performance (Section 5.3.1).

79

differences in criticality among requests and prioritizes latency critical requests to

improve performance. One of the important steps in designing such a memory

scheduler is to gauge the variation in criticality across GPU cores. As discussed

in Section 5.3.2, PCC(ThCR) metric is one of the key indicators of existence of

different levels of criticality among cores, and in turn their corresponding memory

requests. If PCC(ThCR) metric indicates that the latency tolerance variance

across cores exists for a particular value of ThCR, the memory scheduler can

potentially prioritize requests from cores that have lower ranks. This is because

such cores are more likely to have large number of warps stalling due to waiting

for memory requests to come back from memory. Therefore, we can prioritize

requests from such cores to proactively avoid causing these cores to stall.

However, note that as PCC(ThCR) is dependent on ThCR, we need to carefully

examine the PCC(ThCR) values for all possible values of ThCR, to understand at

what level of ThCR does substantial latency criticality variation across cores

exists (if any). If PCC(ThCR) metric does not indicate significant variance at any

ThCR level, the memory requests from different cores will have similar latency

criticality. In such situations, a scheduler can focus on preserving locality as

giving some requests higher priority than others may not have any benefit.

The calculation of PCC(ThCR) requires global information exchange across

cores, and the hardware overhead of calculating this information and then

communicating it directly to the memory controllers (MCs) periodically can be

expensive. Instead, this work proposes to capture the variations in latency

tolerance across cores directly at the MCs. To do so, the current latency

tolerance level of a core is relayed to the GPU memory scheduler by tagging the

memory requests originating from that core with its current rank, and then

calculating, at the MC, a metric called percentage of critical requests (PCR),

which is defined as percentage of critical memory requests present in a MC

memory request buffer. Again, because the decision of defining requests (or cores

as discussed before in Section 5.3.2) as critical is dependent on the value of

ThCR, PCR(ThCR) is defined as the percentage of critical requests (the requests

that are tagged with rank values less than or equal to ThCR) in MC request

buffer. Note that the observations discussed for PCC(ThCR) in

Section 5.3.2 hold true for PCR(ThCR) as well. It is because the only

80

0%

20%

40%

60%

80%

100%
P

e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e

s
ts PCR(1) PCR(4) PCR(7)

Time

(a) SCP

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

R
e

q
u

e
s

ts PCR(1) PCR(4) PCR(7)

Time

(b) LUH

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e
s
ts PCR(1) PCR(4) PCR(7)

Time

(c) RAY

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

R
e

q
u

e
s

ts

PCR(1) PCR(4) PCR(7)

Time

(d) CONS

Figure 5.5: Variation of criticality across requests at different levels of criticality-
rank thresholds. This variation is measured using the PCR.

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
D

R
A

M
 C

y
c
le

s

diff-7

diff-6

diff-5

diff-4

diff-3

diff-2

diff-1

diff-0

Figure 5.6: Distribution of criticality-rank differences across requests.

difference is that PCR(ThCR) considers criticality of requests instead

of their corresponding cores. Relaying the rank information embedded in

the memory requests to the MC, and then periodically calculating PCR(ThCR)

has three primary benefits: (1) this percentage can be calculated locally at the

MC without needing communication across MCs, (2) PCR(ThCR) plots over time

(shown in Figure 5.5) are highly correlated to the PCC(ThCR) curves shown in

Figure 5.3, and (3) the calculations to find appropriate value for ThCR (discussed

in Section 5.5) for applications and other optimizations can also be done locally

at the MCs. In Figure 5.5, PCR(ThCR) is plotted over time for the same four

applications shown in Figure 5.3, for the same values of ThCR = {1, 4, 7}. It is

observed that in both Figure 5.3 and Figure 5.5, applications have very similar

patterns. Thus, a criticality-aware memory scheduler could make scheduling

decisions based on PCR(k) ∀k ∈ {1...8} information calculated locally at the MC,

instead of using the global PCC(k), ∀k ∈ {1...8} information.

Scope of Criticality Aware Scheduling: To understand the scope of criticality-

aware memory scheduling in GPU workloads, the existence of memory requests is

investigated with different criticality-ranks in MCs at the same instance. Figure 5.6

depicts the distribution of criticality-rank differences across DRAM requests, where

81

criticality-rank difference is defined as the difference between the highest and lowest

criticality-rank of the memory requests present in the MC at the same instance.

This data is for one of the MCs (similar distributions are observed in other MCs),

when more than one request is present in the MC queue. In Figure 5.6, diff-0

denotes the percentage of DRAM cycles during which all the memory requests in

the queue have the same criticality-rank. Similarly, diff-1 denotes the percentage

of DRAM cycles during which the difference between the highest and the lowest

rank of the memory requests in the MC at the same instant is 1. Note that as the

maximum possible rank is 8, the difference of the highest and the lowest rank can

range from 0 to 7. It is observed from Figure 5.6, the rank range present in the MC

varies across applications. In applications such as LUH and RAY, the difference in

ranks is significant during most of the execution, while in other applications such

as GAUSS and CFD, the difference is mostly 0. Therefore, in these applications, the

scope of criticality-aware memory scheduling is not significant. It is observed that

many applications (e.g. RAY, LUH, CONS, RED) have enough scope for criticality-

based prioritization.

These results lead us to a conclusion that a memory scheduler that exploits the

criticality within and across cores has scope to improve system performance.

5.5 CLAMS: Design and Implementation

5.5.1 Design Challenges of CLAMS

(I) Co-existence of critical and non-critical requests: In order to allow

criticality-based prioritization, one of the important challenges is to find ThCR

such that both critical and non-critical requests coexist in the MC queue. From

the prior discussions, it is observed that a high value of ThCR might lead to too

many cores and their corresponding requests to be considered as critical. On the

other hand, a very low value might lead to a very small number of cores and

their corresponding requests to be considered as critical. In both the scenarios,

MC queue only contains either only critical requests or only non-critical requests.

82

This prevents the scheduler to take advantage of the differences between the ranks

of the requests in the MC queue. Therefore, to increase the opportunities for

criticality-based prioritization by distinguishing critical requests from the others,

it is imperative to find an appropriate value of ThCR that can enable substantial

coexistence of critical and non-critical requests in the system.

(II) Balancing DRAM access locality and criticality: Even though

choosing an appropriate ThCR provides the co-existence of both critical and

non-critical requests in the system, it might not achieve a good balance between

locality and criticality. To address this trade-off, PCR(ThCR) is periodically

calculated to switch between scheduling policies optimized for criticality or

locality. Over the execution, if PCR(ThCR) is below a threshold, which is called

Scheduling-Mode-Threshold (ThSM), the scheduler prioritizes critical requests to

ensure that the cores that cannot tolerate latency are serviced faster. However,

during execution, if it exceeds the threshold, it implies that the differences in

latency criticality has become insignificant and there are too many critical

requests to prioritize one over another. However, it is challenging to find the

appropriate value of ThSM , because a higher value of ThSM would push the

scheduler to serve critical requests for a longer time, hampering the locality. A

lower value of ThSM would not leave enough opportunities for criticality based

prioritization. Therefore, it is imperative to find an appropriate ThSM value to

balance locality and criticality.

5.5.2 Design Overview of CLAMS

Three different schemes are proposed for calculating ThCR and ThSM . The first

scheme is called as Static-CLAMS because it uses a single and fixed set of values

for ThCR and ThSM for all the applications. However, it is found that these fixed

and independent choices of ThCR and ThSM make it difficult to simultaneously

address discussed design challenges. Therefore, the second scheme, called Semi-

Dyn-CLAMS, dynamically calculates ThCR based on: 1) a fixed value of ThSM ,

and 2) PCR(k), ∀k ∈ {1...8} information, calculated within an MC (Section 5.4).

This scheme dynamically finds ThCR but still uses static values of ThSM . The

83

third scheme is called Dyn-CLAMS because it dynamically calculates both ThCR

and ThSM . It uses Semi-Dyn-CLAMS to calculate ThCR and then dynamically

updates ThSM based on the calculated ThCR. The thresholds calculated by these

schemes are used to determine the working mode of CLAMS. Two working modes

in which CLAMS scheduler can issue requests to the banks are:

(A) Locality mode: This is the default mode in which CLAMS is

locality-focused. It prioritizes: 1) row-hit requests over all other requests, 2)

critical requests over all other requests, 3) older requests over younger ones.

However, if there are no critical requests present, this mode follows the FR-FCFS

scheduling policy, which prioritizes: 1) row-hit requests over all other requests, 2)

older requests over younger ones.

(B) Criticality mode: In this mode, CLAMS is criticality-focused, and optimizes

mainly for criticality. It prioritizes: 1) critical requests over all other requests, 2)

older requests over younger ones. However, if there are no critical requests present,

this mode falls back to the default locality mode.

Mode Selection: The decision to be in the criticality or locality mode is based

on the value of PCR related to every bank (PCRb(ThCR)), which is defined as the

ratio between the number of critical requests destined to bth bank and the total

number of requests destined to bth bank. A particular mode is decided based on

Eq.5.1.

PCRb(ThCR)

≤ ThSM criticality mode

> ThSM locality mode

= 0 criticality = locality mode.

(5.1)

In the special case, when there are no critical requests destined to bth bank

(PCRb(ThCR) = 0), criticality and locality mode follow exactly the same request

service order.

Inter vs. Intra Core Criticality: The intuition behind switching to the

criticality mode is to prioritize critical memory requests over other requests

belonging to different cores. However, because of the procedure which is followed

to tag criticality rank to the memory requests, it might happen that both critical

84

and non-critical requests from the same core might co-exist in an MC. As the

schemes (explained next) do not explicitly consider core-ids while serving

requests, it might happen that prioritization mechanism may prefer a critical

request over another; both belonging to the same core. This procedure has

limited benefits, because requests from the same core has similar utility unless

they have intra-core criticality typically caused due to memory divergence [83].

This work is more interested in inter-core criticality, which is due to the fact that

all the cores do not have the same level of latency tolerance. The detailed

analysis shows that the schemes benefit more from inter-core criticality. On

average, the criticality mode prefers critical requests over non-critical requests

76% times belonging to different cores.

5.5.3 Design of Static-CLAMS Memory Scheduler

This is the simplest among the proposed schemes that uses fixed values of both

the thresholds to identify the working mode. However, such fixed and independent

choices of threshold values make both challenges harder to achieve (Section 5.5.1).

To understand this, consider Figure 5.7, where it is shown that the distribution

of memory requests for one of the MCs (distribution for other MCs are similar)

across different ranks when executed on the baseline architecture that employs

FR-FCFS. It is observed from the AVG. bar, that ThCR=4 leads to co-existence

of both critical and non-critical requests in the MC queue. However, this value of

ThCR does not provide substantial coexistence in every application. For example

in SCP, with ThCR=4, majority of the requests are critical. Therefore, with this

value of ThCR along with ThSM=20%, the scheduler will be in locality mode most

of the time7, as it will detect that there are too many critical requests in the MC.

On the other hand, with ThSM=80%, the scheduler will be mostly in criticality

mode. Such set of values can degrade the DRAM row buffer locality, leading to

significant loss in performance. From this discussion, it is concluded that: (1)

there is a need for application-based ThCR, and (2) ThCR and ThSM should not be

7Although, actual working mode selection is based on Eq. 5.1, where PCRb(ThCR) (and not
PCR(ThCR)) is used, in such cases the scheduler most of the time prefers locality over criticality
mode, however it is not always true. More details in Section 5.5.4.

85

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e
s
ts

rank-8

rank-7

rank-6

rank-5

rank-4

rank-3

rank-2

rank-1

Figure 5.7: Distribution of requests in different criticality-rank states.

determined independent of each other.

5.5.4 Design of Semi-Dyn-CLAMS Memory Scheduler

The primary goal of Semi-Dyn-CLAMS is to calculate ThCR with the help of a

fixed value of ThSM and PCR(k), ∀k ∈ {1...8} information.8 This procedure

achieves two additional sub-goals. First, Semi-Dyn-CLAMS makes ThCR

dependent on ThSM , as it calculates ThCR dynamically based on the fixed ThSM

value. Therefore, Semi-Dyn-CLAMS does not determine ThCR and ThSM

independently, which is desirable based on the discussion in Section 5.5.3.

Second, it makes ThCR and ThSM cognizant of all the requests in the MC request

buffer, i.e., the PCR(k), ∀k information. This is important because as PCR(k)

and PCC(k) values are correlated (Section 5.4), making ThCR and ThSM aware

of PCR(k), in turn, make them aware of the current state of variation in

criticality across all cores.

This scheme dynamically finds ThCR such that the percentage of requests that

are critical, denoted by PCR(ThCR) is less than or equal to a fixed ThSM value,

but also as close as possible to ThSM . In other words, we need to find highest

ThCR such that PCR(ThCR) is less than or equal to a fixed ThSM value. After

obtaining such ThCR, scheduler will mostly be in criticality mode because we have

ensured that over a window, PCR(ThCR) is less than or equal to ThSM . However,

after being in the criticality mode, if PCR (even with ThCR = 1) exceeds the fixed

8This information is updated every 512 cycles. Three other sampling size windows (256, 1024,
2048) cycles are also used. The difference in overall average performance is less than 1%, implying
that sampling window size does not have a significant impact on the design.

86

0%

20%

40%

60%

80%

100%
P

e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e
s

ts

PCR(1) PCR(4) PCR(7)

Time

3

(a) CONS

0%

20%

40%

60%

80%

100%
PCR(1) PCR(4) PCR(7)

Time

3

5

(b) SCP

Figure 5.8: Execution of CONS and SCP to illustrate the working of Semi-Dyn-
CLAMS. ThCR values are calculated dynamically.

value of ThSM , the scheduler switches to the locality mode, because the scheme

detects that there are too many critical requests to prioritize one over another and

hence, the latency tolerance variation across cores is not significant. Therefore, in

such scenarios, we set ThCR=8, which makes all requests considered to be critical.

Such value of ThCR will always drive the scheduler to locality mode, because

PCR(8) is always equal to 1 and greater than ThSM . This work finds that ThSM

prefers to be in mid-range (40% provided the best average performance results,

Section 5.7). This is expected because, mid-range percentage of critical requests

allows the coexistence of both critical and non-critical requests in MC.

Figure 5.8 illustrates Semi-Dyn-CLAMS, where we choose ThSM=40% (❸).

Assume only three values of ThCR = {1,4,7} are possible, however in the final

evaluation, we consider the full range from 1 to 8. We observe from Figure 5.8a

that in CONS ThCR will be chosen mostly as 4 because this value of ThCR is the

highest possible value of ThCR such that PCR(ThCR) is less than or equal to

ThSM=40% (❸). Therefore, in CONS, the scheduler mostly will be in criticality

mode. In SCP (Figure 5.8b), the situation is different. By choosing the same

value of ThSM=40% (❸) in the first half of the execution, the scheduler will be

in criticality mode most of the time, as PCR(1) is lower than ThSM=40% (❸).

However, during the second half of the execution, SCP prefers locality mode (❺),

where PCR(1) line is above the horizontal line (❸). During this time, there is no

ThCR such that PCR(ThCR) is less than ThSM=40% (❸), and hence the scheme

detects that there are too many critical requests (even with ThCR=1). We set the

scheduler to go in locality mode by setting ThCR=8.

87

Discussion: Recall that the actual mode selection is based on Eq.5.1, which

compares the value of PCRb(ThCR) (and not PCR(ThCR)) with the value of

ThSM . Therefore, even though Semi-Dyn-CLAMS select a value of ThCR such

that PCR(ThCR) is lower than (or equal to) ThSM , it is not necessary that

PCRb(ThCR) will also be lower than (or equal to) to ThSM . Therefore, even

though Semi-Dyn-CLAMS overall strives to keep the scheduler in the criticality

mode, while ensuring that both critical and non-critical requests have substantial

presence in MC, during actual issue of requests to the memory banks, the

scheduler can be in any of the modes – locality or criticality. However, if,

∀k ∈ {1..8}, PCR(k) is greater than the ThSM value, the scheduler switches to

the locality mode by setting the ThCR value to 8. This value of 8 will always

switch the scheduler to the locality mode, because as per definition, both PCR(8)

and PCRb(8) are always equal to 1, and therefore, it will be always greater than

ThSM . This analysis is used as a foundation for the next scheme.

Importance of PCRb(ThCR) and PCR(k)∀k: For calculating appropriate

ThCR, Semi-Dyn-CLAMS consults PCR(k), ∀k information, but the scheduler

makes actual decisions on the working modes based on the current set of requests

to be issued to the bank, i.e., by examining PCRb(ThCR). This has two

advantages. First, the actual mode decision is aware of the current state of the

requests destined to the bank. Second, this decision is also aware of the status of

all the requests in the MC, which in turn is also aware of PCC information.

5.5.5 Design of Dyn-CLAMS Memory Scheduler

We find Semi-Dyn-CLAMS as an aggressive design in taking advantage of

criticality because of two reasons: First, Semi-Dyn-CLAMS always strives to find

opportunities to work in the criticality mode. Second, Semi-Dyn-CLAMS goes to

locality mode only when there are too many critical requests at ThCR=1

(PCR(1) > ThSM) in the MC queue. Because of these two reasons, we observe

significant loss in locality and performance in some applications (e.g., SCP and

RAY).

Even though Semi-Dyn-CLAMS calculates an ThCR that facilitates the

88

Table 5.1: Pseudo code for the proposed schemes

procedure [P1]
Semi-Dyn-CLAMS
ThCR = 8.
for k ∈ {1...7} do
if (0< PCR(k) ≤ ThSM < PCR(k+1))
then
ThCR = k.
end if; end for

return ThCR.

procedure [P2]
Dyn-CLAMS
ThSM = ThSMinit; ThCR = 8.
for k ∈ {1...7} do
if (0< PCR(k) ≤ ThSM < PCR(k+1)) then
ThCR = k; ThSM = PCR(ThCR).
end if ; end for

if ThCR = 8 then ThSM = 0%. end if

return (ThCR, ThSM).

scheduler to be in the criticality mode, when it actually issues requests to the

bank, it might prefer locality mode based on PCRb(ThCR) value (Section 5.5.4).

The goal of Dyn-CLAMS is to improve locality by increasing such opportunities.

To do so, we exploit one of the important limitations of Semi-Dyn-CLAMS that

it still uses a fixed value of ThSM . In other words, in Semi-Dyn-CLAMS,

ThCR-ThSM dependence is only one way, and ThSM is not updated based on the

calculated ThCR value. Therefore, the key idea of Dyn-CLAMS is to first gauge

the negative effect of the loss in row-locality on the latency tolerance (i.e.,

performance) of the cores by dynamically examining ThCR, and then restoring

the loss by lowering the value of ThSM as much as possible while maintaining the

same value of ThCR calculated using Semi-Dyn-CLAMS. This is because, with a

lower value of ThSM , the scheduler will work in the locality mode (see Eq. 5.1).

Dyn-CLAMS uses exactly the same procedure as adopted by Semi-Dyn-CLAMS

to calculate ThCR, but in addition, also lowers ThSM . At the beginning of every

window, we start with a fixed ThSM value (ThSMinit) to determine ThCR using

Semi-Dyn-CLAMS. Value of ThSMinit is equal to 40%, which we calculated based

on extensive experimental evaluation. After calculating ThCR, we update (lower)

the value of ThSM to PCR(ThCR). By doing so, ThCR remains the same as per

Semi-Dyn-CLAMS scheme, but ThSM is reduced. Thus, both ThCR and ThSM

values are updated dynamically.

Figure 5.9 illustrates this scheme. For CONS, we observed in Semi-Dyn-CLAMS

(Figure 5.8) that ThCR is usually 4, but in Dyn-CLAMS, while maintaining the

same ThCR, the value of ThSM is lowered (pointed by ❸ → ❹) such that it closely

resembles the PCR(4) curve. Similarly, in SCP, the value of ThSM is lowered to

89

0%

20%

40%

60%

80%

100%
P

e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e

s
ts

PCR(1) PCR(4) PCR(7)

Time

4

3

ThSM

(a) CONS

0%

20%

40%

60%

80%

100%
PCR(1) PCR(4) PCR(7)

Time

4

5

3

ThSM

(b) SCP

Figure 5.9: Execution of CONS and SCP to illustrate the working of Dyn-CLAMS.
ThSM is dynamically updated based on ThCR.

match closely with PCR(1). However, in cases when SCP prefers locality mode (❺),

Semi-Dyn-CLAMS sets ThCR to 8, and Dyn-CLAMS sets ThSM to 0%, making

the scheduler work in locality mode. Algo. 5.1 formally describes the procedures

adopted by the schemes.

5.5.6 Hardware Overheads

(I) Tagging memory request with core criticality: Each core is assigned with

a rank depending on its current state of the latency tolerance. As the maximum

possible number of warps on a core is 48, this scheduler needs two 11-bit counters

to store the windowed-average of short-latency and issued warps over 32 cycles.

The proposal calculates the rank using one 11-bit divider and eight comparators.

This rank is stored in a 3-bit register. At the time when memory request is issued,

the proposal tag the memory request with the corresponding core’s rank.

(II) Static-CLAMS: Two 8-bit up-down counters per-bank (max. MC buffer size

is 256) are required to track the number of critical and pending memory requests.

For mode selection, this proposal compare the value of PCRb(ThCR) to a fixed

value of ThSM with the help of comparator. ThCR (3 bits) and ThSM (7 bits)

values are stored as fixed thresholds in registers within MC.

(III) Semi-Dyn-CLAMS: PCR(k)∀k per MC is calculated over a window of 512

cycles by keeping track of the critical requests and the number of total requests in

MC. This proposal needs one 9-bit counter per rank and one 9-bit counter to keep

track of the pending memory requests. The scheduler takes a snapshot of these

90

Table 5.2: Key configuration parameters of the simulated GPU configuration.

Core Features 1400MHz core clock, 32 cores (streaming multi-processors), SIMT width = 32,
Greedy-then-oldest first (GTO) dual warp scheduler [4],
Thread-blocks are scheduled on SMs in load-balanced fashion

Resources / Core 48KB shared memory, 32KB register file, Max. 1536 threads
Private Caches / Core 16KB 4-way L1 data cache, 12KB 24-way texture cache

8KB 2-way constant cache, 2KB 4-way I-cache, 128B cache block size
Shared L2 Cache 16-way 128 KB/memory channel (768KB in total), 128B cache block size
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Memory Model 6 GDDR5 Memory Controllers (MC), FR-FCFS scheduling,

256 max. common request buffer for all 8 banks per MC,
4 bank-groups/MC, 924 MHz memory clock,
Global address space is interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing, tCL = 12, tRP = 12, tRC = 40, tRAS = 28,
tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect 1 crossbar/direction (32 cores, 6 MCs), 1400MHz interconnect clock

Table 5.3: Evaluated applications. Table also shows: 1) Average occupancy (occ)
in terms of warps, 2) Average ThCR and ThSM calculated using Semi-Dyn-CLAMS
and Dyn-CLAMS, respectively, and 3) % of critical requests (%-cri) served in the
criticality-mode.

Application Abbr. Class occ ThCR ThSM %-cri

Lulesh [90] LUH A 18 4 13% 46
Reduction [91] RED A 15 1 16% 38

Scan [91] SCAN A 14 4 16% 42
Laplace 3D [23] LPS A 11 4 23% 32
Ray Tracing [23] RAY A 16 6 11% 40
Convolution [23] CONS A 15 5 21% 45

Scalar Product [23] SCP B 30 1 10% 66
BlackScholes [23] BLK B 32 2 8% 70

Hotspot [42] HS B 23 6 17% 17
CFD Solver [42] CFD B 45 2 4% 10
Gaussian [42] GAUSS B 8 6 6% 2

counters in an extra storage, and then flush the counters. The scheduler then

calculates PCR(k)∀k based on the snapshot values, and store them in 8 PCR(k)

registers. To calculate ThCR, this scheduler compares fixed ThSM value with 8

PCR(k) registers.

(IV) Dyn-CLAMS: This scheme updates ThSM with the value of PCR(ThCR);

thus does not require extra overhead. The information for all schemes is computed

locally at the MCs. The total storage required for one of the MCs is 43B.

91

5.6 Evaluation Methodology

The baseline architecture is simulated described in Table 5.2 using GPGPU-Sim

v3.2.1 [31], a cycle-accurate GPU simulator. The architecture has similar

compute to memory bandwidth ratio as that of GTX Titan. This work studied

25 applications from various suites such as SDK [23], Rodinia [42], LLNL [90],

and SHOC [91], and report results for 11 of them that have more than 5%

average COV in IPCs and latencies (Table 5.3). None of the studied applications

exhibit performance degradation, because CLAMS is able to dynamically adjust

its thresholds. This work classifes 11 applications into two classes. Class-A

applications show high to moderate scope for criticality-aware scheduling because

of the presence of variation in criticality across cores (see Figure 5.1). The other

applications are classified as Class-B because of low scope for criticality-aware

scheduling (see Figure 5.6 and Figure 5.1). All the applications are executed until

completion, except for LUH, CONS, and CFD, where this work executes 500 million

instructions [7, 27].

5.7 Experimental Results

This section analyzes the performance of three CLAMS designs, along with two

more memory schedulers: FR-FCFS-Cap-Best and Static-CLAMS-Best.

FR-FCFS-Cap (streak control) scheduler enforces a cap on the younger row-hit

requests that can be serviced before an older row access to the same bank. When

the cap is reached, FCFS policy is applied. While such a cap alleviates the

starvation problem for waiting requests, it is not aware of the criticality of

requests it is servicing. The results of FR-FCFS-Cap-Best are shown that picks

the best performing cap threshold profiled separately for each application.

Evaluated choices for cap values are 2, 4, 6, 8, 12 and 16. Static-Best-CLAMS is

the static best scheduler that uses the best performing combination of ThCR and

ThSM profiled separately for each application. In contrast to

Static-Best-CLAMS, Static-CLAMS uses a single set of thresholds (ThCR=4 and

ThSM=20%) that provides best average performance across all applications. The

92

0.9

1

1.1

1.2

N
o

rm
a

li
z
e

d
 I
P

C

Static-CLAMS Semi-Dyn-CLAMS Dyn-CLAMS

FR-FCFS-Cap-Best Static-CLAMS-Best

Figure 5.10: Performance results normalized to FR-FCFS.

values of these thresholds are chosen from a pool of 42 (7 × 6) different

combinations formed using fixed values of ThCR (1 through 7) and ThSM (0%

through 100% in steps of 20%). Note that both FR-FCFS-Cap-Best and

Static-Best-CLAMS are hard to implement as they require an

exhaustive search across many threshold combinations. It is observed

that the FRFCFS-Cap results are very sensitive to thresholds and a single

threshold does not work well for all the applications. Dynamic adaptation of

thresholds is non-trivial and that is why CLAMS is proposed.

Figure 5.10 shows the IPC improvement for proposed memory schedulers. Two

averages are provided: GMEAN for all applications, and GMEAN-A only for Class-

A applications. Auxiliary metrics are also presented related to the DRAM and

core in Figure 5.11. Figure 5.11a shows the Row Buffer Hit Rates (RBHR) to

measure the locality metric. Figure 5.11b depicts the latency reduction of critical

memory requests (with respective values of ThCR), and Figure 5.11c shows the

reduction in core cycle stalls during which GPU cores are not able to issue any

warps. This reduction in stall cycles is attributed to the prioritization schemes for

critical requests. All results are normalized to the baseline FR-FCFS scheduler.

(A) Analysis of Static-CLAMS: Using a single set of thresholds (ThCR=4

and ThSM=20%) for all the applications do not lead to significant improvements

over FR-FCFS in SCP and RED. It is expected because with ThCR=4, high

percentage of requests are treated as critical, and using ThSM=20% along with it

pushes the scheduler to mostly work in locality mode. However, for LUH, 10%

IPC improvement is observed, because these thresholds address both the

93

0.4

0.6

0.8

1

1.2

N
o

rm
a
li
z
e
d

 R
o

w

B
u

ff
e
r

H
it

 R
a
te Static-CLAMS Semi-Dyn-CLAMS Dyn-CLAMS

(a) Row Buffer Hit Rates

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a
li
z
e
d

C

ri
ti

c
a
l

L
a
te

n
c
y

Static-CLAMS Semi-Dyn-CLAMS Dyn-CLAMS

(b) Critical memory latencies

0.7

0.8

0.9

1

1.1

N
o

rm
a

li
z
e

d
 C

o
re

S

ta
ll
 C

y
c
le

s

Static-CLAMS Semi-Dyn-CLAMS Dyn-CLAMS

(c) Core stall cycles

Figure 5.11: Effect on (a) DRAM page hit rates, (b) memory latencies for critical
requests, (c) core stall cycles. Results are normalized to FR-FCFS.

1

2

3

4

5

6

7

8

C
ri

ti
c
a
li
ty

-R
a
n

k

T
h

re
s
h

o
ld

a

Time

A

B B

ThSM = 40% ThSM = 80%

(T
h

C
R

)

(a) SCP

1

2

3

4

5

6

7

8

Time

ThSM = 40% ThSM = 80%

(b) CONS

Figure 5.12: Changes in ThCR are observed when Semi-Dyn-CLAMS is employed.
When ThCR=8, scheduler is in locality mode.

challenges reasonably (Section 5.5.1). On average, Static-CLAMS provides 3%

IPC improvement for all 11 applications. Although none of the applications

experience performance degradation, this scheme is still far from

Static-Best-CLAMS.

(B) Analysis of Semi-Dyn-CLAMS: The dynamic changes are first analyzed

in ThCR calculated by Semi-Dyn-CLAMS scheme for two applications – SCP and

CONS. Figure 5.12 shows these results for two fixed values (40%, 80%) of ThSM .

We first start when ThSM=40%. In SCP, Semi-Dyn-CLAMS chooses ThCR=1 in

the first half of the execution (A) (as expected from the discussion in Section 5.5).

In the second half of the execution (B), we observe many switches to ThCR=8 as

it detects that there are too many critical requests and hence it switches to locality

mode. In CONS, the scheme chooses ThCR between 4 and 5 and mostly remains in

the criticality mode. However, in the case with ThSM equals to 80%, we observe

increase in ThCR values for SCP in the first half of the execution (A), and also

it switches to the locality mode less often (less ThCR=8 values are observed). It

is expected because at higher value of ThSM , the scheduler will go more often to

94

0%

20%

40%

60%

80%

100%
S

c
h

e
d

u
li

n
g

 M
o

d
e

T

h
re

s
h

o
ld

a

Time

B B

ThSMinit = 40% ThSMinit = 80%

(T
h

S
M

)

(a) SCP

0%

20%

40%

60%

80%

100%

Time

ThSMinit = 40% ThSMinit = 80%

(b) CONS

Figure 5.13: Changes in ThSM are observed with Dyn-CLAMS.

criticality mode.

On average, Semi-Dyn-CLAMS provides 5% IPC improvement over FR-FCFS.

RED, RAY, and LPS achieve 13%, 7%, and 5% improvement, respectively. As desired,

this scheme attempts to push the scheduler mostly to criticality mode, which helps

in reducing the latency of critical requests further by 6% (at the cost of 10%

reduction in RBHR) compared to Static-CLAMS. This in turn reduces the core

stall cycles further by 2% compared to Static-CLAMS. In SCP, RBHR is hampered

the most (30%) leading to 5% performance degradation compared to FR-FCFS.

On the other hand, in RED, even though RBHR is reduced by 20%, performance

improves significantly (by 12%) due to the reduction in critical request latency and

core stall cycles. The detailed analysis shows that, in RED, the impact of locality on

performance is much lower than that of criticality, and vice versa in SCP. The next

scheme, Dyn-CLAMS is expected to recover the loss in locality and performance

by reducing the ThSM value dynamically.

(C) Analysis of Dyn-CLAMS: We first analyse the dynamic changes in ThSM

calculated by Dyn-CLAMS scheme for two applications – SCP and CONS. Figure 5.13

shows these changes when ThSMinit = 40% and 80%. We start with analysing ThSM

curves when ThSMinit=40%. In SCP and CONS, we find that the value of ThSM is

less than or equal to 40%. This helps the scheduler to go to the locality mode

more frequently as discussed in Section 5.5.5. During the phases when ThCR=8

(as pointed in Figure 5.12 by B), ThSM value is 0% (B), pushing the scheduler to

be always in the locality mode. For ThSMinit = 80% curves, we observe the value

of ThSM is much higher because of the increase in ThCR values.

95

On average, Dyn-CLAMS performs better than all three memory scheduling

schemes. RED, RAY, and LUH are the best performers with 15%, 15%, and 10%

improvement over FR-FCFS, respectively. This scheme is especially useful for

applications in which locality is also important. For example, in SCP and RAY,

RBHR is improved by 5% and 7%, respectively, leading to additional benefits

over Semi-Dyn-CLAMS. We also observe reduction in PCC(1) for these

applications (22%, 25%, and 6%, respectively), as expected from the discussion in

Section 5.3.2. It is further observed from Figure 5.10 that the gap between

Dyn-CLAMS and Static-CLAMS-Best is not significant for many applications,

suggesting that Dyn-CLAMS is able to dynamically calculate the best static

combinations of thresholds for each application, as shown in Table 5.3, without

the need of any offline application profiling. This work also reports percentage of

critical requests that are served in the criticality mode (%-cri) in Table 5.3. For

SCP and BLK, even though %-cri is very high, Dyn-CLAMS does not show benefit

because the number of critical requests is itself small. For Class-A applications,

%-cri is significant, which shows that Dyn-CLAMS is able to improve

performance by prioritizing critical requests. In summary, Dyn-CLAMS achieves

9% IPC improvement over FR-FCFS, 5% over FR-FCFS-Cap-Best, and also is

within 1% of the Static-CLAMS-Best for Class-A applications. For Class-B

applications, none of the applications degrades with the final scheme.

To get a deeper understanding into performance results, Figure 5.14 shows the

break down of the memory bandwidth for FR-FCFS and Dyn-CLAMS schemes to

the following components: (A) App-BW: the percentage of DRAM cycles during

which the application moves data (reads and writes) over the DRAM interface, (B)

Waste-BW: the percentage of DRAM cycles during which no data is transferred

over the DRAM interface, but there are pending memory requests in MC queue

due to DRAM timing constraints; improving RBHR, and bank-level parallelism

(BLP) can reduce this Wasted-BW, and (C) Idle-BW: the percentage of DRAM

cycles during which there are no requests pending in the MC queues, and hence

DRAM is idle. It is observed that IPC and App-BW are highly correlated, which

is consistent with the findings shown by Guz et al. [84, 92]. It is further observed

that Waste-BW increases in LUH and RAY because of loss in RBHR. It is expected

as the loss in locality causes more row conflicts. However, in SCAN, in spite of the

96

0%

20%

40%

60%

80%

100%

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

F
R

-F
C

F
S

D
y

n
-C

L
A

M
S

LUH RED SCAN LPS RAY CONS SCP BLK HS CFD GAUSS

P
e
rc

e
n

ta
g

e
 o

f
D

R
A

M
 C

y
c
le

s App-BW Waste-BW Idle-BW

Figure 5.14: Effect of Dyn-CLAMS on DRAM bandwidth distribution.

reduction in RBHR, minimal or no reduction in Waste-BW is observed. This is

because Dyn-CLAMS facilities more cores to be active at a time, also allowing

requests from more cores to take advantage of BLP. This increase in BLP helps in

masking the ill-effects of the loss in locality.

(D) Brief Summary of Sensitivity Studies: For Semi-Dyn-CLAMS,

increasing ThSM value from 20% to 40% improves the performance of

applications (e.g., CONS, RED) that prefer criticality mode. However, beyond 40%,

performance of applications (except RED) saturate, where performance starts

dipping after ThSM=60% because of the steep decrease in RBHR. Similar trends

for ThSMinit are observed in Dyn-CLAMS. On average, 40% for both ThSM and

ThSMinit leads to best average performance results across all applications.

5.8 Related Work

This section summarizes the prior work related to this chapter.

CPU Memory Scheduling: Ebrahimi et al. [93] propose parallel application

memory scheduling, where they explicitly manage the inter-thread memory

interference for improving the performance of the critical section of a program.

Ghose et al. [94] used load-criticality information for effective memory

scheduling. In contrast to their static memory controller policy that always

utilizes criticality, this dissertation work develop memory scheduling mechanisms

that can dynamically switch between criticality and locality modes. By exploiting

97

inter-core criticality, a novel concept this dissertation work developed especially

for GPUs, this work determines the duration of time for which the scheduler

should be in one of those modes. Ausavarungnirun et al. [51] propose a staged

memory scheduler to improve row-buffer locality in CPU+GPU architectures.

Other memory scheduling works include ATLAS [46], PAR-BS [37], STFM [47],

TCM [45], and BLISS [95]. These memory schedulers concentrated only on

single-threaded or modestly multi-threaded/multi-programmed workloads, while

this dissertation work demonstrates the benefits of the schemes for

massively-threaded applications. Scaling the conventional CPU memory

scheduling policies for thousands of threads in a GPU would be challenging in

GDDR5 MC that has to support multi-gigabit command issue rates. Further,

many of these schedulers need to track each thread’s MLP, bank-level parallelism

(BLP), and row-buffer locality (RBL), and requires an expensive insertion

sort-like procedure to shuffle the ranks of high-MLP applications. In contrast,

CLAMS only requires a few counters, comparators, and moderate storage

(Section 5.5.6). Moreover, this dissertation work does not employ coordination

across MCs, as they may cause significant performance/power overheads in

GPUs.

Criticality Related Studies in CPUs: Srinivasan et al. [96] contrasts

criticality and locality by performing a limit study that gives the maximum

potential of exploiting critical memory requests. A follow-up work [97] gives a

practical algorithm for identifying critical memory requests. Other works which

take advantage of criticality information include [94, 98–102]. In comparison, the

criticality definition is calculated as a function of the latency tolerance of the

core, which is very different from prior studies.

Memory Scheduling in GPUs: Lakshminarayana et al. [50] explored a

DRAM scheduling policy that chooses between Shortest Job First (SJF) and

FR-FCFS. Their scheme uses a statically determined parameter that needs to be

uniquely calculated for each application. As this scheduler does not adapt to

dynamic needs of criticality and locality in the application, it can even degrade

the performance compared to FR-FCFS [50]. On the other hand, CLAMS

dynamically detects the preferred mode (locality or criticality) for applications at

98

runtime for better performance while making sure that performance of none of

the applications degrades. Yuan et al. [49] propose an arbitration mechanism in

the interconnection network to restore the lost row buffer locality caused by the

interleaving of requests. They showed that performance of in-order DRAM is

competitive to FR-FCFS. This chapter shows qualitatively and quantitatively

that CLAMS outperforms FR-FCFS.

Warp Scheduling: Narasiman et al. [8] and Gebhart et al. [48] proposed two-

level warp schedulers to improve latency tolerance and energy consumption in

GPUs, respectively. Rogers et al. [67] and Jog et al. [7] proposed warp schedulers

to reduce contention in caches. Lee et al. [89] proposed criticality-aware warp

scheduler that prefers critical warps over others for better latency tolerance. None

of these works specifically coordinate with the underlying memory schedulers for

orchestrated warp and memory scheduling decisions. CLAMS provides a substrate

to foster such research, as it incorporates the core-criticality information while

making memory scheduling decisions.

5.9 Chapter Summary

This chapter introduces a new GPU memory scheduler, called CLAMS. The

unique feature of this scheduler compared to all other existing techniques is that

it uses both criticality and locality of pending memory requests to service the

next request, while prior schemes use only the locality metric. The rationale for

using this dual parameter based scheduling is that not all memory requests for an

application exhibit similar latency criticality, and servicing them ahead of the

other requests improves application performance. The evaluations show that

CLAMS can provide significant performance benefits for the class of applications

that exhibit high variance in criticality across cores, without hurting the

performance of other applications. Considering that GPUs applications are more

latency tolerant than their CPU counterparts due to high TLP, enhancing

performance benefits through memory scheduling is non-trivial. This chapter

shows that considering core criticality is a promising way of improving GPU

performance and can be exploited in GPU and CPU-GPU memory systems.

Chapter 6

Concurrent Kernel Execution in

GPUs: Problems and Some

Solutions

The available computing resources in modern GPUs are growing with each new

generation. However, as many general purpose applications with limited thread-

scalability are tuned to take advantage of GPUs, available compute resources might

not be optimally utilized. To address this, modern GPUs will need to execute

multiple kernels simultaneously. As current generations of GPUs (e.g., NVIDIA

Kepler, AMD Radeon) already enable concurrent execution of kernels from the

same application, this chapter addresses the next logical step: executing multiple

concurrent applications in GPUs. This chapter shows that while this paradigm

has a potential to improve the overall system performance, negative interactions

among concurrently executing applications in the memory system can severely

hamper the performance and fairness among applications. It is shown that current

application agnostic GPU memory system design can (1) lead to sub-optimal GPU

performance; and (2) create significant imbalance in performance slowdowns across

kernels. Thus, this chapter argues that GPU memory system should be augmented

with application awareness. As one example to the applicability of this concept,

the memory system hardware is augmented with the application awareness such

100

that requests from different applications can be scheduled in a round robin (RR)

fashion while still preserving the benefits of the current first-ready FCFS (FR-

FCFS) memory scheduling policy. Evaluations with different multi-application

workloads demonstrate that the proposed memory scheduling policy, first-ready

round-robin FCFS (FR-RR-FCFS), improves fairness and delivers better system

performance compared to the existing FR-FCFS memory scheduling scheme.

6.1 Introduction

Traditionally, GPUs were designed to execute only a single kernel at a time; it

was expected that a single kernel would have enough threads to keep all GPU

resources busy. However, as GPU resources are growing with each new generation

(for example, the state-of-the-art Kepler Architecture model GTX 780 Ti has 2880

cores [103], and AMD Radeon R9 290X has 2816 cores [104]), and as more irregular

and general-purpose applications are ported to GPUs, many kernels will not be able

to proportionally scale [105] and effectively utilize the growing compute resources.

To address this problem, a new GPU computing paradigm was recently introduced,

where multiple kernels can be executed concurrently on the same GPU platform.

This paradigm has two primary advantages. First, it significantly improves the

GPU efficiency, as shown in Fermi White Paper [4] and Pai et al. [105]. Second,

it facilitates the consolidation of jobs from multiple independent users on to the

same GPU substrate, as demonstrated by NVIDIA GRID technology [106].

Figure 6.1 shows this new computing paradigm pictorially. Figure 6.1 (A) shows

the traditional GPU architecture, where all cores are executing a single kernel.

In Figure 6.1 (B), the same GPU architecture is concurrently executing multiple

kernels. Broadly speaking, these multiple kernels can originate from: (i) a single

application, or/and (ii) multiple independent applications (contexts). Although

this new computing paradigm is an effective way to increase GPU performance

and resource utilization, many architectural challenges need to be addressed to

unlock its full potential. Open issues that have not been sufficiently explored

include: efficient hardware support for execution of multiple applications1, finding

1This chapter assumes that concurrently executing kernels originate from separate

101

Kernel-1 (K1) K1 KX

Core 1 Core N Core 1 Core N

C C C C C C

On Chip Network

DRAM DRAM DRAM

C C C C C C

On Chip Network

DRAM DRAM DRAM

K2

(A) (B)

Figure 6.1: Baseline GPU architecture executing: (A) Single kernel, (B) Multiple
kernels concurrently.

the optimal number of cores for a particular kernel, designing a QoS-aware on-chip

network fabric and memory hierarchy, augmenting the memory hierarchy to include

resource sharing policies, and concurrency management for effectively utilizing the

on-chip shared resources. Given the wide scope of the problem, this chapter focuses

on one aspect of the design space: management and allocation of shared memory

system resources in GPUs executing multiple applications concurrently.

The goal is to provide a better understanding of the interactions of concurrent

applications in the GPU memory subsystem. This work observes that the

traditional GPU memory system is application agnostic, and the widely used

First-ready FCFS (FR-FCFS) [32–34] memory scheduler is unaware of the

individual demands of concurrent multiple applications. It primarily focuses on

improving DRAM page hit rates, and might hurt overall system performance and

fairness. This problem becomes more pronounced when the memory demands of

concurrently executing applications have wide variation, implying that an

application with high memory demand attempts to monopolize the resource

usage over an application with low memory demands. To address this, this work

augments application-awareness to the memory-system logic and propose the

First-ready Round-robin FCFS (FR-RR-FCFS) memory scheduler, which

schedules memory requests originating from different applications in a

round-robin (RR) fashion, while preserving the benefits of FR-FCFS scheduling.

This chapter shows that this simple change to the existing FR-FCFS memory

applications. Hence, the terms kernels and applications interchangeably.

102

scheduler is a better alternative for concurrent execution of multiple kernels in

terms of equitable memory bandwidth sharing and overall system performance.

This chapter makes the following contributions:

• This work provides a detailed analysis of the interactions of multiple applications

in the GPU memory system.

• This work manifests the fact that a naive coupling and execution of different

applications concurrently on modern GPUs with application-agnostic shared

resource allocation do not lead to desired results.

• This work shows that one of the primary reasons for sub-optimal performance

and unfairness is the application agnostic management of shared resources. The

popular FR-FCFS memory scheduler fails to distinguish memory requests

originating from multiple applications.

• In this context, this chapter proposes to propagate application awareness to the

memory system scheduling logic. As one possible implementation, this chapter

suggests a memory controller scheduling policy which not only preserves the

benefits of FR-FCFS, but also improves fairness and overall system performance

by serving memory requests of different applications in an round-robin fashion.

The proposed memory scheduler is evaluated across 14 diverse 2-application

workloads on a 60-core GPU simulated platform using GPGPU-Sim [31]. On

average, the proposed scheduler provides 7% improvement (up to 49%) in

fairness, 10% improvement (up to 64%) improvement in instruction throughput

performance, and up to 7% improvement in weighted system speedup.

6.2 Background and Experimental Methodology

This section provides a brief description of the baseline GPU architecture and

experimental methodology.

103

Table 6.1: Simulated baseline GPU configuration

SM Configuration 1400MHz, SIMT width = 16× 2
Resources / SM Max. 1536 threads (48 warps, 32 threads/warp)

48KB shared memory, 32684 registers
Caches / SM 16KB 4-way L1 data cache, 12KB 24-way texture cache,

8KB 2-way constant cache, 2KB 4-way I-cache, 128B cache block size
Default Warp Scheduling Greedy-then-oldest (GTO) [67]
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Interconnect 1 crossbar/direction (60 SMs, 6 Memory Controllers), 1400MHz
Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling

16 DRAM-banks/MC, 924 MHz memory clock
Hynix GDDR5 Timing [107] tCL = 12, tRP = 12, tRC = 40, tRAS = 28,

tCCD = 2, tRCD = 12, tRRD = 6

6.2.1 Baseline GPU Architecture

The baseline GPU (see Figure 6.1) consists of multiple cores, named Streaming

Multiprocessors (SMs). Each SM is associated with a private L1 data cache, a

read-only texture cache and a constant cache. A software managed scratchpad

memory is also associated with each SM. SMs are connected to memory channels

(partitions) via a crossbar, and memory requests to each partition are handled by

a GDDR5 memory controller. The baseline architecture described in Table 6.1 is

simulated using GPGPU-Sim v3.2.1 [31], a cycle-accurate GPU simulator.

Single Application Scheduling: A typical CUDA application consists of

multiple kernels (or grids). Each kernel is further divided into groups of threads,

called cooperative thread arrays (CTAs). Traditionally, GPUs execute all kernels

of an application sequentially, i.e. one kernel at a time. In this scenario, when a

kernel is launched on the GPU, the CTA scheduler picks available CTAs

associated with that kernel and distributes them to the SMs as evenly as

possible [31]. The maximum number of CTAs per SM is limited by various

resources associated with each SM, and by the resources required by a given

kernel [1, 31]. Hence, if a kernel requires less resources, the maximum number of

CTAs per SM will be larger than that of another kernel whose CTAs need more

resources.

Multiple Application Scheduling: This chapter considers the case where

multiple kernels from multiple applications are executed concurrently, i.e., the

kernels from different applications are simultaneously executed. Since the focus

104

of the chapter is the memory system, a simple kernel-to-SM assignment scheme is

used: in a two-application scenario where two kernels of different applications are

executed concurrently, half of the SMs are assigned to the first application, and

the second half to the other application. The sophisticated SM-partitioning

techniques are left as a part of the future work. The CTA assignment for each

kernel follows the same load-balanced distribution strategy as described before;

the only difference is that each kernel is now assigned to only half of the SMs of

the baseline GPU architecture.

Memory Scheduling in GPUs: First-ready FCFS (FR-FCFS) [32–34] is the

commonly employed memory scheduling technique in GPUs. This scheme is

targeted at improving DRAM row hit rates, so request prioritization order is as

follows: 1) row-hit requests are prioritized over other requests; then 2) older

requests are prioritized over younger requests. Among row-hit requests, older

requests are prioritized over younger requests.

6.2.2 Evaluation Methodology

The new generation of GPUs allows concurrent execution of streams, where a

stream is defined as a set of commands required to be executed serially. This

mechanism is exploited to issue commands from different applications (kernels)

to separate streams, thus allowing them to execute concurrently. Six different

CUDA applications are studied; Table 6.2 lists the applications along with their

DRAM bandwidth utilization. Note that the considered applications have diverse

memory demands – while GUPS has the highest memory bandwidth utilization of

93%, HIST and DGEMM have considerably lower memory bandwidth utilization (50%

and 34%, respectively). Section 6.3 shows that memory intensive applications like

GUPS significantly interfere with co-scheduled applications, leading to poor overall

performance and fairness.

From these 6 CUDA applications, all possible two-application workloads are

formed and simulated on the GPGPU-Sim simulator. The results of one

workload (bfs dgemm) are omitted as the infrastructure could not simulate it

faithfully. Table 6.3 lists all 14 two-application workloads. The statistics are

105

collected at the point when both applications execute to completion at least once.

To do so, if one of the applications finishes execution earlier than the other, the

the faster running application is again relaunched. This process continues until

the slower running application completes.

Table 6.2: Evaluated applications, along with their DRAM bandwidth utilization
when they are executed alone on the entire baseline GPU architecture.

Application Abbr. Bandwidth Utilization
Histogram HIST 50%
Gaussian GAUSS 70%

Random Access GUPS 93%
Breadth First Search BFS 79%

3D Stencil 3DS 85%
Matrix Multiplication DGEMM 34%

6.2.3 Evaluation Metrics

This chapter reports on: (I) Weighted Speedup, for measuring application

throughput, (II) Instruction Throughput, for measuring raw machine throughput,

and (III) Fairness Index, for measuring fairness in the system. For weighted

speedup (WS), the slowdown experienced by each application relative to the case

where it runs alone on the entire GPU is measured (Eq.(1)). Note that when an

application is running alone, it can use all SMs in the system. The sum of

slowdowns of all the concurrent applications is defined as weighted speedup

(Eq.(2)). WS indicates how many jobs are executed per unit time. Assuming

there is no constructive interference among applications, the maximum value of

WS is equal to the number of applications. Thus, in a 2-application mix, the

optimal (maximum) value of WS is 2. In the worst case, if both the applications

stall the progress of each other indefinitely, WS will be equal to 0. Instruction

Throughput (IT) is defined as the total number of instructions committed per

cycle in the entire chip. (Eq.(3)). It basically depicts the raw machine

throughput. The Fairness Index (FI) is used to express the imbalance of

performance slowdowns across applications. Eq.(4) shows the FI equation for a

system that executes two application concurrently. When FI is equal to 1 the

system is completely fair, because all applications are slowed down equally when

they execute concurrently and share the same resources.

106

Summary of Evaluation Metrics

(A) IPCi is the number of committed instructions per cycle (IPC) of ith application, (B) IPCshared
i is IPC of

ith application when it is co-scheduled with other applications, (C) IPCalone
i is IPC of ith app. when it is the

only application executing on the entire GPU,

Eq.(1) Slowdown(APPi) =
IPCshared

i

IPCalone
i

Eq.(2) Weighted Speedup =
∑

i

Slowdown(APPi)

Eq.(3) Instruction Throughput =
∑

i

IPCi

Eq.(4) Fairness Index = MAX(
slowdown(APP1)

slowdown(APP2)
,
slowdown(APP2)

slowdown(APP1)
)

Table 6.3: Evaluated 2-application GPU workloads.

Workload # 1st APP 2nd APP Abbr.
1 HIST GAUSS hist gauss
2 HIST GUPS hist gups
3 HIST BFS hist bfs
4 HIST BFS hist bfs
5 HIST 3DS hist dgemm
6 GAUSS GUPS hist gups
7 GAUSS BFS gauss bfs
8 GAUSS 3DS gauss 3ds
9 GAUSS DGEMM gauss dgemm
10 GUPS BFS gups bfs
11 GUPS 3DS gups 3ds
12 GUPS DGEMM gups dgemm
13 BFS 3DS bfs 3ds
14 3DS DGEMM 3ds dgemm

6.3 Concurrent Kernel Execution Challenges

This section focuses on the memory system and highlights the main challenges

associated with concurrent execution of applications. This section shows that

while concurrent execution of applications can increase overall system

performance, negative interactions among applications in the memory system can

hamper application performance, and can introduce severe fairness problems.

107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

h
is

t_
g

a
u

s
s

h
is

t_
g

u
p

s

h
is

t_
b

fs

h
is

t_
3

d
s

h
is

t_
d

g
e
m

m

g
a

u
s
s

_
g

u
p

s

g
a

u
s
s

_
b

fs

g
a

u
s
s

_
3
d

s

g
a
u

s
s
_

d
g

e
m

m

g
u

p
s
_

b
fs

g
u

p
s
_

3
d

s

g
u

p
s
_

d
g

e
m

m

b
fs

_
3
d

s

b
fs

_
d

g
e
m

m

W
e
ig

h
te

d
 S

p
e
e
d

u
p

1st APP 2nd APP

Figure 6.2: Weighted speedup (Application throughput) for the evaluated
workloads. The 1st APP and 2nd APP are the first and second applications in
the workload, respectively, as mentioned in Table 6.3.

0
1
2
3
4
5
6
7
8
9

10
11
12

h
is

t_
g

a
u

s
s

h
is

t_
g

u
p

s

h
is

t_
b

fs

h
is

t_
3

d
s

h
is

t_
d

g
e

m
m

g
a

u
s

s
_

g
u

p
s

g
a

u
s

s
_

b
fs

g
a

u
s

s
_

3
d

s

g
a

u
s

s
_

d
g

e
m

m

g
u

p
s

_
b

fs

g
u

p
s

_
3

d
s

g
u

p
s

_
d

g
e

m
m

b
fs

_
3

d
s

3
d

s
_

d
g

e
m

m

F
a

ir
n

e
s

s
 I
n

d
e

x

Lower is Better

Figure 6.3: Fairness Index for the evaluated workloads when the memory scheduler
adopts the baseline FR-FCFS scheduling policy.

6.3.1 Fairness considerations

Explicitly addressing fairness in the memory system is essential whenever

multiple applications (potentially from different users) share the same resources.

An unfair or uncoordinated resource allocation can lead to imbalance in

performance degradation across applications. This phenomenon is demonstrated

in Figure 6.2, where the weighted speedups obtained for all 14 evaluated

workloads are plotted. The slowdown of each application in every workload is

shown. 1st APP shows the slowdown of the first application when co-scheduled

with the 2nd APP, and vice versa. In a completely fair system, the values of

slowdowns (performance degradation) for each one of the two applications would

be the same. Instead, it is hardly ever the case, and the slowdowns are

considerably different between the two applications. For example, consider the

case of gups dgemm, where there is significant difference between the slowdowns

108

of GUPS, 1st APP, and DGEMM, 2nd APP. This means that while GUPS

performance is hardly affected by sharing the GPU resource, DGEMM

performance is considerably degraded. In fact, most of the contribution to WS in

this case is associated with GUPS.

Figure 6.3 shows the FI metric for the evaluated workloads. While slowdowns

in some workloads are relatively balanced (e.g., hist dgemm) the FI value for other

workloads is very high (e.g. gups 3ds and gauss gups). Particularly, the FI for

gups dgemm is the worst (maximal) among all the workloads (10.75). The reason

for such high FI value is the fact that GUPS has very high memory bandwidth

demands compared to other co-scheduled applications. Its memory bandwidth

utilization reaches 93% (see Table 6.2), which significantly degrades performance

of other co-scheduled applications. As shown next, the presence of such memory

bandwidth demanding applications causes imbalance in performance degradation,

leading to very high FI values.

To get a deeper insight into the mechanics of the cross-application interference

in the memory system, Figure 6.4 shows a break down of the memory bandwidth

to the following components: (A) 1st and 2nd APP: the relative portion of DRAM

cycles during which the 1st and 2nd applications in the workload move useful

data over the DRAM interface, (B) Wasted-BW: the relative portion of DRAM

cycles during which no data is transferred over the DRAM interface, but there are

pending memory requests in memory controller. This is because of DRAM timing

constraints; improving DRAM page hit rates, and bank-level parallelism can reduce

this Wasted-BW, and (C) Idle-BW: the relative portion of DRAM cycles during

which there are no requests pending in the memory controller queues, and hence

DRAM is idle. Besides the concurrent execution configuration, the figure also plots

alone 60 – where an application executes in a stand-alone mode over the entire 60

SM GPU system, and alone 30 – where an application executes in a stand-alone

mode over half of the compute resources (up to 30 SMs in this case).

It is evident from Figure 6.4 that the memory intensive applications

monopolize the memory scheduler while the lighter applications are unable to get

a fair share of the bandwidth. For example, when GUPS is co-scheduled with

other applications (HIST, GAUSS, BFS, 3DS, and DGEMM), the majority of the

109

0%

20%

40%

60%

80%

100%

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

g
a

u
s
s

g
u

p
s

b
fs

3
d

s

d
g

e
m

m

a
lo

n
e
_
3
0

a
lo

n
e
_

6
0

h
is

t

g
u

p
s

b
fs

3
d

s

d
g

e
m

m

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

b
fs

3
d

s

d
g

e
m

m

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

g
u

p
s

3
d

s

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

g
u

p
s

b
fs

d
g

e
m

m

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

h
is

t

g
a

u
s
s

g
u

p
s

3
d

s

HIST (1st App) GAUSS (1st App) GUPS (1st App) BFS (1st App) 3DS (1st App) DGEMM (1st App)

P
e

rc
e

n
ta

g
e

 o
f

P
e

a
k

 B
a

n
d

w
id

th

1st App 2nd App Wasted-BW Idle-BW

Figure 6.4: DRAM bandwidth utilization distribution across various workloads
when memory scheduler adopts the baseline FR-FCFS memory scheduling policy.

bandwidth is consumed by GUPS, while the other application gets a very small

share of the bandwidth. In the case of gups dgemm, the memory bandwidth

obtained by GUPS reduces only marginally (by 6% over alone 60 configuration),

but dgemm achieves only 3% of the memory bandwidth (31% lower than its

alone 60 configuration). This imbalanced allocation of memory resources

translates to imbalance in performance degradation – GUPS slows downs by only

2% while DGEMM slows down by 90%, when GUPS and DGEMM are coupled together.

Overall, these observations indicate that one of the main reasons for poor fairness

is the interference caused by applications with intensive bandwidth requirements.

6.3.2 Throughput considerations

One of the primary motivations for preferring concurrent execution of multiple

applications over time division multiplexing of the GPU hardware is to increase

the machine utilization and thus improve application throughput. Applications

throughput is reflected by weighted speedup and is shown in Figure 6.2. Indeed,

the achieved WS for each one of the workloads is above one, indicating that

concurrent execution performs either as good or better than a time division

scheme. Some workloads present significant speedups - up to 41% for

hist dgemm. This is because these two applications have the lowest memory

bandwidth demands in the workload suite (see Table 6.2), and hence do not

interfere significantly in the memory system when co-scheduled together.

However, other workloads present modest to minimal gains: in the case of

110

App-1 App-2

R1

(A) FR-FCFS Schedule (B) FR-RR-FCFS Schedule

Time

Bank Bank

R1

R1

R2

R2

R2

R3

R1

Time

R1

R1

R2

R2

R2

R3

R1 R2 R3

Request to

Row-1 Row-2 Row-3

Figure 6.5: Conceptual example showing the working of (A) baseline FR-FCFS
memory scheduling, (B) proposed FR-RR-FCFS memory scheduling.

gauss gups, the interference is significant and is mostly caused by GUPS, leading

to only 2% improvement in WS. In fact, most applications that are co-scheduled

with GUPS exhibit poor WS.

The main reasons for this sub-optimal weighted-speedup behavior is in fact a

manifestation of the previously discussed fairness problem, where the

bandwidth-intensive application significantly degrades the performance of other

applications leading to lower overall weighted speedup. For example, consider the

case of gups dgemm where the weighted-speedup is only 7%. GUPS interferes with

the progress of GAUSS leading to its sub-optimal performance resulting in lower

overall WS.

6.4 Application-Aware Memory Scheduling

The analysis in Section 6.3 shows that application-agnostic approach of the

underlying memory-system scheduling policy leads to sub-optimal results both in

terms of overall application throughput and fairness. Therefore, it is imperative

to develop an application-aware memory scheduling approach to address these

issues. To this end, this section proposes and discusses the details of an example

design of a simple application-aware memory scheduler that improves fairness

and performance.

111

30%

40%
50%

60%
70%

80%

90%

h
is

t_
g

a
u

s
s

h
is

t_
g

u
p

s

h
is

t_
b

fs

h
is

t_
3

d
s

h
is

t_
d

g
e

m
m

g
a

u
s

s
_

g
u

p
s

g
a

u
s

s
_

b
fs

g
a

u
s

s
_

3
d

s

g
a

u
s

s
_

d
g

e
m

m

g
u

p
s

_
b

fs

g
u

p
s

_
3

d
s

g
u

p
s

_
d

g
e

m
m

b
fs

_
3

d
s

3
d

s
_

d
g

e
m

m

D
R

A
M

 P
a

g
e

 H
it

 R
a

te
s FR-FCFS FR-RR-FCFS

Figure 6.6: Effect on DRAM page hit rates. The proposed scheduler FR-RR-FCFS
preserves the DRAM page hit rates obtained by the baseline FR-FCFS memory
scheduler.

6.4.1 Designing Application-aware Memory Scheduler

The bandwidth-intensive applications (e.g. GUPS) can severely degrade the

performance of its co-scheduled applications, leading to sub-optimal application

performance and fairness. To address these issues, this work proposes an example

implementation of a simple memory scheduler. This work proposes to equip the

widely known FR-FCFS memory scheduler with application awareness by

choosing requests from different applications in round-robin (RR) fashion. The

advantage of this memory scheduling approach is that the bandwidth-intensive

application would not be able to starve its co-scheduled applications for a long

period time. Note that this scheme still prioritizes the row-hit requests over other

requests for optimizing DRAM page hit rates. The only difference in this memory

scheduler is that the requests are not picked in FCFS fashion, but in RR fashion

across applications. If the pending memory controller queue has only requests

from either one of the applications, the RR automatically performs FCFS.

Formally, this work proposes First-ready Round-robin FCFS (FR-RR-FCFS)

memory scheduling method for handling memory requests from multiple GPU

applications. The request prioritization order of FR-RR-FCFS is: 1) row-buffer-

hit requests over all other requests, 2) requests from the application next in the

round-robin scheduling order, 3) older requests over younger ones. Among row-hit

requests, older requests are prioritized over younger requests.

Figure 6.5 shows the mechanics of the proposed FR-RR-FCFS memory

scheduling function, for multiple concurrent GPU applications. Figure 6.5 (A)

112

shows the baseline scheduler with FR-FCFS memory scheduling function.

Without the loss of generality, in this example, let us assume one memory bank

and one-memory controller memory system. Furthermore, let us assume that two

applications, App-1 and App-2, are concurrently executing on the same GPU

platform. The memory requests are tagged with their application-id (in this

example, they are color coded – App-1 (gray) and App-2 (white)). In Figure 6.5

(A), the first memory request arriving to the memory controller is originating

from App-1, and destined to row-1 (R1). Similarly, the next two requests also

belong to R1, and originate from App-1. Because of the FR-FCFS policy, the

baseline memory scheduler will schedule all these three requests back-to-back.

The next three requests are also originated from App-1 (also gray coded), but are

destined to R2. As the memory scheduler is application-agnostic, it will keep on

scheduling those requests in their arrival order, and the request from App-2 (the

last request – white coded, destined to R3) would be delayed significantly in that

case. Alternatively, FR-RR-FCFS memory scheduler in Figure 6.5 (B), would

service App-2 request after servicing first three App-1 requests destined to R1. In

the proposed policy the waiting time of memory requests from App-2 is

substantially shorter, and thus it will not be starved by requests from App-1.

One might argue that after servicing the first memory request of App-1, memory

scheduler should shift to App-2 for the natural round-robin sequence. However,

by doing so, the scheduler would have to switch the memory-row (from R1 to R3)

and back to R1 (R3 to R1). These row-switches would have degraded DRAM page

hit-rates and throughput. In order to preserve DRAM page-hit rate, this scheme

first services all the memory requests to the same page, and then moves to the

next application in round-robin fashion. Figure 6.6 shows that the DRAM page

hit-rates for FR-FCFS and the proposed scheduler are roughly the same (average

reduction is less than 1%).

6.4.2 Hardware Complexity

The proposed method is relatively simple to implement in hardware, and that

it would require a very low additional hardware cost compared to an existing

113

scheduling logic.

In order to propagate application-related information throughout the memory-

system, the memory request need to be tagged with the application-id information.

The tagging is performed at the SM-level. For a limited number of concurrent

applications on a single GPU, we assume several bits per memory request. For the

example discussed in this chapter, of up to 2 applications per GPU, single bit is

needed for application-id extension of the request meta-data fields.

The additional hardware required for the RR function in the memory controller

is minimal compared to an existing FR-FCFS logic. It requires a duplication of

the find-first masking logic according to the application ID, similar to what is

done for finding the first ready request for an open-row in the memory controller

already. In addition, it is required to compute the next-application ID in a RR

fashion, which can be implemented by a simple rotating function. Note that all

the required information is computed locally at the memory controller, and no

communication/coordination across memory controllers, and banks within memory

controller is required.

6.5 Experimental Results

This section provides a comparative analysis of the evaluated schedulers in terms

of fairness and performance.

6.5.1 Fairness Results

Figure 6.7 shows the fairness index (FI) for all the evaluated workloads, both for

the baseline memory scheduler (FR-FCFS), and for the proposed FR-RR-FCFS

policy. This work observes significant improvements in fairness (decrease in FI)

with FR-RR-FCFS: 49% for hist gups, 47% for gups 3ds, 14% for gauss bfs,

and 11% for hist bfs. On average, this work observes 7% improvement in fairness

over the baseline FR-FCFS policy. To understand these benefits better, Figure 6.4

is re-plotted in Figure 6.8, but the bandwidth distribution of the baseline FR-

114

FCFS is compared with the distribution achieved when using proposed FR-RR-

FCFS scheduling policy. For clarity, those workloads are omitted that do not

have significant difference in these distributions. It is observed that improvement

in FI has originated from a fairer distribution of the overall memory bandwidth

across the concurrently executing kernels. FR-RR-FCFS provides more memory

bandwidth to the lighter applications (compared to the baseline), and thus limits

their performance degradation. For example, when HIST is coupled with GUPS,

the bandwidth obtained by HIST is increased from 10% (fr-fcfs-gups) to 20% (fr-

rr-fcfs-gups). Note that, ideally HIST should reach up to 33% and 50%, when it

executes alone on 30 and 60 SMs system, respectively. The proposed scheduler has

facilitated in bridging this gap.

6.5.2 Performance Results

Figure 6.9 and Figure 6.10 show the improvement in instruction throughput (IT)

and weighted-speedup (WS) when using the FR-RR-FCFS memory scheduler,

respectively. Results are normalized to the baseline FR-FCFS scheduler. This

work observes significant improvement in IT and WS for workloads hist gups,

hist bfs, gauss gups, and gups 3ds. The maximum improvement is observed in

hist gups: 64% in instruction throughput and 7% in weighted speedup. These

improvements in performance are primarily due to the fairer allocation of

memory bandwidth (see Figure 6.8). FR-RR-FCFS facilitates the lighter

applications and thus reduces their performance degradation. It is evident that

the high memory demanding applications GUPS and BFS are now comparatively

less dominant, thereby improving performance.

It is noted that in two cases (hist gauss and hist 3ds), there is a small

decrease (2-3%) in WS when using FR-RR-FCFS. Clearly, in these workloads,

the FR-RR-FCFS scheduler is unable to intelligently allocate memory bandwidth

among the applications. Indeed, while “round-robin” gives better opportunity to

all concurrent applications in taking service from memory, it is still unaware of

individual application’s characteristics. A more sophisticated scheme might use

application characterization to influence the priority settings in attaining service

115

Lower is Better

0

2

4

6

8

10

12

h
is

t_
g

a
u

s
s

h
is

t_
g

u
p

s

h
is

t_
b

fs

h
is

t_
3
d

s

h
is

t_
d

g
e

m
m

g
a

u
s

s
_

g
u

p
s

g
a

u
s

s
_

b
fs

g
a

u
s

s
_

3
d

s

g
a

u
s

s
_

d
g

e
m

m

g
u

p
s

_
b

fs

g
u

p
s

_
3
d

s

g
u

p
s

_
d

g
e

m
m

b
fs

_
3

d
s

3
d

s
_

d
g

e
m

m

F
a
ir

n
e
s
s
 I

n
d

e
x

FR-FCFS FR-RR-FCFS

Figure 6.7: Fairness index (FI) of the evaluated workloads when memory scheduler
adopts FR-FCFS (baseline, 1st bar) and FR-RR-FCFS (proposed, 2nd bar)
scheduling techniques.

0%

20%

40%

60%

80%

100%

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

fr
-f

c
fs

-g
u

p
s

fr
-r

r-
fc

fs
-g

u
p

s

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

fr
-f

c
fs

_
g

u
p

s

fr
-r

r-
fc

fs
-g

u
p

s

a
lo

n
e
_

3
0

a
lo

n
e
_

6
0

fr
-f

c
fs

-g
u

p
s

fr
-r

r-
fc

fs
-g

u
p

s

HIST (1st App) GAUSS (1st App) 3ds (1st App)

P
e
rc

e
n

ta
g

e
 o

f
P

e
a
k
 B

a
n

d
w

id
th

1st App 2nd App Wasted-BW Idle-BW

Figure 6.8: DRAM bandwidth utilization distribution across selected workloads
when memory scheduler adopts FR-FCFS (baseline, 3rd bar) and FR-RR-FCFS
(proposed, 4th bar) scheduling techniques.

from memory.

6.6 Related Work

This work provides a detailed analysis on the interactions of multiple applications

in GPUmemory system, and proposes a memory scheduler to improve both fairness

and overall performance.

Memory scheduling techniques: There is a large body of work on memory

scheduling techniques in the context of multi-cores. Thread cluster memory

scheduling (TCM) [45] classified applications on the basis of their sensitivity to

memory bandwidth and latency. They further proposed various memory request

prioritization schemes for improving fairness and throughput. However, their

116

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

h
is

t_
g

a
u

s
s

h
is

t_
g

u
p

s

h
is

t_
b

fs

h
is

t_
3

d
s

h
is

t_
d

g
e
m

m

g
a

u
s
s

_
g

u
p

s

g
a

u
s
s

_
b

fs

g
a

u
s
s

_
3
d

s

g
a

u
s
s

_
d

g
e
m

m

g
u

p
s

_
b

fs

g
u

p
s

_
3
d

s

g
u

p
s

_
d

g
e
m

m

b
fs

_
3
d

s

3
d

s
_

d
g

e
m

m

Im
p

ro
v
e
m

e
n

t
in

In

s
tr

u
c

ti
o

n
 T

h
ro

u
g

h
p

u
t

Figure 6.9: Improvement in instruction throughput (IT) across the evaluated
workloads. Results are normalized to the case when memory scheduler adopts
the baseline FR-FCFS scheduling policy.

0.9

0.95

1

1.05

1.1

h
is

t_
g

a
u

s
s

h
is

t_
g

u
p

s

h
is

t_
b

fs

h
is

t_
3

d
s

h
is

t_
d

g
e
m

m

g
a

u
s
s

_
g

u
p

s

g
a

u
s
s

_
b

fs

g
a

u
s
s

_
3
d

s

g
a

u
s
s

_
d

g
e
m

m

g
u

p
s
_

b
fs

g
u

p
s
_

3
d

s

g
u

p
s
_

d
g

e
m

m

b
fs

_
3
d

s

3
d

s
_

d
g

e
m

m

Im
p

ro
v
e
m

e
n

t
in

W

e
ig

h
te

d
 S

p
e
e
d

u
p

Figure 6.10: Improvement in weighted speedup (WS) across the evaluated
workloads. Results are normalized to the case when memory scheduler adopts
the baseline FR-FCFS scheduling policy.

work only considers multiple single-programmed applications. On the other

hand, this work focuses on multiple massively threaded applications, and

proposes a simple but effective memory scheduling technique to handle their

memory requests. Ebrahimi et al. [93] proposed parallel application memory

scheduling, where they explicitly managed inter-thread memory interference for

improving performance, especially in critical sections of the program. However,

their work only considers a single multi-threaded application, while this work

deals with scheduling of multiple multi-threaded applications.

In the context of GPUs, Lakshminarayana et al. [50] explored a DRAM

scheduling policy that essentially chooses between Shortest Job First (SJF) and

FR-FCFS [33, 34]. Yuan et al. [49] proposed an arbitration mechanism in the

interconnection network to restore the lost row buffer locality caused by the

interleaving of requests. They showed that performance of in-order DRAM

memory scheduler can be competitive to FR-FCFS, if interconnect is aware of

the requests destined to the same row. Ausavarungnirun et al. [51] proposed a

117

staged memory scheduler for CPU-GPU architectures. Their primary goal was to

improve row-buffer locality in heterogeneous architectures. All these works only

focus on improving the performance of single GPU application and do not focus

on the scenarios when multiple applications are scheduled concurrently, as done

in this work.

Concurrent execution of multiple kernels on GPUs: Pai et al. [105]

proposed elastic kernels that allow a fine-grained control over their resource

usage. Further, they proposed elastic-kernel aware concurrency management

policies for improving GPU performance. Adriaens et al. [108] proposed spatial

partitioning of SM resources across concurrent applications. They presented a

variety of heuristics for dividing the SM resources across applications. This work

assumes an even partitioning technique, according to which SMs are distributed

evenly among concurrent applications. Gregg et al. [109] presented KernelMerge,

a runtime framework to understand and investigate concurrency issues for

OpenCL applications. Wang et al. [110] proposed context funneling, which allows

kernels from different programs to execute concurrently. None of these works

directly addressed the problem of contention caused by multiple concurrently

executing kernels in the memory system.

Warp scheduling in GPUs: Narasiman et al. [8] proposed two-level warp

scheduler that splits the concurrently executing warps into groups to improve

memory latency tolerance. Rogers et al. [67] proposed cache-conscious wavefront

scheduling to improve the caching efficiency in GPUs. Gebhart and Johnson et

al. [48] proposed a two-level warp scheduling technique that focuses on reducing

the energy consumption in GPUs. Jog et al. [7] proposed a series of CTA-aware

warp scheduling techniques to reduce cache and memory contention. Kayiran et

al. [9] modulated the available thread-level parallelism by intelligent CTA

scheduling. Jog et al. [27] proposed prefetch-aware warp scheduling techniques

for enhancing GPGPU performance. All these warp scheduling schemes are

developed for the scenario when only one kernel is executing at a time. It is not

clear how these techniques will perform when multiple kernels are scheduled

concurrently. However, this work does not design smart warp scheduling

techniques for such scenarios, but do believe that it is an open research issue.

118

6.7 Chapter Summary

GPUs are expected to support concurrent execution of multiple kernels – either

from the same application or from multiple applications. While this computing

paradigm can improve machine utilization when executing applications with

limited scalability, the complexity of marshaling multiple kernels introduces key

architectural challenges. This chapter zoomed in on the memory system and

showed that the interactions among memory streams of concurrently executing

applications can lead to severe unfairness and sub-optimal performance.

Furthermore, this chapter showed that the primary reason for these problems is

the application-agnostic management of shared resources. For example, the

memory scheduler refers to all memory requests as a single request stream and

focuses solely on improving the overall DRAM page hit rates.

This chapter argues that in order to overcome these problems, application

awareness must be propagated to the memory system. To this end, this chapter

proposed a simple augmentation to the current memory system scheduler that

schedules memory requests from different applications in a round-robin manner

that not only preserves DRAM page hit rates, but also makes sure that

co-scheduled memory-intensive applications do not starve other applications for

long intervals. Detailed simulation results show that the proposed scheduler

delivers superior performance and improves fairness across a wide set of

workloads.

Chapter 7

Anatomy of Multi-Application

Execution in GPUs

As GPUs make headway in the computing landscape spanning mobile platforms,

supercomputers, cloud and virtual desktop platforms, supporting concurrent

execution of multiple applications in GPUs becomes essential for unlocking their

full potential. However, unlike CPUs, multi-application execution in GPUs is

little explored. This chapter studies the memory system of GPUs in a

concurrently executing multi-application environment. An analytical

performance model is first presented for many-threaded architectures to show

that the common use of misses-per-kilo-instruction (MPKI) as a proxy for

performance is not accurate without considering the bandwidth usage of

applications. Second, this chapter characterizes the memory interference of

applications and discuss the limitations of existing memory schedulers in

mitigating this interference. Third, the analytical model is extended for multiple

applications to identify the key metrics for controlling the various performance

metrics. Extensive simulation results using an enhanced version of GPGPU-Sim

targeted for concurrently executing multiple applications show that memory

scheduling decisions based on MPKI and bandwidth information are more

effective in enhancing system throughput compared to the traditional FR-FCFS

and the previously proposed RR FR-FCFS policies.

120

7.1 Introduction

The computing trajectory of GPUs has evolved from traditional graphics

rendering to accelerating general purpose and high performance computing

applications, and of late to cloud and virtual desktop computing. Two trends

have driven this trajectory. First, GPU resources are rapidly growing with each

technology generation [103, 104, 111] to provide the workhorse for efficient

computation. Second, advances in software and virtualization technology for

GPUs such as NVIDIA GRID [106], and OpenStack IaaS framework have made

the transition possible.

GPU virtualization is required for concurrent access to the GPU resources by

multiple applications, potentially originating from different users. This can be

facilitated by spatial as well as temporal allocation of GPU resources. The

current NVIDIA GRID [106] and other cloud providers support virtualization by

time multiplexing. Spatial resource sharing has yet to evolve because unlike

CPUs, traditionally, GPUs were designed to execute only a single application at

a time. However, it has been shown recently that only executing a single

application at a time may not effectively utilize the available computing resources

in state-of-the-art GPUs [105], thereby making a compelling case for

multi-application execution [28, 105]. Thus, supporting multi-application

execution is essential both from performance and utility (adoption in cloud

environments) perspectives.

Unlike CPU-based architectures, where resource allocation and scheduling for

multiple application execution has been studied extensively, only a few prior

works (e.g., [28, 105, 108–110]) have scratched the issues related to multiple

application execution in the context of GPUs. Among them only a few works [28]

have addressed the problem of multi-application interference in the GPU memory

system. Therefore, many of the design issues are still little understood. This

chapter focuses on the interactions of multiple applications in GPU memory

system, and specifically attempt to answer the following questions: (i) How do we

characterize the interactions between multiple applications in the GPU memory

system? (ii) What are the limitations of traditional application-agnostic

121

FR-FCFS [32–34] and RR FR-FCFS scheduling [28] in the context of throughput

oriented GPU platforms?, (iii) Is it possible to push the performance envelope

further with an efficient scheduling mechanism?, and (iv) How do we explore the

design space and develop analytical performance models to find appropriate knobs

for guiding the scheduling decisions? In this context, this chapter makes the

following contributions:

• Contrary to the common use of misses-per-kilo-instruction (MPKI) as a metric

for gauging the memory intensity, and as a proxy for application performance,

this work shows that a model based on both MPKI and the achieved DRAM

bandwidth information is able to gauge the memory intensity and estimate the

performance of GPU applications more accurately.

• This work performs a detailed analysis of application characteristics and

interactions among multiple applications in GPUs to classify applications and

understand the scheduling design space based on this classification.

• This work develops a simple analytical model to demonstrate that L2-MPKI

and bandwidth utilization can be used as two control knobs to optimize

performance metrics: instruction throughput (IT) and weighted speedup (WS),

respectively. Based on this analytical model, this work develops two memory

scheduling schemes, ITS and WEIS, which are customized to improve IT and

WS, respectively. This work shows that the proposed solutions are still effective

with different core partitioning configurations and scalable for running up to

three applications concurrently.

• This work qualitatively and quantitatively compares the proposed schemes with

the traditional FR-FCFS and the recently proposed round-robin RR FR-FCFS [28]

schedulers. Across 25 representative workloads, ITS improves IT by 34% and 8%

over FR-FCFS and RR FR-FCFS, respectively; and WEIS improves WS by 10%

and 5% over FR-FCFS and RR FR-FCFS, respectively.

• This work conducts an in-depth evaluation on GPU memory systems in

multi-application environment. In this context, this work develops a GPU

Concurrent Application suite (GCA) and a parallel workload simulation

framework by extending GPGPU-Sim [31], a cycle accurate GPU simulator.

122

L2

MC

L2

MC

L2

MC

L2

MC

App N

On Chip Network

SM SM

L1 L1

SM SM

L1 L1

App N-1App 2

SM SM

L1 L1

SM SM

L1 L1

App 1

Figure 7.1: Overview of the baseline architecture capable of executing multiple
applications.

7.2 Background

7.2.1 Baseline Architecture

This chapter considers a generic NVIDIA-like GPU as the baseline, where multiple

cores, also called as streaming multi-processors (SMs)1, are connected to multiple

memory controllers (MCs) via an on-chip network as shown in Figure 7.1. Each

MC is a part of the memory partition that also contains a slice of L2 cache for

faster data access. The details of the baseline configuration are shown later in

Table 7.2.

Single Application Scheduling: CUDA uses computational kernels to take

advantage of parallel regions in the application. Each application may include

multiple kernels. GPUs execute all kernels of an application sequentially, i.e. one

kernel at a time. Each kernel is organized as blocks of cooperative thread arrays

(CTAs) that are executed in a parallel fashion on the whole GPU. During kernel

launch, the CTA scheduler initiates scheduling of the CTAs related to that kernel,

and tries to distribute them evenly [31].

Multiple Application Scheduling: This work simultaneously executes kernels

from different applications. This work uses a kernel-to-SMs allocation scheme

where the SMs are distributed evenly in a spatial manner based on the number of

applications as shown in Figure 7.1. For example, if the GPU consists of 30 SMs

1This work uses “core” and “SM” terms interchangeably.

123

that need to be partitioned among two applications, the first 15 SMs are assigned

to the first application, and the rest of the SMs to the second application. As the

focus of this work is memory (not caches), unless otherwise specified, SMs and

L2 cache are equally partitioned across concurrently executing applications. This

work also evaluates the schemes with two different SM-partitioning techniques (i.e.

10-20 and 20-10) to demonstrate the robustness of the model with respect to core

partitioning in Section 7.8.4.

Memory Scheduling: The most widely used memory scheduler in GPUs is first-

ready FCFS (FR-FCFS) [32–34], which is implemented in the hardware. This

scheme is targeted at improving DRAM row hit rates, so request prioritization

order is: 1) row-hit requests are prioritized over other requests; then 2) older

requests are prioritized over younger ones.

7.2.2 Evaluation Metrics and Application Suite

Typically, performance of single application is captured by its instruction

throughput (IT). When multiple applications execute concurrently, instruction

throughput measures the raw machine throughput and is given by

IT =
∑N

i=1 IPCi, where there are N co-running applications, and IPCi is the

number of committed instructions per cycle of the ith application. Note that this

metric only considers IPC throughput, without taking fairness into account. This

work focuses on this metric to evaluate pure machine performance of GPUs

without considering the fairness aspect.

For evaluating system throughput, this work uses Weighted speedup (WS),

which indicates how many jobs are executed per unit time: WS =
∑N

i=1 SDi,

where SDi is the slowdown of ith application given by SDi = IPCi

IPCalone
i

, where

IPCalone
i is IPC of ith application when running alone. Assuming there is no

constructive interference among applications, the maximum value of WS is equal

to the number of applications.

This work also shows the impact of the proposed schemes on Harmonic

Speedup (HS) that not only measures system performance, but also has a notion

124

of fairness [45] and is given by, HS = 1/(
∑N

i=1
1

SDi
). Also, the Average

Normalized Turn-around Time (ANTT) metric is the reciprocal of HS.

Application Suite: For experimental evaluations, this work uses a wide range of

GPGPU applications implemented in CUDA. These applications are chosen from

Rodinia [42], Parboil [43], CUDA SDK [31], and SHOC [91], and are listed in

Table 7.1. In total, 25 applications are studied.

7.3 Performance Characterization of

Many-threaded Architectures

This section revisits a performance model for many-threaded architectures

proposed by Guz et al. [84], and classify the applications based on this model.

7.3.1 A Model for Many-threaded

Architectures

Recent works have shown that bandwidth is usually the critical bottleneck in

many-threaded architectures like GPUs [7, 9, 27]. The considered model [84]

shows that performance of many-threaded architectures is directly proportional

to the bandwidth that the application receives from DRAM (attained DRAM

bandwidth). In this model, application performance is expressed as,

P =
BW

breg × rm × Lmiss

(7.1)

where
P = performance [Operations/second (Ops)]

BW= attained DRAM bandwidth [Bytes/second (Bps)]

rm = the ratio of the number of memory instructions to

the number of total instructions

breg = the operand size [Bytes]

Lmiss= cache miss rate

125

This generic model assumes a single memory space, a single-level cache and

DRAM. As a result, the miss rate is used for quantifying DRAM accesses. In

addition, it ignores the case of multiple memory spaces and the case of scratch-

pad usage; e.g. the case where scratch-pad can provide an additional source of

bandwidth. Operand size represents the amount of data fetched to/from DRAM

on each cache miss, which is equal to the cache line size.

In this model, as the numerator in (7.1) is BW , performance is directly

proportional to the bandwidth attained by the application. The denominator is

expressed as,

breg × rm × Lmiss = breg ×
imem

itot
× cmiss

ctot

= breg ×
cmiss

itot
︸ ︷︷ ︸

MPI

×
imem

ctot
︸ ︷︷ ︸

1

= breg ×MPI
︸ ︷︷ ︸

Bytes required to transfer from DRAM
for commiting an instruction

(7.2)

where
imem= the number of memory instructions

itot = the number of total instructions

cmiss= the number of cache misses

ctot = the number of cache accesses

MPI= the number of cache misses per instruction

Thus, from (7.1) and (7.2), this work notes that performance is directly

proportional to the achieved DRAM bandwidth, and is inversely proportional to

the size of datum that needs to be fetched to/from DRAM in order to commit an

instruction. Since this work considers a system with two levels of cache with a

constant cache-line size, the overall performance becomes inversely proportional

to the number of L2 misses that need to be served for committing one thousand

instructions (L2 misses per kilo-instruction (L2MPKI)), as given in (7.3). This

chapter uses the term MPKI to represent L2MPKI.

P ∝
BW

MPKI
(7.3)

126

This work validates this model by simulating applications from Table 7.1 using

GPGPU-Sim simulator. Figure 7.2 shows the observed IPC from the simulator

and the calculated IPC values by using Equation (7.3) and simulated BW and

MPKI values. For all 25 applications, the mean absolute relative error (MARE)

is 10.3%. This work observes that for many (21 out of 25) applications, the

MARE is only 4.2%. However, for other 4 applications: MM, HS, BP, and SAD,

MARE is higher (42.1%), because these applications make extensive use of the

software-managed scratchpad memory. As a result, their performance is not only

dependent on the achieved DRAM bandwidth, but is also driven by the

additional scratchpad bandwidth, which is not captured in the proposed model.

For cases that involve usage of a scratch-pad memory, the model underestimates

the actual IPC obtained by the application. This work conducted a similar

analysis on real GPU hardware2, and Figure 7.3 shows the absolute relative error

for each application. The results for GUPS, MUM and QTC are omitted because they

could not execute them faithfully on real hardware. For 22 applications, the

observed value of MARE to be 9.5%.

7.3.2 Application Characterization

Several previous works (e.g., [45, 46, 112–114]) have 1) characterized the memory

intensity of applications primarily based on their last-level cache MPKI values,

and 2) used MPKI as a proxy for performance. This work shows that considering

only MPKI is not enough for the both cases in GPUs.

Table 7.1 summarizes MPKI and the ratio between attained DRAM

bandwidth and peak bandwidth (BW/C) for the applications, where C is the

peak memory bandwidth. They are listed in the descending order of their

MPKI. First, Table 7.1 shows that only considering MPKI values is not

sufficient for estimating the memory intensity of a particular application. It is

evident that high MPKI levels may not necessarily lead to a very high DRAM

bandwidth utilization, as it is also a function of the inherent compute to

2NVIDIA K20m, CUDA capability 3.5, Driver 6.0

127

0

0.25

0.5

0.75

1

G
U

P
S

M
U

M

Q
T

C

B
F

S
2

N
W

L
U

H

R
E

D

S
C

A
N

S
C

P

C
F

D

F
W

T

B
L

K

S
R

A
D

L
IB

J
P

E
G

3
D

S

C
O

N
S

H
IS

T
O

M
M

B
P

H
S

S
A

D

N
N

R
A

Y

T
R

D

N
o

rm
a

li
z
e

d
 I

P
C

 Simulator Model

Figure 7.2: Application performance obtained via simulation and the model. IPC
is normalized with respect to the maximum achievable IPC supported by the
architecture.

0%

20%

40%

60%

80%

100%

B
F

S
2

N
W

L
U

H

R
E

D

S
C

A
N

S
C

P

C
F

D

F
W

T

B
L

K

S
R

A
D

L
IB

J
P

E
G

3
D

S

C
O

N
S

H
IS

T
O

M
M

B
P

H
S

S
A

D

N
N

R
A

Y

T
R

D

M
A

R
EA
b

s
o

lu
te

 R
e
la

ti
v
e
 E

rr
o

r

Figure 7.3: Absolute relative error between IPCs obtained from real hardware
(NVIDIA Kepler K20m) and the model.

bandwidth ratio of a particular application. For example, although QTC has the

third highest MPKI among the applications, there are 15 other applications in

the suite that have higher DRAM bandwidth utilization than QTC.

Second, Section 7.3.1 showed that performance is not only dependent on

MPKI, but also BW . For the applications shown in Table 7.1, the correlation

between MPKI and IPC is only -44.4%. While MPKI is the number of misses

that needs to be served to commit 1000 instructions, it lacks the information

about the rate at which these misses are served by DRAM. In other words,

L2-MPKI is a good measure of the bandwidth demand of the application, but

performance is a function of both the demanded and the achieved bandwidth.

7.4 Analyzing Memory System Interference

This section builds a foundation and draw key observations towards designing a

more efficient, application-aware memory scheduler for GPUs. We start with

128

Table 7.1: Application characteristics: (A) MPKI: L2 cache misses per kilo-
instructions. (B) BW/C: The ratio of attained bandwidth to the peak bandwidth
of the system.

GPGPU Application Abbr. MPKI BW/C
(in %)

Random Access GUPS 57.1 93.0
MUMmerGPU [23] MUM 22.6 79.7

Quality Threshold Clustering [91] QTC 7.9 15.3
Breadth-First Search [23] BFS2 5.3 11.6
Needleman-Wunsch [42] NW 5.1 16.7

Lulesh [90] LUH 4.7 35.6
Reduction [91] RED 2.8 68.8
Exclusive [91]

Parallel Prefix Sum
SCAN 2.7 45.0

Scalar Product [23] SCP 2.7 86.3
Fluid Dynamics [42] CFD 2.3 27.2

Fast Walsh Transform [23] FWT 2.2 45.1
BlackScholes BLK 1.6 67.6

Speckle Reducing Anisotropic
Diffusion [42]

SRAD 1.6 36.4

LIBOR Monte Carlo [23] LIB 1.1 25.4
JPEG Decoding JPEG 1.1 29.8

3D Stencil 3DS 1.0 42.3
Convolution Separable [23] CONS 1.0 43.5

2D Histogram [43] HISTO 0.6 18.8
Matrix Multiplication [43] MM 0.5 5.1

Backpropogation [42] BP 0.4 16.5
Hotspot [42] HS 0.4 6.1

Sum of Absolute Differences [43] SAD 0.1 5.6
Neural Networks [23] NN 0.1 0.3

Ray Tracing [23] RAY 0.1 1.8
Stream Triad [91] TRD 0.1 1.4

presenting the nature of interference among concurrent applications in GPU

memory system, then we discuss the inefficiencies of existing memory schedulers,

and finally we draw initial insights for designing a better memory scheduling

technique.

7.4.1 The Problem: Application Interference

When multiple applications are co-scheduled on the same GPU hardware, they

interfere at various levels of the memory hierarchy, such as interconnect, caches

and memory. As memory system is the critical bottleneck for a large number of

GPU applications, explicitly addressing contention issues in the memory system is

essential. We find that an uncoordinated allocation of GPU resources, especially

memory system resources, can lead to significant performance degradations both

in terms of IT and WS. To demonstrate this, consider Figure 7.4, which shows the

129

impact on WS and IT , when BLK is co-scheduled with three different applications

(GUPS, QTC, NN). The workloads formed are denoted by BLK GUPS, BLK QTC and

BLK NN, respectively. Let us first consider the impact on WS in Figure 7.4a, where

we also show the breakdown of WS in terms of slowdowns (SD) experienced by

individual applications. The slowdowns of the applications in the workload are

denoted by SD-App-1 and SD-App-2 for the first and the second applications,

respectively. Note that when the applications do not interfere with each other,

both SD-App-1 and SD-App-2 are equal to 1, leading to a weighted speedup of

2. This figure demonstrates three different memory interference scenarios: (1) in

BLK GUPS, both applications slow down each other significantly, (2) in BLK QTC,

slowdowns of BLK and QTC are very different – slowdown of QTC being much higher

than that of BLK, and (3) in BLK NN, slowdown in both applications is negligible. In

these different scenarios, the degradation in WS is also very different. This work

observes significant degradation in WS in the first (90%) and second (54%) cases,

whereas, it is negligible (2%) in the third case.

Figure 7.4b shows IT degradation when BLK is co-scheduled with the same

three applications vs. the case where BLK and other application in the workload

are executed sequentially. This work observes similar interference trends in

BLK GUPS and BLK NN, where in the former case, we observe significant

degradation in IT , while the latter exhibits negligible degradation. Interestingly,

the IT degradation in BLK QTC is not as significant as compared to its WS

degradation. From this discussion, we conclude that concurrently executing

applications are not only susceptible to significant levels of destructive

interference in memory, but also the degree with which they impact each other

can be strongly dependent on the considered performance metric.

Analysis: As shown in Section 7.3, performance of a GPU application is a

function of both BW and MPKI. As we seek insights on the impact of each

metric on performance, let us first discuss the memory bandwidth component.

For example, since both BLK and GUPS have very high bandwidth demands

(Table 7.1), when they are co-scheduled, performance of both applications

degrade significantly. We observe exactly the same behaviour in Figure 7.4a,

where both applications do not receive their bandwidth shares for achieving

130

0

0.5

1

1.5

2

BLK_GUPS BLK_QTC BLK_NN

W
e

ig
h

te
d

 S
p

e
e

d
u

p
SD-App-1 SD-App-2

(a) Effect on Weighted Speedup.

0

0.25

0.5

0.75

1

BLK_GUPS BLK_QTC BLK_NN

N
o

rm
a

li
ze

d
 I

T

(b) Effect on Instruction
Throughput.

Figure 7.4: Different performance slowdowns obtained when BLK is co-scheduled
with three different applications: GUPS, QTC, and NN. Memory scheduling policy is
FR-FCFS.

stand-alone performance levels. Similarly, the available DRAM bandwidth is not

sufficient for the BLK QTC case, and BLK hurts QTC performance quite significantly

by getting most of the available bandwidth. In the third case with BLK NN, the

bandwidth is sufficient for both applications, resulting in negligible performance

slowdowns for both. This infers the fact that limited DRAM bandwidth is one of

the important reasons of application interference and different application

slowdowns.

However, considering only BW of each application would not explain why

BLK QTC experiences only a slight degradation in IT . We also need to consider

the second parameter that affects performance, MPKI, whose values are listed

in Table 7.1. In this example, there is significant difference in MPKI of BLK and

QTC (BLK MPKI ¡ QTC MPKI). From (7.3), we know that the application with

low BW and high MPKI will achieve lower performance levels than the

applications with high BW and low MPKI. Therefore, in BLK QTC, BLK

contributes much more towards higher IT than QTC. As BLK does not slow down

significantly (Figure 7.4a), the total IT reduction is low. This discussion confirms

that both BW and MPKI are key parameters for better understanding of the

performance characteristics and scheduling considerations for concurrently

executing applications in GPUs.

131

0

0.5

1

1.5

2

F
R

-F
C

F
S

P
ri

o
r_

A
p

p
1

P
ri

o
r_

A
p

p
2

R
o

u
n

d
-R

o
b

in

F
R

-F
C

F
S

P
ri

o
r_

A
p

p
1

P
ri

o
r_

A
p

p
2

R
o

u
n

d
-R

o
b

in

F
R

-F
C

F
S

P
ri

o
r_

A
p

p
1

P
ri

o
r_

A
p

p
2

R
o

u
n

d
-R

o
b

in

HISTO_TRD BLK_QTC BLK_NN

W
e

ig
h

te
d

 S
p

e
e

d
u

p

SD-App-1 SD-App-2

(a) Effect on Weighted Speedup.

0

0.25

0.5

0.75

1

HISTO_TRD BLK_QTC BLK_NN

N
o

rm
a

li
ze

d
 I

T

FRFCFS Prior_App1 Prior_App2 Round-Robin

(b) Effect on Instruction
Throughput

Figure 7.5: Different performance slowdowns experienced when different memory
scheduling schemes are employed.

7.4.2 Limitations of Existing Memory Schedulers

This section discusses the limitations of three memory schedulers. This work

considers the baseline FR-FCFS [32–34] scheduler that targets improving DRAM

row hit rates, and prioritizes row-hit requests over any other request. In addition,

this work explores two other schemes a) Prior App scheduler that statically

prioritizes requests of only one of the co-scheduled applications, and b) the

recently proposed round-robin (RR) FR-FCFS GPU memory scheduler [28] that

gives equal priority to all concurrently executed applications in the system

without considering their properties. None of these schedulers sacrifice locality,

but instead of picking memory requests in FCFS order after servicing row-hit

requests (as done in FR-FCFS), Prior App i always prefers memory request from

ith application, and Round-Robin arbitrates between applications in the

round-robin order. Figure 7.5 shows the effect of these three memory schedulers

on weighted speedup and instruction throughput for two of the workloads already

shown in Figure 7.4a (BLK QTC and BLK NN), and an additional workload

HISTO TRD.

Limitations of FR-FCFS: When multiple applications are co-scheduled,

FR-FCFS still optimizes for row-hit locality and does not consider the individual

application properties while making scheduling decisions. Because of such

application-unawareness, FCFS nature of the scheduler would allow a high

memory demanding application to get a larger bandwidth share, as that

application would introduce more requests in memory controller queue.

Therefore, as shown in Figure 7.5, in BLK QTC, this work observes that BLK gets

132

higher bandwidth share, causing large slowdowns in QTC. Moreover, Figure 7.5

demonstrates that the best performing scheduling strategy for improving either

of the the performance metrics is prioritizing one of the applications throughout

the entire execution.

Limitations of Prior App i: This work observes in HISTO TRD that prioritizing

TRD over HISTO provides the best IT and WS among all the considered

scheduling strategies. However, in BLK QTC, prioritizing one application over

another does not improve both the performance metrics. In BLK NN, since both

the applications attain their uncontested bandwidth demands, prioritizing one

over another does not impact performance. Even though prioritizing one

application over another provides the best result, the challenge is to determine

which application to prioritize. One way of doing so is to profile the workload

and employ a static priority mechanism throughout the execution. However, such

strategy is often hard to realize. Another mechanism can be to switch priorities

between applications during run-time, which is similar to RR FR-FCFS [28].

Limitations of RR FR-FCFS: As discussed above, in order to optimizeWS and

IT in BLK QTC, different applications are prioritized differently. Since RR switches

priorities between these two applications, it achieves a balance between improving

both metrics. However, in HISTO TRD, although employing RR mechanism leads

to a slightly better IT and WS over FR-FCFS, it is far from the case where TRD

is prioritized.

Based on the above discussion, this work makes two key observations that guide

us in developing an application-conscious scheduling strategy.

Observation 1: Prioritizing lower MPKI applications improves IT :

In the workloads where significant slowdowns are observed in either of the

applications, prioritizing the application with lower MPKI improves IT . For

example, in HISTO TRD, TRD has lower MPKI than HISTO and therefore,

Prior App 2 yields better IT . Similarly, in BLK QTC, BLK has lower MPKI than

QTC, thus Prior App 1 provides better IT .

Observation 2: Prioritizing lower BW applications improves WS: In

the workloads where significant slowdowns are observed in either of the

133

𝟑𝟎𝟐𝟎 = 𝟏. 𝟓𝟐𝟎𝟓 𝟑𝟎𝟒𝟎
MPKI Alone BW

App 2

App 1

Alone Perf.

C = 50

Prior App 2

Prior App 1

Round-robin

𝐏𝟏 𝐏𝟐
𝟒 + 𝟏. 𝟓 = 𝟓. 𝟓𝟎. 𝟓 + 𝟖 = 𝟖. 𝟓
𝐈𝐓 = 𝐏𝟏 + 𝐏𝟐

𝟏. 𝟐𝟓 + 𝟓 = 𝟔. 𝟐𝟓
2

1

3 4

5 6

7 8

9

10

11

13

14

12

𝟒𝟎𝟓 = 𝟖
𝟑𝟎𝟐𝟎 = 𝟏. 𝟓𝟏𝟎𝟐𝟎 = 𝟎. 𝟓𝟐𝟓𝟐𝟎 = 𝟏. 𝟐𝟓

𝟐𝟎𝟓 = 𝟒
𝟐𝟓𝟓 = 𝟓
𝟒𝟎𝟓 = 𝟖

𝟏. 𝟓𝟏. 𝟓 + 𝟒𝟖 = 𝟏. 𝟓
𝟎. 𝟓𝟏. 𝟓 + 𝟖𝟖 = 𝟏. 𝟑𝟑
𝟏. 𝟐𝟓𝟏. 𝟓 + 𝟓𝟖 = 𝟏. 𝟒𝟓
𝐖𝐒 = 𝐏𝟏𝟏. 𝟓 + 𝐏𝟐𝟖

Figure 7.6: An illustrative example showing IT and WS for two applications
running together. The shaded boxes represent system and application properties.
The peak memory bandwidth is 50 units. Application 1 and 2 use 30 and 40 units
bandwidth, respectively, when they execute alone. Their MPKIs are 20 and 5,
respectively.

applications, prioritizing the application with lower BW improves WS. For

example, in HISTO TRD, TRD has lower BW than HISTO and therefore Prior App 2

yields better WS. Similarly, in BLK QTC, QTC has lower BW than BLK, thus

Prior App 2 provides better WS.

7.5 A Performance Model for Concurrently

Executing Applications

In order to provide a theoretical background for the discussed observations for

optimizing IT andWS in Section 7.4.2, model is extended for two applications, and

it is analyzed to understand the effect of concurrent execution on the performance

metrics when memory bandwidth is the system bottleneck. This work shows how

this model guides us in developing different memory scheduling algorithms targeted

for optimizing each metric separately, and explain the findings based on the model

by examples.

The notations used in the model are given below:

P alone
i = performance of application i when it runs alone

BW alone
i= bandwidth attained by application i when it runs

alone

Pi = performance of application i

BWi= bandwidth attained by application i

C = peak bandwidth of the system

ǫ = infinitesimal bandwidth given to an application

MPKIi= MPKI of application i

134

When applications run alone, they cannot attain more bandwidth than that is

available in the system, thus BW alone
i ≤ C ∀i; and similarly for concurrent

execution, the cumulative bandwidth consumption cannot exceed the peak

bandwidth, thus
∑N

i=1 BWi ≤ C. Also, this work uses Pi, BWi,MPKIi ≥ 0 ∀i.

Let us analyze the case when two applications are executed concurrently3.

Assuming that performance is limited by the memory bandwidth, an application

cannot consume more bandwidth without getting more share from the other

application’s bandwidth. Thus, in a two-application scenario, BW1 + BW2 = C,

assuming no wastage of bandwidth is incurred.

This work assumes that, at time t = t0, we have Pi ∝
BWi

MPKIi
∀i; and at t = t1

where t1 > t0, we give an additional ǫ bandwidth to the first application by taking

it from the other. Thus, at t = t1, we have P ′1 ∝
BW1+ǫ
MPKI1

, and P ′2 ∝
BW2−ǫ
MPKI2

, where

P ′i is the performance of application i at t = t1.

7.5.1 Analyzing Instruction Throughput

In order to have higher IT at t = t1 compared to t = t0,

P ′1 + P ′2 > P1 + P2 (7.4)

BW1 + ǫ

MPKI1
+

BW2 − ǫ

MPKI2
>

BW1

MPKI1
+

BW2

MPKI2
(7.5)

Simplifying (7.5) yields,

ǫ(MPKI2 −MPKI1) > 0 (7.6)

=⇒ MPKI2 > MPKI1, if ǫ > 0 (7.7)

MPKI1 > MPKI2, if ǫ < 0 (7.8)

From (7.7) and (7.8), this work finds that Application with lower MPKI

in order to optimize IT should be prioritized

3The model can be easily extended to analyze more than two applications. This work shows
the scalability of the model for three applications in Section 7.8.4.

135

Illustrative Example: Figure 7.6 shows an example of the optimal scheduling

strategy for maximizing IT . This example considers three different scheduling

strategies: 1) prioritizing the first application, 2) prioritizing the second

application, and 3) the RR scheduler. When these applications run alone, based

on their BW and MPKI values, it can be said that the first and the second

applications achieve performances of 1.5 (1) and 8 units (2), respectively, based

on (7.3). If these applications are co-scheduled on the GPU, and if the first

application is prioritized throughout the execution, that application will get 30

units of bandwidth, since it demands 30 units when it runs alone. This work

assumes that MPKI does not change significantly during different executions, as

this work does not do any cache-related optimization in this work for preserving

simplicity. Because the first application’s MPKI is 20, its performance will be

1.5 units (3). The remaining 20 units of bandwidth will be used by the second

application, as the peak bandwidth is 50 units (C = 50). Because its MPKI is 5,

its performance will be 4 units (4). Similarly, if we prioritize the second

application, it will get 40 units of bandwidth as it demands 40 units when

running alone, and the first application will use the remaining 10 units. Thus,

the performances of the first and the second applications will be 0.5 (5) and 8

units (6), respectively. Also, if the round-robin scheduler is employed, assuming

both applications have similar row-buffer localities, they get the same share from

the available bandwidth, which is 25 units, leading to 1.25 (7) and 5 (8) units of

performance for the first and the second applications, respectively. Based on

these individual application performance values calculated using the model, this

work shows that IT (the sum of individual IPCs) of this workload is 5.5 (9), 8.5

(10), and 6.25 units (11), when we prioritize the first application, prioritize the

second application, and employ RR scheduler, respectively. These results are

consistent with the model, which suggests that prioritizing the application that

has lower MPKI would provide the best IT . Intuitively, as per (7.3), the same

BW provided for the application with lower MPKI, which is the second

application in this example, translates to higher IPC. Thus, prioritizing the

application with lower MPKI provides higher IT for the system.

Figure 7.5b observes that prioritizing the application with lower MPKI results

in higher IT for HISTO TRD and BLK QTC. Since the application interference in

136

BLK NN is not significant, it does not benefit from prioritization.

7.5.2 Analyzing Weighted Speedup

In order to have higher WS at t = t1 compared to t = t0,

P ′1
P alone
1

+
P ′2

P alone
2

>
P1

P alone
1

+
P2

P alone
2

(7.9)

BW1+ǫ
MPKI1

BWalone
1

MPKI1

+
BW2−ǫ
MPKI2

BWalone
2

MPKI2

>
BW1

MPKI1

BWalone
1

MPKI1

+
BW2

MPKI2

BWalone
2

MPKI2

(7.10)

Simplifying (7.10) yields,

ǫ(BW alone
2 − BW alone

1) > 0 (7.11)

=⇒ BW alone
2 > BW alone

1 , if ǫ > 0 (7.12)

BW alone
1 > BW alone

2 , if ǫ < 0 (7.13)

From (7.12) and (7.13), this work finds that application with lower

BW alone should be prioritized to optimize for weighted speedup.

Illustrative Example: We continue the example shown in Figure 7.6 with the

optimal scheduling strategy for maximizing WS. We obtain WS = 1.5 (12), 1.33

(13), and 1.45 units (14) if we prioritize the first application, the second

application, and employ RR scheduler, respectively. As discussed above,

prioritizing the second application provides the best IT . However, we also

observe that prioritizing the application with the lowest BW alone, which is the

first application in this example, yields the best WS, which is consistent with the

model. Intuitively, the same amount of bandwidth provided for the application

with lower BW alone, the first application in this example, translates to lower

performance degradation over its uncontested performance for that application.

Since WS is the sum of slowdowns, prioritizing the application with lower

BW alone provides higher WS for the system.

We observe in Figure 7.5a that prioritizing the application with lower BW alone

results in higherWS for HISTO TRD and BLK QTC. BLK NN is not a bandwidth limited

137

workload, thus, does not benefit from prioritization.

However, the problem with the approach that prioritizes the application with

lower BW alone is that, it is difficult to obtain BW alone of an application without

offline profiling, as pointed out by Subramanian et al. [115]. They also propose

an approximate method to obtain alone performance of an application in a

multiple-application environment during run-time. However, doing so requires

halting the execution of one of the applications to approximately calculate the

alone performance of the other application, which might cause drop in WS. Also,

it does not completely eliminate the application interference. Furthermore, this

sampling has to be done frequently to capture execution phases with completely

different behaviours. Thus, instead of approximating P alone
i or BW alone

i , we

slightly change the WS optimization condition, which leads to a solution that is

much easier to implement and employ during run-time. The approximation does

not use alone performance of an application; instead, compares P ′i with Pi.

Mathematically, we have,

P ′1
P1

+
P ′2
P2

>
P1

P1

+
P2

P2

(7.14)

BW1 + ǫ

MPKI1

MPKI1
BW1

+
BW2 − ǫ

MPKI2

MPKI2
BW2

> 2 (7.15)

Simplifying (7.15) yields,

ǫ(BW2 − BW1) > 0 (7.16)

=⇒ BW2 > BW1, if ǫ > 0 (7.17)

BW1 > BW2, if ǫ < 0 (7.18)

From (7.17) and (7.18), we find that we can prioritize the application with

lower BW to improve relative weighted speedup.

Section 7.8 later demonstrates that such approximation leads to better weighted

speedup. This is also consistent with the observation made by Kim et al. [46]

that preferring application with the least attained bandwidth can improve

weighted speedup.

Discussion: Figure 7.6 showed that optimizing both IT and WS using the same

138

memory scheduling strategy might not be possible. A similar scenario showed in

Figure 7.5 where BLK QTC prefers a different application to be prioritized in order

to achieve the best IT or WS. The key reason behind this is the properties of the

applications that form the workload. In workloads, where the same application

has the lower MPKI and the lower BW alone, that application can be prioritized

to optimize both IT and WS. However, in workloads, where one application has

lower MPKI but the other demands less bandwidth, then the optimal scheduling

strategy for improving the performance metrics is different. In such scenarios, RR

achieves a good balance between IT and WS, because it gives equal priorities to

both applications (assuming both applications have similar row-buffer localities).

However, in scenarios where prioritizing only one application is optimal for both

IT and WS, RR would be far from optimal in terms of performance.

7.6 Mechanism and Implementation Details

This work provided two key observations in Section 7.4.2, and presented a

theoretical background for them in Section 7.5. Based on these observations, this

work proposes two memory scheduling schemes: a) Instruction Throughput

Targeted Scheme (ITS), and b) Weighted Speedup Targeted Scheme (WEIS).

1) Instruction Throughput Targeted Scheme (ITS): This scheme aims to

improve IT based on the observation that the application having lower MPKI

should be prioritized. In order to determine the application with lower MPKI,

this scheduler first periodically (every 1024 cycles4) calculates two metrics during

run-time: 1) the number of L2 misses for each application locally at each memory

partition, and 2) the number of instructions committed by each application.

Then, the information regarding the committed instructions is propagated to the

MCs. The proposed scheduler calculates MPKI of all the applications locally at

each MC, using an arithmetic unit. Then, by using a comparator, the proposed

scheduler determines the application with the lowest MPKI, and prioritize the

4This work also used three other sampling size windows (256, 1024, 2048) cycles. The
difference in overall average performance is less than 1%, implying that sampling window size
does not have a significant impact on the design.

139

Table 7.2: Key configuration parameters of the simulated GPU configuration. See
GPGPU-Sim v3.2.1 [116] for full list.

Core Features 1400MHz core clock, 30 SMs, SIMT width = 32,
Greedy-then-oldest first (GTO) dual warp scheduler [4]

Resources / Core [38,67, 116] 16KB shared memory, 16KB register file, Max. 1536 threads
Private Caches / Core [38,67,116] 16KB 4-way L1 data cache 12KB 24-way texture cache

8KB 2-way constant cache, 2KB 4-way I-cache, 128B cache block size
Shared L2 Cache 16-way 128 KB/memory channel (768KB in total)
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling ,

8 DRAM-banks/MC, 4 bank-groups/MC, 924 MHz memory clock
Hynix GDDR5 Timing [107], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect [116] 1 crossbar/direction (30 SMs, 6 MCs), 1400MHz interconnect clock

memory requests generated by that application in the MC.

2) Weighted Speedup Targeted Scheme (WEIS): This scheme aims to

improve WS based on the observation that the application having lower BW

should be prioritized. In order to determine the application with lower BW , the

proposed scheduler periodically calculates the amount of data transferred over

the DRAM bus for each application locally at each memory partition. Then, by

using a comparator, the proposed scheduler determines the application with the

lowest BW , and prioritize the memory requests generated by that application in

the MC.

Implementation of the Priority Mechanism: The priority mechanism takes

advantage of the already existing FR-FCFS memory scheduler implementation.

However, after serving the requests that generate DRAM row buffer hits, instead

of picking request in the FCFS order, the proposed scheduler picks the oldest

request from the highest priority application. When there is no request from the

highest priority application in the MC queue, the proposed scheduler picks the

oldest request originating from the application with the next highest priority.

7.7 Infrastructure and Evaluation Methodology

Infrastructure: Most of the prior GPU research (e.g. [7, 9, 27, 36, 51, 83]) is

focused on improving the performance of a single GPU application, and is

evaluated based on the benchmarks originating from different application suites

140

(Section 7.3.2). However, to investigate the research issues in the context of

multiple applications, these applications need to be concurrently executed on the

same GPU platform. This is a non-trivial task because it involves building a

framework that can launch existing CUDA applications in parallel without

significant changes to the source code. In order to do so, a new framework is

developed, called GPU concurrent application framework (GCA). This

framework takes advantage of CUDA streams. A stream is defined as a series of

memory operations and kernel launches that are required to execute sequentially,

however, different streams can be executed in parallel. The GCA framework

creates a separate stream for each application, and issues all its associated

commands to the stream. As many of the legacy CUDA codes use synchronous

(e.g., cudaMemcpy()) memory transfer operations, the framework does source

code modifications to change them to asynchronous CUDA API calls (e.g.,

cudaMemcpyAsync()). To ensure correct execution of multiple streams, the

framework also adds appropriate synchronization constructs (e.g.,

cudaStreamSynchronize()) to the source code at correct places. After these steps

are performed, GCA is ready to execute multiple streams/applications either on

real GPU hardware or on the simulator. This chapter uses GCA to concurrently

execute workloads on GPGPU-Sim, which is already capable of concurrently

running multiple CUDA streams. As a part of initial package, the suite contains

300 (
(
25
2

)
) 2-application workloads and 2300 (

(
25
3

)
) 3-application workloads. Also,

the initial GCA package includes guidelines to add a new CUDA code to the

suite.

Evaluation Methodology: This work simulates both two- and

three-application workloads on GPGPU-Sim [31], a cycle-accurate GPU

simulator. Table 7.2 provides the details of simulation configuration. GCA

framework launches CUDA applications on GPGPU-Sim and executes until the

point where all the applications complete at least once. To achieve this, GCA

framework relaunches the faster running application(s) until the slowest

application completes its execution. This work collects the statistics of individual

applications when they finish their respective executions such that amount of

work done by individual applications across different runs is consistent. This

methodology is consistent with the prior works [105]. This work only simulates

141

application kernels, and do not have a performance simulation for the data

transfer between CPU and GPU. The DRAM contention model is the same that

comes with the default GPGPU-Sim distribution, which is validated across many

workloads [31].

Workload Classification: This work evaluates 100 two-application workloads

and classify them based on two criteria. The first classification is based on the

MPKI difference between the applications in the workload. If this difference is

greater than 10, the workload belongs to Class-A-MPKI. If it is less than 1, the

workload belongs to Class-C-MPKI, otherwise it belongs to Class-B-MPKI. The

second classification is based on the BW/C (bandwidth-utilization) difference

between the applications in the workload. If this difference is greater than 50%,

the workload belongs to Class-A-BW. If it is less than 25%, the workload belongs

to Class-C-BW, otherwise it belongs to Class-B-BW. The intuition behind this

classification method is that the workloads with high MPKI and high BW

difference are more likely to benefit from ITS and WEIS, respectively.

7.8 Experimental Results

This section evaluates five memory scheduling mechanisms: 1) the baseline

FR-FCFS, 2) the recently proposed RR FR-FCFS [28], 3) ITS, 4) WEIS, 5) a

static mechanism that always prioritizes the lowest MPKI application in the

workload, Prior App Low MPKI, and 6) a static mechanism that always

prioritizes the application in the workload with the lowest BW alone,

Prior App Low BW. Note that the above static mechanisms require offline

profiling that are difficult to employ during run-time. This work uses these static

schemes as comparison points for ITS and WEIS, respectively. This work uses

equal core partitioning across SMs for the applications in a workload, and show

sensitivity to different core partitioning schemes in Section 7.8.4. This work uses

geometric mean (GM) to report average performance results. For each proposed

scheme, this work first demonstrates how effective the algorithm is in modulating

the bandwidth given to each application, and then this work shows the

142

NW_SCP

BLK_MUM

QTC_SCP

BLK_LUH

NW_SCP

BLK_MUM

QTC_SCP

BLK_LUH

NW_SCP

BLK_MUM

QTC_SCP

BLK_LUH

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-25 -20 -15 -10 -5 0 5 10B
a
n

d
w

id
th

 U
ti

li
z
a
ti

o
n

 (
B

W
/C

)
D

if
fe

re
n

c
e
s
 i

n
 A

p
p

li
c
a
ti

o
n

s

L2-MPKI Differences in Applications

FR-FCFS RR ITS

A
B

C

Figure 7.7: The effect of FR-FCFS, RR, and ITS on BW1 −BW2 and MPKI1 −
MPKI2.

0.8

1

1.2

1.4

1.6

1.8

3
D

S
_

G
U

P
S

B
L

K
_

M
U

M

B
P

_
G

U
P

S

F
W

T
_

G
U

P
S

G
U

P
S

_
R

E
D

H
S

_
G

U
P

S

J
P

E
G

_
G

U
P

S

L
IB

_
G

U
P

S

M
M

_
G

U
P

S

M
U

M
_

3
D

S

M
U

M
_

F
W

T

M
U

M
_

G
U

P
S

M
U

M
_

J
P

E
G

M
U

M
_

S
C

P

S
C

A
N

_
G

U
P

S

S
C

A
N

_
M

U
M

S
C

P
_

G
U

P
S

3
D

S
_

R
E

D

B
L

K
_
L

U
H

B
L

K
_

R
E

D

B
L

K
_

S
C

A
N

L
U

H
_

S
C

P

N
W

_
S

C
P

Q
T

C
_

S
C

P

B
L

K
_

C
F

D

O
v

e
ra

ll

C
la

s
s

_
A

_
M

P
K

I

C
la

s
s

_
B

_
M

P
K

I

C
la

s
s

_
C

_
M

P
K

I

Class_A_MPKI Class_B_MPKI Geomean

N
o

rm
a
li
z
e
d

 I
n

s
tr

u
c
ti

o
n

T

h
ro

u
g

h
p

u
t

RR WEIS ITS Prior App (Low MPKI)

Class

_C

_MPKI

Figure 7.8: IT results normalized with respect to FR-FCFS for 25 representative
workloads.

performance results.

7.8.1 Evaluation of ITS

How ITS Works: Figure 7.7 shows the effect of FR-FCFS, RR FR-FCFS, and

ITS on four representative workloads. The x-axis shows MPKI1 −MPKI2, and

the y-axis shows BW1 − BW2.

In BLK MUM which is shown in A , since MUM has higherMPKI than BLK, and BLK

attains higher BW than MUM, all the points inside A are in the second quadrant.

ITS prioritizes BLK due to its relatively lower MPKI, thus, the difference between

BW attained by BLK and MUM increases with respect to FR-FCFS. This work

observes an interesting case in RR. Since BLK already attains higher bandwidth

with FR-FCFS, we would expect MUM to find more opportunity to utilize DRAM

with RR. However, the RR mechanism employed by Jog et al. [28] preserves row-

locality while scheduling requests. Therefore, this mechanism, although expected

to give equal share of bandwidth to both applications, provides more opportunity

to the application with higher row-locality for scheduling its requests. In other

words, RR provides the applications with an equal opportunity to activate rows,

resulting in the application with higher row-locality to schedule more requests due

to their differences between the number of requests served per active row-buffer.

143

The exact phenomenon is observed in A with RR, where BLK has 4× higher row-

locality than that of MUM, leading to RR giving BLK even higher opportunity to

schedule its requests compared to FR-FCFS. However, ITS unilaterally prefers

BLK due to its consistently lower MPKI.

In BLK LUH, which is shown in B , we observe very similar trends as in A .

However, as opposed to A , RR reduces the gap between BW achieved by LUH and

BLK, since both applications have similar row-localities. In NW SCP which is shown

in C , since NW has higher MPKI than SCP, and SCP attains higher bandwidth

than NW, all the points inside C are in the fourth quadrant. ITS prioritizes SCP

due to its relatively lower MPKI, thus, SCP achieves even more BW compared to

FR-FCFS. We observe almost the same behavior with QTC SCP as well. Note that,

MPKI values of the applications in the workload do not change across schemes, as

it is an application property and each application has its own L2 cache partition.

ITS Performance: Figure 7.8 shows the instruction throughput of RR, WEIS,

ITS, and Prior App Low MPKI normalized with respect to FR-FCFS, using 25

representative workloads that span across MPKI-based workload classes, chosen

from the pool of 100 workloads. We also show the average IT of these workloads

including the individual GM for each workload class. As expected, in BLK MUM

previously shown in A (Figure 7.7), IT improves by 15% with RR, and by 30% with

ITS. We observe that, employing WEIS provides improvements over FR-FCFS,

but results in slightly lower average performance than RR. It is expected, because

WEIS is not targeted to optimize IT . With ITS, we observe 34% and 8% average

IT improvements over FR-FCFS and RR, respectively, across 25 workloads. These

numbers are 49% and 7% for Class-A-MPKI applications, because the workloads

that have applications with strikingly different MPKIs are more likely to benefit

with ITS over FR-FCFS. Class-B-MPKI and Class-C-MPKI also gain moderate

performance improvements, by 7% and 12% over FR-FCFS, respectively. As we

have shown in Figure 7.7, MPKI does not change significantly. Thus, dynamism

of ITS does not provide extra IT benefits over Prior App Low MPKI.

144

BLK_MM
BLK_NW

NW_FWT

BLK_3DS
3DS_RED

BLK_MM

BLK_NW

NW_FWT

BLK_3DS

3DS_RED

BLK_MM

BLK_NW

NW_FWT

BLK_3DS

3DS_RED

-10%

-5%

0%

5%

10%

15%

20%

-0.4 -0.2 0 0.2 0.4 0.6 0.8

P
e
rf

o
rm

a
n

c
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
F

R
-F

C
F

S

Bandwidth Utilization (BW/C) Difference between Applications

FR-FCFS RR WEIS

E

F

D

Figure 7.9: Effect of FR-FCFS, RR, and WEIS on WS and BW1 − BW2.

0.8

0.9

1

1.1

1.2

1.3

1.4

B
L

K
_

H
S

B
L

K
_

M
M

B
L

K
_

N
W

B
L

K
_

Q
T

C

H
IS

T
O

_
G

U
P

S

H
S

_
G

U
P

S

M
M

_
G

U
P

S

M
U

M
_

H
S

M
U

M
_

M
M

N
W

_
G

U
P

S

N
W

_
R

E
D

Q
T

C
_

G
U

P
S

B
L

K
_

S
R

A
D

N
W

_
F

W
T

Q
T

C
_

F
W

T

S
C

A
N

_
N

W

S
C

A
N

_
Q

T
C

B
L

K
_

3
D

S

L
U

H
_

T
R

D

Q
T

C
_

T
R

D

T
R

D
_

N
W

L
U

H
_

R
E

D

M
U

M
_

R
E

D

3
D

S
_
R

E
D

M
U

M
_

F
W

T

O
v

e
ra

ll

C
la

s
s
_

A
_
B

W

C
la

s
s

_
B

_
B

W

C
la

s
s

_
C

_
B

W

Class_A_BW Class_B_BW Class_C_BW Geomean

N
o

rm
a
li
z
e
d

 W
e
ig

h
te

d

S
p

e
e
d

u
p

RR ITS WEIS Prior App (Low BW)

Figure 7.10: WS results normalized with respect to FR-FCFS for 25 representative
workloads.

7.8.2 Evaluation of WEIS

How WEIS Works: Figure 7.9 shows the effect of FR-FCFS, RR, and ITS on

five representative workloads. The x-axis shows BW1−BW2, and the y-axis shows

the normalized WS improvement over FR-FCFS. WEIS attempts to reduce the

difference between BW attained by the applications, and therefore in the figure,

we expect WEIS to push the workloads towards the y-axis. Also, as it is expected

to improve WS, it also pushes the workload upwards. In NW FWT which is shown in

D , BW of FWT is higher than NW. WEIS prefers NW as it attained lower BW , which

pushes this workloads upwards and towards y-axis. The RR mechanism degrades

WS for NW FWT because of similar reasons related to row-locality as pointed earlier

(FWT has 13× higher row-locality than NW).

In BLK 3DS (E) and BLK MM (F) both RR and WEIS push the workload towards

y-axis along with improving WS. We observe that the trends in both RR and

WEIS are similar in 3DS RED and NW FWT, and also in BLK NW and BLK 3DS.

WEIS Performance: Figure 7.10 shows WS of RR, WEIS, ITS, and

Prior App Low BW normalized with respect to FR-FCFS, using 25

representative workloads that span across BW-based workload classes, chosen

from the pool of 100 workloads. We also show the average WS of these

145

0.9

1

1.1

1.2

1.3

1.4

Class A Class B Class C Overall

N
o

rm
a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

T

h
ro

u
g

h
p

u
t

RR WEIS ITS Prior App (Low MPKI)

(a) Normalized IT.

0.9

0.95

1

1.05

1.1

Class A Class B Class C Overall

N
o

rm
a

li
z
e

d

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 RR ITS WEIS Prior App (Low BW)

(b) Normalized WS.

Figure 7.11: Summary IT and WS results for 100 workloads, normalized with
respect to FR-FCFS.

workloads including the individual GM for each workload class. We observe that,

employing ITS provides improvements over FR-FCFS, but results in lower

average performance than RR. This is expected, because ITS is not targeted to

optimize WS. With WEIS, we observe 10% and 5% average WS improvements

over FR-FCFS and RR, respectively, across 25 workloads. These numbers are

14% and 3% for Class-A-BW applications, because the workloads that have

applications with strikingly different BW are more likely to benefit with WEIS,

compared to FR-FCFS. Class-B-BW and Class-C-BW also gain performance

improvements, by 5% and 8% over FR-FCFS, respectively. In Class-C-BW

workloads, WEIS performs much better than Prior App Low BW. This is

because the average BW difference is not significant, and it is more likely that

the same application does not achieve consistently lower bandwidth than the

other application. Therefore, prioritizing an application unilaterally like

Prior App Low BW does may lead to sub-optimal performance.

7.8.3 Performance Summary

We evaluate ITS and WEIS for 100 workloads and we observe in Figure 7.11 that

the conclusions from previous discussions hold true for a wide range of workloads.

In Figure 7.12, we report Harmonic Speedup (HS) for 100 workloads in order

to gauge WEIS with a balanced metric for performance as well as fairness [45].

Across all classes of workloads, we consistently observe better HS compared of

FR-FCFS and RR. On average, RR and WEIS achieve 4% and 8% higher HS over

FR-FCFS.

146

0.8

0.9

1

1.1

1.2

Class A Class B Class C

BW Classes Overall
N

o
rm

a
li

z
e

d

H
a

rm
o

n
ic

 S
p

e
e

d
u

p RR WEIS

Figure 7.12: HS results for 100 workloads normalized with respect to FR-FCFS.

7.8.4 Scalability Analysis

Application Scalability: This work evaluates ITS and WEIS in the scenario

when three applications are executed concurrently. This work observes that the

impact of the schemes is even higher, as there is significant increase in memory

interference among three applications. Figure 7.14 shows normalized IT and WS

improvements with ITS and WEIS, respectively for 10 workloads. This work

observes significant IT improvement (27%) in GUPS SCP HISTO, as ITS prefers

HISTO because of its significantly lower MPKI than other applications in the

workload. For WEIS, this work also observes similar trends as discussed before.

Core Partitioning: This work evaluates three core partitioning configurations:

(10,20), (20,10), and the baseline (15,15). Figure 7.13 shows normalized IT

improvements of ITS for JPEG GUPS, over FR-FCFS when it is used in their

respective configurations. This work observes in all three configurations that the

improvements in JPEG GUPS are significant. However, if fewer cores (ITS (20,10))

are assigned to GUPS, which is a very high memory demanding application, the

negative interference effect on JPEG is reduced.

Therefore, the relative IT improvements in ITS (20,10) is lower than ITS (15,

15). In the case of ITS (10, 20), the alone IPC of JPEG is lower as JPEG is

assigned to fewer cores. This leads to lower scope in JPEG IPC improvements

compared to the baseline ITS (15, 15) case. These results indicate that although

core partitioning mechanisms affect the magnitude of interference, the problem

still remains significant.

147

0.8

1

1.2

1.4

1.6

1.8

JPEG_GUPS

N
o

rm
a

li
z
e

d
 I

T ITS (10,20)

ITS (15,15)

ITS (20,10)

Figure 7.13: Core partitioning results.

0.9

1

1.1

1.2

1.3

N
o

rm
a

li
z
e

d
 I
n

s
tr

u
c

ti
o

n

T
h

ro
u

g
h

p
u

t

(a) Evaluation of ITS.

0.95

1

1.05

1.1

N
o

rm
a
li

z
e
d

 W
e
ig

h
te

d

S
p

e
e
d

u
p

(b) Evaluation of WEIS.

Figure 7.14: Evaluation of ITS and WEIS with three GPU applications.

7.9 Related Work

This work analyzes the interactions of multiple applications in GPU memory

system, via both experiments as well as a mathematical model.

GPU and SoC Memory Scheduling: Prior work on memory scheduling for

GPUs has dealt with a single application context only. Yuan et al. [49] proposed

an arbitration mechanism in NoC to restore the lost row-buffer locality to enable

a simple in-order DRAM memory scheduler. Lakshminarayana et al. [50] explored

a DRAM scheduling policy that essentially chooses between Shortest Job First

(SJF) and FR-FCFS [33,34]. Chatterjee et al. [83] proposed a warp-aware memory

scheduling mechanism that reduces the DRAM latency divergence in a warp by

avoiding the interleaved servicing of memory requests from different warps. The

benefits from the above schedulers are orthogonal to the schemes and some of these

mechanisms can be adapted as secondary arbitration criteria between requests

for the currently prioritized application in the proposed scheduler. In the SoC

space, Jeong et al. [117] proposed allowing the GPU to consume only the required

bandwidth to maintain a certain real-time QoS-level for graphics applications.

148

Ausavarungnirun et al. [51] proposed a memory scheduling technique for CPU-

GPU architectures. However, the overriding motivations for such prior work is

to obtain the lowest possible latency for CPU requests without degrading the

bandwidth utilization of the channel.

CPU Memory Schedulers: The impact of memory scheduling on multicore

CPU systems has been a topic of significant interest in recent

years [37, 45–47, 94, 118]. Ebrahimi et al. [93] proposed parallel application

memory scheduling, where they explicitly managed inter-thread memory

interference for improving performance. The Thread Cluster Memory Scheduler

(TCM) [45] is particularly relevant because not only did it advocate prioritizing

latency-sensitive applications, it identified that the main source of unfairness is

the interference between different bandwidth intensive applications. To improve

performance and fairness, TCM ranks the bandwidth-intensive threads based on

their relative bank-level parallelism and row-buffer locality, and periodically

shuffles the priority of the threads. The TCM technique is an advancement over

the ATLAS [46], PARBS [37], and STFM [47] mechanisms that do not

distinguish between bandwidth-intensive threads while improving performance

and fairness.

This dissertation work shares the same objectives as the CPU schedulers like

TCM, but the motivations and considerations behind the proposed schedulers, as

well as the implementation and derived insight are significantly different. First,

prior CPU memory schedulers concentrated only on single-threaded or modestly

multi-threaded/multi-programmed workloads, while this dissertation work

demonstrates the benefits of the proposed schemes for multiple,

massively-threaded applications running on a fundamentally different

architecture (SIMT). Second, the analysis in Sec. 7.3 establishes a different set of

metrics from TCM, viz. MPKI and attained bandwidth, to guide the memory

scheduling at the application level (as opposed to single threads as in TCM).

This is partly due to the use of TLP in GPU programs to hide memory latency

as opposed to ILP and MLP in CPUs. Third, in contrast to prior works, this

dissertation work demonstrates that the same scheduler can not achieve the best

of both aggregate throughput and fairness. Consequently, a practical

149

implementation can use runtime settings to choose between high throughput and

fairness-optimized scheduling based on application domains (e.g., high aggregate

throughput in HPC applications vs QoS guarantees in virtualized GPUs). The

final differentiator between TCM and the proposed mechanisms is complexity.

TCM needs to track each thread’s MLP, bank-level parallelism (BLP), and

row-buffer locality (RBL), and requires an expensive insertion sort-like procedure

to shuffle the ranks of high-MLP applications. In contrast, this dissertation work

only require the L2 MPKI and currently sustained bandwidth information for

each application, and a few simple comparisons in each time quanta. Scaling

TCM’s policies for the many thousands of concurrent threads in a GPU would be

challenging in GDDR5 MC that has to support multi-gigabit command issue

rates.

Concurrent execution of multiple applications on GPUs: Adriaens et

al. [108] proposed spatial partitioning of SM resources across concurrent

applications. They presented a variety of heuristics for dividing the SM resources

across applications. Pai et al. [105] proposed elastic kernels that allow a

fine-grained control over their resource usage. None of these works addressed the

problem of contention in the memory system. Moreover, this dissertation work

shows that memory interference problem remains significant regardless of

SM-partitioning mechanisms, and this dissertation work believes the proposed

schemes are complementary to core resource partitioning techniques. Gregg et

al. [109] presented KernelMerge, a runtime framework to understand and

investigate concurrency issues for OpenCL applications. Wang et al. [110]

proposed context funneling, which allows kernels from different programs to

execute concurrently. This dissertation work presents a new GCA framework

that consists of large number of CUDA workloads and also provides flexibility to

add new CUDA codes in the framework without much effort.

7.10 Chapter Summary

This work presents an in-depth analysis of GPU memory system in a

multiple-application domain. This work shows that co-scheduled applications can

150

significantly interfere in the GPU memory system leading to significant loss in

overall performance. To address this problem, an analytical model is developed

that indicates that L2-MPKI and attained bandwidth are the two knobs that can

be used to drive memory scheduling decisions for achieving better performance.

Chapter 8

Conclusions and Future Research

Directions

GPU-based computing is expected to grow in coming years in many areas of science

and engineering as well as in consumer applications to meet the computing demand.

Furthermore as heterogeneous multi-cores consisting of CPUs, GPGPUs and other

accelerators are projected to be one of the most cost-effective computing paradigms

and as all major chip vendors are aligning their investment along this direction,

hardware innovations for GPGPUs become critical for future computing systems.

8.1 Summary of Dissertation Contributions

The research proposed in this dissertation has four major contributions.

First, a new memory-aware warp scheduling policy is developed to enhance

GPGPU performance by overcoming the resource under-utilization problem

caused by long latency memory operations. The key idea is to take advantage of

characteristics of cooperative thread arrays (CTAs) to concurrently improve

cache hit rate, latency hiding capability, and DRAM bank parallelism in

GPGPUs. The proposed memory-aware warp scheduling policy achieves these

benefits by 1) selecting and prioritizing a group of CTAs scheduled on a core,

152

thereby improving both L1 cache hit rates and latency tolerance, 2) scheduling

CTA groups that likely do not access the same memory banks on different cores,

thereby improving DRAM bank parallelism, and 3) employing opportunistic

memory-side prefetching to take advantage of already-open DRAM rows, thereby

improving both DRAM row locality and cache hit rates.

Second, a prefetch-aware warp scheduling technique is developed, which has the

capability to orchestrate with prefetching decisions. The main idea is to form

groups of thread warps such that those that have good spatial locality are in

separate groups. Since warps in different thread groups are scheduled at separate

times, not immediately after each other, this scheduling policy enables the

prefetcher to have more time to hide the memory latency. This scheduling policy

also better exploits memory bank-level parallelism, even when employed without

prefetching, as threads in the same group are more likely to spread their memory

requests across memory banks. Experimental evaluations show that the proposed

prefetch-aware warp scheduling policy improves performance compared to two

state-of-the-art scheduling policies, when employed with or without a hardware

prefetcher that is based on spatial locality detection. This work shows that

orchestrating thread scheduling and data prefetching decisions in a GPGPU

architecture via prefetch-aware warp scheduling can provide a promising way to

improve memory latency tolerance in GPGPU architectures.

Third, a new GPU memory scheduler is developed, called CLAMS. The unique

feature of this scheduler compared to all other existing techniques is that it uses

both criticality and locality of pending memory requests to service the next

request, while prior schemes use only the locality metric. The rationale for using

this dual parameter based scheduling is that not all memory requests for an

application exhibit similar latency criticality, and servicing them ahead of the

other requests improves application performance. The evaluations show that

CLAMS can provide significant performance benefits for the class of applications

that exhibit high variance in criticality across cores, without hurting the

performance of other applications. Considering that GPUs applications are more

latency tolerant than their CPU counterparts due to high TLP, enhancing

performance benefits through memory scheduling is non-trivial. This work shows

153

that considering core criticality is a promising way of improving GPU

performance and can be exploited in GPU and CPU-GPU memory systems.

Lastly, an in-depth analysis of GPU memory system in a multiple-application

domain is presented. It is shown that co-scheduled applications can significantly

interfere in the GPU memory system leading to significant loss in overall

performance. To address this problem, an analytical model is developed that

indicates that L2-MPKI and attained bandwidth are the two knobs that can be

used to drive memory scheduling decisions for achieving better performance.

8.2 Future Research Directions

I believe in the concept of ubiquitous computing and envision that all types of

computing systems will take advantage of GPUs by considering them as an

important class of computing citizens instead of mere co-processors. In this

context, there are many research opportunities for inventing novel architectures,

scheduling mechanisms, hardware/software interfaces as well as investigating

system and security issues related to GPU-based systems. Some of the research

directions are:

(I) Futuristic GPU Computing. In order to facilitate efficient GPU

computing, the community is exploring features such as 1) dynamic parallelism,

where a GPU can generate new work for itself; 2) Hyper-Q, where multiple CPUs

can launch computations on a GPU; and 3) hybrid architectures consisting of

CPUs and GPUs on the same die. However, many of these concepts are still in

their infancy, and it is interesting to have an in-depth understanding of the

design space for each of these avenues and their combinations. It is also

interesting to develop new execution models and architectures involving multiple

GPUs and other kinds of accelerators. In future, these architectures will also

concurrently execute multiple applications, potentially originating from different

users. In this context of multi-application execution, there are a lot of research

opportunities on 1) designing an application-aware on-chip network fabric and

memory hierarchy; 2) developing shared resource management, scheduling and

154

concurrency management techniques; and 3) designing light-weight and efficient

hardware and software support that deals with virtualization, security, and other

system issues. As a part of of long-term research, it is also interesting to extend

these techniques to situations where applications with different latency and

bandwidth demands are executed concurrently on mobile and wearable devices

under stricter energy and power constraints.

(II) Near-Data Computing in GPU-based systems. Near-data computing

architectures are built on the notion that moving computation near the data is

far more beneficial in terms of performance and energy efficiency than moving

data near the computation. In the context of data-intensive computing, such

architectures can be useful as they can significantly cut down the movement of

data between memory/storage and computation units, and therefore, can

conserve precious bandwidth. However, there are many questions that need to be

answered before realizing such architectures. Some research questions that are

worth investigating are: 1) Which parts of the CUDA/OpenCL application code

triggers significant amounts of data movement?; 2) Between which components

(e.g., between CPUs and GPUs, or between multiple GPUs, or between different

levels of the CPU/GPU memory hierarchy) is the data movement the most

expensive in terms of performance and energy; 3) Given the cost and the amount

of data movement, between which components should the movement of data be

minimized?; 4) Which parts of the computation can be computed near

memory/storage; 5) What architectural enhancements are required to perform

the computation near memory/storage?; and 6) How one can leverage my past

insights from my dissertation work to design efficient techniques to co-schedule

data and computation for minimizing the data movement? It is also interesting

to explore the opportunities for employing approximate computing and

leveraging different emerging memory/storage technologies in conjunction with

near-data computing.

(III) Commonality-Aware GPU Computing. There is an increasing trend

to co-host multiple applications or games from different users on the same GPU

cloud platform. For example, many service providers have started to use cloud

gaming technology (e.g., NVIDIA GRID) as the foundation for their on-demand

155

Gaming as a Service (GaaS) solution. In this context, a multi-player gaming

environment might require rendering of similar scenes/objects separately for

every player. Such redundant rendering computations are not only costly from

performance and energy perspective but also can consume significant GPU

memory space. To this end, it is interesting to pursue at least two major aspects

towards designing commonality-aware GPU systems. The first aspect is to design

mechanisms for detecting computation and data commonality across concurrent

applications. The second aspect is to design scheduling mechanisms that can

effectively co-schedule applications possessing high-commonality on the same

GPU hardware. In my opinion, both aspects should be pursued synergistically

for enabling inter-application optimizations for improving the overall

performance and energy efficiency. As a part of long-term research, it is also

interesting to address the security vulnerabilities that might arise because of

commonality-aware GPU computing.

Bibliography

[1] D. Kirk and W. W. Hwu, Programming Massively Parallel Processors.
Morgan Kaufmann, 2010.

[2] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs
and the future of parallel computing,” Micro, IEEE, vol. 31, no. 5, pp. 7–17,
2011.

[3] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA Code Generation for Affine Programs,” in CC/ETAPS 2010.

[4] NVIDIA, “Fermi: NVIDIA’s Next Generation CUDA Compute
Architecture,” 2011.

[5] ATI, “Radeon gpus,” http://www.amd.com/us/products/desktop/graphics/amd-
radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx.

[6] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, O. Mutlu, C. Das,
M. T. Kandemir, T. Mowry, and R. Ausavarungnirun, “Enabling Efficient
Data Compression in GPUs,” in ISCA, 2015.

[7] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array Aware
Scheduling Techniques for Improving GPGPU Performance,” in ASPLOS,
2013.

[8] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and
Y. N. Patt, “Improving GPU Performance via Large Warps and Two-level
Warp Scheduling,” in MICRO, 2011.

[9] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More Nor
Less: Optimizing Thread-level Parallelism for GPGPUs,” in PACT, 2013.

157

[10] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T.
Kandemir, G. H. Loh, O. Mutlu, and C. R. Das, “Managing GPU
Concurrency in Heterogeneous Architectures,” in MICRO, 2014.

[11] V. Kindratenko and P. Trancoso, “Trends in high-performance computing,”
Computing in Science & Engineering, vol. 13, no. 3, pp. 92–95, 2011.

[12] nvidia, “Gpu supercomputers show exponential growth in top500
list,” http://blogs.nvidia.com/blog/2011/11/14/gpu-supercomputers-show-
exponential-growth-in-top500-list/.

[13] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical image
processing on the gpu-past, present and future,” Medical Image Analysis,
2013.

[14] G. Pratx and L. Xing, “Gpu computing in medical physics: A review,”
Medical physics, vol. 38, p. 2685, 2011.

[15] S. S. Stone, J. P. Haldar, S. C. Tsao, W. mei W. Hwu, B. P. Sutton, and Z.-P.
Liang, “Accelerating advanced MRI reconstructions on GPUs,” J. Parallel
Distrib. Comput., vol. 68, no. 10, pp. 1307–1318, 2008.

[16] I. Schmerken, “Wall street accelerates options analysis with gpu technology,”
2008-11-07)[2009-11-02]. http://wallstreetandtech. com/technology-risk-
management/showArticle. jhtml, 2009.

[17] NVIDIA, “Jp morgan speeds risk calculations with nvidia gpus,” 2011.

[18] nvidia, “Computational finance,”

[19] nvidia, “Researchers deploy gpus to build world’s largest artificial neural
network,” http://nvidianews.nvidia.com/Releases/Researchers-Deploy-
GPUs-to-Build-World-s-Largest-Artificial-Neural-Network-9c7.aspx.

[20] nvidia, “How to harness big data for improving public health,”
http://www.govhealthit.com/news/how-harness-big-data-improving-public-
health.

[21] P. Hofstee, “The big deal about big data - a perspective from ibm research,”
http://www.nas-conference.org/NAS-2013/invited.html.

[22] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110,” 2012.

[23] NVIDIA, “CUDA C/C++ SDK Code Samples,” 2011.

[24] K. O. W. Group et al., “The opencl specification,” A. Munshi, Ed, 2008.

158

[25] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A
Unified Graphics and Computing Architecture,” Micro, IEEE, vol. 28, no. 2,
2008.

[26] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU Memory
Bandwidth via Warp Specialization,” in SC, 2011.

[27] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,” in
ISCA, 2013.

[28] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir,
and C. R. Das, “Application-aware Memory System for Fair and Efficient
Execution of Concurrent GPGPU Applications,” in GPGPU, 2014.

[29] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory
System for Multi-Application Execution,” in MEMSYS, 2015.

[30] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-chip
networks for manycore accelerators,” in Proceedings of the 2010 43rd Annual
IEEE/ACM international symposium on Microarchitecture, pp. 421–432,
IEEE Computer Society, 2010.

[31] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[32] S. Rixner, “Memory Controller Optimizations for Web Servers,” in MICRO,
2004.

[33] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM that
Maximizes Throughput by Allowing Memory Requests and Commands to be
Issued Out of Order,” Sept. 1997.

[34] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
Access Scheduling,” in ISCA, 2000.

[35] J. Lee, N. Lakshminarayana, H. Kim, and R. Vuduc, “Many-Thread Aware
Prefetching Mechanisms for GPGPU Applications,” in MICRO, 2010.

[36] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and Improving the
Use of Demand-fetched Caches in GPUs,” in ICS, 2012.

[37] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing Both Performance and Fairness of Shared DRAM Systems,” in
ISCA, 2008.

159

[38] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-Aware Warp
Scheduling,” in MICRO, 2013.

[39] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache Revive: Architecting Volatile STT-RAM Caches for Enhanced
Performance in CMPs,” in DAC, 2012.

[40] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM
Controllers,” 2008.

[41] nvidia, “Nvidia gpus,” http://www.nvidia.com/content/global/global.php.

[42] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in IISWC,
2009.

[43] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssari,
G. D. Liu, and W. W. Hwu, “Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing,” Tech. Rep. IMPACT-
12-01, University of Illinois, at Urbana-Champaign, March 2012.

[44] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
MapReduce Framework on Graphics Processors,” in PACT, 2008.

[45] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

[46] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and
High-performance Scheduling Algorithm for Multiple Memory Controllers,”
in HPCA, 2010.

[47] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling
for Chip Multiprocessors,” in MICRO, 2007.

[48] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient Mechanisms for Managing
Thread Context in Throughput Processors,” in ISCA, 2011.

[49] G. Yuan, A. Bakhoda, and T. Aamodt, “Complexity Effective Memory
Access Scheduling for Many-core Accelerator Architectures,” in MICRO,
2009.

[50] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin, “DRAM Scheduling
Policy for GPGPU Architectures Based on a Potential Function,” Computer
Architecture Letters, 2012.

160

[51] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged Memory Scheduling: Achieving High Prformance and
Scalability in Heterogeneous Systems,” in ISCA, 2012.

[52] S. Hassan, D. Choudhary, M. Rasquinha, and S. Yalamanchili, “Regulating
Locality vs. Parallelism Tradeoffs in Multiple Memory Controller
Environments,” in PACT, 2011.

[53] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez, “
Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems
,” in HPCA, 2012.

[54] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama, “Impulse: building a smarter memory controller,” in High-
Performance Computer Architecture, 1999. Proceedings. Fifth International
Symposium On, 1999.

[55] D. Joseph and D. Grunwald, “Prefetching Using Markov Predictors,” in
ISCA, 1997.

[56] S. Srinath, O. Mutlu, H. Kim, and Y. Patt, “Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers,” in HPCA, 2007.

[57] K. Nesbit and J. Smith, “Data Cache Prefetching Using a Global History
Buffer,” in HPCA, 2004.

[58] J. Doweck, “Inside Intel Core Microarchitecture and Smart Memory Access,”
tech. rep., Intel Corporation, 2006.

[59] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of
Multiple Prefetchers in Multi-core Systems,” in MICRO, 2009.

[60] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy, “POWER4
System Microarchitecture,” IBM J. Res. Dev., Jan. 2002.

[61] T. L. Johnson, M. C. Merten, and W. W. Hwu, “Run-Time Spatial Locality
Detection and Optimization,” in MICRO, 1997.

[62] J. D. Gindele, “Buffer Block Prefetching Method,” IBM Technical Disclosure
Bulletin, vol. 20, July 1977.

[63] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,” in ISCA,
1990.

161

[64] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt, “Hardware
Transactional Memory for GPU Architectures,” in MICRO, 2011.

[65] Synopsys Inc., Design Compiler.

[66] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-
Aware Cache Replacement,” ISCA, 2006.

[67] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in MICRO, 2012.

[68] J. Lee, H. Kim, and R. Vuduc, “When Prefetching Works, When It Doesn’t,
and Why,” in TACO, 2012.

[69] D. Chiou, S. Devadas, J. Jacobs, P. Jain, V. Lee, E. Peserico, P. Portante,
L. Rudolph, G. E. Suh, and D. Willenson, “Scheduler-Based Prefetching for
Multilevel Memories,” Tech. Rep. Memo 444, MIT, July 2001.

[70] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for Bandwidth-efficient
Prefetching of Linked Data Structures in Hybrid Prefetching Systems,” in
HPCA, 2009.

[71] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory
Bank-level Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[72] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM
Controllers,” in MICRO, 2008.

[73] T. Moscibroda and O. Mutlu, “Distributed Order Scheduling and Its
Application to Multi-core Dram Controllers,” in PODC, 2008.

[74] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU,” in ISCA, 2010.

[75] M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,
“Redefining the Role of the CPU in the Era of CPU-GPU Integration,”
IEEE Micro, pp. 4–16, 2012.

[76] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A
unified graphics and computing architecture,” Micro, IEEE, vol. 28, no. 2,
pp. 39–55, 2008.

[77] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “APOGEE: Adaptive
Prefetching on GPUs for Energy Efficiency,” in PACT, 2013.

162

[78] S.-Y. Lee and C.-J. Wu, “Characterizing GPU Latency Hiding Ability,” in
ISPASS, 2014.

[79] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in ISCA, 2013.

[80] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for
Address Translation on GPUs: Designing Memory Management Units for
CPU/GPUs with Unified Address Spaces,” in ASPLOS, 2014.

[81] M. Abdel-Majeed, D. Wong, and M. Annavaram, “Warped gates: gating
aware scheduling and power gating for GPGPUs,” in MICRO, 2013.

[82] M. Abdel-Majeed and M. Annavaram, “Warped register file: A power
efficient register file for GPGPUs,” in HPCA, 2013.

[83] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and
R. Balasubramonian, “Managing DRAM Latency Divergence in Irregular
GPGPU Applications,” in SC, 2014.

[84] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser,
“Many-core vs. many-thread machines: Stay away from the valley,” IEEE
Comput. Archit. Lett.

[85] N. Goswami, B. Cao, and T. Li, “Power-performance co-optimization of
throughput core architecture using resistive memory,” in HPCA, 2013.

[86] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A Locality-Aware Memory
Hierarchy for Energy-Efficient GPU Architectures,” in MICRO, 2013.

[87] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU
workloads: Characterization methodology, analysis and microarchitecture
evaluation implications,” in IISWC, 2010.

[88] J. Wang and Y. Sudhakar, “Characterization and analysis of dynamic
parallelism in unstructured gpu applications,” in IISWC, 2014.

[89] S.-Y. Lee and C.-J. Wu, “Caws: Criticality-aware warp scheduling for gpgpu
workloads,” in PACT, 2014.

[90] I. Karlin, A. Bhatele, J. Keasler, B. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still,
“Exploring traditional and emerging parallel programming models using a
proxy application,” in IPDPS, 2013.

163

[91] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing
(shoc) benchmark suite,” in GPGPU, 2010.

[92] Z. Guz, O. Itzhak, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser,
“Threads vs. caches: Modeling the behavior of parallel workloads,” in ICCD,
2010.

[93] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu,
and Y. N. Patt, “Parallel application memory scheduling,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, 2011.

[94] S. Ghose, H. Lee, and J. F. Mart́ınez, “Improving memory scheduling via
processor-side load criticality information,” in ISCA, 2013.

[95] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The
blacklisting memory scheduler: Achieving high performance and fairness at
low cost,” in ICCD, 2014.

[96] S. T. Srinivasan and A. R. Lebeck, “Load latency tolerance in dynamically
scheduled processors,” in MICRO, 1998.

[97] S. Srinivasan, R.-C. Ju, A. Lebeck, and C. Wilkerson, “Locality vs.
criticality,” in ISCA, 2001.

[98] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware memory
controller for dynamically balancing GPU and CPU bandwidth use in an
MPSoC,” in DAC, 2012.

[99] S. Subramaniam, A. Bracy, P. Wang, and G. Loh, “Criticality-based
optimizations for efficient load processing,” in HPCA, 2009.

[100] B. Fields, S. Rubin, and R. Bod́ık, “Focusing processor policies via critical-
path prediction,” in ISCA, 2001.

[101] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and A. González,
“Meeting points: using thread criticality to adapt multicore hardware to
parallel regions,” in PACT, 2008.

[102] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors
for dynamic performance, power, and resource management in chip
multiprocessors,” in ISCA, 2009.

[103] “NVIDIA GTX 780-Ti.” http://www.nvidia.com/gtx-700-graphics-

cards/gtx-780ti/.

164

[104] “AMD Radeon R9 290X.” http://www.amd.com/us/press-releases/

Pages/amd-radeon-r9-290x-2013oct24.aspx.

[105] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving GPGPU
concurrency with elastic kernels,” in ASPLOS, 2013.

[106] “NVIDIA GRID.” http://www.nvidia.com/object/grid-boards.html.

[107] Hynix., “Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0.”

[108] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte, “The case for GPGPU
spatial multitasking,” in HPCA, 2012.

[109] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained resource
sharing for concurrent GPGPU kernels,” in HotPar, 2012.

[110] L. Wang, M. Huang, and T. El-Ghazawi, “Exploiting concurrent kernel
execution on graphic processing units,” in HPCS, 2011.

[111] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and A. R.
Lebeck, “Rhythm: Harnessing data parallel hardware for server workloads,”
SIGARCH Comput. Archit. News.

[112] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aérgia: exploiting
packet latency slack in on-chip networks,” in ACM SIGARCH Computer
Architecture News, ACM, 2010.

[113] X. Lin and R. Balasubramonian, “Refining the utility metric for utility-based
cache partitioning,” Proc. WDDD, 2011.

[114] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches,”
in Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, IEEE Computer Society, 2006.

[115] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “Mise:
Providing performance predictability and improving fairness in shared main
memory systems,” in Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), HPCA
’13, 2013.

[116] GPGPU-Sim v3.2.1, “GTX 480 Configuration.”

[117] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware memory
controller for dynamically balancing GPU and CPU bandwidth use in an
MPSoC,” in Proceedings of the 49th Annual Design Automation Conference,
pp. 850–855, ACM, 2012.

165

[118] “3rd JILP Workshop on Computer Architecture Competitions (Memory
Scheduling Championship).” http://www.cs.utah.edu/~rajeev/jwac12/.

Vita

Adwait Jog

Adwait Jog is a Ph.D. Candidate in the Department of Computer Science
and Engineering at Penn State University. His research interests lie in the broad
areas of computer architecture and systems, with an emphasis on designing high-
performance and energy-efficient GPU-based platforms. He has received the Best
Graduate Research Assistant Award at Penn State and was selected as one of
25 finalists for an NVIDIA Ph.D. Fellowship. His research has been published in
major computer architecture conferences (ASPLOS, ISCA, MICRO, PACT). He
has served as a technical reviewer for many journals and conferences including
IEEE CAL, IEEE TC, ACM TECS, ACM TODAES, DAC, ICCD, ISCA, HPCA,
ASPLOS, and MICRO. Adwait worked as an intern with NVIDIA Research in the
summer of 2013, and with Intel in the summers of 2012 and 2011. Before joining
Penn State with College of Engineering Fellowship, he completed his undergraduate
studies at NIT Rourkela, India in 2009.

