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Summary

The design and analysis of transport protocols for reliable communications constitutes
the topic of this dissertation. These transport protocols guarantee the sequenced and
complete delivery of user data over networks which may lose, duplicate and reorder
packets. Reliable transport services are required by a wide range of applications such as
the World-Wide Web, remote network access, and distributed computing.

The design of these protocols is heavily influenced by the parameters of the underlying
network infrastructure and by the assumptions about the host computers and applica-
tions. Therefore the recent advances in optical transmission and computer technologies
stimulated the design of several novel transport protocols. Many of the proposed pro-
tocols use similar or at least related techniques. Our goal with this thesis is to improve
the understanding of reliable communications by analyzing the protocols that implement
this service and to contribute to the design of reliable transport protocols.

The basis of our analysis is the formal specification and verification of the protocol mecha-
nisms under investigation. The behavior of the protocol is captured by a state-transition
system and properties are established using assertional reasoning. The framework is
capable to handle unbounded and modulo-N state variables and to capture real-time
aspects of the protocols which is essential for the modeling of realistic systems. Practical
protocols of considerable complexity are specified and verified in the thesis.

One advantage of the formal verification is that it increases our confidence in the cor-
rectness of these protocols. The formalism forces us to clarify all the details of the
working of the protocol and to state explicitly every assumption about the protocol and
its environment. During the process of the verification one also gains insight into the
mechanisms of the protocol. But probably the most important result is that during
the verification we obtain conditions for the correctness of the protocol in the form of
inequalities on some protocol parameters. These conditions allow the comparison of the
different protocol mechanisms and can be used to judge the suitability of a protocol for
a certain environment.

The functionality of transport protocols can be naturally divided into data transfer
and connection management. Data transfer deals with the sequenced delivery of user
data, while connection management is concerned with the orderly setup and release of
connections.
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ii Summary

In the thesis we study three different data transfer protocols. The usage of timestamps
in data transfer protocols is analyzed in detail through the example of the PAWS mech-
anism which was proposed as an extension to TCP. The analysis reveals that the use
of timestamps increases the functionality of the transport protocol by facilitating the
simple measurement of round-trip delays, but it also reduces the maximum allowable
transmission rate as compared to the plain sliding-window protocol.

Another data transfer protocol called SNR is analyzed which is based on the idea of
periodic state exchange. We start from an earlier specification of SNR and compare it to
the plain sliding-window protocol. The analysis reveals that the maximum transmission
speed achievable by that SNR specification is higher than that of the plain sliding-window
protocol, but it comes with a serious limitation. In the SNR specification it is assumed
that no duplicates are generated by either the network or the transport protocol itself.
This assumption may seriously limit the effective performance of the protocol in case of
losses in the network and demonstrates the importance of considering all the assumptions
when selecting a protocol for a certain environment.

The use of timestamps is also investigated in the context of connection management
protocols. The detailed analysis of the connection setup protocol SCMP is presented
which is based on the assumption that clocks of computers can be synchronized relatively
cheaply even in a large network. In our verification it is proven that the safety of
the protocol does not depend of the synchronization assumption, therefore the protocol
can be used safely in cases when there are no absolute guarantees of the clocks being
synchronized. Since practical clock synchronization algorithms give only probabilistic
guarantees, our result provides an important theoretical support of the applicability of
the protocol in practical environments.

Based on earlier work by others, a family of connection management protocols is analyzed
that use a cache to store information needed to shorten the connection setup latency. We
contribute to this work by proposing improvements which allow to reduce considerably
the memory usage of these protocols. Furthermore, we show that the correctness of the
protocol can be assured without assuming an upper bound on the incarnation lifetime,
i.e., the maximum duration of a connection. This result greatly improves the practical
applicability of the protocol.



Samenvatting

Het onderwerp van deze dissertatie is het ontwerpen en analyseren van transportprotocol-
len voor betrouwbare communicatie. Deze transportprotocollen garanderen het volledig
en in de juiste volgorde afleveren van gebruikersdata door netwerken die pakketten kun-
nen verliezen, dupliceren of van volgorde verwisselen. Zulke betrouwbare diensten worden
vereist in een breed scala aan toepassingen zoals het “Worldwide Web”, gedistribueerd
rekenen en toegang tot “remote” netwerken.

Het ontwerpen van deze protocollen is in grote mate afhankelijk van de parameters van
de infrastructuur van het betreffende netwerk en de gemaakte aannames over de aange-
sloten computers en gebruikte toepassingen. Zo heeft de recente vooruitgang in optische
transmissie en computertechnologie geleid tot menige nieuwe transportprotocollen. Vele
van deze maken gebruik van verwante technieken. Het doel van dit proefschrift is het ver-
groten van het inzicht in betrouwbare communicatie door de analyse van de protocollen
en bij te dragen tot het ontwerp van betrouwbare protocollen.

De formele specificatie en verificatie van de onderzochte protocolmechanismen vormt de
basis van de analyse. Het gedrag van het protocol wordt beschreven door een toestandso-
vergangssysteem, waaruit door middel van “assertional reasoning” eigenschappen worden
afgeleid. Binnen dit model kan er met onbegrensde en modulo-N toestandsvariabelen
worden gewerkt en bovendien kunnen “real-time” aspecten van protocollen meegeno-
men worden. Dit is essentieel voor het modelleren van realistische systemen. In dit
proefschrift worden practische protocollen van aanzienlijke complexiteit gespecificeerd
en geverifieerd.

Een voordeel van formele verificatie is dat zij het geloof in de correctheid van de proto-
collen vergroot. Het gebruik van een formalisme dwingt af dat alle details van de werking
van het protocol duidelijk worden en dat alle veronderstellingen betreffende het proto-
col en zijn omgeving expliciet worden gemaakt. Bovendien wordt tijdens de verificatie
het inzicht in het protocol vergroot. Het belangrijkste resultaat is misschien wel dat de
voorwaarden voor de correctheid van het protocol uitgedrukt blijken te kunnen worden
in ongelijkheden in enkele protocolparameters. Deze voorwaarden maken het mogelijk
dat verschillende protocolmechanismes kunnen worden vergeleken en gebruikt kunnen
worden om de geschiktheid van een protocol voor een bepaalde omgeving te beoordelen.

De functionaliteit van transportprotocollen kan op een natuurlijke manier verdeeld wor-
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iv Samenvatting

den in dataoverdracht en connectiemanagement. Dataoverdracht betreft het op volgorde
afleveren van gebruikersdata terwijl connectiemanagement te maken heeft met het or-
dentelijk opzetten en weer afbreken van een verbinding.

Drie dataoverdrachtsprotocollen worden in dit proefschrift bestudeerd. Het gebruik van
“timestamps” in deze protocollen wordt in detail geanalyseerd aan de hand van het
PAWS-mechanisme dat als uitbreiding van TCP is voorgesteld. Uit die analyse komt
naar voren dat het gebruik van timestamps de functionaliteit van het protocol vergroot
door het vergemakkelijken van het meten van een “round-trip” vertraging. De maximaal
toegestane transmissiesnelheid wordt echter verkleind in vergelijking met een gewone
“sliding-window” protocol.

Een ander protocol, SNR, dat op het periodiek uitwisselen van toestanden is gebaseerd,
wordt ook geanalyseerd. Eerst wordt een eerdere versie van SNR bekeken en vergeleken
met een gewoon sliding-window protocol. Het resultaat van de analyse is dat de maxi-
maal haalbare transmissiesnelheid van die SNR-versie hoger is dan het sliding-window
protocol. Dit gaat echter samen met een ernstige beperking. De SNR-specificatie gaat
er namelijk van uit dat noch het netwerk- noch het transportprotocol duplicaten gene-
reert. Deze aanname zou de prestatie van het protocol in het geval van verliezen in het
netwerk ernstig kunnen beperken, wat het belang aantoont van het meenemen van alle
veronderstellingen bij de selectie van een protocol voor een bepaalde omgeving.

Het gebruik van timestamps wordt ook in de context van connectiemanagement protocol-
len onderzocht. Er wordt een gedetailleerde analyse van het opzetten van een verbinding
in SCMP gepresenteerd. Het mechanisme veronderstelt dat de klokken van computers
zelfs in een groot netwerk op een relatief goedkope wijze gesynchroniseerd kunnen wor-
den. De verificatie toont aan dat de betrouwbaarheid van het protocol niet van deze
veronderstelling afhangt en dat het protocol dus ook gebruikt kan worden in omgevin-
gen waarin de mogelijkheid om klokken te synchroniseren niet absoluut gegarandeerd
is. Gegeven het feit dat zo’n garantie praktisch niet te geven is, biedt dit resultaat een
theoretische ondersteuning van het protocol in een praktische omgeving.

Uitgaande van eerder door anderen uitgevoerde analyses, wordt, ten slotte, een familie
van connectiemanagement protocollen onderzocht. Deze familie wordt gekenmerkt door
het feit dat de protocollen gebruik maken van een cache voor de opslag van informatie
om zo de vertraging bij het opzetten van een verbinding te verkorten. De bijdrage van
dit proefschrift hieraan betreft verbeteringen die tot een aanzienlijke vermindering van
het geheugengebruik leiden. Bovendien wordt aangetoond dat de correctheid van het
protocol kan worden gegarandeerd zonder te veronderstellen dat de maximale duur van
een verbinding een bovengrens heeft. Ook dit resultaat vergroot de praktische toepas-
baarheid van het protocol in sterke mate.



Összefoglalás

Ennek a disszertációnak a témáját a megb́ızható kommunikációra használható transz-
port protokollok tervezése és anaĺızise adja. Az ilyen t́ıpusú transzport protokollok
garantálják az adatok sorrendhelyes és hiánytalan átvitelét olyan hálózatok felett is,
amelyek elvesźıthetnek, megduplázhatnak vagy felcserélhetnek csomagokat. Számos al-
kalmazás működésének a feltétele a megb́ızható transzport szolgáltatások megléte. Ilyen
alkalmazás például a World-Wide Web, a távoli hálózati hozzáférés, vagy az elosztott
számı́tógépes rendszerek.

Ezen protokollok tervezését erősen befolyásolják az alapszolgáltatást nyújtó hálózat para-
méterei és a kommunikációban résztvevő számı́tógépekről és alkalmazásokról tett egyéb
feltevések. Ebből kifolyólag az utóbbi időben számos új transzport protokollt fejlesztet-
tek ki az optikai átviteli technológiában és a számı́tógépgyártásban végbement fejlődés
hatására. Ezek az új protokollok több ponton mutatnak hasonlóságot illetve használnak
fel közös éṕıtőelemeket. Ezzel a disszertációval az a célom, hogy egyfelől jav́ıtsam a
megb́ızható kommunikáció lényegének a megértését az ezen szolgáltatást megvalóśıtó
protokollok anaĺızisén keresztül; másfelől pedig, hogy hozzájáruljak a megb́ızható tran-
szport protokollok tervezéséhez.

A vizsgálódás alapját a protokollok formális specifikációja és verifikációja képezi. A
protokollok működését egy állapotátmenet-rendszerrel modellezzük, és a rendszer tu-
lajdonságait a temporális logika módszereivel bizonýıtjuk. Ez a léırási módszer képes
kezelni korlátlan és modulo-N állapotváltozókat, és a vizsgált rendszer valós idejű as-
pektusait is természetes módon lehet benne figyelembe venni. A verifikációs módszer
ezen tulajdonságai elengedhetetlenül fontosak valóságos rendszerek modellezéséhez. A
disszertációban jelentős komplexitású, a mindennapos gyakorlatban használt protokollok
specifikációja és verifikációja is megtalálható.

A formális verifikáció egyik előnye, hogy bizonýıthatjuk a protokoll helyes működését.
A formalizmus megköveteli, hogy a protokoll működésének minden részletét tisztázzuk
és hogy a rendszerrel kapcsolatos minden feltevésünket explicit módon megfogalmazzuk.
A verifikácó során a protokoll működési mechanizmusát is jobban megértjük. Azon-
ban a verifikáció talán legfontosabb eredménye, hogy a protokoll helyes működésének
feltételeihez jutunk a rendszer paraméterein értelmezett egyenlőtlenségek formájában.
Ezen feltételek alapján az azonos célra szolgáló protokollok objekt́ıven összehasonĺıthatók
és a feltételek annak meǵıtélésére is alkalmasak, hogy a protokoll mennyire használható
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egy adott környezetben.

A transzport protokollok funkcióit két természetesen adódó osztályba lehet sorolni: adat-
átvitel és kapcsolat-menedzsment. Az adatátvitel feladata az adatok hibátlan átvitele,
mı́g a kapcsolat-menedzsment foglalkozik a kommunikáló partnerek között fennálló kapc-
solatok feléṕıtésével és bontásával.

A disszertációban három különböző adatátviteli protokollt elemzek. Részletesen is meg-
vizsgálom az időbélyegek adatátviteli protokollokban való használatának kérdéseit a
PAWS mechanizmus anaĺızisén keresztül. A PAWS a széleskörűen használt TCP pro-
tokoll kiterjesztése. Az anaĺızis során kiderül, hogy az időbélyegek használata kiter-
jeszti ugyan a protokoll funkcionalitását azzal, hogy előseǵıti a késleltetések mérését,
másfelől viszont csökkenti az elérhető maximális adatátviteli sebességet az ugyanilyen
paraméterekkel működő hagyományos csúszóablak protokollhoz viszonýıtva.

Egy másik adatátviteli protokoll, az ún. SNR, alapját az állapotinformációk periódikus és
kölcsönös cseréje képezi. A disszertációban az SNR egy, az irodalomban korábban meg-
jelent, specifikációját vetem össze a hagyományos csúszóablak protokolléval. Az anaĺızis
megmutatja, hogy az SNR által elérhető maximális adatátviteli sebesség magasabb, mint
amit a csúszóblak protokollal elérhetünk. Ennek azonban komoly ára van a protokoll
más tulajdonságai szempontjából. Az SNR-nek ebben a specifikációjában a szerzők fel-
teszik, hogy sem a hálózat, sem pedig a transzport protokoll maga nem duplázhat meg
csomagokat. Ez a feltevés erősen korlátozhatja a protokoll effekt́ıv átviteli sebességét
olyan esetekben, amikor a hálózatban elveszhetnek csomagok. Ez az effektus jól mutatja
annak fontosságát, hogy egy protokoll minden jellemzőjét alaposan mérlegelnünk kell
annak eldöntéséhez, hogy a protokoll megfelel-e egy adott környezetben.

Az időbélyegek használata a kapcsolat-menedzsment protokollok körében is felmerül.
Az SCMP nevezetű kapcsolat-menedzsment protokoll részletes anaĺızise található meg
a dolgozatban. Ez a protokoll azon a feltevésen alapszik, hogy még nagy kiterjedésű
hálózatokban is viszonylag könnyen szinkronizálhatóak a számı́tógépek órái. Bebizonýı-
tom, hogy az SCMP protokoll biztonságosságának nem feltétele az órák szinkronizációja,
tehát a protokoll olyan esetekben is alkalmazható, amikor nincs abszolút garancia arra,
hogy az órák mindig szinkronban vannak. Mivel a gyakorlati szinkronizációs protokollok
csak valósźınűségi garanciákat adnak a szinkronizációra, a fent emĺıtett eredmény fontos
elméleti támogatást nyújt az SCMP protokoll gyakorlati alkalmazhatóságához.

Mások korábbi munkáit is felhasználva a kapcsolat-menedzsment protokollok egy olyan
családját is megvizsgálom, amelyek egy ún. cache-t használnak a protokoll információk
tárolására és ezáltal a kapcsolatfelvétel késleltetésének csökkentésére. Számos olyan
módośıtással járulok hozzá ezen protokollok tervezéséhez, amelyek lehetővé teszik a
protokoll memóriaigényének jelentős csökkentését. Továbbá azt is megmutatom, hogy
ezen protokollok helyes működésének nem szükséges feltétele a kapcsolatok hosszának
korlátozása. Ez az eredmény nagyban növeli a protokoll-család gyakorlati alkalmazha-
tóságát.
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Chapter 1

Introduction

This thesis is devoted to the design and analysis of transport protocols for reliable com-
munications. Reliable transport protocols guarantee the sequenced and complete delivery
of user data over networks which may lose, duplicate or reorder packets. Such a transport
service is required by a wide range of applications.

Many transport protocols have been designed in the past decades to implement reliable
communications. Two major peaks can be distinguished in the scientific activity directed
towards reliable transport protocols. The first was at around ’75–’81 [Dal75, FW78,
SD78, Tom75, Wat81], when the foundations of the current Internet [CK74] were laid.
Protocols such as TCP and Delta-t originate from this period.

Another wave of interest came in the late eighties, early nineties, when it was realized that
the design of transport protocols is affected by advances in networking and computing
technologies in a number of ways. The relative cost of network bandwidth and computer
memory decreased dramatically, the increasing role of latency became evident [DDK+90,
Kle92]. Several proposals for alternative ways to design reliable transport protocols were
published in this period [BF93, Bra92, Bra94, Che88, JBB92, LSW91, NRS90, Pro92].

Our major goal with this thesis is to improve the understanding of reliable communica-
tions by analyzing the protocols used for implementing this service. The goal is achieved
by the formal specification and analysis of the important protocol mechanisms. This
analysis offers the following results:

• It improves our confidence in the correctness of the protocols.

• The formal analysis provides the explicit conditions for the correctness of these
protocols. Being aware of these conditions is essential for planning complex com-
munication systems.

• Pointing out the similarities and differences of the existing protocols improves the
understanding of reliable communications which is useful for designers of future
protocols.

The structure of this introduction is as follows. First we place reliable communications

1
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into context by specifying its relation to other sorts of communications. Then the service
provided by the network layer to transport protocols is characterized. In Section 1.3 a
brief overview of transport protocol mechanisms is given. Section 1.4 discusses the
contributions of this thesis.

1.1 Integrated services networks

Integrated services (IS) networks are a major topic of research nowadays. The ultimate
goal of this research is to design and deploy a networking infrastructure which is capable
to serve a wide range of applications. These applications range from traditional electronic
mail or voice call to emerging multimedia applications. Therefore, IS networks are a
replacement of conventional telephony, cable-TV, and data communications networks.
The integration of these networks opens the way for more sophisticated information
services.

The service expected by different applications from the underlying network can be de-
scribed from several viewpoints:

• connectivity;

• reliability (qualitative specification of service);

• performance guarantees (quantitative specification of service).

1.1.1 Connectivity

In our terminology, connectivity is defined by the number of participants in the com-
munication and their relation to each other. Therefore we can distinguish one-to-one,
one-to-many, and many-to-many communications. Furthermore, the flow of information
can be uni-directional or bi-directional.

A conventional two-party telephone call is an example of one-to-one communication
where the flow of information is bi-directional . Remote login to a distant computer or
sending a telefax message are further examples of one-to-one communications. On the
contrary, a TV broadcast is a typical case of one-to-many communication where the flow
of information is uni-directional .

Tele-learning, an application which is often mentioned among the many new applica-
tions made feasible by modern networking technology, requires a one-to-many but bi-
directional connectivity. Most of the information is carried from the teacher to the
students, but students also have the possibility to react.
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1.1.2 Reliability

User information is transmitted in data units over a digital network. Applications have
freedom in defining their unit of data. For a request-response type application, such as
name resolution, the unit of data may be a variable-sized record capable to hold either a
request or a response. A single character is the data unit for a remote login application;
a frame can be the data unit for a video application.

Communication consists of the exchange of multiple data units. The usefulness of com-
munication requires that the sequence of data units presented to the receiving user(s) is
related in some way to the sequence of data units submitted by the sending user. The
reliability of the service is the qualitative description of this relation. Less reliable service
means less constraints on the stream of data units presented to the receiver. Note that
the term reliability has another common meaning in a different context where it refers
to fault tolerance. That sort of reliability is not addressed in this thesis.

The following criteria can be used to characterize the reliability of single source commu-
nications [DDK+90]:
Freedom from bit errors: Data units must not be altered while in transit and the

network must not generate data. This definition assures that there is a causality
relation between sending and receiving data, i.e. reception of a data unit must
always be preceded by the sending of an identical data unit.

Completeness: Any data unit submitted by the sender is eventually delivered to the
receiver.

Sequencing: Data units are delivered to the receiver in the same order as they were
submitted by the sender. Strict sequencing also means freedom from duplicates.

Particular applications may require several combinations of the above requirements. The
application used for name resolution1 in the Internet requires only freedom from bit
errors. Each name resolution request is sent in a separate message to a name server.
The loss or duplication of a request does not matter, a repeated request will yield the
same result. On the contrary, remote login requires sequenced, complete delivery which
is free from bit errors.

The requirements of a real-time voice conversation, for example, can be described by
sequenced delivery and freedom from bit errors. The loss of a few messages is tolerated
because it causes less degradation of the quality than the varying delay caused by re-
transmissions. A sophisticated file-transfer application may require only completeness
and freedom from bit errors without sequencing. The eventual re-sequencing of the data
blocks could then be achieved as a side-effect of writing each block at its corresponding
offset to the disk. More efficient protocol processing is the advantage of these relaxed
ordering requirements [CT90].

1The mapping of host names to network addresses among others.
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In the context of multicast communications when there may be multiple sources and/or
receivers, the above characterization is not sufficient. The relations of data units pro-
duced by different senders must also be specified. Further information on the definition
of reliability for multicast communications can be found in [ACC+94, CM84, Dio94,
Lam78].

1.1.3 Performance parameters

Applications can also be classified according to their quantitative performance require-
ments. In this thesis the classification proposed in [BCS94] will be used:

Real-time applications are usually some sort of “playback” applications, i.e. the re-
ceiver tries to reconstruct the original signal from the information transmitted over
the network. To compensate the variable delay of the network, the application may
delay the replay of the signal. Data which arrives after its playback time is essen-
tially useless in reconstructing the real-time signal. The quality observed by the
user depends on two factors: loss rate and playback delay. Loss results in dis-
tortion, excessive delay hinders interactive communications (think of a telephone
conversation or a distributed simulation). The amount of playback delay and data
loss which may be tolerated depends heavily on the sort of application.

Elastic applications always wait for late data to arrive. The application typically uses
the arriving data immediately, rather than buffering it for some later time, and will
always choose to wait for the incoming data rather than proceed without it. These
applications are also sensitive to delay, but in a different way. The performance of
the application depends on the average delay, rather than on the delay of individual
packets. Because arriving data can be used immediately, these applications do not
require any a priori characterization of the service in order for the application to
function.

1.1.4 Type of communication considered here

In this thesis, we focus our attention to protocols which provide reliable, one-to-one
communications. By reliable we mean sequenced, complete delivery of data that is free
from bit errors. This sort of reliability can only be achieved by retransmission-based
protocols, which on the other hand makes it impossible to provide real-time guarantees
such as bounded delay. Therefore, these protocols can serve elastic applications only.

The sort of service described above is required by “conventional” data communications,
such as file-transfer or remote login. It does not mean, however, that the need for this sort
of service will disappear in the future. The World-Wide Web [BLCL+94], for example, a
flexible hypertext-based information system which is the main force behind the current
success of the Internet, also requires this sort of service from the underlying protocols.
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1.2 Operating environment of transport protocols

The functionality to provide reliable data transfer is implemented at the transport layer
of the OSI Reference Model [Tan89]. The transport layer operates right on top of the
network layer and it is the first end-to-end layer of the Reference Model. That is, the
transport layer is present in the protocol stack of end systems of a network such as
host computers, but not in intermediate nodes such as routers. The examination of the
network layer, which provides the services available to the transport layer, brings us
closer to the understanding of transport protocols.

1.2.1 Datagram networks

In traditional computer communications, a network layer which provides little guarantees
proved to be a successful paradigm [Cla88]. The network layer protocol of the Internet,
IP [Pos81a] supports a datagram service with no hard guarantees about the loss, delay,
duplication or ordering of packets. If the application needs further guarantees about the
delivery of data, it has to be implemented by the end-to-end protocols.

We mention two of the reasons listed by Clark [Cla88] in favor of this architecture:
Survivability in the face of failure is an important requirement from an internet-

work. Since the intermediate nodes in a datagram network are essentially stateless,
communication between end systems can continue in case of a failure as long as
the network remains connected.

Easy integration of a variety of networking technologies is also required. Because
the service that the participating networks must support is rather simple, a wide
variety of networking technologies can be integrated with minimal effort.

The service provided by such a datagram network can be modeled as a collection of
unreliable channels between any pair of hosts. We make very few assumptions about
this service:

• freedom from bit errors;

• the existence of an upper bound on delay.

Both of these are fundamental requirements for the existence of any reliable transport
protocol.

Freedom from bit errors is achieved by the use of error-detection or error-correction codes
[Bla83]. Strictly speaking, such techniques can never guarantee that bit errors are always
detected, but the probability of such events can made arbitrarily low by adding sufficient
redundancy to the transmitted information. If a packet appears to be corrupted, it is
simply discarded which makes this event equivalent to packet loss.

Most networks have only loosely defined mechanisms to limit the lifetime of packets. Any
function that requires processing by routers decreases the achievable transmission speed
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and/or increases the cost of routers, which is the reason for the lack of strict lifetime
enforcement [Che89]. Future networks are not likely to change in this respect, either. It
is, however, still possible to give an upper limit of the delay which is not likely to be
exceeded. This limit in the current Internet is 120 seconds [Pos81b] which is well over the
usual measured delays [SAGJ93]. This “over-engineering” assures that the probability
of a packet delayed longer than the maximum packet lifetime is practically zero.

In practice, datagrams may be mis-routed, i.e., delivered to the wrong host. Mis-routing
can always be detected if we assume freedom from bit errors because datagrams carry the
identity of the destination in their header. Thus mis-routed packets are simply discarded.
This justifies the existence of logical channels between hosts in our abstract model of the
network service which will be presented below in Section 1.2.3.

1.2.2 Integrated services networks

Although the stateless model proved to be very successful in practice, the move towards
integrated services networks demands the revision of this paradigm. The stateless model
by definition excludes the possibility of resource reservations which is needed by real-time
applications.

A related problem is the accounting of traffic generated by users [Cla88]. Accountability
has not been a major concern in centrally founded research networks such as the Internet
in the early days, but it becomes an important issue when the access to the network and
the information available on the network is offered as a service by commercial entities.

Both resource reservation and accounting require the treatment of packets as part of a se-
quence from source to destination as opposed to independent datagrams. Asynchronous
Transfer Mode (ATM) [HHS94, MS95] which is the technology base for implementing
Broadband Integrated Services Digital Networks (B-ISDN) [DP93, Sta95], is based on
the virtual circuit model. Each cell, the unit of data transmitted in an ATM network,
belongs to a virtual circuit which has to be established before communication can start.
Reservation of resources is part of the connection setup procedure.

Another approach is followed within the Internet community. IPng [DH95], the next
generation Internet Protocol, retains the datagram model but provides the means to
express the relationship between a sequence of datagrams. These sequences are called
flows in the Internet terminology. Resource reservations can be made on the basis of
flows, which requires the storage of per-flow state information in the routers. In order to
preserve the robustness of the architecture, the transient nature of this state (so called
soft-state) is emphasized in [Cla88, DH95].

It is generally agreed that IS networks should continue to provide support for elastic
applications which do not need reservations. In the Internet architecture, this type of
usage is still considered to be fundamental. Within the ATM-world, support for the
so-called available bit-rate (ABR) class of traffic has been added recently [All95, Jai95].
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Figure 1.1: Conceptual model of the available network service

Our main interest is the type of service IS networks provide to elastic applications. The
virtual circuit model of ATM networks allows to make stronger assumptions about the
network service. Since the cells of a connection follow the same path, reordering of cells
is excluded. The specification also excludes the possibility of duplicate cells.

In our view, however, it would not be wise to rely on these stronger assumptions in the
design of transport protocols for a number of reasons:
Duplicates can be generated by the transport protocols themselves, not only in the

network. The reliability of these protocols is based on the retransmission of packets
that are believed to be lost. Although it is possible to design a transport protocol
in such a way that it never generates duplicates, it may lead to a rather inefficient
design [OHdG96a]. This issue will be further explained in Chapter 3.

Reordering in datagram networks is usually caused by multi-path routing [Hui95,
Ste95]. Although cells in an ATM network follow the same route, ATM will not
be the exclusive networking technology in the near future. While different parts of
the network are based on ATM, these and other networks will still be connected by
an internetworking layer. If the internetworking protocol is datagram based, then
the possibility of reordering is still there.

1.2.3 Abstract model of network service

The service of a typical network layer can be modeled as shown in Figure 1.1. Hosts are
connected by point-to-point uni-directional channels. There is a uni-directional logical
channel between any pair of hosts; bi-directional communication is modeled by parallel
channels in the opposite direction. Any channel may delay, lose, duplicate or reorder the
packets in transit. Our only assumptions are that the delay has a known upper limit and
that packets cannot be altered in the channels. A formalized description of the network
service is given in Chapter 2.

Having specified the service required by the application and the service offered by the
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C1

C2

RS

producer consumer

Figure 1.2: Producer-consumer model of reliable data transfer

network, we can turn our attention to the question: How does a transport protocol
achieve the required service?

1.3 Reliable transport protocols

The communicating transport entities, hosts in short, have to maintain status informa-
tion to cope with the unreliability of the network service. A connection is open when
the status information is present. Starting with no status in the hosts, a connection has
to be opened when either side has information to send. When the communication is
over, the connection is closed and the status information is released. The exchange of
the user-level information takes place while the connection is open.

Reliable transport protocols are usually split into two subproblems [Wat89, Sha91]: con-
nection management and data transfer . Connection management deals with the setup
and release of state in the entities. Data transfer deals with the sequenced, complete de-
livery of user data. The phases of transport protocols are not always strictly separated.
A connection setup packet may already carry user data, for example. Also, the release
of state can take place without exchange of any messages

1.3.1 Data transfer

Data-transfer protocols can be treated as a producer-consumer problem shown in Fig-
ure 1.2. The system consists of the producer (or sender) S and the consumer (or receiver)
R, which are connected by two unreliable channels CS,R and CR,S. The data units sub-
mitted by the producer must be presented to the consumer without losses or duplicates
and in the same order.

A wide range of sliding-window protocols can be used to implement reliable data transfer.
These protocols are based on the consecutive numbering of data units and the notion of
send and receive windows. The numbers assigned to the data units are called sequence
numbers. Packets from the sender to the receiver identify the data units they carry
by their sequence number. The receiver uses the sequence numbers to put data units
in the correct order if some packets are reordered. Sequence numbers are also used in
acknowledgments (acks, for short) sent by the receiver to the sender to report the receipt
or loss of data units.
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Figure 1.3: The variables of the sliding-window protocol

The receive window is the range of data units which the receiver is ready to accept at
a given moment. The lower- or left edge of the receive window is the lowest sequence
number of unreceived data units. The upper- or right edge of the receive window is
one larger than the highest sequence number which the sender is allowed to produce at
that moment. The receiver informs the sender about the current size of its window in
the acks. The send window is the window known to the sender in any given moment.
Because data packets and acks need time to cross the network, there is a possible phase
shift between sender and receiver.

Figure 1.3 shows a snapshot of the state variables of the sliding-window protocol. The
variable s una is the left edge of the sender window. All the data units up to but not
including s una have been acknowledged. The right edge of the sender window is given
by s una + s wnd . The variable s nxt is the sequence number of the first data unit that
has not been sent yet. The left edge of the receiver window is r nxt , the right edge of
the window is given by r nxt + r wnd .

The above description lists only the important features of sliding-window protocols.
Several variations of the sliding-window protocol can be found in practice. Some of
these we list here.

Acknowledgments can be either cumulative or selective. The cumulative ack (i) ac-
knowledges the receipt of every data unit with a sequence number less than i. Thus a
cumulative ack can be generated by writing the value of r nxt to the ack. A selective
ack (i, l) acknowledges the receipt of a range of data units of the sequence numbers
[i, . . . , i + l − 1].

The advantage of cumulative acks is their inherent redundancy. If one is lost, the receipt
of a subsequent ack will acknowledge the same range of sequence numbers or even more.
Therefore this redundancy provides a simple protection against loss. If a selective ack
is lost, there is no guarantee that a subsequent ack carries overlapping acknowledgment
information.

The disadvantage of cumulative acks is that they are not able to fully describe the state
of the sender to the receiver. In particular, cumulative acks cannot inform the sender
about the data units received out-of-order. Having full information at the sender about
the data received by the receiver is important for efficient error control in high-speed
long-delay networks [DJNS93, FB90].



10 Introduction

In most protocols, the unit of sequencing is either an octet or a variable sized record
which fits into a packet. There is no clear advantage for any of them. Other units, such
as bits in Delta-t [FW78], are not used in modern protocols.

A more fundamental modification to the sliding-window protocol has been proposed
recently [JBB92]. The idea is to extend the sequence space with timestamps. The need
for extending the sequence space arose in the context of high-speed networks. Because
the sequence numbers in any practical protocol are from a finite space, the too early
reuse of sequence numbers may affect correctness. The evident solution [OP91] would be
to raise the bound on the sequence numbers, i.e. to use more bits in their representation.

An alternative solution proposed by Jacobson et al [JBB92] was to use timestamps and
sequence numbers for the identification of data units. The use of timestamps has two
advantages:

• It avoids hazards related to the early reuse of sequence numbers, because times-
tamps help detecting old packets.

• The measurement of round-trip delay is made easier by the inclusion of timestamps.
Maintaining an accurate estimate of the round-trip delay between the sender and
the receiver is essential for an effective congestion control [Jac88, Jai92].

Although the ‘Protect Against Wrapped Sequence numbers’ (PAWS) proposal of Jacob-
son et al [JBB92] was made specifically for TCP [Pos81b], similar ideas can be found
in other protocols. The syn and echo fields in the Xpress Transport Protocol (XTP)
[XTP95] play the same role as the timestamps and echoed timestamps in PAWS. The
TP++ protocol [BF93] also uses timestamps, but in a slightly different manner. We will
analyze the mechanisms used by these protocol variants in Chapter 3.

1.3.2 Connection management

The role of connection management (CM) is to open and close connections reliably even
in the face of losses and duplicates in the network. The requirements below are from
a list of requirements for reliable connection management defined by Watson [Wat89].
A more formal description of the connection management service will be given later in
Chapter 4. We kept the original numbering of the requirements in [Wat89]:

O1: If no connection exists and the receiver is willing to receive, no duplicate packets
from a previously closed connection should cause a new connection to be established
and duplicate data to be accepted.

O2: If a connection exists, then no packets from a previously closed connection should
be acceptable within the current connection.

C2: A receiving side should not close until it has received all of a sender’s possible
retransmissions and can respond to them.

C3: A sending side should not close until it has received an acknowledgment of every-
thing what has been sent.
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Figure 1.4: The three-way handshake

Several protocols are known for solving the problem of reliable connection setup (O1).
All of them are based on the idea of assigning unique identifiers to open request packets.
Such packets, when received, initiate a new connection. The host sending the open
request is called the client, the host receiving it is the server . The question is how the
server can decide whether an open request is new or a duplicate.

A well-known connection setup protocol is the three-way handshake [SD78]. This proto-
col is based on the assumption that the server has possibly no memory of the earlier open
requests it has accepted. When the server receives a request with the client’s identifier
c id , it cannot immediately decide whether the same request has been accepted before.
Instead, the server replies with another open request which carries an ack of c id and
the server’s own unique identifier s id . The client accepts this secondary request if it
acknowledges its connection ID. If the server’s request was triggered by the reception of
an old duplicate primary request, then the c id in the secondary request will not match
the current connection ID of the client. The response of the client to a valid secondary
request is an ack of s id . Receiving an ack of its connection ID assures the server that
the open request was not a duplicate. At this point the server can consider the connec-
tion to be open. The sequence of events in a successful three-way handshake is shown in
Figure 1.4.

If the server remembers the identifiers of the previously accepted open requests, then
the validation of an arriving open request can be done immediately by checking if c id ,
the unique identifier of the open request, is among the already accepted identifiers.
When accepting a request, its identifier is added to the list of old identifiers. The server
acknowledges a request when accepted, but attaching its own unique identifier is not
necessary in this case. The client opens the connection upon the receipt of an ack of its
request.

This sort of connection setup is referred to by many terms in the literature, such as
immediate setup, implicit setup and two-way handshake (2WHS). We adopt the last in
this thesis. Figure 1.5 shows the sequence of events during the two-way handshake.

A disadvantage of the three-way handshake (3WHS) is the initial delay in setting up
a connection. Due to the lack of information, the server has to postpone its decision
whether to open the connection when it receives an open request. The delay in opening
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Figure 1.6: Transaction delay as seen by the user in case of different connection setup
schemes.

the connection is one round-trip delay. The negative effect of this delay is increasing as
networks become faster. Because the round-trip delay, bounded by the signal propagation
time, does not decrease, the amount of data that could potentially be transmitted during
the 3WHS is proportional to the network bandwidth.

Looking at it in a different way, eliminating the delay of the 3WHS results in half the
latency for transaction-like communications, which is a twofold performance increase in
the optimal situation. Transaction-like communications consist of a short query sent
by the client application which is followed by a reply from the server application. As
Figure 1.6.a indicates, the minimum latency of such transactions is two times the round-
trip delay plus the server processing time. Eliminating the initial delay of the 3WHS
would reduce this latency to a single round-trip delay plus the server processing time
which is shown in Figure 1.6.b. Transaction-like communications are not uncommon in
current networks. The World-Wide Web [BLCL+94] is one application which generates
such traffic.

The best known transport protocols using the three-way handshake are TCP [Pos81b,
Ste94] and OSI TP4 [Sta90]. Protocols using some form of the two-way handshake are
Delta-t [FW78], VMTP [Che88], TP++ [BF93], XTP [XTP95], just to name a few. It
is also possible to combine three-way and two-way handshake-based connection setup in
a protocol [SL95]. In this case, the table storing the old identifiers acts like a cache. If
information about the client is present in the table, then the two-way handshake can be
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used; otherwise the protocol falls back to the more time consuming three-way handshake.
A protocol based on this scheme is TCP for Transactions (T/TCP) [Bra94, Ste96].

The requirement O2 can be satisfied by sending c id in every data packet during the
data transfer phase. The uniqueness of this identifier assures that old packets from
previous connections are always detected. In practice, the same identifier can be both
the connection identifier and the sequence number of a packet. Such an example is shown
in Section 4.4.

The reliable closing of connections requires that C2 and C3 are satisfied. Reliable closing
is achieved by sending a close request behind the data units submitted by the user. The
receiver can acknowledge the close request only after it has received all the preceding
data. The sender is allowed to discard its state information when the close request is
acknowledged. The receiver, however, gets no explicit signal to release its state. A timer
can be used to keep the state information for a period that is sufficiently long so that
the sender can request a retransmission of the closing ack it it is lost. Further thoughts
about the closing handshake can be found in Section 4.3.3.

1.3.3 Assumptions about transport protocols

Transport protocols, both connection management and data transfer, use identifiers to
cope with the possible errors of an unreliable network service. The identifiers can have
different forms, such as sequence numbers, timestamps, and connection identifiers. They
have an important common feature: all these identifiers are from a possibly very large,
but finite set.

Although variable-length representations exist which can encode arbitrary large numbers,
using such representations in protocols would make implementations overly complicated.
Furthermore, unbounded identifiers are not necessary for the correct operation of pro-
tocols. Unbounded identifiers are still useful as an abstraction. As we will see later
in this thesis, the analysis of protocols is easier to begin at an abstract level assum-
ing unbounded identifiers. The results of this analysis are then helpful to establish the
correctness of the real protocol which uses bounded identifiers.

A consequence of the bounded identifier space is that identifiers must be reused . The
reuse of identifiers affects the protocol mechanisms for connection management and data
transfer. In case of connection management, for example, when a new connection iden-
tifier is chosen, the protocol must assure that no previous copies exist in the network.

The reuse of identifiers mandates the requirement for the existence of a maximum packet
lifetime in the channels (see Section 1.2). Without a known bound on packet delays,
identifiers could never be reused without the danger of having an old packet in the
network carrying the same identifier.

The number of possible peers for any given host computer is enormous. In case of TCP,
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for example, the maximum number of connections originating from a single host is close
to 264. Therefore it is not feasible to keep status information about every previous
connection in a host; any connection management protocol must be able to establish a
connection without host-specific information in the peers. This assumption may sound
trivial, but remember that some of the connection management protocols retain status
information about their previous connections. Even those protocols must have a way to
handle the situation when no information is known about the peer.

There is another situation when a host must connect to other hosts without access to
state information on previous connections. This happens after a so called crash. A crash
in our terminology may be the result of a system failure or user action (the computer is
switched off). The contents of the memory of a host are lost during a crash. We assume,
however, that the hosts are fail-stop processors. That is, a host is either operational
when it is working according to its specification or it is down when it does not do any
processing. Some connection management protocols assume the presence of some safe
storage, e.g., a disk. Information saved in the safe storage is not lost during a crash, but
the protocols must try to minimize the amount of information saved in the safe storage
because of the higher latency to access it.

1.4 Contributions of this thesis

The contribution of this thesis to the design of reliable communications is twofold:
• The formal verification of two recent transport protocols PAWS [JBB92] in Sec-

tion 3.3 and SCMP [LSW91] in Section 4.2 which have not been verified before.

• Improved understanding of reliable communications through the informal analysis
and comparison of other transport protocol mechanisms including the data transfer
protocol SNR [NRS90] in Section 3.4 and the connection management protocols
T/TCP [Bra92, Bra94] in Section 4.3.5 together with a wider family of cache-based
protocols [SL95] in Section 4.3.

1.4.1 Contributions to protocol verification

The formal analysis of two recent protocols is presented which have not been verified
before. One is a data transfer protocol called PAWS [JBB92] (Protect Against Wrapped
Sequence numbers), the other is a connection setup protocol, SCMP (Synchronized Clock
Message Protocol) [LSW91]. The common in these protocols is the innovative use of
timestamps.

An assertional verification framework [Sha93] based on a state-transition model and tem-
poral logic is used to verify the protocols. Real-time extensions of this model [Sha94]
allow the natural handling of timing aspects of the protocols, such as maximum packet
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lifetime, transmission rate, and the rate of opening new connections. Assertional tech-
niques were used successfully before to verify transport protocols [BKKM96, GNS95,
MS87, Sha89, SL95, Tel91].

PAWS [JBB92] is an extension to the sliding-window protocol in TCP [Pos81a]. As
we mentioned in Section 1.3, the use of timestamps has two advantages: (i) avoids
the possibility of the misinterpretation of sequence numbers at high transmission rate,
(ii) improves the performance of the protocol over paths which have high bandwidth-
delay product.

Although the algorithms in PAWS are intuitively appealing, they are far from trivial.
Some informal arguments about the correct behavior of PAWS are presented in the
specification [JBB92], but in our view the complexity of such protocols mandates the
use of more exact methods.

A specification of the essential mechanisms in PAWS is given in Section 3.3 of this thesis.
The correctness of the protocol is then shown by proving safety and progress properties.
In fact, our verification reveals that the original protocol may fail to reject duplicates
under certain circumstances. A possible fix is proposed. Our verification of PAWS is
building on earlier results of Shankar in verifying plain sliding-window protocols [Sha89],
i.e. protocols which use only sequence numbers, but no timestamps.

SCMP [LSW91] is a protocol to implement at-most-once message delivery. The novel
idea in SCMP is the use of synchronized clocks. Since the major issue when setting up
a connection is the rejection of old duplicate requests, the SCMP mechanism can be
incorporated into a connection management protocol. Connections can be opened by
2WHS (see Figure 1.5) when SCMP is used.

In our verification of SCMP in Section 4.2, only safety properties are proved. We take
into account the finiteness of the timestamps. In particular, we prove the claim that
SCMP preserves its correct behavior even if the clocks are out of synchrony [LSW91].
The only requirement for the safety of the protocol is the bounded drift of the clocks.

A formal verification of SCMP is reported by Lampson et al in [LLSA93]. They proved
both safety and progress properties of SCMP using a model of the protocol which differs
from ours. The main difference is that they did not model the finiteness of timestamps
and they assumed that the difference of clocks is bounded by a known constant. As it
was explained earlier in the introduction, we believe that the boundedness of identifiers
is an essential part of protocols, therefore in our verification these issues are treated
explicitly. On the other hand, we can not prove progress properties. In fact, it is shown
in Section 5.2 that with our assumptions the progress of the protocol cannot be assured.
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1.4.2 Contributions to the understanding of protocol
mechanisms

Besides the formal verifications discussed above, several other protocols are analyzed
informally, both data transfer and connection management protocols. The result of these
verifications is never a simple “correct” or “not correct” stamp. The correctness of the
protocols depends on the parameters of the underlying network and the protocol itself. A
sliding-window protocol, for example, may work correctly with 32-bit sequence numbers
in a certain network setup, but may fail with 16-bit sequence numbers. Therefore the
verification of these protocols always produces a set of constraints. The protocol operates
correctly provided that these constraints are satisfied.

The constraints produced by the verification can be useful in two ways. First, they can
be used for planning a communication system. Having a particular transport protocol in
mind, one can decide on parameters like the size of the identifiers by simply substituting
the parameters of the network in which the protocol has to operate.

Another use of these constraints is to analyze the protocol mechanisms. Obtaining the
correctness constraints for different protocols which provide the same service, one can
judge the advantages and disadvantages of these protocols. Such an analysis helps to
gain further insight into the design of these protocols.

SNR [NRS90] is data transfer protocol designed for high-speed networks. The protocol
is based on the idea of periodic state exchange. The specification of SNR presented
in [GNS95] assumes that the network can drop and duplicate packets, but it does not
reorder them. By comparing SNR to the plain sliding-window protocol and PAWS, we
show in Section 3.5 that the assumption of “no duplicates” allows SNR to use its identifier
space more efficiently, i.e., achieve higher transmission rate while using identifiers of the
same size as the plain sliding-window protocol.

On the other hand, we also show that this assumption can become very expensive in
networks which have no strict limits on their maximum packet lifetime because the re-
quirement for avoiding duplicates creates an undesirable coupling between the correctness
of the protocol and the retransmission policy that we are allowed to use. Keeping the
correctness and performance issues, such as the retransmission policy here, orthogonal
eliminates these unwanted side effects. We show in Section 3.4 that the idea of periodic
state exchange can be captured by a specification that does not have these limitations.

A wide range of cache based connection management protocols, called SC [SL95] are
analyzed in Section 4.3. The common feature of these protocols is that they use the
memory for protocol state information as a cache. If the necessary information is present
in the cache, then connections are opened by the low latency 2WHS, otherwise the 3WHS
must be used. The section is built on the specification and analysis of these protocols by
Shankar and Lee in [SL95] and additional work by the author [OHdG96b]. We present
modifications that allow to weaken the real-time conditions that must be satisfied for
the correctness of the protocols. We also present a technique to reduce the latency of
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multi-packet transactions.

We also introduce the notion of implicit 3WHS in Section 4.3.4 which becomes the basis
of a technique to reduce the memory usage of busy servers. Although this technique
does not allow us to shorten the absolute bounds on the necessary caching period, it
still allows to shorten the caching period considerably in common situations. In case of
busy server servicing many short-lived connections, the savings in memory usage can be
substantial.

As a special case of the cache-based protocols, we present a formal model of T/TCP
[Bra92, Bra94] in Section 4.3.5. We explain how to model T/TCP using the framework for
the wider family of cache based protocols treated earlier in the Chapter. The differences
in the caching model of SC and T/TCP are explained. The practical importance of this
analysis is that T/TCP is a protocol that is already used in the Internet experimentally
[Ste96].

Section 4.4 compares the connection management protocols studied in the thesis. Apart
from the conclusions discussed already, another important result is presented there. We
show a technique that allows us to eliminate the maximum incarnation lifetime from
the condition for the correctness of connection management protocols. This result is
very important from the viewpoint of implementing these protocols. The lifetime of
a connection incarnation is normally determined by the application that is using the
services of the transport protocol, therefore it would not be easy to enforce a bound on
the length of connections.



Chapter 2

Verification Framework

Our goal is to talk about transport protocols, to analyze the decisions that must be
taken during their design. Formalisms help to specify protocols and their behavior in an
unambiguous way. Furthermore they provide methods to verify properties of protocols.
This chapter is devoted to the description of the formal verification framework applied
in the thesis.

Programs (computing systems) can be partitioned into two classes based on the way
they interact with their environment [MP92]. Transformational programs calculate a
result from their input during a finite computation. Such programs are appropriately
characterized by the relation between their input and output. Reactive programs do
not produce a final result, their task is to maintain an ongoing interaction with their
environment. Such programs are best characterized by their ongoing behavior instead of
their initial and final states. It is worth mentioning that terminating reactive programs
can also be defined which interact with their environment and have distinguished initial
and terminal states, but such programs will not be further considered here.

The grep program, for example, is a transformational program. Its input is a sequence
of lines and a pattern, its output is those lines from the input which match the pattern.
On the other hand, a command shell is a typical reactive program. Its input, just as with
grep, is a sequence of lines, but its expected behavior cannot be captured by the desired
output at the termination of the shell. Its most characteristic feature is its interaction
with the user: upon reading a line the shell executes the commands in it and reports the
result of running these commands back to the user.

Another aspect of systems is concurrency. Some programs are executed sequentially
in a single process, others are composed of cooperating processes that run in parallel.
Programs in the former category are called sequential programs, those in the latter are
concurrent programs.

Tel in [Tel91] gave the following classification of concurrent programs:
• In parallel programs processes cooperate to achieve a single computational task

18
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faster than it would be possible by sequential processing.

• Distributed programs are designed for tasks related to the physical dispersion of
the processes and the data operated on. These are thus meaningless in the context
of a single sequential process.

Using our terminology, parallel programs are concurrent transformational programs,
while distributed programs are concurrent reactive programs. Communication proto-
cols belong to the category of distributed programs.

Assertional techniques characterize behaviors by the sequence of states during the execu-
tion of the program. Another way of viewing an execution of a program is as a collection
of actions or events [Lam94b]. Event-based formalisms include algebraic approaches like
CCS [Mil80] and functional approaches like [Bro93].

The verification framework [Sha93, Sha94] used in this thesis is based on assertional
reasoning. Such techniques are widely used for specifying distributed systems [Gou93,
Lam94a, MS87, SL95, Tel91]. An overview of assertional verification and specification
techniques can be found in [Lam94b].

In this chapter, we proceed as follows. First the verification of traditional sequential
programs is discussed. A brief overview of predicate logic and the methods to argue about
the behavior of sequential programs is given in Section 2.1. Reasoning about distributed
systems involves more complex specifications and properties. Section 2.2 introduces
(i) temporal logic as a means to specify properties over sequences of states, (ii) state
transition systems as an operational model of concurrent systems, and (iii) methods to
prove properties of concurrent systems. In Section 2.3, additional concepts are introduced
to tailor the general framework for the purposes of protocol specification and verification.
Finally, in Section 2.4 we illustrate the usage of the verification framework through a
series of examples.

2.1 Sequential programs

2.1.1 Predicates

Let us consider the set of typed variables V = {u1, u2, . . . , un}. The type of a variable
defines the set of values with which it may be associated, called its domain. Constants
represent specific values over a given domain, such as true and false over the booleans,
0, 1, . . . over integers.

Expressions are constructed from variables and constants using operators. Expression
are also typed according to the domain over which their values range. If x and y are
integers, then the expression x + y results an integer, x < y results a boolean value.
We will use common mathematical notation for writing expressions without formally
specifying them.
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Predicates (or state formulas) are boolean expressions which may also contain quantifi-
cation (∃, ∀) over some variables that appear in the expressions. For example, x ≥ 0 ⇒
|x| = x and (∀i : i > 0 ⇒ ix > 0) are predicates. The variable i in the second predicate
is bound, while x is free.

A state s = 〈x1 : X1, x2 : X2, . . . , xn : Xn〉 assigns a constant to each variable from its
domain. A predicate is well-defined in a state if all of its variables are assigned a value
in that state. To evaluate a predicate in a state, each variable is replaced by its value
and then the resulting constant expression is evaluated according to the definition of the
operators and their precedence relations.

If the predicate P evaluates to true in state s, the we say that s satisfies P , denoted
by s |= P . In this way, each predicate specifies the set of those states which satisfy the
predicate. Specially, the predicate true specifies the set of all states, and the predicate
false specifies the empty set.

A tautology is a predicate which evaluates to true in every state. We say that P is valid
if it is a tautology. The De Morgan laws (¬(a ∧ b) = ¬a ∨ ¬b), or the law of excluded
middle (a ∨ ¬a = true) are examples of well-known tautologies.

It is impossible, however, to list every valid predicate. A deductive system built from
axioms and proof rules can be used to prove that a predicate is valid. Axioms are
predicates which express basic properties of the operators in the language. Their validity
is accepted without proof. A comprehensive list of axioms for a predicate calculus can
be found in [Gri81, p. 20].

A proof rule in the form

P1, . . . , Pn

P

states that the validity of P follows from the validity of P1, . . . , Pn. The predicates
P1, . . . , Pn are called the premises, and P is called the conclusion. The rule of substitution
says that if the predicates p1 and p2 are equal (i.e., p1 = p2 is a tautology), and E(p) is
a predicate expressed as a function of one of its variables, then E(p1) = E(p2) is also a
tautology. With the above notation this can be written as:

p1 = p2

E(p1) = E(p2)

2.1.2 Reasoning about the correctness of sequential programs

The correctness of sequential programs can be proven by showing that the program
terminates when started from any of the initial states and that the desired relation
between the initial and final states is satisfied. The notation of Hoare-triples can be
used to express properties of sequential programs.
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Definition 2.1 (Hoare-triple) Let P and Q be predicates and S a sequential program.
The notation {P}S{Q} has the following interpretation: If execution of S begun in a
state satisfying P , then it is guaranteed to terminate in a state satisfying Q.

P is called the precondition of S; Q is called the postcondition. For example, the
specification {x = X ∧ y = Y }S{x = Y ∧ y = X} says that program S swaps the values
in x and y. Note that a Hoare-triple is a predicate itself which can be either true of false.
To show that the program S is correct, we have to prove that the Hoare-triple is valid,
i.e., it is true in every state.

Another useful concept for verifying programs is the notion of weakest preconditions
[Dij76, Gri81]. For any program S and predicate Q, which represents the desired result
of executing S, we define a predicate called the weakest precondition of Q with respect
to S, denoted by wp(S, Q).

Definition 2.2 (Weakest Precondition) The predicate wp(S, Q) represents the set of
all states such that execution of S begun in any one of them is guaranteed to terminate
in a state satisfying Q.

Using this definition of wp, we can redefine the Hoare-triple {P}S{Q} as a shorthand
notation for P ⇒ wp(S, Q).

The predicate transformer wp has some useful properties [Gri81]:
• wp(S, false) = false;

• wp(S, Q) ∧ wp(S, R) = wp(S, Q ∧ R);

• if Q ⇒ R then wp(S, Q) ⇒ wp(S, R);

• wp(S, Q) ∨ wp(S, R) ⇒ wp(S, Q ∨ R).

The above properties assure that wp can be used to define the semantics of the statements
in a programming language and the statements will behave as expected. A complete
programming language is defined by Dijkstra using wp [Dij76] (see also [Gri81]), but
here we give only the definition of some program constructs used later in the protocol
specifications.

Assignment statement: wp(“x := e”, Q) = Q[x/e], where the notation P [x/e] means
that every occurrence of the free variable x in predicate P is replaced by the
expression e.

Conditional statement: wp(“if B then S1 else S2”, Q) = (B ⇒ wp(S1, Q))∧(¬B ⇒
wp(S2, Q)).

Sequential composition: wp(“S1; S2”, Q) = wp(S1,wp(S2, Q)).

The definition of a loop construct is somewhat involved so we do not present it here, but
we give a theorem about the weakest precondition of a loop, which should be sufficient
for most situations.
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Theorem 2.3 (Loop termination) Consider the loop “while B do S”. Let t be an
integer function defined on all states and suppose that function t and predicate P satis-
fies:

1. P ∧ B ⇒ wp(S, P );

2. P ∧ B ⇒ t > 0;

3. P ∧ B ⇒ wp(“t1 := t; S”, t < t1), where t1 is a fresh identifier.

Then P ⇒ wp(“while B do S”, P ∧ ¬B).

Requirement 1 in the theorem assures that P is preserved by an iteration of the loop, 2
requires that t is positive while the loop is executing, and 3 requires that t decreases in
every iteration. Since t has a finite value when starting the loop, the number of iterations
must be finite.

Weakest preconditions are useful for developing a program along with its correctness
proof. However, given an annotated program, a program in which assertions between
program statements give properties of the program state in that point of execution,
Hoare-triples are sufficient to verify the validity of these assertions.

2.2 Concurrent systems

The behavior of a concurrent system is characterized by a sequence of states. Temporal
logic [MP92, Sha93] is used to specify such sequences. We want these specifications to
be abstract; they must be independent of any particular implementation of the specified
behavior. On the other hand, a concurrent program is viewed as a generator of such
sequences of states. The specification of a program provides an operational description
of the system.

2.2.1 Temporal logic

Just as first order logic can be used to argue about states, temporal logic is a possible
tool to argue about sequences of states. A behavior σ = 〈s0, s1, . . .〉 is a sequence
of states, where each state si provides an interpretation for the variables in the set
V = {u1, u2, . . . , un}. A behavior can be either finite or infinite.

Formulas in temporal logic are built up from predicates and temporal operators. We will
use the term ‘state formula’ for predicates when it is important to make the distinction
between state formulas evaluated over states and temporal formulas evaluated over be-
haviors. The meaning of a temporal formula is a Boolean-valued function on behaviors,
defined as follows:

• P (s0, s1, . . .) ≡ P (s0), for any state formula P . Therefore, state formulas over
sequences are evaluated in the first state of the sequence.
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• (F × G)(σ) ≡ F (σ)× G(σ), for any Boolean operator ×.

• 2F (s0, . . .) ≡ (∀n : n ≥ 0 : F (sn, . . .))

The temporal formula 2F (always F ) holds if F is always true—that is, true now
and in all future states.

• 3F (σ) ≡ (¬2¬F )(σ)

The temporal formula 3F (eventually F ) holds if F is eventually true—that is,
true now or in some future state.

• (F ; G)(σ) ≡ (2(F ⇒ 3G))(σ)

The temporal formula F ; G (F leads to G) asserts that if F ever becomes true,
then G will be true then or in some later state.

• (F → G)(σ) = (2(F ⇒ 2G))(σ)

The temporal formula F → G (F establishes G) asserts that if F ever becomes
true, then G will be true then and in any later state.

Many more temporal operators, including past operators and quantification over behav-
iors, are defined in [MP92], but those will not be used in the thesis.

To minimize the number of parentheses, temporal operators have lower precedence than
boolean operators. Among temporal operators, the unary operators (2,3) have higher
precedence than the binary operators (;,→). Below are some examples for evaluating
temporal formulas, where σ = (〈x : 1〉, 〈x : 2〉, 〈x : 3〉, . . .):

• (x < 2)(σ) = true

• (2x < 2)(σ) = false

• (3x > 5)(σ) = true

• (x = N → x ≥ N)(σ) = true

• (x = N ; x ≥ 2N)(σ) = true

Note the usage of the parameter N in the last two formulas. Parameters provide a
convenient way to define a class of formulas. When evaluating such assertions, every
parameter is universally quantified, i.e., the last formula is equivalent to (∀N : (x =
N ; x ≥ 2N)(σ)) = true.

If a formula F evaluates to true over the the behavior σ (F (σ) = true), then we say
that σ satisfies F which is denoted by σ |= F . Each temporal formula characterizes a
set of behaviors, just as a state formula characterizes a set of states. If F evaluates to
true over every behavior, then it is said to be a valid formula. A deductive system for
proving the validity of temporal formulas is presented in [MP92].

2.2.2 State transition systems

Concurrent programs are specified by a state-transition system and fairness requirements.
The state transition system captures the concepts of the system state and the elementary
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actions that modify the state. The fairness requirements are additional concepts needed
for the realistic modeling of practical systems.

A state transition system A = 〈V , E, I〉 is defined by:
• V = {u1, . . . , un} — A finite set of typed state variables.

• E — A finite set of events.

• I — An initial condition.

Each event e ∈ E represents a single action of the system which is capable to alter the
system state. Events are specified by an enabling condition enabled (e) and an action
action(e). The enabling condition is a predicate on the state variables, the action is a
sequential program that updates the variables in V . Each event defines a set of state
transitions (s, s′). A pair of states (s, s′) is a transition of e if

• s satisfies enabled (e);

• s′ is the result of executing action(e) in s.

The execution of events is atomic and it is required that action(e) always terminates
when executed in a state satisfying enabled (e). This latter requirement can be rewritten
using weakest preconditions as enabled (e) ⇒ wp(action(e), true).

The initial states are given by the predicate I. The system may start from any state
satisfying I and it is assumed that I is non-empty.

A state transition system is executed as follows. At start-up, the system is placed
in a state s0 which satisfies I. In any state si, the enabling condition of each event is
evaluated and one with a true enabling condition, say ei, is selected non-deterministically
and executed. The resulting state is si+1. If a state s does not satisfy any of the enabling
conditions, then s is a terminal state.

Each execution of the above model generates a series of states. A computation σ =
〈s0, e0, s1, e1, . . .〉 is an alternating sequence of states and events which satisfies the fol-
lowing criteria:

• The first state is initial, i.e., s0 satisfies I;

• Each pair of consecutive states (si, si+1) in σ is a transition of some e ∈ E.

The set of computations of system A, C(A), contains all computations σ that can be
generated by the execution of A. C(A) can be used to characterize the behavior of the
system. A finite computation always ends in a state. Any prefix of a computation, which
ends in a state, is also a computation.

Each computation σ uniquely defines a behavior σ′ which is obtained by omitting the
events from σ. A temporal formula F is evaluated over a computation σ by evaluating
F over the behavior σ′ defined by σ, i.e., F (σ) = F (σ′).
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Fairness

Regarding the selection of events for execution, we have only stated so far that one of
the enabled events is selected non-deterministically. In many situations, this definition
is too vague and allows computations which one would consider unrealistic for a real
system. To illustrate this, assume the following system A = 〈V , E, I〉:

• V = {x : int, b : bool};

• E = {e1, e2}, where enabled (e1) = b, action(e1) = “x := x + 1”, enabled (e2) = x >
10, and action(e2) = “b := false”;

• I = (x = 0 ∧ b = true).

The system works as follows: Initially, only e1 is enabled which increments x by one in
each step. When x exceeds 10, e2 becomes enabled as well. Once e2 is executed, the
system enters a state where no more change of the state variables is possible.

The question is if there is any guarantee that e2 is eventually executed, i.e., whether
every computation of A satisfies the formula 3¬b. If the above events were implemented
as concurrent processes in a real system, then one would expect that eventually e2 is
executed because it is highly unlikely that although e2 is enabled, it is never selected
by the process scheduler. The same question can be asked about the system B which is
obtained from A by changing enabled (e2) as enabled (e2) = (2|x) (i.e., x is even). In this
case, e2 is enabled infinitely often, but not continuously.

Each fairness requirement is a subset of the events E tagged with “weak fairness” or
“strong fairness.” Let E ⊂ E be a subset of events. The event set E is said to be
enabled if any of the events are enabled, i.e., enabled (E) = (∃e ∈ E : enabled (e)).
Similarly, E is disabled if (∀e ∈ E : ¬enabled (e)). Let σ = 〈s0, e0, s1, e1, . . .〉 be an
infinite computation. The event set E is enabled infinitely often in σ if E is enabled in
an infinite number of states si. In temporal logic, this can be written as 23enabled (E).
The event set E is said to be executed infinitely often in σ if an infinite number of events
belong to E.

Definition 2.4 (Weak Fairness) A computation σ satisfies weak fairness for E if ei-
ther

1. σ is finite and E is disabled in the last state;

2. or σ is infinite and either E occurs infinitely often or is disabled infinitely often
in σ.

Definition 2.5 (Strong Fairness) A computation σ satisfies strong fairness for E if
either

1. σ is finite and E is disabled in the last state;

2. or σ is infinite and if E is enabled infinitely often in σ, then it occurs infinitely
often in σ.
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Informally, weak fairness means that E eventually occurs if it is enabled continuously.
Strong fairness means that E eventually occurs if it is enabled infinitely often. In the
examples above, weak fairness is required to assure that e2 eventually happens in the
first case. In the second, only strong fairness can assure that e2 eventually happens.

The set of allowed computations Cf (A), is the subset of C(A) containing only those
computations which satisfy the fairness requirements as well.

2.2.3 Proving system properties

So far, we discussed how to specify sets of behaviors at an abstract level in temporal
logic, and at a lower level of abstraction by state transition systems. Now we turn our
attention to methods that can be used to prove that a given system satisfies certain
desired properties. The set of its allowed computations Cf (A) characterizes the system
A. We say that A satisfies a temporal formula F , if (∀σ ∈ Cf (A) : σ |= F ), i.e., each
allowed computation of A satisfies F . The fact that the system A satisfies the formula
F is denoted by A |= F .

Safety and progress

Properties are classified as safety and progress properties [Sha93]. Informally, a safety
property asserts that nothing bad can happen. Deadlock freedom, for example, is a safety
property. On the other hand, a progress property asserts that eventually something good
will happen.

Assertional reasoning is concerned with properties P which evaluate to either true or
false over every behavior σ.

Definition 2.6 (Safety) P is a safety property if for any σ, if P holds for σ then it
holds for any prefix of σ.

Definition 2.7 (Progress) P is a pure progress property if any finite σ can be extended
to a sequence that does satisfy P .

Thus, if a safety property does not hold for a sequence σ, then there is a point in σ where
it becomes false. The formula 2p is a safety property, 3q is a pure progress property.
The formula (2p) ∧ (3q) is neither a safety nor a pure progress property. It has been
proven, however, that every property can be expressed as the conjunction of a safety
property and pure progress property (see e.g., [Lam94b] for details).
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Weakest precondition of events

To be able to argue about the effects of executing an event, we extend the definition of
weakest preconditions and Hoare-triples for events.

Definition 2.8 (Weakest Precondition of an Event) For any event e, the predi-
cate wp(e, Q) represents the set of all states such that execution of action(e) begun in
any one of them is guaranteed to terminate in a finite amount of time in a state sat-
isfying Q if enabled (e) held in the starting state. That is, wp(e, Q) ≡ (enabled (e) ⇒
wp(action(e), Q)).

Predicate P is a sufficient precondition of Q with respect to event e, denoted by
{P}e{Q}, if for every state s satisfying P , either e is not enabled or the execution
of action(e) starting from s terminates in a state satisfying Q. That is, {P}e{Q} ≡
{P ∧ enabled (e)}action(e){Q}. Similarly to sequential programs, {P}e{Q} = (P ⇒
wp(e, Q)).

Predicate P is a necessary precondition of Q with respect to event e if (¬P ⇒
enabled (e)) ∧ {¬P}e{¬Q}. That is, for every state s satisfying ¬P , e is enabled and
execution of action(e) results in a state satisfying ¬Q.

If P is both a sufficient and necessary precondition of Q with respect to e, then P is a
weakest precondition of Q with respect to e [Sha93].

Proving safety

Now, we introduce some simple rules to prove that a system A = 〈V , E, I〉 satisfies a
safety property P . The rules are presented without proving their soundness here since
they are rather intuitive. For a more rigorous treatment, we refer the reader to [Sha93].

Rule (2.1) is the basic rule to prove invariance. If every event preserves the assertion P ,
then once P becomes true, it remains so for the rest of the computation.

(∀e ∈ E : {P}e{P})

A |= P → P
(2.1)

Combining rule (2.1) and the equivalence (2p) ⇒ p, we get the second rule for proving
2P . This will be used quite often, because most of the protocol properties we are
interested in are invariants in this form.

I ⇒ P, A |= P → P

A |= 2P
(2.2)
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Suppose, we have already proven that A |= 2Q for some Q. Rule (2.3) provides a way to
incorporate this knowledge into our subsequent proofs. Note that by replacing Q with
the constant true, rule (2.3) reduces to rule (2.1):

A |= 2Q, (∀e ∈ E : {P ∧ Q}e{Q ⇒ P})

A |= P → P
(2.3)

We list two other rules, similar in nature to the above, which allow the use of proven
properties in proving that P → Q:

A |= 2(P ⇒ Q), A |= P → P

A |= P → Q
(2.4)

A |= 2(P ⇒ Q), A |= Q → Q

A |= P → Q
(2.5)

The rules above define sufficient conditions for system A to satisfy some property P .
Given A and a desired property P , one usually cannot prove directly from these rules
that A |= P . Instead, additional properties of the system have to proven first. The goal
is to prove enough additional properties of A until we are able to prove the validity of
the desired property.

Generating a proof is not a trivial task. It requires insight into the working of the system
and a considerable amount of intuition. For proving properties in the form 2p, where p
is a state formula, Shankar proposes a heuristic approach in [Sha93]. The approach is
based on generating the weakest precondition of a desired invariant p0 with respect to
each event. The procedure generates a series of properties pi, each being the precondition
for some pj (j < i). The procedure ends when for all e and for all pi, wp(e, pi) is implied
by the conjunction of the state formulas p0, . . . , pn.

Proving progress

Only a limited sort of progress properties will appear in our protocol verifications. Each
of them can be written in the form p; q, where p and q are state formulas. Therefore,
we will only consider proof rules for such formulas.

The first type of proof rule allows to infer leads-to assertions from the system specifica-
tion. Let A = 〈V , E, I〉 be a system, where E ⊆ E is marked with weak fairness. Then
the following rule can be used:

(∀e ∈ E : {P}e{P ∨ Q}), (∀e ∈ E : {P}e{Q}), A |= 2(P ⇒ enabled (E))

A |= P ; Q
(2.6)
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The first premise requires that none of the events can falsify P without establishing
Q. Furthermore, if any of the events e ∈ E eventually happen, Q is guaranteed to be
established. The last premise assures that E remains enabled until Q becomes true,
therefore the weak fairness on E guarantees that an event e ∈ E eventually happens.

If event set E has strong fairness instead of weak fairness, then the premise 2(P ⇒
enabled (E)) can be replaced with the weaker P ; (Q ∨ enabled (E)):

(∀e ∈ E : {P}e{P ∨ Q}), (∀e ∈ E : {P}e{Q}), A |= P ; (Q ∨ enabled (E))

A |= P ; Q
(2.7)

The second type of proof rules are for inferring leads-to assertions from other assertions.
These rules are called closure rules, the following examples are from [Sha93]:

A |= 2(P ⇒ Q)

A |= P ; Q

A |= P ; R, A |= R; Q

A |= P ; Q

A |= P ; Q ∨ R, A |= R; Q

A |= P ; Q

A |= 2R, A |= P ∧ R; R ⇒ Q

A |= P ; Q

In some cases, such closure rules have to be applied multiple times, where the exact
number is dependent on the actual problem being solved. The leads-to well-founded
closure rule can be used in such cases, which is a generalization of closure rules based on
well-founded structures [Sha93]. A well-founded structure (Z, >) is a partial order > on
a nonempty set Z such that there is no indefinite descending chain z1 > z2 > · · · where
each zi ∈ Z.

Let (Z, >) be a well-founded structure, and let F (w) be a state formula with parameter
w ∈ Z. Then

A |= P ; Q ∨ (∃x : F (x)), A |= F (w); Q ∨ (∃x < w : F (x))

A |= P ; Q
(2.8)
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2.3 Modeling transport protocols

In the previous section, a generic model of concurrent systems was given together with
methods for specifying and proving properties of such systems. The goal of this section
is to refine and specialize the framework for the specification of transport protocols.
This consists of (i) introducing new aspects such as auxiliary variables and real-time
properties, and (ii) imposing some structural constraints on the generic state-transition
system model.

2.3.1 Auxiliary variables

Consider the simple system consisting of a single state variable x, and a single event e
which is always enabled and when executed, increments x by 1. Assuming that initially
x = 0, the system can generate only one behavior σ = 〈x : 0, x : 1, x : 2, . . .〉.

What can we say about the properties of this system? The formula x = n → x ≥ n
says that x is non-decreasing. This, however, does not fully specify our system, because
the behavior ρ = 〈x : 0, x : 1, x : 1, x : 2, . . .〉 also satisfies the formula. The temporal
operators introduced so far are not sufficient to express that x is strictly increasing.

The problem can be handled in two ways:
• Introduce further temporal operators. In the above case the “next” operator (©)

[MP92] would help.

• Use so-called auxiliary variables to express such properties. In our example, one can
introduce the integer array h[0 . . .∞], which contains only the values -1 initially and
each event stores the value of x in the subsequent position of h before incrementing
x. The desired property would then become (i > 0 ∧ h[i] 6= −1) ⇒ h[i− 1] < h[i].

We will use the second method. Some protocol properties are more complex than the
above example, and in our view those are easier to understand when formulated with
auxiliary variables than a complex temporal formula. A special use of auxiliary variables
is the formulation of real-time properties discussed below. The other reason is more
subjective: Shankar also proposes the use of auxiliaries in his tutorial on assertional
verification of concurrent systems [Sha93] which provides the bulk of the methodology
used in this thesis.

The only requirement for auxiliary variables is that they must not influence the behavior
of a system in any way. Adding or deleting auxiliary variables from a specification
must not have any effect on the set of computations generated by the system. Let
A = 〈V , E, I〉 and A′ = 〈V ′, E ′, I ′〉 be two systems with the only difference that A′

contains some additional auxiliary variables. The set of computations Cf (A) and Cf (A′)
must be identical when removing the references to auxiliary variables in computations
σ′ ∈ Cf (A′).
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Because in our specification only the assignment statement can change the value of a
variable, the requirement for auxiliary variables can be enforced by a simple syntactic
rule: Auxiliary variables may occur only in assignment statements, and if the right-hand
side of the assignment contains auxiliaries then the left-hand side must be an auxiliary
as well.

2.3.2 Real-time properties

The state-transition model discussed so far captures the sequence of events and states,
but does not say anything about the actual timing. As we have seen in the introduction,
during the analysis of transport protocols we cannot avoid the handling of issues related
to real time. For example, one of our assumptions about the network service is the
existence of an upper limit on packet delays (see Section 1.2). Therefore, the capability
to specify such properties must be incorporated into our formal model.

A special class of auxiliary variables can be used to specify real-time properties [Sha94].
The real-valued auxiliary variable τ indicates the time that has elapsed since the ini-
tialization of the system. Initially, τ = 0 and it is assumed that at any time during
execution τ is equal to an imaginary global real-time clock. τ is not updated by any
event, the only valid usage of τ is to assign it to epoch variables which record the (real)
time of the occurrence of an event.

An epoch variable is a real-valued auxiliary variable that is used exclusively to record the
time at which an event occurred. The only valid operation involving an epoch variable
t is t := τ . The symbol λ is reserved to denote that an epoch variable contains no valid
time value. Epoch variables are usually initialized to λ.

To make these variables useful for the modeling of real-time properties, the increasing
time axiom (2.9) is introduced. Let t be an arbitrary epoch variable. Every system must
satisfy the invariant:

2(t 6= λ ⇒ t ≤ τ ) (2.9)

In words, this invariant means that τ is monotone increasing, i.e., time must not move
backwards. We also assume that the execution of an event is instant, it takes no time.
That is, if the action of an event contains the sequence of statements x := τ ; . . . ; y := τ ,
where x and y are epoch variables, then x = y will hold after the event.

During execution a system is alternating between processing of events and “passing
time.” While processing an event, no changes to τ can be made, thus in the model the
execution of an event takes no time. In the “pause” between two events the system is
passing time, i.e., an external event that is not shown in the specification increases the
value of τ by some non-negative amount. In our model, we do not try to specify further
how τ is updated, the only requirement is that time is increasing which is enforced by
the increasing time axiom.
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With these extensions, real-time properties can be expressed by assertions in the same
way as other safety properties. For example, let e1 and e2 be two events of system A
and t1 and t2 be two epoch variables that are updated in e1 and e2, respectively. The
constraint that e2 does not occur within T seconds after e1’s occurrence is modeled by
the safety property (2.10):

A |= 2(t1 6= λ ∧ t2 6= λ ⇒ t2 − t1 > T ) (2.10)

The constraint that e2 must occur within T seconds of e1’s occurrence is modeled by the
safety property (2.11):

A |= 2(t1 6= λ ∧ t2 = λ ⇒ τ − t1 < T ) (2.11)

Because the real-time properties of the system are encoded in the state variables, there
is no need to introduce special proof rules to reason about real-time properties.

Real-time constraints in the form of (2.10) and (2.11) are treated as axioms, i.e., it
is assumed that every computation satisfies them. Therefore, a real-time system A is
characterized by the set Cf,t(A) ⊆ Cf (A) which contains only those computations that
satisfy the real-time constraints.

Note that in this way arbitrary real-time constraints can be specified. It is the respon-
sibility of the designer to make sure that the constraints on the model correspond to
some properties of the real system which is modeled. If, for example, two events of the
state-transition model belong to physically separated entities in the real system, then it
may make little sense to specify direct timing relations between the execution of these
events. But it cannot be formulated as a general rule. As another example, consider
our assumption about the maximum delay of packets in the network. Formally, it can
be captured by a time constraint between the events of sending and receiving a packet.
Although these events belong to physically separated entities, in this case it is necessary
to assume the existence of such a limit.

2.3.3 Structural restrictions

The state-transition model discussed in Section 2.2 places little constraints on the mod-
eled system. This generic model can be used effectively to describe concurrent programs
based on different paradigms, such as message passing or shared variables [MP92]. Since
our interest is the specification and verification of protocols (distributed systems), we
present here a more specific model based on message passing. Each distributed system
of the specific model has a corresponding system in the generic state-transition model.
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Processes

A distributed system consists of processes that are connected by channels. The only
way of communication between processes is by sending messages through the channels.
The state variables are owned by the processes, a process cannot access the variables of
other processes. The only exception from this rule is the global variable τ representing
the real time. It can be read by any process to update its epoch variables. Each process
consists of events which correspond to the events in the generic model.

Channels

Channels can be seen as special processes. The state of a channel C is represented by
the sequence of messages currently in transit which appears among the state variables of
the state-transition system modeling the distributed system. Process events may use the
send and recv primitives for sending and receiving messages, and the head primitive to
query the status of a channel. The statement send(C, m) appends the message m to the
sequence of channel C, head(C) returns the first message in C or nil is C is empty, and
recv(C) returns and removes the first message from C provided that head(C) 6= nil

holds. The result of recv(C) is undefined if C is empty.

The channels are imperfect, i.e., they can lose, reorder, and duplicate messages in transit.
The imperfection of a channel is modeled by events associated with the channel. These
events are always enabled when there are messages in transit.

It is assumed that channels are non-blocking, meaning that a channel is always ready
to accept a new message. Therefore the number of messages that can be in transit
is not limited and process events are free to generate messages without any restric-
tions. On the other hand, any event e that is willing to receive a message from C must
satisfy enabled (e) ⇒ head(C) 6= nil, otherwise the requirement that enabled (e) ⇒
wp(action(e), true) would be violated.

The above requirement assures that no event tries to receive a message from an empty
channel. In our protocol models, we will also assume that there is always an event ready
to receive a message. That is, for every channel C, head(C) 6= nil implies that at least
one event e is enabled and action(e) removes a message from C.

Channel fairness

Let EC(m) denote the set of events that can receive message m from C. For a set of
messages M , let EC(M) =

⋃

m∈M EC(m). If the system satisfies 2(head(C) = m ⇒
enabled (EC(m))), then we say that the receive events of C are always ready.

For a channel C we assume the following fairness requirement [Sha93]:
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Definition 2.9 (Channel fairness) If the receive events for channel C are always
ready, then for every allowed computation σ and for every message set M , if messages
from M are sent infinitely often in σ, then messages from M are received infinitely often
in σ.

In practical terms it means that a message is eventually received if it is sent often enough.
Channel fairness is somewhat similar to, but not equivalent with strong fairness for the
event set EC(M).

Having defined channel fairness, we can formulate a new proof rule called the leads-to
via message set rule [Sha93]. Let C be a fair channel whose receive events are always
ready and M be a set of messages that can be sent into C. Let the auxiliary variable
count(M) denote the number of times M has been sent. Then we can prove that system
A = 〈V , E, I〉 satisfies P ; Q provided that the following assertions are satisfied:

• R1 : (∀e ∈ E: {P}e{P ∨ Q})

• R2 : (∀e ∈ EC(M): {P}e{Q})

• R3 : A |= 2(P ∧ count (M) = k ; Q ∨ count (M) > k)

which can be written in the form of a proof rule:

R1, R2, R3

A |= P ; Q
(2.12)

2.3.4 Specification language

A Pascal-like language is used for the specification of protocols. Since the constructs
are simple and the specifications are not intended for automatic parsing, we combine
programming language structures with mathematical notation liberally. Hopefully, this
makes the specifications easy to understand for humans, because an important goal of
these specifications is to describe the protocol mechanisms unambiguously.

A program has the following structure:

program name;
type declarations
process definitions
initial condition

The type declarations follow the Pascal syntax. We will use the types:
• bool—Boolean

• [i . . . j]—the integers n in the range i ≤ n ≤ j

• int—the range [−∞ . . .∞]

• nat—the range [0 . . .∞]
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• epoch—real variable from the interval [0,∞)

Arrays and records can be constructed from the simple data types.

The process definitions section contains channel and process definitions. A channel
definition has the form:

channel name ;

Three events are associated with each channel which can delete, duplicate and reorder
messages while in transit. These events will not appear in the specifications, but are
always assumed to be present. The expression m ∈ C is true if a message identical to
m is in transit in channel C. When real-time properties are relevant, we assume that
the channel carries pairs in the form of 〈m, t〉, where m is a message and t is an epoch
variable. The value of t records the time when m was transmitted. Assertion (2.13)

2(〈m, t〉 ∈ C ⇒ τ − t < LC) (2.13)

states that no packet can stay longer in C than LC , which is a possible form of the
maximum packet-lifetime assumption.

A process is specified with the following syntax:

process name;
type declarations
variable definitions
event definitions

Type declarations and variable definitions follow the Pascal syntax and need no extra
explanation. An event has the form:

event name;
when enabling condition do

action

Events may have optional parameters which is a convenient way to define a collection
of events, one for every possible value of the parameter. The enabling condition is a
Boolean expression, the action is a sequential program. The action may contain the
following well-known Pascal constructs:

• x := e—assignment

• if condition then S1 else S2—conditional statement

• while condition do S—loop construct
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To make the descriptions shorter, we will use indentation instead of the keywords ‘begin’
and ‘end’ to group statements into blocks. Sometimes it is necessary to refer to a variable
of a specific process: P.x denotes variable x of process P .

The initial condition is written in the form:

init boolean expression;

2.4 Examples

To conclude the explanation of the verification framework, a few very simple examples
are presented which demonstrate many of the concepts we will use later in the protocol
analyses.

Example 1

Our first example is a system which contains a single a counter. It is difficult to imagine
a system simpler than this.

program counter ;
process count ;

var c: int;
event incr ;

when true do
c := c + 1

init c = 0;

Here are some safety properties of the system:
• c = n → c ≥ n

• 2(c ≥ 0)

The first assertion can be proven directly from the invariant rule (2.1) because the single
event incr satisfies {c = n}incr{c ≥ n}. The second assertion is inferred from the initial
condition and the validity of the first assertion using proof rule (2.2).

Assuming weak fairness for the event incr , we can obtain the following progress proper-
ties:

• c = n; c > n

• 3(c ≥ n)
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The first assertion is proven from the leads-to via event set rule (2.6), because incr
is continuously enabled and {c = n}incr{c > n}. To prove the second assertion, it is
enough to prove that c = 0 ; c ≥ n because p ∧ (p ; q) implies 3q and c = 0 is the
initial condition. To prove c = 0 ; c ≥ n, we can use the leads-to well-founded closure
rule (2.8) when Z is the set of natural numbers, F (x) ≡ x ≤ n − c.

Example 2

Let us now extend the above example with real-time constraints, i.e., turn our counter
into a clock.

program clock ;
process clk ;

var c: int;
t: array [nat] of epoch;

event tick ;
when true do

c := c + 1;
t[c] := τ

init c = 0 ∧ t = 〈0, λ, λ, . . .〉;

Each time the clock “ticks,” the variable c is incremented and the current time is saved
in t(c). The following two assertions express that the clock period (the time between
two ticks) is within the (γ, Γ) interval:

2(t[n] 6= λ ∧ t[n + 1] 6= λ ⇒ t[n + 1] − t[n] > γ) (2.14)

2(t[n] 6= λ ∧ t[n + 1] = λ ⇒ τ − t[n] < Γ) (2.15)

These assertions cannot be inferred from the specification, they are assumptions about
the system. When making such assumptions, it is always necessary to check that the
assumptions are realistic, i.e., they are satisfied by implementations of the modeled
system. Real-time assumptions of this kind will be used for the verification of the
timestamp-based protocols PAWS in Section 3.3 and SCMP in Section 4.2.

Example 3

In this last example, the simple counter of Example 1 is extended to two counters that
are roughly synchronized. The synchronization is achieved by message exchanges over
unreliable channels. The system consists of two processes P1 and P2, connected by two
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channels C1,2 and C2,1. P1 sends messages to C1,2 and receives them from C2,1; P2 does
it in the other way around. Since the system is fully symmetric, we specify only P1. P2

can be obtained by the systematic exchange of the subscripts 1 and 2.

program synchronized counters ;
channel C1,2, C2,1;
process P1;

var c, l: int;
event incr ;

when c ≤ l do c := c + 1;
event s sync;

when true do send(C1,2, c);
event r sync;

when head(C2,1) 6= nil do l := max(recv(C2,1), l);
process P2;

{ identical to P1 with indices permuted }
init P1.c = 0 ∧ P1.l = 0 ∧ P2.c = 0 ∧ P2.l = 0;

The working of the system is simple: each process maintains an estimate of the counter
of its peer in the variable l. The local counter c can only be incremented when c is not
larger than l, thus we expect that the counters remain close to each other. To update
the peer’s estimate, each process regularly transmits the value of the local counter.

There are two interesting properties of the system to be proven: (i) the counters are
indeed synchronized, (ii) the counters keep on counting forever. These properties are
captured by the following temporal formulas:

(∃k : 2|P1.c − P2.c| ≤ k) (2.16)

(∀n : 3P1.c ≥ n) (2.17)

Property (2.16), a safety property, says that the difference of the counters is limited by
constant k at any moment which means synchronization. Property (2.17), a progress
property, says that the counter of P1 grows beyond any bound. Due to the synchroniza-
tion property, P2.c also satisfies this property.

The safety property can be proven through a series of steps. In each step a new assertion
is proven until the desired property is obtained. The assertions below are parameterized
by i and j, where 〈i, j〉 is either 〈1, 2〉 or 〈2, 1〉:

• S1 : 2Pi.c ≤ Pi.l + 1 using the rules (2.1) and (2.2).

• S2 : 2x ∈ Ci,j ⇒ x ≤ Pi.c using the same rules as above. Note that initially the
channels are empty and that none of the channel events (drop, delete, reorder) can
falsify S2.
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• S3 : 2Pi.l ≤ Pj .c using the rule (2.3) with S2 as Q.

The combination of S1 and S3 implies the desired property (2.16) for k = 1.

To prove the desired progress property, it is sufficient to prove the following assertion:
• P1 : Pi.c = n ; Pi.c > n. From P1, we can prove the desired property by using

the leads-to well-founded closure rule (2.8).

The assertions below are needed for proving P1:
• P2 : Pi.l ≥ n; Pi.c > n by applying the leads-to via event set rule (2.6) assuming

weak fairness for the event Pi.incr .

• P3 : Pi.c ≥ n ; Pj.l ≥ n by applying the leads-to via message set rule (2.12)
assuming channel fairness for Ci,j and weak fairness for event Pi.s sync.

The assertion P1 can be proven from P2 and P3 through the multiple application of
closure rules: (i) Pi.c ≥ n; Pj .l ≥ n, (ii) Pj .l ≥ n; Pj .c ≥ n, (iii) Pj .c ≥ n; Pi.l ≥
n, and (iv) Pi.l ≥ n; Pi.c > n.



Chapter 3

Data Transfer Protocols

This chapter discusses protocols for reliable data-transfer over lossy channels. The dis-
cussion is based on the formal verification of important variants from the family of
sliding-window protocols. Using the results of these verifications, the data transfer part
of many current transport protocols is compared and analyzed.

Section 3.1 gives a formal definition of the desired properties of data transfer protocols.
Having these desired properties, we can define data transfer protocols as any protocol
which satisfies the desired properties.

In Section 3.2, we summarize the verification of a generic sliding-window protocol which
uses sequence numbers only. This verification was carried out by Shankar [Sha89]. There
are two reasons to include it in the thesis: (1) it establishes the properties of an important
class of data-transfer protocols; (2) it demonstrates some basic verification techniques
which are used in our verifications later on.

Section 3.3 is devoted to the verification of an extension to the sliding-window protocol,
called PAWS [JBB92]. As it is explained in Section 1.3, PAWS extends the sequence-
number space of the plain sliding-window protocol with timestamps.

Another data transfer protocol is analyzed in Section 3.4. The protocol, which is called
SNR after the name of its inventors [NRS90], is based on the periodic exchange of state
information between sender and receiver. The protocol was verified by Gouda et al in
[GNS95]. Here, the protocol is modified by making it possible to implement the protocol
without the costly protocol reset required by the original specification.

Section 3.5 provides an overview of the options available for reliable data-transfer proto-
cols. Based on the results of the formal verifications, these alternatives are compared to
each other using measures such as maximum transmission rate, interaction with other
protocol functions and complexity of implementation.

40
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program PC ;
type dataunit= “the type of data units”;
process P ;

var Source: array [0 . . .∞] of dataunit ∪ empty;
Acked : array [0 . . .∞] of bool;

event Produce(d, i);
when Source[i] = empty do Source[i] := d;

event Acknowledge (i);
when ¬Acked [i] do Acked [i] := true;

process C;
var Sink : array [0 . . .∞] of dataunit ∪ empty;
event Consume(d, i);

when Sink [i] = empty do Sink [i] := d;
init (∀i : Source[i] = Sink [i] = empty ∧ ¬Acked [i]);

Figure 3.1: Abstract data-transfer service

3.1 Desired properties

Ideally, the desired properties of a system are expressed by temporal formulas (see Sec-
tion 2.2). The goal of formulating these properties is to specify the desired behavior of
data-transfer protocols without reference to the specific protocol mechanisms. That is,
the desired properties specify a service and by formal verification it can be proven that
a protocol implements a service.

The problem of data-transfer can be captured as a producer-consumer system (see Fig-
ure 1.2). The physical separation of the producer and the consumer is an integral part
of the specification which can be modeled by partitioning the system into two processes
representing the producer and the consumer, respectively. The concept of processes,
however, cannot be expressed in temporal logic. Therefore, we use a protocol schema
and temporal formulas to specify a service [Sha91].

Syntactically, a protocol schema is a partially specified distributed system. The de-
sired safety and progress properties complete the specification by restricting the set of
computations to the desired ones.

The protocol schema specifying the abstract data-transfer service is shown in Figure 3.1.
The producer P has two state variables P.Source and P.Acked , each of them being an
infinite array. P.Source holds either the data units produced or the constant ‘empty’ if the
corresponding data unit has not been produced yet. P.Acked [i] implies that P.Source[i]
has been acknowledged by the consumer. The consumer, C stores the received data units
in the array C.Sink .

The system has three events. The user can submit a data unit for transmission by invok-
ing P.Produce. The data units can be produced in any order, but each unit can be sub-
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mitted only once. The delivery of data to the receiving user is modeled by C.Consume.
Similarly to P.Produce, units can be delivered in any order, but no more than once. The
event P.Acknowledge represents the acknowledging of received units.

The specification in Figure 3.1 provides information about the structure of the data-
transfer service, but says nothing about the logical relations among the production,
consumption, and acknowledgment of data units. These are captured by the following
temporal formulas:

C.Sink [n] 6= empty→ C.Sink [n] = P.Source[n] (3.1)

P.Acked [n] → C.Sink [n] 6= empty (3.2)

P.Source[n] 6= empty; C.Sink [n] 6= empty (3.3)

C.Sink [n] 6= empty; P.Acked [n] (3.4)

Only those computations of the protocol schema PC represent a computation of the
data-transfer service which satisfy these formulas.

The formulas (3.1) and (3.2) are safety properties. The first one specifies that once a
data unit is accepted by the consumer, it must be equal to the corresponding unit of the
producer then and at any later moment. The second formula requires that a unit is not
acknowledged before it is consumed. The formulas (3.3) and (3.4) are the corresponding
progress properties. They specify that if a data unit is produced then it is eventually
consumed, and that if a data unit is consumed then it is eventually acknowledged.

This specification of the data-transfer service is rather general because it makes no
constraints on the order of delivering data units to the consumer. The service can be
made more specific by requesting that data units are delivered sequentially. This is
how most protocols implement the data-transfer service, although some recent studies
investigate the advantages of delivering data not in sequential order [CT90].

The specification of the sequential-delivery data transfer service is shown in Figure 3.2.
Note that the position of the data unit being produced, consumed or acknowledged is
no more a parameter of the corresponding event. This is now implicitly encoded in the
sequence of events. The newly added state variables P.Nxt , C.Nxt , and P.Una hold the
index of the next data unit to be produced, consumed, and acknowledged, respectively.
The desired safety and progress properties remain the same, i.e., the formulas (3.1–3.4).

3.2 Plain sliding-window protocols

Now we turn our attention to the plain sliding-window protocol using the formal speci-
fication and verification of Shankar [Sha89].
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program PC 2 ;
type dataunit= “the type of data units”;
process P ;

var Source: array [0 . . .∞] of dataunit ∪ empty;
Acked : array [0 . . .∞] of bool;
Una , Nxt : int;

event Produce(d);
when true do Source[Nxt ] := d; Nxt := Nxt + 1;

event Acknowledge ;
when true do Acked [Una] := true; Una := Una + 1;

process C;
var Sink : array [0 . . .∞] of dataunit ∪ empty;

Nxt : int;
event Consume(d);

when true do Sink [Nxt ] := d; Nxt := Nxt + 1;
init (∀i : Source[i] = Sink [i] = empty ∧ ¬Acked [i])∧ P.Una = P.Nxt = C.Nxt = 0;

Figure 3.2: Data-transfer service with in-order delivery

3.2.1 Protocol specification

The specification of the plain sliding-window protocol can be found in the Figures 3.3,
3.4, and 3.5.

State variables

The program SW consists of two processes, the sender S and the receiver R, and two
channels, CS,R from S to R and CR,S from R to S. The specification starts with the
definition of several types. The type ‘packtype’ enumerates the different packet types.
The packets are stored in a variable record type which is called ‘packet .’ The value of the
selector Type determines the members of the record which are the appropriate header
fields of the corresponding packet.

The state variables are a superset of the state variables in the protocol schema PC 2 .
The sender S has a new variable Wnd to store the latest known size of the receiver
window. The arrays of epoch variables, tS, tA, and tL are needed to handle the real-time
properties: tS[i] records the time when unit i was submitted by the user, tL[i] records
the time when unit i was last sent, and tA[i] records the time when the acknowledgment
of unit i was accepted by S.

Similarly to the sender, the receiver R has a variable Wnd to store the current size of the
receive window. The receive window gives the number of data units that are acceptable
starting from Nxt . The variable tR is an array of epoch variables, where tR[i] records the
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program SW ;
type dataunit = “the type of data units”;

packtype = (DATA,ACK , SACK );
packet = record of

case Type: packtype of
DATA:

Seq : int;
Len: [0 . . .RW ];
Data: array [0 . . .RW ] of dataunit ;

ACK :
Ack : int;
Wnd : [0 . . .RW ];

SACK :
Ack : int;
Len: [0 . . .RW ];

channel CS,R, CR,S;

process S;
var Source: array [0 . . .∞] of dataunit ∪ empty;

Acked : array [0 . . .∞] of bool;
tS, tA, tL: array [0 . . .∞] of epoch;
Una , Nxt : int;
Wnd : [0 . . .RW ];

See Figure 3.4 for the events of process S.

process R;
var Sink : array [0 . . .∞] of dataunit ∪ empty;

tR: array [0 . . .∞] of epoch;
Nxt : int;
Wnd : [0 . . .RW ];

See Figure 3.5 for the events of process R.

init (∀i : S.Source[i] = R.Sink [i] = empty∧ ¬S.Acked [i])∧
(∀i : S.tS[i] = S.tA[i] = S.tL[i] = R.tR[i] = λ)∧
S.Una = S.Nxt = S.Wnd = R.Nxt = R.Wnd = 0;

Figure 3.3: Plain sliding-window protocol: main part
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event Accept(d);
when Nxt < Una + Wnd do

Source[Nxt ] := d; tS[Nxt ] := τ ; Nxt := Nxt + 1;

event SendD ;
var D: packet ;
when Una < Nxt do

Select i, l such that Una ≤ i < i + l ≤ Nxt ;
D.Type := DATA; D.Seq := i; D.Len := l;
D.Data := Source[i . . . i + l − 1];
send(CS,R, D); tL[i . . . i + l − 1] := τ ;

event RecACK ;
var A: packet ;
when head(CR,S) = A ∧ A.Type = ACK do

if Una < A.Ack ≤ Nxt then
Acked [Una . . .A.Ack − 1] := true;
tA[Una . . . A.Ack − 1] := τ ;
Una := A.Ack ; Wnd := A.Wnd;

else if Una = A.Ack then
Wnd := max(Wnd , A.Wnd);

event RecSACK ;
var A: packet ;
when head(CR,S) = A ∧ A.Type = SACK do

if Una < A.Ack < A.Ack + A.Len ≤ Nxt then
Acked [A.Ack . . .A.Ack + A.Len − 1] := true;

Figure 3.4: Plain sliding-window protocol: sender events

time when unit i was received by R.

The initial condition is self explanatory.

Sender events

The user is allowed to generate a new data word by activating the Accept event of process
S whenever the window is not closed. The Accept event records the new data word in
Source[Nxt ], the current time in tS[Nxt ] and then increments Nxt .

SendD can be activated if there is unacknowledged data. The protocol allows any re-
transmission strategy, i.e. any word in the send window [Una . . .Nxt − 1] may be sent.
A suitable range of data is selected first from the send window, then a data packet is
constructed and sent. After sending the packet, the current time is recorded in the range
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event ExpandWindow ;
when Wnd < RW do Wnd := Wnd + 1;

event RecD ;
var D: packet ;
when head(CS,R) = D ∧ D.Type = DATA do

if Nxt < D.Seq + D.Len ≤ Nxt + Wnd then
j := max(Nxt , D.Seq);
Sink [j . . .D.Seq + D.Len − 1] := D.Data;
while R.Wnd > 0 ∧ Sink [Nxt ] 6= empty do

tR[Nxt ] := Nxt + 1; Wnd := Wnd − 1;

event SendACK ;
var A: packet ;
when true do

A.Type := ACK ; A.Ack := Nxt ; A.Wnd := Wnd ;
send(CR,S, A);

event SendSACK ;
var A: packet ;
when There exists i, l such that Nxt < i < i + l ≤ Nxt + Wnd ,

Sink [i− 1] = empty and Sink [i . . . i + l − 1] 6= empty do
A.Type := SACK ; A.Ack := i; A.Len := l;
send(CR,S, A);

Figure 3.5: Plain sliding-window protocol: receiver events

of epoch variables tL[i . . . i + l − 1].

The RecACK and RecSACK events describe the validation of ack packets. A cumulative
ack is acceptable if it acknowledges data that has been sent, i.e., A.Ack is inside the
[S.Una + 1 . . . S.Nxt ] range. In case an ack does not advance S.Una, it may still update
the send window S.Wnd . Note that S.Wnd can only decrease if S.Una is increased by
at least the same amount, therefore S.Una +S.Wnd is monotone increasing. A selective
ack may update the acknowledgment status of some data units within the send window,
but it never updates the left window edge, S.Una.

Receiver events

Activating the ExpandWindow event indicates that the user is willing to accept more
data. The enabling condition assures that the window does not grow beyond the maxi-
mum window size, RW .
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Data packets are processed by RecD . A packet is acceptable if the data it carries falls
within the receive window. The array R.Sink is updated if a valid data packet is received
and then R.Nxt is advanced.

The events SendACK and SendSACK generate acks of the appropriate type. Generation
of cumulative acks is always enabled, but selective acks can only be generated if there is
out-of-order data at the receiver.

3.2.2 Verification steps

The goal of the verification is to prove that
• the specification is correct, i.e., it satisfies the desired properties;

• the protocol can be implemented using a finite (modulo-N) representation of the
identifiers without compromising its correctness.

Therefore, in the first step of the verification the correctness of the specification is proven
assuming unbounded identifiers. For the verification of the modulo-N protocol, the
following steps are proposed in [Sha89]:

• Define sufficient conditions under which the unbounded identifiers can be replaced
by modulo-N identifiers without affecting the protocol’s behavior. The conditions
are called correct interpretation (CI) conditions.

• Prove that the unbounded protocol satisfies the CI conditions.

The modulo-N version of the protocol is obtained by replacing the unbounded non-
auxiliary variables by modulo-N variables. In case of the sliding-window protocol, this
affects the S.Una, S.Nxt , and R.Nxt and the D.Seq , A.Ack header fields in the packets.
The auxiliary variables may remain unbounded, because they are not implemented and
by definition their value does not influence the behavior of the system.

The arithmetic operations are also replaced by their modulo-N counterparts. In case of
our protocols, it means only addition and substraction. The only problematic issue is
how to evaluate comparisons on the modulo-N numbers without changing the result of
the unbounded comparison. To handle this, we introduce further desired properties, the
so-called correct interpretation (CI) conditions [Sha89], which assure that the modulo-N
comparisons provide the same result as the unbounded ones. To obtain the CI conditions,
the following result can be used [Sha89]:

Let a and b be unbounded integers, and let a′ and b′ be their modulo-N
counterparts, respectively. The test a > b of unbounded numbers can be
replaced by an equivalent test on their modulo-N counterparts if there exists
a constant K which is less than N and

b + K ≥ a ≥ b + K − N + 1
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The equivalent modulo-N test is K ≥ a′−N b′ > 0, where −N means modulo-
N subtraction.

In order to be able to implement the comparisons of the modulo-N protocol, the constant
K must exist. Therefore a CI condition must be added to the set of desired properties
for each comparison in the form of ai > bi of the unbounded protocol

(∃Ki : Ki < N : 2(bi + Ki ≥ ai ≥ bi + Ki − N + 1)) (3.5)

The subscripts are used because for each comparison in the protocol a different constant
may be needed. The protocol can be implemented using modulo-N identifiers if the
unbounded specification satisfies the CI conditions.

3.2.3 Safety and progress of the unbounded protocol

As it was discussed in Section 2.2, the proof that the protocol satisfies the desired prop-
erties consists of the generation of several intermediate assertions which help establish
the validity of the desired properties. The most important intermediate assertions are
listed below from Shankar’s proof. The rest of the verification, which is not detailed
here, consists of substituting these assertions into the various proof rules. This step can
be done mechanically. More details can be found in the reference [Sha89].

Safety

Assertion (3.6) formulates basic properties of the sliding-window protocol:

2(S.Una ≤ R.Nxt ≤ S.Nxt ≤ S.Una + S.Wnd ≤ R.Nxt + R.Wnd ) (3.6)

Because of the in-sequence delivery 2(0 ≤ n < S.Una ⇒ S.Acked [n]) holds for S.Una
and similarly 2(0 ≤ n ≤ R.Nxt ⇒ R.Sink [n] 6= empty) and 2(0 ≤ n ≤ S.Nxt ⇒
S.Source[n] 6= empty) hold for R.Nxt and S.Nxt , respectively. The first half of the
assertion (3.6) S.Una ≤ R.Nxt ≤ S.Nxt is a precondition of the desired properties and
can be considered as a consequence of in-sequence delivery.

The second half of the assertion S.Nxt ≤ S.Una + S.Wnd ≤ R.Nxt + R.Wnd specifies
correct flow control. It assures that only requested data units are sent. Note that the
relations enforced by (3.6) between the state variables are also shown in Figure 1.3.

The following three assertions define the meaning of packet headers:

2(D ∈ CS,R ∧ D.Type = DATA ⇒
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⇒ D.Data = S.Source[D.Seq . . . D.Seq + D.Len − 1] 6= empty) (3.7)

2(CA ∈ CR,S ∧ CA.Type = ACK ⇒

⇒ R.Sink [0 . . .CA.Ack − 1] 6= empty) (3.8)

2(SA ∈ CR,S ∧ SA.Type = SACK ⇒

⇒ R.Sink [SA.Ack . . . SA.Ack + SA.Len − 1] 6= empty) (3.9)

In the above assertions, D, CA and SA stand for data, cumulative ack and selective ack
packets, respectively. From now on, we will stick to this notation which allows us to
omit the clause for checking the packet type from assertions.

The last three assertions are preconditions of the so-called non-interference property of
cumulative and selective acks [Sha89], which states that S.Una is never updated so that
it points to an already acknowledged data word:

2(CA, SA ∈ CR,S ⇒

⇒ CA.Ack 6∈ [SA.Ack . . . SA.Ack + SA.Len − 1]) (3.10)

2(SA ∈ CR,S ⇒

⇒ S.Una 6∈ [SA.Ack . . .SA.Ack + SA.Len − 1]) (3.11)

2(CA ∈ CR,S ∧ CA.Ack ≥ S.Una ⇒

⇒ ¬S.Acked [CA.Ack ]) (3.12)

From these assertions and some less interesting ones, the validity of (3.1) and (3.2) can
be proven using the proof rules from Section 2.2. There is only one aspect of the proof
which we want to mention. Remember that the channels CS,R and CR,S have their own
events which must be taken into account during the proof. Obviously, the channel events
can affect only those assertions which refer in some way to the contents of the channels.
In the above assertions, all such references are made in the form of

2(P ∈ C ∧ s1 ⇒ s2)

where P is a packet, C a channel, and s1,2 are state formulas. Notice that none of the
channel events (Drop, Reorder, and Duplicate) can falsify these assertions.

Progress

The desired progress properties of the generic data-transfer protocol schema are given by
assertions (3.3) and (3.4) in Section 3.1. Here we reformulate these assertions without
explicit reference to the history variables S.Source, R.Sink , and S.Acked in the assertions
(3.13) and (3.14). In these assertions, we exploit the fact that the sliding-window protocol
transfers and acknowledges data in sequential order.

S.Nxt > R.Nxt = n; R.Nxt > n (3.13)
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R.Nxt > S.Una = n; S.Una > n (3.14)

R.Nxt = n ∧ R.Wnd > 0; S.Una + S.Wnd > n (3.15)

Furthermore, another desired property (3.15) is introduced. This property specifies
that the sender is eventually informed when the receiver has more space in its window.
Without (3.15) deadlock could occur in the case when the receiver has a non-zero window
but the sender is never notified about it because of a lost acknowledgment, for example.

The validity of assertions (3.13–3.15) can only be proven assuming that the entities
satisfy one out of three liveness assumptions. In formulating these assumptions, the
notation (#P : e) will be used to denote the number of packets P sent so far which
satisfy the state-formula e.

In the first liveness assumption, the sender and receiver both handle retransmissions:

S.Nxt > S.Una = n ∧ (#D : n ∈ [D.Seq . . .D.Seq + D.Len − 1]) = k ;

; S.Una > n ∨ (#D : n ∈ [D.Seq . . .D.Seq + D.Len − 1]) > k (3.16)

R.Nxt = n ∧ R.Wnd > 0 ∧ (#CA : CA.Ack = n ∧ CA.Wnd > 0) = k ;

; R.Nxt > n ∨ (#CA : CA.Ack = n ∧ CA.Wnd > 0) > k (3.17)

(3.16) is a requirement that S eventually (re)transmit data messages which carry the
unit next to be acknowledged. (3.17) requires R to send acks eventually as long as its
window is non-zero.

In the second assumption, the sender handles all retransmissions and the receiver is only
required to eventually respond to received messages. In addition to (3.16), we have the
following requirements:

S.Wnd = 0 ∧ (#D : D.Len = 0) = k ;

; S.Wnd > 0 ∨ (#D : D.Len = 0) > k (3.18)

R.MsgRcvd ∧ R.Nxt = n ∧ (#CA : CA.Ack = n) = k ;

; R.Nxt > n ∨ (#CA : CA.Ack = n) > k (3.19)

(3.18) requires S to probe the receiver with data messages of zero length1 whenever its
window is zero. This is needed to assure that a lost window update does not cause
deadlock. Let R.MsgRcvd be a boolean state variable of the receiver which is true if and
only if no ack has been sent since the reception of the last data message. (3.19) instructs
R to send an ack eventually when R.MsgRcvd is true.

1For readability, the generation of window probes and the state variables introduced below are not
included in the specification in the Figures 3.3–3.5.
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In the third liveness assumption, the receiver handles all retransmissions and the sender
is only expected to eventually respond to a received ack message. This assumption
consists of (3.17) and the following:

S.AckRcvd ∧ S.Nxt > S.Una = n ∧

∧ (#D : n ∈ [D.Seq . . . D.Seq + D.Len − 1]) = k ; (3.20)

; S.Una > n ∨ (#D : n ∈ [D.Seq . . .D.Seq + D.Len − 1]) > k

The state variable S.AckRcvd is true if and only if the lowest data word to be acknowl-
edged has not been sent yet since the reception of the last ack message.

The progress verification consists of actually three proofs, one for each set of liveness
assumptions. All the three proofs are based on the repeated application of the ‘leads-to
via message set rule’ (2.12). Further details of these proofs can be found in the reference
[Sha89].

3.2.4 Correct interpretation conditions

Two CI conditions are necessary to prove the correctness of the modulo-N sliding-window
protocol. One corresponds to the comparison in the R.RecD event, the other corresponds
to the comparisons in the S.RecACK and S.RecSACK events. These latter two compar-
isons are covered by a single CI condition. The CI conditions are

2(D ∈ CS,R ⇒ D.Seq ≥ R.Nxt + RW − N + 1) (3.21)

2(A ∈ CR,S ⇒ A.Ack ≥ S.Nxt − N + 1) (3.22)

The CI condition (3.21) can be obtained using the following argument:

R.Nxt < D.Seq + D.Len ≤ R.Nxt + R.Wnd

is the comparison that has to be evaluated on modulo-N numbers. We expect the upper
bound to be always true during the correct operation of the protocol because of the
invariant (3.6) proven earlier. For the CI condition which belongs to the “R.Nxt <
D.Seq + D.Len” comparison, let K = R.Nxt + R.Wnd which is a known upper bound
of D.Seq + D.Len. Substituting K into the formula (3.5), we get

2(R.Nxt + R.Wnd + N − 1 ≤ D.Seq + D.Len ≤ R.Nxt + R.Wnd) (3.23)

The CI formula (3.21) is stronger than the lower bound in (3.23) because 2(R.Wnd ≤
RW ) and 2(D.Len > 0). If we can prove the validity of the stronger property (3.21),
then the CI condition (3.23 above is also valid.
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The CI condition for the S.RecACK and S.RecSACK events can be obtained using
similar arguments. In this case, we use the property that 2(A.Ack ≤ S.Nxt).

The validity of the CI conditions has been proven by Shankar for two cases. In one
case, the protocol operates over so-called transport channels which can drop, reorder
or duplicate packets. In the other case, the protocol operates over so-called data-link
channels which can only drop or duplicate packets, but not reorder them.

Over transport channels, the CI conditions are valid if

N ≥ 2RW + L · B (3.24)

where N is the size of the sequence space, RW is the maximum window size, L is the
maximum packet lifetime, and B is the maximum transmission rate measured in data
units per second. The proof that (3.24) implies the validity of the CI conditions uses two
real-time assumptions about the protocol. The maximum packet lifetime assumption
was discussed in Section 2.3. The other assumption is the existence of a maximum
transmission rate B which can be captured by the assertion

2(S.tL[i] 6= λ ∧ S.tL[i + 1] 6= λ ⇒ S.tL[i + 1] − S.tL[i] > 1/B) (3.25)

There is no need for real-time assumptions to prove the validity of the CI conditions for
data-link channels. In this case, the CI conditions are valid if

N ≥ 2RW (3.26)

This completes our summary of the results of Shankar in [Sha89]. We now turn our
attention to the verification of another data-transfer protocol which extends the sliding-
window protocol with timestamps.

3.3 Timestamp-based extensions

The increasing network bandwidth affects the sliding-window protocol in at least two
ways. On one hand, the higher bandwidth influences the correctness of the protocol
through the condition (3.24). In case of TCP [Pos81a], for example, L is 120 sec, RW
is 216. Therefore, the maximum allowable transmission rate is at around 300 Mbit/s. It
shows that there is no reason to worry about the correctness of current data transfers
over the Internet, but it may not be far ahead in the future that transmissions at such
a speed will be feasible.

There are a number of ways to secure the sliding-window protocol in high-speed net-
works:
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1. decrease L, i.e., enforce tighter control over packet lifetimes;

2. increase N , i.e., use more bits for the representation of sequence numbers;

3. use some other methods to protect against the misinterpretation of wrapped se-
quence numbers.

In many cases, tight control of L may not be preferred because it requires additional
functionality inside the network. In the Internet community, for example, the trend is
to strip the amount of processing that must be performed by routers on every packet to
the absolute minimum in order to achieve high-speed transmission at low cost. A typical
example of this trend is the simplified lifetime enforcement mechanism in IPv6 [DH95].
The TTL (time to live) field of IPv4 [Pos81a] is replaced by a simple hop count in IPv6.

The second option, increasing N is a viable solution to the problem. It will be compared
to other possibilities in Section 3.5.

In the PAWS (Protect Against Wrapped Sequence numbers) proposal [JBB92], the au-
thors follow the third possibility. They add timestamps to the sliding-window protocol
which are used to detect old duplicates and thus to prevent the misinterpretation of
sequence numbers. Their reason for using timestamps was to address another effect of
the high transmission speed on the sliding-window protocol.

The increased bandwidth also affects the performance of the sliding-window protocol.
Accurate measurement of the round-trip time (RTT) is essential for an efficient re-
transmission strategy [Jac88]. Traditionally, TCP implementations measure the RTT
by timing the difference between the sending of a packet and the reception of its ac-
knowledgment [WS95]. Because TCP uses cumulative acks only, at most one RTT
measurement per a send window can be made reliably [Zha86]. In order to use the avail-
able bandwidth, the size of the window must be at least as big as the bandwidth-delay
product . Therefore, in high-speed networks, especially on long-delay paths, the optimal
size of the window can be rather large which can adversely influence the accuracy of
the RTT measurements. That is why the use of timestamps is proposed in [JBB92].
This mechanism, called PAWS (Protect Against Wrapped Sequence numbers), will be
formally specified and analyzed below. The results of our analysis were reported earlier
in [OHdG95a, Olá95].

3.3.1 Operation of PAWS

The sliding-window protocol specified in the previous section is simplex because it can
transmit data in only one direction. TCP is a duplex data-transfer protocol: each
TCP entity behaves as the composition of a sender and a receiver of the sliding-window
protocol. Accordingly, the TCP packets are equivalent to the composition of a data
packet in one direction and a cumulative ack packet in the other direction. The sequence
numbers used for the forward and backward direction are largely independent. The
PAWS mechanism is defined for this duplex and symmetric data-transfer protocol.
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In addition to the state variables used by the plain sliding-window protocol, each protocol
entity in PAWS maintains a monotonic counter or in other words a clock Clk . When
a packet is transmitted, the current value of the clock is put into the Ts field of the
packet header. The state of each entity also includes the most recent timestamp TsRec
from the incoming data stream. TsRec is used to validate received packets. Only those
packets are accepted which have a Ts field not lower than TsRec. The packets which
pass this check are further examined according to the validation procedure of the sliding-
window protocol. Apart from the timestamp Ts, each packet carries the so-called echoed
timestamp TsEcho in its header which gets its value from TsRec. TsEcho is used by the
round-trip delay estimation algorithm [JBB92, Ste94].

A crucial part of the protocol is the method for updating the value of TsRec. When
specifying this method, one has to take into account that TsEcho serves two purposes:
round-trip time measurement and validation of sequence numbers. For RTT measure-
ments, it must be taken into account that TCP implementations often delay acks in the
hope of reducing the number of packets. This delay should be included into the mea-
sured RTT to avoid spurious retransmissions. For the validation of sequence numbers,
TsRec should be recent enough to reject old duplicates. On the other hand, we should
avoid dropping a packet if two packets are reordered in the network; therefore we cannot
simply store the timestamp of the most recently received packet in TsRec.

The following algorithm was proposed [JBB92, Bra93] that complies with the above
requirements. Another state variable LAck is maintained which contains the acknowl-
edgment field Ack from the last packet sent. TsRec is set to Ts from the packet header
whenever Seq ≤ LAck and Ts > TsRec hold, where Seq is the sequence number of the
first data word in the packet.

Our specification differs from the original PAWS mechanism [JBB92] in one point. For
the validation of acks, we use the echoed timestamp present in all packets. Similarly to
the recent timestamp for data sequence numbers, each entity maintains the most recent
echoed timestamp TsEchoRec. The ack part of an incoming packet is accepted only if
the echoed timestamp is not lower than TsEchoRec.

On the contrary, the original PAWS mechanism validates acks by using the same times-
tamp check as for data, i.e. if Ts ≥ TsRec then the ack is accepted if it is inside the
send window. Because TsRec is updated only when the data sequence numbers advance,
it is possible in theory that the acknowledgment sequence numbers wrap around before
TsRec is updated. In this case, TsRec is not sufficient to distinguish old acks from new
ones.

Such a situation is shown in Figure 3.6. x and y are the sequence numbers in the two
directions, l is the packet length, x′ denotes a wrapped sequence number, i.e. x′ ≡ x
(mod N). Each packet is represented by the (Ts, Seq ,TsEcho,Ack) tuple. Each entity
is sending pairs of packets in turns. While all packets are delivered from A to B, the first
of the two packets from B to A are always lost. This results in A receiving out-of-order
packets exclusively, while B keeps on retransmitting the same pair of packets. In this
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Figure 3.6: Possible problem with the PAWS mechanism: incorrect validation of ac-
knowledgments.

situation, A will not be able to update its most recent timestamp TsRec, thus a duplicate
ack appearing in the wrong moment can be accepted by A.

It is apparent that such a situation is not very likely to occur in practice. A practical
retransmission algorithm will not retransmit multiple packets in face of persistent losses.
Also, the chance of such regular packet loss pattern should be very low, although it
may happen in case of some network malfunction. Still, it would not be wise to include
this sort of assumptions into the formal model. If we assume that the transport entities
may implement any retransmission strategy and network losses can occur in an arbitrary
pattern, then the above described problem indeed exists.

The fundamental problem with PAWS as specified in [JBB92] is that plain TCP is
a symmetric protocol, but PAWS is not. PAWS is asymmetric because TsRec, the
protocol variable which is used to protect against wrapped sequence numbers (both data
and acks), is updated only on the advance of data sequence numbers. If we use TsRec
only, we have to bind its updating algorithm either to the advance of data sequence
numbers (forward direction) or to the advance of acknowledgments (reverse direction).
The example in Figure 3.6 above demonstrates that the advance of the sequence numbers
in the two directions is largely independent, therefore we cannot have a single variable
to protect against the reuse of sequence numbers in both directions.
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program TS ;
Packet type definitions in Figure 3.8;
Variable definitions and initial conditions in Figure 3.9;
Sender process events in Figure 3.10 and 3.11;
Receiver process events in Figure 3.12.

Figure 3.7: PAWS: program skeleton

This observation leads to our simple solution. We make PAWS symmetric by introducing
another protocol variable, the most recent echoed timestamp TsEchoRec. This variable
has the same role for the validation of acks as R.TsRec is for the validation of data.

Let us notice that with our modification the validation of the data and acknowledgment
information become fully independent of each other. Because of this, the case of duplex
data transfer can be simply considered as the combination of two simplex data transfer
protocols. Therefore, just as in the case of the plain sliding-window protocol, it is
sufficient to verify the simplex version of the protocol.

3.3.2 Protocol specification

The formal specification of PAWS is based on the sliding-window protocol specification
in Section 3.2.1. Because the modifications are distributed over the whole specification,
we decided to list the full specification again in the figures, but only the additional
mechanisms of PAWS will be explained.

Figure 3.7 gives the outline of the specification. The details are shown in several listings.
The protocol uses three different packet types, DATA, ACK , and SACK as it is shown
in Figure 3.8. These types are the same used by the sliding-window protocol, but each
packet type has new header fields. Some of these header fields are auxiliary variables,
i.e., they are needed only for the verification.

Packet types

Data packets carry a timestamp Ts and an auxiliary field SnMax , which gives the max-
imum sequence number (Nxt − 1) that could have been sent until the time of sending
this packet. Cumulative and selective acks get identical new fields. TsEcho is the echoed
timestamp. This is a non-auxiliary field. EchoExp is the time of expiry of the TsRec
echoed in the packet. SnMax echoes the header field of the same name from the data
packet from which the echoed timestamp is taken. The meaning of these auxiliary fields
(EchoExp and SnMax ) can be better understood after reading the specification of the
sender and receiver processes.
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type dataunit = “the type of data units”;
packtype = (DATA,ACK , SACK );
packet = record of

case Type: packtype of
DATA:

Seq : int;
Len: [0 . . .RW ];
Ts: int;
SnMax : int;
Data: array [0 . . .RW ] of dataunit ;

ACK :
Ack : int;
Wnd : [0 . . .RW ];
TsEcho, EchoExp : int;
SnMax : int;

SACK :
Ack : int;
Len: [0 . . .RW ];
TsEcho, EchoExp : int;
SnMax : int;

Figure 3.8: PAWS: packet type definitions

Variable definitions

The variable definitions are shown in Figure 3.9. The sender process has two new auxil-
iary history variables, TsMin and TsMax . TsMin[i] gives a lower bound of the timestamp
that has been used in any packet carrying data units with sequence numbers not more
than i. In other words, P.Ts ≥ TsMin[i] holds if P.SnMax = i. Similarly, TsMax [i]
gives the upper bound of these timestamps.

The arrays of epoch variables tS and tC record the time when a particular data unit was
produced, and when the value of the clock Clk was incremented, respectively. The vari-
able Clk holds the local notion of time. TsEchoRec is the most recent echoed timestamp
received from ack packets. The role of the boolean variable EchoRecOld is to indicate
when TsEchoRec has not been updated for a long time. This is needed to avoid the mis-
interpretation of TsEchoRec in modulo-N implementations when TsEchoRec becomes
too old with respect to Clk . Clk , TsEchoRec, and EchoRecOld are all non-auxiliary
variables.

The receiver has a new array of epoch variables tC which records the times when the local
clock Clk is incremented. The role of the LAck and TsRec variables was explained earlier
during the informal description of the PAWS algorithm. TsRec, similarly to TsEchoRec
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channel CS,R, CR,S;

process S;
var Source: array [0 . . .∞] of dataunit ∪ empty;

Acked : array [0 . . .∞] of bool;
TsMin,TsMax : array [0 . . .∞] of int ∪ empty;
tS, tC : array [0 . . .∞] of epoch;
Una, Nxt : int;
Wnd : [0 . . .RW ];
Clk , TsEchoRec: int;
EchoRecOld : bool;
SnMax : int;

See Figure 3.10 and 3.11 for the events of process S.

process R;
var Sink : array [0 . . .∞] of dataunit ∪ empty;

tC: array [0 . . .∞] of epoch;
Nxt : int;
Wnd : [0 . . .RW ];
LAck , SnMax : int;
Clk , TsRec, TsExp: int;
RecOld : bool;

See Figure 3.12 for the events of process R.

init S.Source[0 . . .∞] = R.Sink [0 . . .∞] = (empty, empty, . . .);
S.Acked [0 . . .∞] = (false, false, . . .);
S.TsMin[0 . . .∞] = S.TsMin[0 . . .∞] = (empty, empty, . . .);
S.tS[0 . . .∞] = S.tC[0 . . .∞] = R.tC[0 . . .∞] = (λ, λ, . . .);
S.Una = S.Nxt = R.Nxt = S.Wnd = R.Wnd = 0;
S.Clk = S.TsEchoRec = R.Clk = R.TsRec = R.TsExp = 0;
S.EchoRecOld = R.RecOld = false;
S.SnMax = R.SnMax = R.LAck = 0;

Figure 3.9: PAWS: variable definitions and initial conditions

in the sender, must be aged to avoid the misinterpretation of timestamps when TsRec
becomes old. TsExp is the value of the local, i.e., the receiver’s clock at the time when
TsRec was last updated. RecOld is boolean variable which is set to true when TsRec is
aged. The auxiliary variable SnMax stores the header field of the same name from the
last data packet which updated TsRec.

There are two new constants in the specification for the aging of timestamp-related
variables. TW S and TW R are required for the aging of S.TsEchoRec and R.TsRec,
respectively. When the difference between S.TsEchoRec and the current time S.Clk
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event ClockTick ;
when true do

tC[Clk ] := τ ; Clk := Clk + 1;
if ¬EchoRecOld ∧ Clk = TsEchoRec + TW S then

EchoRecOld := true;

event Accept(d);
when Nxt < Una + Wnd do

Source[Nxt ] := d; tS[Nxt ] := τ ;
TsMin[Nxt ] := Clk ; TsMax [Nxt ] := Clk ;
Nxt := Nxt + 1;

event SendD ;
var D: packet ;
when Una < Nxt do

Select i, l such that Una ≤ i < i + l ≤ Nxt ;
D.Type := DATA; D.Seq := i; D.Len := l;
D.Ts := Clk ; D.SnMax := Nxt − 1; TsMax [Nxt − 1] := Clk ;
D.Data := Source[i . . . i + l − 1];
send(CS,R, D);

Figure 3.10: PAWS: sender events, part 1

becomes TW S clock ticks, S.EchoRecOld is set to true. Similarly, if the receiver cannot
update TsRec for more than TW R clock ticks as measured on its local clock R.Clk , then
R.RecOld is set to true.

The initial state is again self-explanatory. The state variables are equal to 0 and the
history variables are empty.

Sender events

The specification of the sender events can be found in Figures 3.10 and 3.11. The
ClockTick event records in the epoch variable tC the end of the current clock tick and
then increments the clock. The recent echoed timestamp TsEchoRec is aged when it gets
older that Clk − TW S by setting EchoRecOld to true. The guard of the clock event is
always true but when proving the CI conditions during the verification, we will add a
real-time assumption which specifies the clock-rate.

The only modification in the Accept event is the update of the TsMin and TsMax history
variables. TsMin[n] and TsMax [n] record the lower and upper limit of timestamps
assigned to data packets when the right edge of the send window (Nxt − 1) was n.
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event SendP ;
var D: packet ;
when Wnd = 0 do

D.Type := DATA; D.Seq := Nxt ; D.Len := 0;
D.Ts := Clk ; D.SnMax := Nxt ; TsMax [Nxt − 1] := Clk ;
send(CS,R, D);

event RecACK ;
var A: packet ;
when head(CR,S) = A ∧ A.Type = ACK do

if (EchoRecOld ∨ A.TsEcho ≥ TsEchoRec) ∧ (Una < A.Ack ≤ Nxt ) then
Acked [Una . . .A.Ack − 1] := true;
Una := A.Ack ; Wnd := A.Wnd;
TsEchoRec := A.TsEcho; EchoRecOld := false; SnMax := A.SnMax ;

else if (EchoRecOld ∨ A.TsEcho ≥ TsEchoRec) ∧ Una = A.Ack then
Wnd := max(Wnd , A.Wnd); TsEchoRec := A.TsEcho; EchoRecOld := false;

event RecSACK ;
var A: packet ;
when head(CR,S) = A ∧ A.Type = SACK do

if (EchoRecOld ∨ A.TsEcho ≥ TsEchoRec)∧
(Una < A.Ack < A.Ack + A.Len ≤ Nxt) then

Acked [A.Ack . . .A.Ack + A.Len − 1] := true;

Figure 3.11: PAWS: sender events, part 2

The logic of the SendD event does not change, but it must now fill in the new fields in
the packet header. The auxiliary variable TsMax [Nxt −1] is also updated from the local
clock. The SendP event is not completely new in this specification although it did not
appear explicitly in the sliding-window protocol. Note however, that this event was part
of one of the three possible fairness assumptions. Because, as we will see later, in case of
PAWS only one fairness assumption is feasible which assumes this event, it is included
now in the formal specification. The event is enabled when the send window is empty
and it generates zero-length data packets to probe the receiver until an acknowledgment
with a non-zero window is received.

In the RecACK and RecSACK events the validation procedure of the sliding-window
protocol is augmented with a check of the echoed timestamp in the packet against
TsEchoRec which is the most recent echo from earlier acks.
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event ClockTick ;
when true do

tC[Clk ] := τ ;
Clk := Clk + 1;
if ¬RecOld ∧ Clk = TsExp + TW R then

RecOld := true;

event ExpandWindow ;
when Wnd < RW do Wnd := Wnd + 1;

event RecD ;
var D: packet ;
when head(CS,R) = D ∧ D.Type = DATA do

if (RecOld ∨ D.Ts > TsRec) ∧ D.Seq < LAck then
TsRec := D.Ts ; RecOld := false; TsExp := Clk ; SnMax := D.SnMax ;

if (RecOld ∨ D.Ts ≥ TsRec) ∧ (Nxt < D.Seq + D.Len ≤ Nxt + Wnd) then
j := max(Nxt , D.Seq);
Sink [j . . .D.Seq + D.Len − 1] := D.Data;
while R.Wnd > 0 ∧ Sink [Nxt ] 6= empty do

tR[Nxt ] := Nxt + 1; Wnd := Wnd − 1;

event SendACK ;
var A: packet ;
when ¬RecOld do

A.Type := ACK ; A.Ack := Nxt ; A.Wnd := Wnd ;
A.TsEcho := TsRec; A.SnMax := SnMax ; A.EchoExp := TsExp;
send(CR,S, A);

event SendSACK ;
var A: packet ;
when ¬RecOld ∧ ‘there exists i, l such that Nxt < i < i + l ≤ Nxt + Wnd ,

Sink [i− 1] = empty and Sink [i . . . i + l − 1] 6= empty’ do
A.Type := SACK ; A.Ack := i; A.Len := l;
A.TsEcho := TsRec; A.SnMax := SnMax ; A.EchoExp := TsExp;
send(CR,S, A);

Figure 3.12: PAWS: receiver events

Receiver events

The receiver events are listed in Figure 3.12. The ClockTick event uses the same logic
as the ClockTick event in the sender. The ExpandWindow event is identical to the one
in the sliding-window protocol.
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The first ‘if’ statement of the RecD event handles the update of TsRec. TsExp records
the value of the receiver’s clock when TsRec was last updated. The auxiliary variable
SnMax contains the right edge of the send window at the moment when the data packet
used to update TsRec was sent. The second ‘if’ statement checks whether the received
packet contains acceptable data. Data inside the receive window is acceptable if the
timestamp of the packet is not older than TsRec. The processing of data in the second
‘if’ construct is identical to the body of the RecD event in the sliding-window protocol.

The SendACK and SendSACK events generate an ack when they are triggered. The
sending of acks is disabled when the recent timestamp becomes too old to prevent the
ambiguity caused by wrapped timestamps.

3.3.3 Safety and progress of the unbounded protocol

The strategy for verifying PAWS is similar to the strategy used for the verification of
the plain sliding-window (SW) protocol. First we prove that the protocol satisfies the
desired properties assuming unbounded sequence numbers and timestamps. Then the
CI conditions are formulated and their invariance is proven which indicates that the
protocol can be implemented using modulo-N representation for the state variables.

Safety

The proof that PAWS satisfies the safety properties (3.1), (3.2) is based on the safety
verification of the SW protocol. The safety of PAWS follows directly from the safety
of the SW protocol because PAWS can be considered as a specific version of the SW
protocol. In other words, any packet that is accepted by PAWS would also be accepted
by the SW protocol. Since the safety properties mean that “nothing bad can happen,”
the safety of the SW protocol implies the safety of PAWS.

To prove that this relation indeed exists between PAWS and the SW protocol, we show
that the protocols satisfy three conditions:

1. The state variable set of PAWS is a superset of the of the state variable set of SW.

2. The initial condition of PAWS implies the initial condition of SW.

3. Each computation of PAWS can be mapped to a computation of the SW protocol.

The first condition holds if we do not count auxiliary variables, e.g., S.tA is a variable
in SW but not in PAWS. Note that we can safely omit the auxiliary variables because
by their definition they cannot influence the behavior of the protocol. Each state s of
PAWS can be mapped to the state s̃ of SW obtained from s by ignoring the values of
state variables not in SW.

The second condition also holds which is easy to check.
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To check that the third condition is satisfied, consider the following. The new events
in PAWS, S.ClockTick and R.ClockTick do not alter any of the state variables present
in SW. Any occurrence of such events in a computation of PAWS can be mapped to
an imaginary idle event. The events S.Accept, S.SendD , S.SendP , R.ExpandWindow ,
R.SendACK , and R.SendSACK of PAWS are identical to those in SW if we omit the
new variables. That is, any occurrence of these events in a computation of PAWS maps
to the same event of SW.

Finally, the events S.RecACK , S.RecSACK , and R.RecD which deal with the validation
of received packets have to be considered. Each of these receive events are enabled
when a packet of the appropriate type is at the head of the channel. The body of these
events contains an ‘if’ construct in order to validate the received packet. If the packet is
acceptable, then it is processed otherwise there is no change in the state of the system
except the removal of the packet from the channel. The body of the ‘if’ constructs is
identical in the two protocols considering only the variables of SW. The difference is that
there is an extra condition in the PAWS events for the validation of the packet using the
new state variables. Therefore, the occurrence of the receive events in a computation of
PAWS can be mapped to the same receive event of SW if the extra condition evaluates
to true. Otherwise, the occurrence of the PAWS receive event maps to a packet drop
of the appropriate channel in SW. Note that this is a valid state transition in the SW
protocol because channel events are enabled when there are packets in transit.

Thus we produced a mapping which assigns a valid computation of the SW protocol
to every computation of PAWS. Because the SW protocol satisfies the desired safety
properties, this mapping implies that PAWS satisfies these safety properties as well.

Progress

The desired progress properties of PAWS are defined by assertions (3.13–3.15). The same
desired properties were assumed for the SW protocol. Similarly to the SW protocol, we
have to make some liveness assumptions about the entities as well. The basic difference
is that in case of PAWS there is only one set of liveness assumptions instead of three.

Let us notice that the R.SendACK event is not always enabled in PAWS. This is
necessary to avoid confusion from wrapped timestamps when R.TsRec has not been
updated for a certain interval (denoted by TW R is the specs). If there is a temporary
channel failure longer than this timeout period, then the system enters a state in which
only the sender is allowed to generate packets. Thus, in order to assure progress, the
sender has to actively probe the receiver when it expects more information from the
receiver. This requirement can be formulated in the following set of liveness assumptions:

S.Nxt > S.Una = n ∧ (#D : n ∈ [D.Seq . . .D.Seq + D.Len − 1]) = k ;

; S.Una > n ∨ (#D : n ∈ [D.Seq . . .D.Seq + D.Len − 1]) > k (3.27)
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S.Wnd = 0 ∧ (#D : D.Len = 0) = k ;

; S.Wnd > 0 ∨ (#D : D.Len = 0) > k (3.28)

(¬enabled (R.SendACK ); enabled (R.SendACK )) ⇒

⇒ ((#CA) = k ; (#CA) = k + 1) (3.29)

These liveness assumptions correspond to the second set of liveness assumptions for SW
defined by (3.16), (3.18), and (3.19). The major difference is in the assertion (3.29).
This assertion requires that if the R.SendSACK event is enabled infinitely often, then
cumulative acks are sent infinitely often. In other words, this is a strong fairness re-
quirement for the event R.SendACK . In case of the SW protocol, the corresponding
requirement (assertion (3.19)) is somewhat weaker. For PAWS, we have to consider that
the R.SendSACK event is not continuously enabled, which necessitates the stronger fair-
ness assumption. In practice, however, it is still not a very strict requirement because,
as we will see later, the time period R.SendSACK remains enabled after the reception of
a valid data packet is usually in the order of days. Therefore the requirement that a re-
ceiver must send at least one ack in every such period does not constrain implementations
too much.

Assertion (3.28) is equivalent to weak-fairness for the S.SendP event, while assertion
(3.27) is weak-fairness for the S.SendD event with the restriction that the lowest un-
acknowledged data word has to be eventually retransmitted. Apart from these fairness
assumptions, we also assume that both channels are fair (see Section 2.3.3).

Similarly to the proof of the invariants, the progress properties are proven by proving a
series of progress properties which finally lead to the desired properties. Only an outline
of the proof is given here in the thesis, further details can be found in Appendix A.2
and [Olá95]. The important properties derived during the proof are given below with
some indication of their meaning and the proof rules which can be used to prove these
assertions.

S.Nxt > R.Nxt = S.Una = n; R.Nxt > n (3.30)

S.Una + S.Wnd = S.Una = n ∧ R.Wnd > 0; S.Una + S.Wnd > n (3.31)

Assertion (3.30) and (3.31) are two restricted versions of (3.13) and (3.15), respectively.
(3.30) says that if every data word that is received is also acknowledged and the sender
has some outstanding data, then the receiver eventually receives more data. (3.30) is
expected to hold because of the liveness assumption (3.27) and the channel fairness
assumption. (3.31) says that if the sender has a zero window and the receiver has space
for more data then eventually the sender window will open up. (3.31) will be used to
prove (3.15).

S.Una = n ∧ S.Clk = m → (D ∈ CS,R ∧ D.Ts > m ⇒ D.Seq ≥ n) (3.32)
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S.Nxt > S.Una = n ∧ S.Clk = m →

→ (D ∈ CS,R ∧ D.Seq = n ∧ D.Ts > m ⇒ D.Len > 0) (3.33)

S.Nxt > R.Nxt = S.Una = n ∧ S.Clk = m →

→ (R.Nxt = n ⇒ R.TsRec ≤ m) (3.34)

(3.32)–(3.34) are used in the proof of (3.30). (3.32) states that once S.Una = n and
S.Clk = m then any packet sent in a later state has a sequence number that is at least
n. We expect this to hold because of the definition of the S.SendD and S.SendP events
and the monotonicity of S.Una and S.Clk . (3.33) says that once S.Nxt > S.Una = n
holds, any data packet sent from that time on with a sequence number equal to n must
have non-zero length. (3.33) holds because zero-length packets can only be sent when
S.Wnd = 0 which implies S.Nxt = S.Una and because of the monotonicity of S.Nxt .
(3.34) asserts that if (i) the sender has data to send, and (ii) all the in-sequence data
received by the receiver has also been acknowledged, then R.TsRec cannot grow unless
new data is accepted by the receiver. Assertion (3.34) is a precondition of (3.30) because
it assures that data packets with new data will indeed be accepted by the R.RecD event.

R.Nxt > S.Una = n ∧ S.Clk ≥ m;

; S.Una > n ∨ (¬R.RecOld ∧ R.TsRec ≥ m) (3.35)

R.Nxt = n ∧ R.TsRec = m → (A ∈ CR,S ∧ A.TsEcho > m ⇒ A.Ack ≥ n) (3.36)

R.Nxt > S.Una = n ∧ S.Clk = m → (S.Una = n ⇒ S.TsEchoRec ≤ m) (3.37)

With the help of (3.35–3.37), the desired property (3.14) can be proven. (3.35) states
that if some data is not yet acknowledged then either the data will be acked or the
receiver’s recent timestamp becomes “new.” New means here that ¬R.RecOld holds and
thus R.SendACK is enabled. We expect (3.35) to hold because the sender retransmits
unacknowledged data as formulated in the liveness assumption (3.27). (3.36) is very
similar to (3.32) but it is for the reverse channel. It holds because of the monotonicity of
the variables involved. (3.37) is the equivalent of (3.34) for the reverse channel. (3.37)
is needed to prove that if the sender gets an acknowledgment with A.Ack > n and
A.TsEcho ≥ m, then its reception will establish S.Una > n.

S.Wnd = 0 ∧ S.Clk ≥ m; S.Wnd > 0 ∨ (¬R.RecOld ∧ R.TsRec ≥ m) (3.38)
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R.Nxt + R.Wnd > n ∧ R.TsRec = m →

→ (A ∈ CR,S ∧ A.TsEcho > m ⇒ A.Ack + A.Wnd > n) (3.39)

S.Una + S.Wnd = S.Una = n ∧ R.Wnd > 0 ∧ S.Clk = m →

→ (S.Una + S.Wnd = n ⇒ S.TsEchoRec ≤ m) (3.40)

The assertions (3.38)–(3.40) are needed for proving (3.31). (3.38) asserts that if the
sender window is closed then either the window will open up or the receiver’s recent
timestamp becomes new. The assertion is analogous to (3.35). The assertion is expected
to hold because of the liveness assumption (3.28). Assertion (3.39) is the analogy of
(3.33) and (3.36) for the right edge of the receive window. It asserts that if the right
edge of the window is greater than n, then the right edge of the window in any subsequent
ack packet is at least as high. (3.39) holds because of the monotonicity of the variables
involved. (3.40) is analogous to the assertions (3.34) and (3.37). It asserts that if the
sender has no outstanding data and a zero send window, then S.TsEchoRec cannot grow
unless the right edge of the send window is advanced. This property is needed to prove
that a window update is eventually accepted by the S.RecACK event.

3.3.4 Correct interpretation conditions

Formulating the CI conditions

Similarly to the SW protocol, we have to formulate the CI conditions in order to prove
that the specification can be implemented using finite representation for the state vari-
ables. In PAWS, there are two different sorts of state variables: one sort to represent
sequencing variables and another to represent timestamps and clocks. The constants
NS and NC denote the size of the sequence space, and the size of the timestamp space,
respectively. That is, S.Una, R.Nxt , D.Seq ,. . . are implemented as modulo-NS variables,
S.Clk , R.TsRec, A.TsEcho,. . . are implemented as modulo-NC variables.

Two sorts of CI conditions will be formulated for PAWS:
• CI conditions to assure the correct interpretation of sequence numbers assuming

the correct interpretation of timestamps;

• CI conditions to assure the correct interpretation of timestamps.

2(D ∈ CS,R ∧ (R.RecOld ∨ D.Ts ≥ R.TsRec) ⇒

⇒ D.Seq ≥ R.Nxt + RW − NS + 1) (3.41)
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2(A ∈ CR,S ∧ (S.EchoRecOld ∨ A.TsEcho ≥ S.TsEchoRec) ⇒

⇒ A.Ack ≥ S.Nxt −NS + 1) (3.42)

Assertions (3.41) and (3.42) are the conditions for the correct interpretation of sequence
numbers in the R.RecD and S.RecACK , S.RecSACK events respectively. These CI con-
ditions are almost equivalent to the CI conditions (3.21) and (3.22) of the SW protocol.
The only difference is that the correct interpretation of sequence numbers has to be
assured only in the case when the packet has passed the timestamp validation. This is
reflected by the appearance of the extra condition in the antecedent of the implications.
In other words, we could weaken the CI conditions for sequence numbers because of the
extra protection provided by the timestamps.

(∃KR : 2(D ∈ CS,R ∧ ¬R.RecOld ⇒

⇒ R.TsRec + KR ≥ D.Ts ≥ R.TsRec + KR − NC + 1)) (3.43)

2(A ∈ CR,S ∧ ¬S.EchoRecOld ⇒ A.TsEcho ≥ S.Clk − NC + 1) (3.44)

Assertions (3.43) and (3.44) are the CI conditions corresponding to the R.RecD and
S.RecACK , R.RecSACK events, respectively. These conditions are necessary to assure
the correct interpretation of the timestamps in the packets.

Assertion (3.43) is the CI condition for the comparisons ‘D.Ts ≥ R.TsRec’ and ‘D.Ts >
R.TsRec’ in the R.RecD event. It was obtained by substituting the corresponding vari-
ables directly into the definition of CI conditions (3.5). The value of constant KR will
be determined during the verification.

2(¬R.RecOld ⇒ R.TsExp ≥ R.Clk − TW R + 1) (3.45)

2(¬S.EchoRecOld ⇒ S.TsEchoRec ≥ S.Clk −TW S + 1) (3.46)

Assertions (3.45) and (3.46) assure the correct interpretation of the variables R.TsExp
and S.TsEchoRec in the R.ClockTick and S.ClockTick events, respectively. It is easy
to show that the above assertions hold. Furthermore, they imply the CI conditions that
can be obtained from the definition (3.5) if we assume that the inequalities TW R < NC

and TW S < NC are satisfied by the constants.

Real-time assumptions

We have to make assumptions about the real-time properties of the clocks in the entities
for the verification of the CI properties. These assumptions extend the two real-time
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assumptions about the maximum transmission rate B and the maximum packet lifetime
L made during the verification of the SW protocol.

2(S.tC[n − 1] 6= λ ∧ S.tC[n] 6= λ ⇒ S.tC[n] − S.tC[n− 1] > γS) (3.47)

2(S.tC[n − 1] 6= λ ∧ S.tC[n] = λ ⇒ τ − S.tC[n − 1] < ΓS) (3.48)

2(R.tC[n − 1] 6= λ ∧ R.tC [n] 6= λ ⇒ R.tC [n] − R.tC[n − 1] > γR) (3.49)

2(R.tC[n − 1] 6= λ ∧ R.tC [n] = λ ⇒ τ − R.tC[n − 1] < ΓR) (3.50)

In these assertions, γS and ΓS denote the minimum and the maximum time between two
S.ClockTick events. The clock rate r thus satisfies 1/ΓS ≤ r ≤ 1/γS . The real-time
properties of the other clock are defined in the same manner.

Assertions from the verification

Some of the key assertions from the verification of the CI conditions are explained below.

2(0 ≤ n < S.Nxt ⇒ S.TsMin[n] ≤ S.TsMax [n] ≤ S.Clk) (3.51)

2(0 < n < S.Nxt ⇒ S.TsMax [n − 1] ≤ S.TsMin[n]) (3.52)

2(⌈ΓS · B⌉ ≤ n < S.Nxt ⇒ S.TsMin[n − ⌈ΓS · B⌉] < S.TsMin[n]) (3.53)

Assertions (3.51)–(3.53) list properties of the history variables S.TsMin and S.TsMax .
These properties are consequences of the monotonicity of S.Clk and S.Nxt . (3.53) creates
the connection between timestamps and sequence numbers by stating that no more than
⌈ΓS · B⌉ sequence numbers can be consumed in one clock tick.

2(D ∈ CS,R ⇒ S.TsMin[D.SnMax ] ≤ D.Ts ≤ S.TsMax [D.SnMax ]) (3.54)

2(S.TsMin[R.SnMax ] ≤ R.TsRec ≤ S.TsMax [R.SnMax ]) (3.55)

2(A ∈ CR,S ⇒ S.TsMin[A.SnMax ] ≤ A.TsEcho ≤ S.TsMax [A.SnMax ]) (3.56)

2S.TsMin[S.SnMax ] ≤ S.TsEchoRec ≤ S.TsMax [S.SnMax ]) (3.57)
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Assertions (3.54)–(3.57) define the meaning of S.TsMin and S.TsMax with respect to
the various timestamps carried in the packets and stored in the protocol entities. (3.54),
for example, provides bounds for the timestamp in data packets.

2(R.Nxt − RW ≤ R.SnMax ≤ S.Nxt − 1) (3.58)

2(S.Una − RW ≤ S.SnMax ≤ S.Nxt − 1) (3.59)

Assertions (3.58) and (3.59) play a key role in proving the invariance of the CI conditions
(3.41) and (3.42). These assertions provide the relation between the auxiliary variable
SnMax and the send/receive window, respectively.

Using the real-time assumptions, the assertions above and some more listed in Ap-
pendix A.1, one can prove that the CI conditions of PAWS are invariant provided that
the protocol parameters satisfy the following requirements:

NS ≥ 3RW + ⌈ΓS · B⌉ (3.60)

NC ≥

⌈

L + TW R · ΓR

γS

⌉

+

⌈

L

γS

⌉

+ 3 (3.61)

TW R ≥

⌈

L

γR

⌉

+ 1 (3.62)

TW S ≥

⌈

2L + TW R · ΓR

γS

⌉

+ 1 (3.63)

(3.60) is needed for the correct interpretation of sequence numbers because it is the
precondition of the invariance of CI conditions (3.41) and (3.42). The other three in-
equalities are needed for the correct interpretation of timestamps. The above conditions
are believed to be tight, i.e., the violation of any of them could cause the protocol to
malfunction. An informal argument about the tightness of these conditions can be found
[Olá95].

3.4 SNR: a periodic state-exchange protocol

SNR is a light-weight data transfer protocol which was designed for high-speed networks
[NRS90]. The protocol is based on the idea of periodic state exchange. This is achieved by
having the receiver send its full state to the sender at regular intervals. In contrast, other
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protocols send state information only in the case of some state changes or occurrence of
other events.

Sending full state information facilitates a selective retransmission strategy. Because the
sender has exact information about the arrival and loss of data units at the receiver, it
knows exactly which units must be retransmitted. Sending the state information regularly
allows the sender to use a simple retransmission scheme: the loss of state messages is
corrected automatically at the arrival of the next state message and the arrival of state
messages can also be used to count retransmission timeouts.

Due to the periodic state exchange, the protocol generates network load even if there is
no user traffic. This can be negligible in a high speed network, but could turn out to be
prohibitive in a slow network where efficient usage of the available bandwidth is crucial.
Therefore the protocol is better suited for high speed environments. More details about
the idea of periodic state exchange and its performance characteristics can be found in
[NRS90] and [DJNS93], respectively.

The formal specification and verification of a data transfer protocol based on the idea of
periodic state exchange was presented in [GNS95]. The authors prove that the protocol
behaves correctly if some constraints are respected involving the rate of sending state
messages, the size of buffers and the range of sequence numbers. The protocol is included
in the thesis for the following reasons:

• Some of its mechanisms are apparently different from the mechanisms used in the
sliding-window protocols discussed so far in Section 3.2 and 3.3. Therefore the
inclusion of SNR widens the range of data transfer protocols that are covered by
the thesis and it allows for the comparison with the other data transfer protocols.

• Some improvements to SNR are also presented.

The specification in [GNS95] uses unbounded sequence numbers in the state messages.
Although it is often a useful abstraction, such sequence numbers cannot be used in
implementations. The authors suggest to use a large number space for these sequence
numbers and to reset the protocol every time when they wrap around. A protocol
reset consists of an idle period for the maximum packet lifetime to allow all packets to
disappear from the network. A modification is proposed in Section 3.4.3 which eliminates
the need for these costly protocol resets.

The constraints derived in [GNS95] may also limit the practical value of the protocol in
some environments. In Section 3.4.4 we show that the lower bound on the retransmission
timeout enforced by the specification in [GNS95] becomes too high in a network with
no tight bound on the maximum packet lifetime. As an alternative solution, the idea
of periodic state exchange will be incorporated into the sliding-window protocol spec-
ification discussed in Section 3.2. Some results of this Section have been published in
[OHdG96a, OHdG97].
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program SNR;
type dataunit = “the type of data units”;

dt = record of
i : 0 . . . n − 1;
data: dataunit ;

st = record of
b: array [0 . . . n − 1] of bool;
r , t : 0 . . . n − 1;
k , r u: int;

channel Cp,q, Cq,p; { no duplicates, only drop or reorder }

process P ;
var Sink : array [0 . . .∞] of dataunit ∪ empty;

rcvd : array [0 . . . n − 1] of bool;
pr , pt : 0 . . . n − 1;
pk , pr u: int;

See Figure 3.14 for the events of process P .

process Q;
var Source: array [0 . . .∞] of dataunit ∪ empty;

Acked : array [0 . . .∞] of bool;
src: array [0 . . . n − 1] of dataunit ;
ackd : array [0 . . . n − 1] of bool;
count : array [0 . . . n − 1] of 0 . . . m − 1;
qr , qs , qt : 0 . . . n − 1;
qk , qr u: int;

See Figure 3.15 for the events of process Q.

init (∀i : Q.Source[i] = P.Sink [i] = empty∧ ¬Q.Acked [i])∧
P.pr = Q.qr = Q.qs = 0 ∧ P.pt = Q.qt = 1 ∧ P.pk = Q.qk = 0 ∧
P.pr u = Q.qr u = 0 ∧
(∀i ∈ [0 . . . n − 1] : ¬P.rcvd [i]);

Figure 3.13: SNR protocol: main part

3.4.1 Specification

To explain our modifications, we start with the description of the original specification
in [GNS95]. The specification given here is functionally equivalent with the original, but
it is written in our notation in order to be consistent with the other specifications in the
thesis. The specification can be found in Figure 3.13, 3.14, and 3.15.
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The basic idea of the protocol is simple. The receiver has a circular buffer where received
data units are stored until they are removed by the host of the receiver. In the state
messages, the receiver sends the current state of the buffer to the sender. From these
messages the sender can deduce which data units must be resent because they were lost
and they also inform the sender about the amount of new data that can be sent.

State variables

The size of the receive buffer is n. The receiver P maintains a boolean map of the receive
buffer rcvd , and two modulo-n pointers pr and pt . These three variables represent the
state of the circular buffer. The two pointers divide the buffer into two non-empty
regions. The locations in the range [pt . . . pr −n 1] are occupied by previously received
data units that have not been consumed by the host yet, therefore no new data can be
accepted in this region. All entries of rcvd in this range are set to false. The region
[pr . . .pt −n 1] is a “can-receive” region. The sender is allowed to send new data units
in this region. An entry of rcvd in this region is true if the corresponding data unit has
already been received.

The corresponding state variables in the sender’s state are ackd , qr , and qt . These
variables store the most recent values of the receiver’s state variables rcvd , pr , and pt
taken from the state messages sent by the receiver. There is one more non-auxiliary
variable of the receiver pk which stores the sequence number to be sent on the state
messages. This sequence number is unbounded so that the sender can always distinguish
between old and new state messages. Similarly, the sender maintains the variable qk
which stores the most recent sequence number from state messages. A newly received
state message is accepted if and only if its sequence number is greater than qk .

The sender is allowed to send new data units in the range [qr . . . qt −n 1]. The variable
qs is the sequence number of the next data unit to be sent. The sender uses the periodic
state messages for triggering retransmissions. A data unit is retransmitted if m state
messages have been received since its last transmission without acknowledging its receipt.
This is implemented by keeping an array of counters count [0 . . . n − 1], one for each entry
in the circular buffer. When a state message is received, the counters corresponding to
the range [qr . . . qs −n 1] are incremented. If one of them reaches m, more precisely 0
because the counters are modulo-m numbers, then the data unit is retransmitted if the
corresponding entry in ackd is false. The outstanding data units are stored in the
buffer src.

Furthermore, both the sender and the receiver maintain some auxiliary variables. The
history variables Source, Sink , and Acked are from the specification of the abstract
data-transfer service (see Section 3.1 for details). There are two auxiliary variables, one
at the receiver and another at the sender, which maintain the unbounded value of pr
and qr , respectively. With the help of these variables the correspondence between the
history variables and the non-auxiliary buffer variables can be expressed. The region
[qr . . . qs −n 1] of the sender buffers src and ackd are equal to the corresponding slices
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starting at the index qr u of the history variables Source and Acked , respectively. This
can be expressed formally by the following two assertions:

2(∀i ∈ [0 . . . qs −n qr −n 1] : src[qr +n i] = Source[qr u + i])

2(∀i ∈ [0 . . . qs −n qr −n 1] : ackd [qr +n i] = Acked [qr u + i])

Similarly, for the receiver the following assertion holds:

2(∀i ∈ [0 . . . pt −n pr −n 1] : rcvd [pr +n i] = (Sink [pr u + i] 6= empty))

Two different message formats are used by the protocol. Data messages which are sent
from the sender process to the receiver have two fields: a modulo-n sequence number i
and the data unit carried in the message data. Notice that in this protocol each data
message carries only a single a data unit. The state messages which are generated by
the receiver have five fields: b, r , t , k , and r u. These fields carry the current value of
the receiver state variables rcvd , pr , pt , pk , and pr u, respectively.

The messages are sent over two channels: Cp,q and Cq,p. These channels can drop, delay
and reorder messages, but unlike the channels in the previous protocols they do not create
duplicates. This is important because the presence of duplicates can lead to protocol
hazards as it will be discussed below.

Receiver events

The receiver has four events which are shown in Figure 3.14. The number of the corre-
sponding action in [GNS95] is show in comments at each event so that our specification
can easily be compared to the original specification.

The SendStatus event assembles and sends a state message to the sender process. The
enabling condition of this event is the abstract timeout predicate which indicates that
the execution of the event is related to real-time. The exact meaning of this construct
will be discussed later during the protocol verification. The event increments first the
sequence number pk and then sends a state message S.

Data messages are received in the RecvData event. The corresponding bit in the receive
buffer map is set to true and the the received data unit is stored in the history array
Sink .

The event AdvWin increments pr provided that the lowermost dataunit in the ‘can-
receive’ region of the circular buffer has already been received and there is space enough
in the ‘can-receive’ region. Parallel to pr , this event also increments the auxiliary variable
pr u so that the assertion 2(pr = pr u mod n) remains valid.
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event SendStatus ; { *1* }
var S: st ;
when timeout do

pk := pk + 1;
S.b, S.r , S.t , S.k , S.r u := rcvd , pr , pt, pk , pr u;
send(Cp,q, S);

event RecvData; { *2* }
var D: dt ;
when head(Cq,p) 6= nil do

D := recv(Cq,p);
rcvd[D.i ], Sink [pr u + (D.i −n pr)] := true, D.data;

event AdvWin; { *3* }
when rcvd [pr ] ∧ pr +n 1 6= pt do

rcvd[pr ] := false;
pr , pr u := pr +n 1, pr u + 1;

event DeliverData; { *4* }
when pt +n 1 6= pr do

pt := pt +n 1;

Figure 3.14: SNR protocol: receiver events

The event DeliverData adds space to the top of the ‘can-receive’ region by incrementing
pt provided that the ‘cannot-receive’ region does not become empty as the result of
executing the event.

Sender events

The sender has only two events: RecvStatus and SendData . The first event contains the
processing of incoming state messages. A state message S is accepted only if S.k > qk ,
otherwise the message is discarded. If the message is acceptable, the state variables of
the sender are updated from the corresponding message fields. Then the history array
Acked is updated with the new value of ackd . After that the counters belonging to the
region [qr . . . qs −n 1] are incremented. If any of them becomes 0 and the corresponding
data unit is not yet acknowledged, then it is retransmitted.

New data can only be sent if qs is less than qt which is the upper edge of the ‘can-send’
region. In such a case, the SendData event records the new data unit in the send buffer
src and in the history array Source. Then a data message is assembled and sent. Finally,
the corresponding counter count [qs] is reset and qs is incremented. This completes the
description of the protocol events.
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event RecvStatus; { *5* }
var S: st;

j : 0 . . . n − 1;
when head(Cp,q) 6= nil do

S := recv(Cp,q);
if S.k > qk then

ackd , qr , qt , qk , qr u := S.b, S.r , S.t , S.k , S.r u;
for j = 0 . . . qs −n qr −n 1 do

Acked[qr u + j] := ackd [qr +n j];
for j = qr . . . qs −n 1 do

count [j] := count [j] +m 1;
if count [j] = 0 ∧ ¬ackd [j] then

D.i , D.data := j, src[j];
send(Cq,p, D);

event SendData(d : dataunit); { *6* }
var D: dt ;
when qs +n 1 6= qt do

src[qs], Source[qr u + (qs −n qr)] := d, d;
D.i , D.data := qs, src[qs];
send(Cq,p, D);
count [qs] := 0; qs := qs +n 1;

Figure 3.15: SNR protocol: sender events

3.4.2 Verification and protocol properties

Both safety and progress properties of the protocol are verified in [GNS95]. The cor-
rectness of this protocol, just as the others discussed in the this thesis, depends on the
real-time parameters of the system. The authors of [GNS95] used a different approach
to deal with the real-time aspects during the verification.

Remember that the enabling condition of the event P.SendStatus was the timeout pred-
icate. In the first step of the verification a global condition of the protocol state is
specified in which the SendStatus event can be safely executed. This condition is free
from real-time aspects, but it is global in the sense that it may involve state variables
that non-local to process P . Therefore this condition could not be used in a protocol im-
plementation, but it is useful during the verification. The desired properties are proven
using this global condition in the specification.

Then in the second step of the verification, the rate at which the timeout can occur is
deduced from the global condition. The rate r of sending state messages will depend on
the maximum packet lifetime L in the channels and other protocol parameters.
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Global condition

When designing the global enabling condition of P.SendStatus , we have to understand
the crucial role of duplicate messages in this protocol. It was already mentioned during
the description of the channels Cp,q and Cq,p which model the network layer service that
no duplicates are allowed because they can cause protocol errors. The enabling condition
of SendStatus has to be designed such that no duplicate messages are generated at the
transport protocol level, either.

Let D′ denote a duplicate of the data message D. Assume that D and D′ are received
by P at time t1 and t2, respectively. If all the data units in the region [P.pr . . .D.i −n 1]
and the data unit D.i +n 1 were received before t2, then by executing a sufficient number
of P.AdvWin and P.DeliverData events, P.pr and P.pt can be advanced such that D′.i
falls in the ‘can-receive’ region again and P.rcvd [D′.i ] is false.

Therefore D′ would be erroneously interpreted by the receiver as the data unit in the
next window with sequence number D.i . To avoid this hazard, data messages must not
be duplicated in Cq,p and the sender Q can retransmit a data message only if the previous
copy of the message disappeared from the channel. Since the sender counts the periodic
state messages to trigger timeouts, the number of state messages in the channel can be
used in the global condition which has to assure that the above requirement is satisfied.

The following two conditions must hold when sending a state message [GNS95]:
1. The number of state messages in the channel Cp,q never exceeds m− 1.

2. If process P sends a state message which when received by Q causes a data message
D to be resent by Q, then the previous copy of that data message D′ is no longer
in the channel Cq,p.

It is easy to see that the violation of these conditions can lead to duplicate data messages,
which then can result in protocol errors as discussed above. It is also apparent that state
messages cannot be duplicated either by the channel Cp,q, because duplicates in the
channel could invalidate our assumptions about the number of state messages in transit.

The two conditions above are guaranteed by the following predicate which becomes the
enabling condition of the P.SendStatus during the first step of the verification:

(#S : S ∈ Cp,q) < m− 1 ∧ (∀k ∈ [0 . . . n − 1] :

(¬P.rcvd [k] ∧ Q.count[k] + (#S : S ∈ Cp,q) = m − 1) ⇒ (3.64)

⇒ (#D : D ∈ Cq,p ∧ D.i = k) = 0)

Remember that the notation (#P : e) was defined in Section 3.2 for the number of
packets of type P ever sent and which satisfy the predicate e. Thus (#D : D ∈ Cq,p)
means the number of data packets currently in channel Cq,p.
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Protocol properties

The following invariants were proven in [GNS95]:

2(Q.qs ∈n [Q.qr , Q.qt) ∧ Q.qs ∈n [P.pr , P.pt) ∧ P.pr ∈n [Q.qr , Q.qs +n 1) ∧

∧ Q.qt ∈n [Q.qs +n 1, P.pt +n 1) ∧ P.pk ≥ Q.qk) (3.65)

2(∀k ∈ [0 . . . n − 1] : P.rcvd [k] ⇒ k ∈n [P.pr , Q.qs)) (3.66)

2(∀k ∈ [0 . . . n − 1] : (#D : D ∈ Cq,p ∧ D.i = k) ≤ 1) (3.67)

2((D ∈ Cq,p) ⇒ (¬P.rcvd [D.i ] ∧ D.i ∈n [P.pr , Q.qs))) (3.68)

2((#S : S ∈ Cp,q) ≤ m− 1) (3.69)

2((S ∈ Cp,q ∧ S.k > Q.qk) ⇒

⇒ (Q.qs ∈n [S.r , S.t)∧ P.pr ∈n [S.r , Q.qs +n 1) ∧ P.pk ≥ S.k ∧

∧ (∀u ∈ [0 . . . n − 1] : (¬S.b[u] ∧ u ∈n [S.r , S.t)∧ (3.70)

∧ Q.count[u] + (#S ′ : S ′ ∈ Cp,q ∧ S.k ≥ S ′.k > Q.qk) = m) ⇒

⇒ (¬P.rcvd [u] ∧ (#D : D ∈ Cq,p ∧ D.i = u) = 0))))

The notation u ∈n [x, y) in these assertions means that u is in the modulo-n inter-
val [x, y), where u, x, y are all modulo-n numbers and the interval can “wrap around.”
Formally this means that

u ∈n [x, y) ≡ (x 6= y) ∧ (u = x ∨ u = x +n 1 ∨ . . . ∨ u = y −n 1)

The following progress properties were proven in [GNS95]:

P.pr = k ; P.pr = k +n 1 (3.71)

Q.qs = k ; Q.qs = k +n 1 (3.72)

P.pt = k ; P.pt = k +n 1 (3.73)

Note that neither the safety nor the progress properties contain assertions resembling
to the desired properties formulated in Section 3.1. Actually, no such properties are
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mentioned at all in the paper [GNS95]. If we want to compare this verification to the
sliding-window protocol verification of Shankar [Sha89] which was discussed in Section 3.2
or to our verification of PAWS in Section 3.3, then these assertions correspond to the
intermediate assertions generated in those proofs. The validity of the desired properties
can thus be established with the help of these assertions. Because these extra steps do
not add anything new to the understanding of the protocol, we do not document them
here.

Real-time constraints

So far (3.64) was used as the enabling condition of the P.SendStatus event. In an
implementation, the event will be executed r times per second under the control of a
real-time clock in process P . An upper bound of r has to be found in such a way that
(3.64) is guaranteed to hold whenever the event is triggered based on the real-time clock.

The first conjunct of (3.64) requires that the number of state messages in the channel
Cp,q never exceeds m− 1. Since state messages are generated at rate r and they stay at
most L seconds in the channel, r · L provides an upper bound on the number of state
messages in transit.

At the moment when a data message D is sent, Q.count[D.i ] = 0 and there are at most
r ·L state messages in Cp,q. Just before D reaches P , the condition Q.count[D.i ]+ (#S :
S ∈ Cp,q) < m − 1 must hold. The message D takes at most L seconds to reach the
receiver P . During this period, r · L more state messages can be generated.

From these considerations the following bound can be deduced for r:

r ≤
m− 1

2L
(3.74)

Therefore the rate of sending state messages depends on the maximum packet lifetime
L and on the number m of state messages that trigger a retransmission.

3.4.3 Eliminating protocol resets

Recall that there are some unbounded non-auxiliary variables in the protocol specifica-
tion. These are P.pk , Q.qk and corresponding field in the state messages S.k . Although
the formal model assumes that they are unbounded, in an implementation a finite rep-
resentation must be used. The authors of [GNS95] propose to use a modulo-N repre-
sentation of these variables and to reset the protocol whenever P.pk is about to wrap
around. By selecting a sufficiently large N , the frequency of such protocol resets can
be kept arbitrarily low. Note that N is different from the size of the buffer n. If, for
example, N = 232 and state messages are generated in every millisecond, then the time
between protocol resets would be more than a month.
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process Q;
var . . .

qk o: bool;
tqk : epoch;

event RecvStatus;
. . .
if S.qk o ∨ S.k > qk then

ackd , qr , qt , qk , qr u := S.b, S.r , S.t , S.k , S.r u;
qk o, tqk := false, τ ;
. . .

event ExpireQk ;
when timeout do { τ = tqk + U }

qk o := true;

Figure 3.16: Modifications to the specification of the sender P

Despite this low frequency of resets we propose a simple modification to eliminate resets
for the following reasons:

• During a reset no communication is allowed for a period of the maximum packet
lifetime. There is no need to suspend the data transfer when our modification is
applied.

• Since the cost of resets is eliminated, the value of N can be lowered which saves
some header space in messages. As we will see, the minimal value of N depends
on the maximum packet lifetime.

• Eliminating the resets simplifies the implementations of the protocol. Such rarely
executed actions are usual sources of errors in protocol implementations.

Our proposed modification is based on the perception that the sequence number of state
messages is similar by nature to the timestamps in the PAWS specification in Section 3.3.
P.pk can considered as the equivalent of the clock in the PAWS specification, and Q.qk
corresponds to the most recent timestamp. In PAWS, modulo-N timestamps are handled
by invalidating the most recent timestamp when it becomes too old. The same can be
done with the SNR specification.

The necessary modifications are shown in Figure 3.16. Only the sender Q has to be
changed. Two state variables are added: qk o is a non-auxiliary boolean variable which
is set to true when qk becomes old; the epoch variable tqk records the time when qk was
last refreshed from a state message.

The validation of state messages in event RecvStatus is slightly modified. A message S
is acceptable if either qk has expired or S.k > qk . When a message is accepted, qk o
is set to false and the current time is recorded in tqk . If no new state messages are
accepted for a time period of U , then the new event ExpireQk is triggered and qk o is
set to true. The value of the protocol parameter U is determined below.
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We want to prove two assertions:

2(S ∈ Cp,q ∧ Q.qk o ⇒ S.k > Q.qk) (3.75)

(∃K < N : 2((S ∈ Cp,q ∧ ¬Q.qk o) ⇒

⇒ (Q.qk + K ≥ S.k ≥ Q.qk + K − N + 1))) (3.76)

The assertion (3.75) assures that our modification does not affect the correctness of the
protocol. Assertion (3.76) is the correct interpretation condition and its validity assures
that S.k > Q.qk in event Q.RecvStatus can be replaced by its modulo-N equivalent,
K ≥ S.k −N Q.qk > 0.

The proof that (3.75) and (3.76) are valid is relatively simple and its structure is very
similar to the corresponding proofs in Section 3.3. Therefore only the outline of this
proof is presented here.

Assume that the first state message S0 : S0.i = 0 is generated at t0. Because the
subsequent messages are generated at a fixed rate r, the message Sj : Sj.i = j is
generated at time t0 + j/r. The maximum packet lifetime is L, therefore if Sj is ever
received it can only be received in the [t0 + j/r, t0 + j/r + L] interval. Finally, we know
that Q.qk o is false if Q.qk = j and Sj was received less than U seconds ago, and
Q.qk o is true if Sj was received more than U seconds ago. Therefore, we can formulate
the following invariants:

Sj ∈ Cp,q ⇒ τ ∈ [t0 + j/r, t0 + j/r + L]

Q.qk = j ∧ ¬Q.qk o ⇒ τ ∈ [t0 + j/r, t0 + j/r + L + U ]

Q.qk = j ∧ Q.qk o ⇒ τ > t0 + j/r + U

From the above invariants the following two invariants can be obtained by transforma-
tions:

S ∈ Cp,q ∧ Q.qk o ⇒ S.k ≥ Q.qk + ⌈r(U − L)⌉

S ∈ Cp,q ∧ ¬Q.qk o ⇒ Q.qk + ⌊r(L + U)⌋ ≥ S.k ≥ Q.qk − ⌊rL⌋

From these we can deduce two conditions for the invariance of (3.75) and (3.76), respec-
tively:

L < U (3.77)
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r(2L + U) < N (3.78)

The constant K in assertion (3.76) is equal to ⌊r(L + U)⌋.

To emphasize the usefulness of our modification, let us consider a example. Let L be
120 seconds which is the currently used value when designing Internet protocols. In the
Internet there is no mechanism to control packet lifetimes, but 120 sec is considered to
be a safe upper bound on packet lifetimes in any part of the network. The parameters
N = 216, U = 240 sec, and r = 100 Hz satisfy the requirements of (3.77) and (3.78).

On the other hand, if the original specification were implemented using 16-bit acknowl-
edgment sequence numbers, then the protocol would have been reset in every 327 seconds
(= N/2r). This would mean a 240 sec (= 2L) idle period in every 327 sec which is clearly
unacceptable.

3.4.4 Alternative specification of SNR

The sliding-window protocol SW in Section 3.2 and the protocol SNR discussed in this
section have a number of similarities. The concept of window is present in both protocols
in some form. The ‘can-receive’ and ‘cannot-receive’ regions of SNR are equivalent with
the notion of ‘inside the window’ and ‘out of the window’ in the SW specification. Both
use finite identifiers to refer to the data units transmitted from sender to receiver.

There are differences in the format of messages, the processing rules, and the assumptions
about the network service. In our view, the most significant difference is in the relation
of two protocol parameters: the size of the sequence number space and the maximum
window size. There are separate constants for these values in the specification SW : N
and RW , respectively. On the other hand, in the specification SNR these two values are
not independent. The protocol constant n denotes the size of the receive buffer, but the
maximum window size is only implicitly defined by max(P.pt −n P.pr). Assertion (3.65)
implies that this is equal to n − 1.

In this section an alternative specification is presented for a data transfer protocol using
the idea of periodic state exchange. The specification, called SNR 2 , is much like the
original specification SNR except that it decouples the size of the sequence number space
n and the maximum window size w . The effects of this modification will be analyzed in
Section 3.5 where the properties of the different protocols are compared.

The specification to be presented here can be looked upon in another way. It can be
seen as a specialization of the generic sliding-window protocol specification SW . It
was mentioned in Section 3.2 that any sort of retransmission policy can be used in the
implementations of that protocol as long as the fairness assumptions are satisfied. This
specification is thus a specific sliding-window protocol which sends acknowledgments, or
state messages in the terminology of SNR, at regular intervals and counts these acks at
the sender to trigger retransmissions.
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program SNR 2 ;
type dataunit = “the type of data units”;

dt = record of
i : 0 . . . n − 1;
data: dataunit ;

st = record of
b: array [0 . . .w − 1] of bool;
r , t : 0 . . . n − 1;

channel Cp,q, Cq,p;

process P ;
var rcvd : array [0 . . .w − 1] of bool;

pr , pt : 0 . . . n − 1;
See Figure 3.18 for the events of process P .

process Q;
var src: array [0 . . .w − 1] of dataunit ;

ackd : array [0 . . .w − 1] of bool;
count : array [0 . . .w − 1] of 0 . . . m − 1;
qr , qs , qt : 0 . . . n − 1;

See Figure 3.19 for the events of process Q.

init P.pr = Q.qr = Q.qs = 0 ∧ P.pt = Q.qt = 1 ∧
(∀i ∈ [0 . . .w − 1] : ¬P.rcvd [i]);

Figure 3.17: Alternative SNR specification: main part

Specification

The alternative specification of the SNR protocol, called SNR 2 is shown in Figure 3.17,
3.18, and 3.19. To make it simple, all references to the auxiliary variables were removed.
Therefore this specification contains only those processing steps that are present in an
actual implementation.

The structure of the program SNR 2 is almost identical to SNR. The major difference
is that the size of the buffers is w , while the sequence numbers and pointers have a
modulo-n representation. To maintain the simple mapping from sequence numbers to
buffer indices, n = kw must hold where k ≥ 2.

Another important change is the lack of the sequence-number field S.k is state messages.
State messages do not need their own sequence numbers in this specification because the
window information carried in these messages is sufficient to decide whether the message
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event SendStatus ; { *1* }
var S: st ;
when timeout do

S.b, S.r , S.t := rcvd , pr , pt; send(Cp,q, S);
event RecvData; { *2* }

var D: dt ;
when head(Cq,p) 6= nil do

D := recv(Cq,p);
if D.i ∈n [pr , pt) then

rcvd [D.i mod w ] := true;
event AdvWin; { *3* }

when rcvd [pr mod w ] ∧ pt −n pr > 0 do
rcvd[pr mod w ] := false; pr := pr +n 1;

event DeliverData; { *4* }
when pt −n pr < w − 1 do

pt := pt +n 1;

Figure 3.18: Alternative SNR specification: receiver events

is new. Each state message of SNR 2 is equivalent to a combination of a cumulative and
some selective acks of SW . The mapping to the cumulative ack CA is as follows:

CA.Ack = S.pr , CA.Wnd = S.pt −n S.pr

The selective acks can be formulated from the contiguous ranges of S.rcvd.

Most of the events are self explanatory, but some important modifications are highlighted
below. In the event P.RecvData, the sequence number of the data message D must be
within the receive window for the message to be accepted. In the original specifica-
tion, there was no need for such a check because any data message in the channel was
guaranteed to be within the receive window (see assertion (3.68)).

The sender validates state messages in the event Q.RecvStatus by looking at the window
defined by S.r and S.t . If the window has advanced, then S is guaranteed to be new. If
the window has not advanced (Q.qr = S.r∧Q.qt = S.t), then S can be either new or old.
Since S may still carry new acknowledgment information for out-of-order data units in
S.b, the two boolean maps are OR-ed in this case. This assures that no acknowledgment
information is lost.

Correctness

The safety of SNR 2 can be deduced from the safety of SW if we can prove that every
computation of SNR 2 can be mapped to a computation of SW . This is the formal
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event RecvStatus; { *5* }
var S: st ;

j : 0 . . . n − 1;
when head(Cp,q) 6= nil do

S := recv(Cp,q);
if S.r ∈n [qr , qs +n 1) ∧ qt −n qr ≤ S.t −n S.r then

if S.r 6= qr ∨ qt −n qr < S.t −n S.r then
ackd , qr , qt := S.b, S.r , S.t ;

else
ackd := ackd ∨ S.b;

for j = qr . . . qs −n 1 do
count [j mod w ] := count [j mod w ] +m 1;
if count [j mod w ] = 0 ∧ ¬ackd [j mod w ] then

D.i , D.data := j, src[j mod w ]; send(Cq,p, D);
event SendData(d : dataunit); { *6* }

var D: dt ;
when qt −n qs > 0 do

src[qs mod w ] := d;
D.i , D.data := qs, src[qs mod w ]; send(Cq,p, D);
count [qs mod w ] := 0; qs := qs +n 1;

Figure 3.19: Alternative SNR specification: sender events

equivalent of our claim that the specification SNR 2 is a specialization of SW which
uses a more restricted retransmission and acknowledgment policy. An alternative way
of verifying SNR 2 would be to carry out the same proof that was used to verify SW .

Although we do not present a proof that SNR 2 implements SW in the formal sense, the
mapping of an arbitrary computation of SNR 2 to a computation of SW is described
informally. A P.SendStatus event of SNR 2 maps to the R.SendACK and R.SendSACK
events of SW as it was discussed above.

The P.RecvData event corresponds to an R.RecD event in SW . In this case, however,
the mapping is not exact because in R.RecD the left edge of the window R.Nxt is always
advanced if it is possible. The equivalent processing in SNR 2 is made in the event
P.AdvWin. Therefore, for SNR 2 to implement SW in the strict sense, any execution
of event P.RecvData should be followed by as many executions of P.AdvWin as possible.
The result of this incompleteness in the mapping does not have serious consequences
for the correctness of SNR 2 . The so-called non-interference property, in particular
assertion (3.12), does not hold for SNR 2 , but the desired safety properties do not
depend on this assertion.

The event P.DeliverData in SNR 2 corresponds to R.ExpandWindow in SW . The sender
event Q.RecvStatus maps to the series of the corresponding S.RecACK and S.RecSACK
events in SW , optionally followed by an S.SendD event if the reception of the state
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message in SNR 2 triggers a retransmission. The event Q.SendData maps to the event
S.Accept immediately followed by an S.SendD .

This completes the informal argument about the safety of SNR 2 . Because of its relation
to SW , the same real-time constraints must be satisfied by the protocol:

n ≥ 2w + L · B (3.79)

n ≥ 2w (3.80)

Assertion (3.79), which is the equivalent of (3.24), must hold if the protocol operates
over transport channels which can drop, duplicate and reorder packets. The constant
B is the maximum transmission rate in data units per second. Assertion (3.80) must
hold if the protocol operates over data-link channels which can only drop and duplicate
packets, but cannot reorder them.

The progress of SNR 2 can be proven based on the progress proof of SW or on the proof
presented in [GNS95]. Note that SNR 2 implements a receiver-driven retransmission
strategy, so it satisfies the third set of liveness assumptions in Section 3.2.3.

3.5 Comparison of protocol variants

Several protocols for reliable data transfer have been analyzed in this chapter so far. To
conclude the chapter, we compare them using the results of their verification. This will
give us insight to the strengths and weaknesses of each protocol in different environments.

The following protocols will be considered:
• The plain sliding window protocol which is defined by the specification SW in

Section 3.2.

• The sliding window protocol extended by timestamps, PAWS which is defined by
the specification TS in Section 3.3.

• Two versions of the periodic state-exchange protocol SNR from Section 3.4 will be
used in the comparison. One is the specification SNR presented in Section 3.4.1
including the modification proposed in Section 3.4.3. The other is the specification
SNR 2 from Section 3.4.4.

The major comparison criterion is the upper limit on the transmission speed imposed
by the correctness conditions of these protocols. We will see that such a bound exists
for all the protocols discussed here. The importance of determining this limit on the
transmission speed is twofold. On one hand, we must take this limit into consideration
during protocol design so that we can assure that the protocol will operate correctly in
the targeted networking environment.
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On the other hand, to achieve the targeted bandwidth limit with a relatively small header
is also important because networks today are largely heterogeneous. For example, in the
Internet today users of high-speed testbeds can transfer data approaching Gigabits-
per-second while users exist with an access limited to a few kilobits per second. The
increasing popularity of mobile access to the Internet indicates that this heterogeneity is a
fundamental characteristic of the network. Using as few bits in the headers as possible is
important from the viewpoint of these low-speed users. The formulae for the maximum
allowed transmission rate of these protocols provides us with means to compare the
efficiency of these protocols in utilizing their header space. Naturally, protocols with a
better header efficiency are preferred because these present low overhead to low-speed
users and still allow high transmission rates for high speed users.

Further comparison criteria are the limitations and assumptions made in the protocols.
We will see for example that SNR has some limits on its retransmission policy which
may reduce its utility in certain types of environments.

3.5.1 Maximum transmission rate

In each verification a set of real-time constraints were obtained which were sufficient
constraints for the correctness of the protocol. Most of the real-time constraints, with
the exception of SNR, involve the maximum transmission rate B . Furthermore, each of
these constraints gives an upper bound on B . That is, those constraints say that the
protocol operates correctly if the maximum rate of sending data units is not higher than
a certain bound expressed by other protocol parameters.

This is what one would also expect intuitively: The protocols use bounded identifiers and
the channels can reorder the packets. The upper bound on B assures that no identifier
is reused before earlier packets carrying the same identifier disappear from the network.
Also, this is what mandates the existence of an upper bound on packet lifetimes in the
channels, denoted by L.

Bandwidth limit for the plain-sliding window protocol

The real-time constraints for the specification SW is (3.24):

N ≥ 2RW + L · B

This constraint is necessary when the protocol operates over transport channels that can
drop, duplicate, and reorder packets. The bandwidth limit from this constraint is:

BSW <
N − 2RW

L
(3.81)
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If the protocol operates over data-link channels that cannot reorder packets, then the
correctness constraint is expressed by (3.26):

N ≥ 2RW

Because of no reordering in the channels, the reception of packet P implies that all
packets have disappeared from the network that were sent before P . Therefore, in
this case the correct interpretation of identifiers can be guaranteed without limiting the
transmission rate.

Bandwidth limit for PAWS

The real-time constraints for the specification TS are the inequalities (3.60)–(3.63):

NS ≥ 3RW + ⌈ΓS · B⌉

NC ≥

⌈

L + TW R · ΓR

γS

⌉

+

⌈

L

γS

⌉

+ 3

TW R ≥

⌈

L

γR

⌉

+ 1

TW S ≥

⌈

2L + TW R · ΓR

γS

⌉

+ 1

To make the comparison with the other protocols easier, we can eliminate the clock rate
parameters from these inequalities:

BTS <
NS − 3RW

3L
NC

(3.82)

This is an absolute upper bound which can only be reached when ΓS = γS and ΓR = γR,
i.e., the clocks have no drift. In the calculations we assumed that NC ≫ 1.

Bandwidth limit for SNR

Equation (3.74), (3.77), and (3.78) constitute the real-time constraints for SNR:

r ≤
m − 1

2L
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N [bits] NS [bits] NC[bits] BSW [bit/s] BTS [bit/s]
32 16 16 268. · 106 22.4 · 106

48 24 24 17.5 · 1012 1.47 · 1012

64 32 32 1.15 · 1018 96.1 · 1015

Table 3.1: The maximum bandwidth of the plain sliding-window protocol and PAWS for
different parameter sets. In all cases RW = 0.25NS and L = 120[s].

L < U

r(2L + U) < N

These constraints provide no explicit upper bound for B . It is easy to show, however,
that there is an implicit bound on the achievable B for any implementations of this
protocol. Each state message contains a bitmap with at most n − 1 empty slots for new
data. Therefore, in the ideal case, n − 1 data units can be transfered per state message.
From this we get

BSNR < (n − 1)r

where r denotes the rate of generating state messages. Combining this expression with
the real-time constraints listed above, we get the following bound on the transmission
rate:

BSNR <
(n − 1)N

3L
(3.83)

The modified SNR specification, SNR 2 is equivalent to the plain sliding-window proto-
col in this respect, therefore its limit on the maximum transmission rate is expressed by
(3.81).

Calculating the bandwidth limit in different settings

Let us examine the protocols SW and TS first and consider the case when N = NS ·NC

because the header space is then equal for the two protocols. It is easy to show that
the bound on the bandwidth is tighter in case of TS for any parameter set. Table 3.1
shows the exact values for three different situations. In this particular parameter set,
BSW ≈ 12BTS .

The table shows, for example, that current high speed networks approach the maximum
allowed transmission rate of TCP [Pos81a] which uses the plain sliding-window protocol
with 32-bit sequence numbers. The bandwidth limit of the 48 and 64-bit versions is
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NS [bits] NC [bits] BTS [bit/s] γ [ms]
16 16 4.19 · 106 15.6
24 24 16.8 · 109 1.00
32 32 4.29 · 1012 1.00

Table 3.2: The maximum bandwidth of PAWS when some practical limitations are also
considered. Parameters not shown here are identical to those in Table 3.1.

in the Terabit/sec range and beyond therefore it will not be a serious limitation in the
foreseeable future.

In case of PAWS, the maximum transmission rate that belongs to the 24-bit sequence
numbers and 24-bit timestamps case is also over 1 Terabits/s. Note, however, that
the values for BTS in the table are optimal values that could only be achieved with
specific protocol parameter settings. In most practical situations, a number of additional
constraints must be satisfied. Some of these are listed below:

• The correct interpretation conditions determine how comparisons on modulo-N
numbers must be implemented (see (3.5 in Section 3.2.2). This involves the test
K ≥ a −N b, where a and b are the modulo-N numbers to compare and K is the
constant from the CI condition. This test is easy to implement using 2-complement
arithmetic instructions if K ≤ N/2.

In case of PAWS this translates to the additional constraints: TW S ≤ NC/2 and
TW R ≤ NC/2. In theory, this argument holds for the plain sliding-window protocol
as well, but it has no practical consequences in that case because RW ≤ N/2 is
already implied by the correctness constraints.

• Since most implementations of the TS specification will be both senders and re-
ceiver, it is convenient to use the same clock rate for the clocks of the sender and
receiver. That is, ΓS = ΓR = Γ and γS = γR = γ.

• When calculating the bandwidth limit, we assumed no clock drift. In practice
one must count on some clock drift. There are two reasons to define Γ > γ for
the protocol. One reasons is that it is impossible to implement infinitely accurate
clocks. The other reason is to give system designers more freedom in selecting the
appropriate clock rate for their implementations. The range of convenient clock
rates may vary from one system to another. That is the major reasons that the
PAWS specification defines Γ = 1sec and γ = 1msec.

Based on these considerations, we calculate more realistic values of BTS . These are
shown in Table 3.2. The following assumptions were used to obtain the values in the
table: Γ = 2γ, γ ≥ 1msec, and TWs ≤ NC/2. The results for BTS are considerably
lower than those in Table 3.1.

From the calculations above we can conclude that TS uses the identifier space less
efficiently than SW . Note, however, that the PAWS mechanism used in TS provides
extra functionality with respect to the plain sliding-window protocol. The timestamps
can be used for simpler and more accurate round-trip time measurements. Therefore, it
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is a clear trade-off between extra functionality and the size of the header space used by
the protocol.

If we calculated BSNR from (3.83) using the same parameters, then we would get a huge
number, orders of magnitude higher than BSW . This comparison would not be realistic,
however. In SNR, packets are the units of numbering not octets. A consequence is that
the size of the buffer n is expected to be much smaller than the window size RW in the
sliding-window protocols. Note also that the size of state messages is linearly increasing
with n which places a practical upper limit on n.

A similar comparison can be made, however, between SNR and SNR 2 . Again, the
parameters are selected in such a way that the header sizes are roughly equal. Let
n = 28 and N = 216 for the specification SNR, and let w = 28 and n = 216 for SNR 2 .
Substituting these parameters into (3.83) and (3.81), respectively, we see that BSNR is
almost two orders of magnitude higher than BSNR 2 . As in the case of SW and TS , the
higher allowed transmission rate does not come for free. The specification SNR has some
limitations regarding the retransmission of lost data. This will be examined in the next
section.

3.5.2 Limitations on the retransmission policy

Let us consider the situation in SNR when a data message is lost. Assuming that no
other messages are lost and the delay in the network is constant, state messages arrive at
the sender at regular intervals, one in every 1/r seconds. The mth state message arrives
sometimes in the [(m − 1)/r ,m/r ] interval. It follows from (3.74) that the lower bound
of the interval is at least 2L. Should state messages be lost, the retransmission happens
even later. Note also that the lower bound on the retransmission delay does not depend
on the parameter m.

In most datagram networks the value of L can be rather large because there is no explicit
mechanism to enforce packet lifetimes. Such a network is the current Internet which
defines L to be 120 seconds, although the average delay is not likely to exceed a few
hundred milliseconds even on intercontinental paths [SAGJ93]. Some argue that future
networks will not enforce stricter bounds either because of the high cost of accurate
lifetime enforcement [Che89].

Over such networks the protocol specified by SNR does not operate efficiently in face of
losses. If the sender receives no acknowledgment of a data message within the average
round-trip delay, then the message is likely to be lost. This protocol, however, must
wait with the retransmission until it is guaranteed to be lost and that can degrade the
performance considerably.

A related issue is that SNR does not allow duplicates in the channels. This is also difficult
to enforce in many networks. For example, duplicates of up to 1% of all transmitted
packets were measured in certain parts of the Internet [SAGJ93]. Connection oriented
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networks, such as ATM, do not duplicate packets and the specification SNR can be
applied in such environments. On the other hand, these networks do not reorder packets
either. Therefore their service can be modeled by the so-called data-link channels and
in that case SNR 2 has no bound on B at all.



Chapter 4

Connection Management Protocols

Protocols for the reliable opening of connections are studied in this chapter. As in the
previous chapter, the study is based on the formal verification of different connection
management (CM) protocols. The results of these verifications are then used to compare
the protocols and to discuss their design.

In Section 4.1, our generic model of CM protocols is introduced. The protocol properties
which we consider essential for all CM protocols are also introduced here.

Section 4.2 discusses the verification of SCMP [OHdG95b, OHdG95c]. SCMP [LSW91]
is a novel protocol for at-most-once message delivery based on the assumption that
globally synchronized clocks are cheap to implement. From this basic assumption a very
interesting protocol was developed which uses timestamps to identify messages. Because
the problem of reliably opening a connection is essentially equivalent to at-most-once
message delivery, SCMP can be used as the basis of a 2-way handshake (2WHS) CM
protocol.

CM protocols using the 3WHS were extensively studied before, see e.g. [MS87]. Recently,
a number of CM protocols have been proposed which fall between the categories of 2WHS
and 3WHS. These protocols use the faster 2WHS whenever possible. In cases when there
is not sufficient information available in the connection records for reliably opening a
connection with the 2WHS, they fall back to using a 3WHS scheme. The expected
advantage of such schemes is that the information which must be retained for 2WHS
schemes to work can be treated as cached information. If the information is present,
then it speeds up the connection setup, but it can be discarded any time without loss of
functionality. Section 4.3 is devoted to the analysis of such protocols.

92
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Figure 4.1: Endpoints, hosts and connections.

4.1 Desired properties

In our model, the communication takes place between connection endpoints . Each end-
point belongs to exactly one host , but a host may have several endpoints (Figure 4.1).
Hosts model the physical entities (e.g. computers) on which the protocol executes.

Between each pair of endpoints there is a (potential) connection. Each connection may
become open and closed many times over time. To distinguish among the different open
periods of a connection, we refer to connection incarnations. Every time a new attempt
is made to open the connection, a new incarnation is started.

Figure 4.1 shows 3 hosts (A, B, C); each of them has a number of connection endpoints.
Host A, for example, has the endpoints a, b, c, and d. Connections take place between
endpoints. There may be several connections between two hosts if they belong to different
endpoints, e.g., connections 1 and 2 in the figure. This explicit notion of hosts in our
model allows us to describe protocols which have state variables belonging to all the
connection endpoints of a certain hosts.

The protocol entities can communicate with each other by sending packets over channels
provided by the network-level service. Conceptually, there are two channels between any
two endpoints a and b: Ca,b from a to b and Cb,a in the opposite direction. Usually the
network service does not provide channels to individual endpoints—like in the Internet
where IP datagrams are delivered between hosts. However, including a source and des-
tination endpoint address in every packet would allow to distinguish between packets on
the different logical channels. Therefore, we just simply assume that there is a channel
from any endpoint to any other endpoint.

Our model of connection endpoints and hosts is very general. In some protocol verifica-
tions the notion of hosts is not used, see e.g., [LLSA93], [SL95]. This can be considered
as a special case of our model when each host has exactly one endpoint address. The
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program CM ;
type

ep addr = “type of endpoint addresses”;
conn rec = record of

status : {closed, opening, open};
lin : int;
open to: array [0 . . .∞] of int ∪ empty;

var
CR: array [ep addr , ep addr ] of conn rec;

process Entity ;
event BeginIncarnation(a, b);

when CR[a, b].status = closed do
CR[a, b].status := opening; CR[a, b].lin + +;

event OpenIncarnation(a, b, rin);
when CR[a, b].status = opening do

CR[a, b].status := open;
CR[a, b].open to[CR[a, b].lin]] := rin;

event CloseIncarnation(a, b);
when CR[a, b].status 6= closed do CR[a, b].status := closed;

init
(∀a, b : CR[a, b].status = closed∧ CR[a, b].lin = −1∧

∧(∀i : CR[a, b].open to[i] = empty));

Figure 4.2: Abstract connection management service

reason for introducing the more general model with the notion of hosts is that it makes
possible to model protocols where several logical connections share a global variable in
a host. Such a global variable is the ISN (initial sequence number) counter in TCP
[Dal75, Tom75], or the monotonic clock in SCMP.

Figure 4.2 shows the definition of the abstract CM service based on the definition given
in [Sha91]. Our only modification is the introduction of the notion of hosts with respect
to the specification in [Sha91].

Information about connections is stored in connection records (CR). In the model there
is a CR for each end of each possible connection. If we consider the example of Figure 4.1
again, there are two CRs assigned to connection 1: CR[a, e] and CR[e, a]. CR[a, e] records
the status of the connection from the point of view of endpoint a and CR[e, a] from the
point of view of endpoint e. Note, however, that most of these records are needed only
in the formal model. In an implementation, only those CRs occupy real memory which
are in a status other than closed.

The status maintained in a CR refers to the status as observed by the endpoint to which
the CR belongs. The value of lin gives the current or last incarnation of the connec-
tion. The value of open to[i] gives the remote incarnation number to which the local
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incarnation i was connected. Therefore, CR[a, e].open to[i] = j means that incarnation
i of endpoint a is or has been connected to incarnation j of endpoint e as far as a is
concerned. Later we will see that it is possible that incarnation j of e has not been
connected to incarnation i of a.

In the specification, the CR array is defined as a global variable, i.e., syntactically it
is not in the scope of any process. This is in contradiction to the distributed system
model which was given in Section 2.3 because we said that all state variables were local
to processes. Actually, this assumption is not violated here. The reason for defining CR
this way is only to simplify the notation.

To see that the locality assumption of state variables still holds, consider the following.
There is an instance of the process Entity running for each host in the network. The
process at host A accesses only those connection records CR[a, b] where endpoint a
belongs to host A. Therefore, any CR[a, b] can only be accessed by a single process only
(the one which “runs on” host A) and the locality assumption is satisfied.

Normally a connection incarnation cycles through the states of opening, open and
closed. An incarnation may also become closed without ever being open to a remote
incarnation. This is the case when a connection attempt fails because of network error
or because of the unwillingness of the remote endpoint to engage in a connection. On the
other hand, no incarnation may become open more than once because BeginIncarnation
event always starts a new incarnation when it changes the status to opening.

In order to specify the desired properties of the CM service, we define the meaning of
connected [a,b](i, j):

connected [a,b](i, j) ≡ CR[a, b].open to[i] = j ∨ CR[b, a].open to[j] = i

where a and b denote different endpoint addresses, i and j denote non-negative integers.
Using this definition, the desired safety property can be expressed by (4.1):

2((connected [a,b](i, j)∧ connected [a,b](k, l)) ⇒ (i = k ⇔ j = l)) (4.1)

The desired property implies that connections form a 1–1 association between the open
incarnations of endpoint a and b. Of course, this property is expected to hold for any
pair of different endpoints.

4.2 SCMP

SCMP (Synchronized Clock Message Protocol), which is the subject of the analysis in
this section, is based on the novel idea of using synchronized clocks [LSW91]. In the
description of SCMP, we will make a distinction between clients and servers. Clients are
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those endpoints which actively open a connection by sending an open request. Servers
are passive; they open a connection on the receipt of a valid open request but do not
initiate connections themselves. Each connection endpoint is either a client or a server,
but never both. A host, however, can have many endpoints some of which are clients
and the others are servers.

The client associates a timestamp with each connection request and the server uses the
associated timestamp to decide whether or not to accept a received request. If the server
remembers the timestamp ts of the last accepted request from the client, then a request
is new if its timestamp is greater than ts. However, it is not feasible to keep the last
timestamp of every client due to the vast number of clients. Therefore, the server may
discard state information of idle connections, but it maintains the variable upper which
is the maximum of the discarded ts values.

If the server does not remember the latest timestamp from a client when a request
arrives, then the request is accepted if this timestamp is greater than upper . Comparing
the timestamp in the request to upper assures that duplicates are never accepted. On the
other hand, a non-duplicate request may be rejected if its timestamp is less than upper .
The probability of this can be kept sufficiently low due to the roughly synchronized
clocks.

We do not model the clock synchronization protocol here. For our analysis it is sufficient
that there exist protocols [Mil91] which can synchronize clocks of computers even on a
wide-area network to a few hundred milliseconds with very high probability but without
an absolute guarantee that the clocks remain always synchronized. The fact of clock
synchronization appears in our model in the form of real-time assumptions and we know
that they can be implemented by using a clock synchronization protocol.

SCMP was designed in such a way that “if the rare event of unsynchronized clocks does
occur, the protocol continues to work correctly, although there may be a degradation of
performance” [LSW91]. The main result in this section is that we formally prove the
above statement, namely that SCMP satisfies its safety requirements without assuming
that the clocks are always synchronized. We consider the case of using unbounded
timestamps and the case when timestamps are from a modulo-N space.

In the case of unbounded timestamps, the monotonicity of the clocks is the only require-
ment for the correct operation of SCMP. When modulo-N timestamps are used, we
need to make further assumptions. Specifically, we have to assume that packet delays in
the network, the duration of a connection incarnation, and the rate of the clocks are all
bounded. These are not heavy assumptions because such assumptions have to be made
for every reliable protocol that uses a bounded identifier space over a network which
reorders packets [SL93, Wat81]. Notice that the bounded clock rate assumption does
not imply synchronized clocks.1

Our strategy for verifying SCMP is similar to that used in the previous chapter. We start

1The difference between any two clocks should also be bounded for the clocks to be synchronized.
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program SCMP ;
type

ep addr = “type of endpoint addresses”;
clnt conn rec = record of

status : {closed, opening, open};
ts , lin : int;
ts sent : array [0 . . .∞] of int ∪ empty;
open to: array [0 . . .∞] of int ∪ empty;

srvr conn rec = record of
status : {closed, open};
ts , lin : int;
ts rcvd : array [0 . . .∞] of int ∪ empty;
open to: array [0 . . .∞] of int ∪ empty;

OpenReq = record of
ts , lin : int;

OpenAck = record of
ts , lin , rin: int;

channel one channel Ca,b for each a, b pair of endpoints;
Client process in Figure 4.4;
Server process in Figure 4.5;
Initial condition in Figure 4.6;

Figure 4.3: SCMP: main program

by specifying and verifying the protocol with unbounded identifiers, and then verify the
modulo-N protocol based on these results. In this case, however, we will also see how
an ad-hoc verification method can lead to different conditions for the correctness of the
protocol. The formal proofs are presented in Appendix B and they can also be found in
[OHdG95c].

4.2.1 Specification of unbounded SCMP

The specification can be seen in four figures: Figure 4.3 shows the main program, Fig-
ure 4.4 and 4.5 show the client and server processes, and Figure 4.6 shows the initial
conditions.

State variables

Every host, either client or server, maintains a monotonic clock time. Also, every host
H has a connection record CR(a, b) for every (a, b) pair, where a and b are different
endpoint addresses and the host of a is H.
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process C;
var time: int;

CR: array[ep addr , ep addr ] of clnt conn rec;

event ClkTick ;
when true do

time + +;
for each local CR[a, b] do

if CR[a, b].status 6= closed∧ CR[a, b].ts = time − WC then
CR[a, b].status := closed;

event Open(a, b);
when CR[a, b].status = closed do

CR[a, b].status := opening; CR[a, b].ts := time;
CR[a, b].lin + +; CR[a, b].ts sent [CR[a, b].lin] := time;

event SendPkt (a, b);
var R: OpenReq;
when CR[a, b].status = opening do

R.ts := CR[a, b].ts; R.lin = CR[a, b].lin);
send(Ca,b, R);

event RecvPkt(a, b);
var A: OpenAck ;
when head(Cb,a) = A do

if CR[a, b].status = opening∧ CR[a, b].ts = A.ts then
CR[a, b].status := open;
CR[a, b].open to[CR[a, b].lin] := A.lin;

event Close(a, b);
when CR[a, b].status 6= closed∧ CR[a, b].ts < time do

CR[a, b].status := closed;

Figure 4.4: SCMP: client process

In the CR maintained by a client, status and ts are non-auxiliary variables; lin , ts sent
and open to are auxiliaries. The variables status, lin, and open to have already been
explained when we specified the abstract CM service in Section 4.1. The variable ts con-
tains the timestamp assigned to the current connection request when status 6= closed.
ts sent [i] records the timestamp assigned to incarnation i or it is equal to empty if that
incarnation does not exist yet.

In case of a server, the variable status can be either closed or open. The state opening

is not needed because, as we will see later on, server incarnations enter the open state
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directly upon the receipt of a valid open request. The variable ts holds the timestamp
of the most recently accepted request. ts rcvd [i] stores the timestamp of the request
accepted by incarnation i. This is an auxiliary variable. Apart from the per-connection
CRs, each server maintains a non-auxiliary variable upper which gives an upper limit of
the timestamps in the CRs of the closed connections.

Events

The time variable is regularly incremented by the ClkTick event at both clients and
servers. This event also enforces a maximum connection lifetime; when a connection
becomes too old, then the connection is forcibly closed. WC and WS are the constants
that give the maximum lifetime of a connection as measured on the clock of the client and
server, respectively. The server also updates upper in the ClkTick event. The triggering
of the ClkTick event is controlled by the clock synchronization protocol, but because this
protocol is not modeled here, we simply enable the ClkTick events continuously. When
necessary, we will use assumptions to bind the advance of the clocks to real time.

The C.Open(a, b) event initiates a new connection incarnation. The status of the con-
nection is changed to opening and the timestamp of the request is stored in the CR.
While in the opening state, the client can (re)send the connection request. The fields
of a connection request are the timestamp ts , and the client incarnation number lin.

When the server receives a request R, it looks up the appropriate CR using the source
and destination of the request. If there is status information about this connection
(status 6= closed), then the request is a new one if R.ts > S.CR[a, b].ts. Otherwise, the
timestamp of the request is compared to upper .

Messages that are ‘newer’ than time + ǫ are not accepted because they are too early.
These early messages are indicators of synchronization problems and accepting them
could lead to the blocking of requests from well synchronized hosts. Another reason to
reject early requests is that the crash recovery mechanism is also based on the assumption
that a known upper limit of the timestamps that could be ever accepted exists. ǫ is a
specification parameter which gives the maximum expected difference of the clocks. If
the request is acceptable, the server starts a new connection incarnation and enters the
open state.

While in the open state, the server sends acknowledgments to the client. An acknowl-
edgment contains a timestamp and two auxiliary fields, the local and remote incarnation
numbers. The client checks an incoming acknowledgment by comparing its timestamp
to the timestamp stored in the CR. If the state of the connection is opening and the
timestamps are equal, then the acknowledgment is accepted and the state is changed to
open.

At the client, the state of a connection can only be changed to closedwhen the clock has
advanced at least one tick since the connection was started. This is to prevent reusing
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process S;
var time, upper : int;

CR: array [ep addr , ep addr ] of srvr conn rec;

event ClkTick ;
when true do

time + +;
for each local CR[a, b] do

if CR[a, b].status 6= closed∧ CR[a, b].ts = time − WS then
CR(a, b).status := closed;

upper := max(upper , time − WS);

event RecvPkt(a, b);
var R: OpenReq;

l: int;
when head(Cb,a) = R do

if CR[a, b].status = closed then
l := upper ;

else if CR[a, b].status 6= closed then
l := CR[a, b].ts;

if l < R.ts ≤ time + ǫ then
CR[a, b].status := open; CR[a, b].ts := R.ts;
CR[a, b].lin + +;
CR[a, b].ts rcvd [CR[a, b].lin] := R.ts;
CR[a, b].open to[CR[a, b].lin] := R.lin ;

event SendPkt (a, b);
var A: OpenAck ;
when CR[a, b].status = open do

A.ts := CR[a, b].ts; A.lin := CR[a, b].lin;
A.rin := CR[a, b].open to[CR[a, b].lin];
send(Ca,b, A);

event Close(a, b);
when CR[a, b].status = open do

upper := max(upper ,CR[a, b].ts);
CR[a, b].status := closed;

Figure 4.5: SCMP: server process
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init
C.time = S.time = 0 ∧
(∀a, b : a is client, b is server :

C.CR[a, b].status = S.CR[b, a].status = closed∧
C.CR[a, b].lin = S.CR[b, a].lin = −1 ∧
C.CR[a, b].ts = S.CR[b, a].ts = 0 ∧
(∀i :

C.CR[a, b].open to[i] = S.CR[b, a].open to[i] = empty∧
C.CR[a, b].ts sent [i] = S.CR[b, a].ts rcvd [i] = empty));

Figure 4.6: SCMP: initial condition

a b

t1

t2

CR(b, a).status := open

CR(b, a).ts := n

duplicate request

(R : ts = n)

(R : ts = n)

(A : ts = n)
lost

Figure 4.7: Duplicate request at the server.

the same timestamp in different connection incarnations.

A scenario when server b receives a duplicate request from client a is shown in Figure 4.7.
The first copy of the packet is received at time t1. The request is accepted, therefore
status becomes open and the timestamp n of the request is saved in ts. The duplicate
is received at t2. There are two cases to consider depending on the state of the server at
t2:

• If the state is still open then the timestamp n in the packet is compared to
CR[b, a].ts which is also equal to n, thus the request is not accepted again2.

• If the state is closed, then there must have been a Close(a, b) event between t1
and t2. The Close event assures that upper is not lower than n after its occurrence.
Therefore the duplicate request is rejected because its timestamp n is less than or
equal to upper .

The duplicate is detected by the server because it has either the timestamp (when

2The reception of a duplicate request may trigger the retransmission of the acknowledgment in an
implementation because the duplicate usually indicates that the previous acknowledgment was lost.
Note this is allowed by our specification which allows almost any sort of retransmission strategy.



102 Connection Management Protocols

status = open) or an upper limit of the timestamp (when status = closed) of the
most recent request from the client.

The monotonicity of the clocks is crucial for the detection of duplicates which will become
more evident during the verification. Additionally, the synchronization of the clocks is
needed to have a good estimate of the acceptable timestamps in upper and in the check
for too early requests in S.RecvPkt . Therefore the synchronization is only needed to
assure that valid requests are not rejected.

4.2.2 Desired safety properties of SCMP

Our goal is to show that SCMP satisfies the safety requirement (4.1) of the abstract
CM service. Instead of proving this directly, we show that SCMP satisfies some stronger
assertions (4.2), (4.3) and (4.4).

These assertions are expected to hold for all different a, b endpoint addresses and for all
i, j, k integers3:

S.CR[a, b].open to[i] = j → C.CR[b, a].open to[j] ∈ {i, empty} (4.2)

C.CR[a, b].open to[i] = j → S.CR[b, a].open to[j] = i (4.3)

S.CR[a, b].open to[i] = j ∧ k 6= i → S.CR[a, b].open to[k] 6= j (4.4)

Assertion (4.2) requires that once the server incarnation i becomes open to the client
incarnation j, then at that and any later time j is either open to i or j has not been open
to any other incarnation. Assertion (4.3) is a similar statement, but from the client’s
viewpoint. If the client incarnation i is open to the server incarnation j, then at that and
any later time j must be open to i. Assertion (4.4) requires that if the server incarnation
i is open to the client incarnation j, then there may be no other server incarnation k
which is also open to j.

Lemma 4.1 The assertions (4.2), (4.3) and (4.4) imply the truth of assertion (4.1).

Although these assertions are stronger than the minimal requirements, we expect that
it is easier to prove that they are satisfied by SCMP because they reflect the way SCMP
works. For example, (4.1) does not say anything about the order in which a pair of
endpoints become open to each other. In case of SCMP, however, always the server
becomes open to the client first which is reflected by (4.2) and (4.3).

3Please note that the constants i, j and k represent non-empty values, therefore the x = j proposition
implies that x 6= empty.
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4.2.3 Proving the safety of unbounded SCMP

Theorem 4.2 SCMP satisfies the desired safety properties (4.2)–(4.4).

The main steps of the proving Theorem 4.2 are shown here by listing the assertions we
used to prove the invariance of the desired properties.

The first group of assertions provides the link between timestamps and incarnation num-
bers. (4.5) states that if there is a request R in the channel, then its timestamp R.ts
is equal to the timestamp of the client incarnation R.lin which is stored in the history
variable ts sent of the corresponding CR. (4.6) says that if server incarnation i is con-
nected to the client incarnation j, then the timestamp ts rcvd [i] received by incarnation
i is equal to the timestamp ts sent [j] sent by incarnation j. (4.7) is similar to (4.2), but
it is for acknowledgments: if there is an ack in the network then its rin and ts fields are
equal to the appropriate history variables of the server.

R ∈ Ca,b → R.ts = C.CR[a, b].ts sent [R.lin ] 6= empty (4.5)

S.CR[a, b].open to[i] = j →

→ S.CR[a, b].ts rcvd [i] = C.CR[b, a].ts sent [j] 6= empty (4.6)

A ∈ Ca,b → (A.rin = S.CR[a, b].open to[A.lin] 6= empty∧

∧ A.ts = S.CR[a, b].ts rcvd [A.lin] 6= empty) (4.7)

(4.6) and (4.6) are preconditions of the required properties (4.2) and (4.3) with respect
to the C.RecvPkt event of the client. (4.6) is also a precondition of (4.7) with respect to
the event S.SendPkt ; (4.5) is the precondition of (4.6) with respect to S.RecvPkt .

The following two assertions (4.8) and (4.9) state that the timestamps of successive
incarnations are monotone increasing. (4.8) is a precondition of (4.3) with respect to
C.RecvPkt . (4.9) is a precondition of (4.4) with respect to S.RecvPkt .

2(0 ≤ i < C.CR[a, b].lin ⇒ C.CR[a, b].ts sent [i] < C.CR[a, b].ts sent [i + 1]) (4.8)

2(0 ≤ i < S.CR[a, b].lin ⇒ S.CR[a, b].ts rcvd [i] < S.CR[a, b].ts rcvd [i + 1]) (4.9)

Finally, (4.10), (4.11), (4.11) and (4.13) are assertions that are sufficient preconditions
for the preservation of (4.8) and (4.9). (4.11) states that if a connection is closed as
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observed by the client, then the clock of the client is greater than the timestamp of the
most recent incarnation. This is a precondition of (4.8) with respect to C.Open. (4.12)
and (4.13) are the preconditions of (4.9) with respect to S.RecvPkt .

2(C.CR[a, b].status 6= closed⇒

⇒ C.CR[a, b].ts sent [C.CR[a, b].lin] = C.CR[a, b].ts) (4.10)

2(C.CR[a, b].status = closed⇒

⇒ C.CR[a, b].ts sent [C.CR[a, b].lin] < C.time) (4.11)

2(S.CR[a, b].status 6= closed⇒

⇒ S.CR[a, b].ts rcvd [S.CR[a, b].lin] = S.CR[a, b].ts) (4.12)

2(S.CR[a, b].status = closed⇒

⇒ S.CR[a, b].ts rcvd [S.CR[a, b].lin] ≤ S.upper) (4.13)

Extending (4.2)–(4.13) with some trivial assertions, one can prove that the safety re-
quirements (4.2), (4.3) and (4.4) are indeed invariants of unbounded SCMP. Because
during these proofs we made no assumptions about the difference of the clocks, we can
conclude that unbounded SCMP satisfies its safety requirements without the need for the
clocks being synchronized. The safety of the protocol depends only on the monotonicity
of the clocks which is reflected by assertions (4.8) and (4.9) among others.

Another consequence of having unbounded timestamps is that there are no bounds on
the value of the protocol parameters WC and WS . In fact, the verification remains valid
even if these parameters approach infinity. In other words this means that there is no
limit on the incarnation lifetime if the timestamps are unbounded.

4.2.4 SCMP with modulo-N timestamps

The second part of our analysis is concerned with the properties of SCMP when times-
tamps are from a finite space. We are interested in the extra constraints, if any, that are
necessary for the safety of the modulo-N protocol.

The use of modulo-N timestamps in SCMP means that the same modulo-N timestamp
is assigned to different incarnations over time. It is clear that a timestamp can only
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be reused when the packets carrying the same timestamp from earlier incarnations have
disappeared from the network. To allow the reuse of the timestamps, we will assume
that the network does not delay packets longer than L seconds.

Furthermore, we also have to assume that neither the client, nor the server keep a times-
tamp in use indefinitely. The server must not keep a connection open too long, otherwise
a new incarnation started by the client using the same timestamp could misinterpret an
old acknowledgment as an acknowledgment of the new incarnation. The client must also
limit the lifetime of an incarnation in order to allow the server to discard the CR of old
connections. The constants WC and WS in the specification give the maximum lifetime
of a client and server incarnation, respectively.

WC and WS are given as the number of ticks of the local clock. In order to be useful for
limiting the lifetime of an incarnation, the rates of the clocks have to be bound to the
real time. Therefore, we will assume that the rate of any clock is within certain bounds.

Two different techniques will be used to verify the modulo-N protocol. One is based
on the correct interpretation (CI) conditions which was used in the previous chapter.
With this technique we get that clock synchronization is sufficient for the safety of the
protocol. Clock synchronization means the existence of an upper bound on the difference
of any two clocks in the system. Note that this condition is stronger than the initial
assumption which implied only probabilistic clock synchronization.

By using an alternative method we will be able to show that clock synchronization is
not necessary for the safety; limited packet lifetime and bounded clock skew are also
sufficient conditions for the safety of modulo-N SCMP.

4.2.5 Correct interpretation conditions

When using this method, a CI condition is formulated for every comparison on modulo-N
variables that occurs in the protocol. The modulo-N version of the protocol is obtained
by replacing the unbounded non-auxiliary variables by modulo-N variables. In case of
SCMP this affects the time and ts variables of the client and the sender, and the ts
header field in the packets. The auxiliary variables may remain unbounded, because
their value does not influence the behavior of the system.

The following CI conditions can be formulated for SCMP. In the event C.ClkTick ,
C.CR[a, b].ts is compared to C.time − WC . These two variables are also compared in
C.Close. Due to the monotonicity of C.time and because C.ClkTick automatically closes
incarnations whose timestamp becomes too old, the assertion

2(C.CR[a, b].status 6= closed⇒

⇒ C.CR[a, b].time ≥ C.CR[a, b].ts > C.CR[a, b].time − WC) (4.14)

is satisfied by the system. Assertion (4.14) implies the CI requirement obtained by
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substituting 0 for K in (3.5) provided that

WC ≤ N (4.15)

Note also that the comparisons are only effective when C.CR[a, b].status 6= closed.
Including this in the CI condition (4.14) makes it somewhat weaker. Because the CI
conditions are sufficient requirements for the safety of modulo-N SCMP, we would like
to make them as weak as possible in order to obtain the sharpest conditions for safety.

The client also does a comparison in C.RecvPkt to check the timestamp of the acknowl-
edgment received. Again, we use K = 0 in the CI formula (3.5), because we expect
that

2(A ∈ Cb,a ∧ C.CR[a, b].status 6= closed⇒ C.CR[a, b].ts ≥ A.ts)

holds. Using this the CI requirement becomes

2(A ∈ Cb,a ∧ C.CR[a, b].status = opening⇒

⇒ C.CR[a, b].ts ≥ A.ts ≥ C.CR[a, b].ts −N + 1) (4.16)

We expect the assertion (4.16) to be satisfied, because the “lifetime” of a timestamp
is limited. The client keeps an incarnation for at most WC clock ticks, the lifetime
of packets in the channels is limited to L and the server also limits the lifetime of an
incarnation to at most WS clock ticks.

In case of the server, comparisons are made in S.ClkTick , S.Close and S.RecvPkt . The
variables involved are S.time, S.upper , S.CR[a, b].ts and the timestamp of the received
request R.ts. The definition of the server assures that the following two assertions are
satisfied:

2(S.CR[a, b].status 6= closed⇒ S.time + ǫ ≥ S.CR[a, b].ts > S.time − WS)(4.17)

2(S.time + ǫ ≥ S.upper ≥ S.time − WS) (4.18)

The assertions (4.17) and (4.18) and the condition below

WS + ǫ < N (4.19)

imply the CI conditions obtained from (3.5) for the S.ClkTick and S.Close events.
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The CI conditions of the S.RecvPkt event are given below. Each of these assertions are
in the form

(∃Ki : Ki < N : 2(R ∈ Cb,a ⇒ Pi))

where Pi is a predicate on the state variables and constants. To simplify the expressions,
we give only the predicates Pi (i ∈ {1, 2, 3}) below:

S.time + ǫ + K1 ≥ R.ts ≥ S.time + ǫ + K1 − N + 1 (4.20)

S.upper + K2 ≥ R.ts ≥ S.upper + K2 − N + 1 (4.21)

S.CR[a, b].status 6= closed⇒

⇒ S.CR[a, b].ts + K3 ≥ R.ts ≥ S.CR[a, b].ts + K3 − N + 1 (4.22)

Without going into the details of proving the invariance of the CI conditions, it is shown
here that the clocks of the client and server must be synchronized for the CI conditions
to hold. This is interesting because in the specification of the protocol [LSW91] synchro-
nization was assumed to be probabilistic. That is, most of the time the clocks should be
synchronized, but there is no guarantee that they always are.

For this reason, the protocol was designed in such a way that clock synchronization
affects only it s performance but it works safely even if the synchronization assumption
is violated. In case of unbounded timestamp, we saw that indeed synchronization is not
a precondition for the safety of the protocol. Now we are investigating the situation
when modulo-N timestamps are used.

Clock synchronization for a given pair of client C and server S is captured by the following
temporal formula:

(∃φ : 2(|C.time − S.time| < φ)) (4.23)

Let us now assume that the system does not satisfy (4.23), i.e. there exists a computation
σ such, that

(∀φ : 3(|C.time − S.time| > φ))(σ) (4.24)

As a consequence of (4.24), there will be a state si in σ when either C.time > S.time +
ǫ + K1 or C.time < S.time + ǫ + K1 −N + 1 becomes true. If at this point a C.SendPkt
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event is executed then the CI condition (4.20) would be violated. Therefore we can
conclude that the CI conditions presented above can only be satisfied if the clocks are
synchronized. We note here that if the clocks are synchronized to a certain φ and some
additional inequalities on the real-time parameters of the protocol hold, then modulo-n
SCMP satisfies the safety requirements. Therefore clock synchronization is also sufficient
for the safety of modulo-N SCMP, but we do not prove that statement here.

As we discussed above, it would be interesting to prove that modulo-N SCMP is safe
even if the clocks are not synchronized. This is still possible since the CI conditions are
sufficient for the safety of the modulo-N protocol, but not necessary. Therefore we will
try to prove the safety of modulo-N SCMP in a different way. The strategy is to weaken
the CI requirements (4.20)–(4.22) for the S.RecvPkt event in such a way that

• they are satisfied by the protocol without requiring clock synchronization,

• they still imply the required safety properties.

4.2.6 Alternative approach

We start the verification with an analysis of the behavior of the modulo-N protocol. The
following case study highlights the difference between the behavior of the unbounded and
modulo-N versions of the protocol. Let us assume that the clocks of the client and server
are running at a constant rate, but the clock of the client is slightly faster. If we observe
this system long enough, the difference between the clock of the client and the server
grows beyond any limit. Now let us examine how the two protocol versions behave
assuming that at the beginning C.time = S.time. In the following discussion, ∆ will be
used to denote C.time − S.time.

In the operation of the unbounded version, three phases can be identified (see also
Figure 4.8):
Phase 1: 0 ≤ ∆ < ǫ

During this phase the protocol operates as expected. Remember that ǫ denotes
maximum expected clock difference and the protocol is prepared to handle differ-
ences between clocks up to this level.

Phase 2: ǫ ≤ ∆ < ǫ + L

L is the maximum delay of a packet in the channels expressed in the number of
clock ticks. In this phase the server may still accept valid requests, but it is likely to
reject even previously unseen requests. It is so because the server rejects messages
that have a timestamps higher than S.time + ǫ. This check is necessary for proper
crash recovery, for example. Whether an actual request is accepted or rejected
depends on the delay of the request in the channel.

Phase 3: ǫ + L ≤ ∆

No more request are accepted. Even a request that spends the maximum possible
time in the channel appears to the server as too early and is thus rejected.
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Figure 4.8: Phases of operation at constant clock drift.

While examining the operation of the modulo-N version of the protocol, we will assume
that ǫ + L + WS < N holds. In the first two phases the modulo-N protocol behaves
identically to the unbounded protocol. Phase 3 of the unbounded protocol lasts forever,
there are no more successful connection establishments after Phase 3 starts. In case
of the modulo-N protocol, Phase 3 is finite because eventually ∆ “wraps around” and
requests become acceptable to the server again:
Phase 3a: ǫ + L ≤ ∆ < N − WS

No requests are accepted similarly to the unbounded case.

Phase 4: N − WS ≤ ∆ < N + ǫ

The requests from the client may be accepted again by the server. Whether an
actual request is accepted depends on its delay in the channel and on the recent
history of the server. If the server has a CR for the connection then a valid request
is always accepted. If there is no CR, then the acceptance of the request depends
on the value of S.upper . The value of S.upper may be higher than the timestamp
of a valid request if the server has received higher timestamps on other connections
before.

The behavior of the modulo-N protocol during Phase 4 is identical to its behavior
during Phase 1. After this, the phases come in a periodic order.

To further analyze modulo-N SCMP, let us notice that the behavior of SCMP can be
considered as a sliding-window protocol where the timestamps of SCMP function as
sequence numbers of the sliding-window protocol. The window of the client is either
of size 1 or 0. In the opening state, the window size is 1 because the pending request
can be (re)sent. In other states no request can be sent, therefore in those states the
size of the theoretical window is 0. The size of the theoretical window at the server
also depends on the current state. If the state is closed, then the range of acceptable
timestamps is (S.upper , S.time + ǫ]. If the state is not closed then the window is
(S.CR[a, b].ts, S.time + ǫ], where a and b denote the appropriate endpoint addresses.

The similarity between SCMP and the sliding-window protocol is that the client in
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SCMP has a range of timestamps it may use and the server has a range of timestamps
it is willing to accept just as the send-window in a sliding-window protocol which de-
fines the range of sequence numbers that may be currently sent by the sender and the
receive-window which defines the range of acceptable sequence numbers. The main dif-
ference between SCMP and the sliding-window protocol is that the relative position of
the send- and receive-windows in the sliding-window protocol is maintained internally
by the protocol itself (see assertion (3.6), for example), while the relative position of the
windows in SCMP is determined by an external mechanism, the clock synchronization
protocol.

The rules about the relative position of the windows in the sliding-window protocol
assures that any old duplicate packet—either data or acknowledgment—falls outside the
corresponding window and is thus rejected. These rules are maintained by advancing the
window based only on packets from the peer: the receive-window is advanced as data
packets are received, the send window is advanced as acknowledgments are received.

The relative position of the clocks, and of the windows, in SCMP is determined by two
factors:
Clock synchronization: If we assume that the clocks are always synchronized as de-

fined by (4.23), then the relative position of the windows is fully determined by
the clock synchronization requirement.

Limited clock drift: If we assume only that the rate of the clocks is within certain
bounds, then we cannot give guarantees about the relative position of the windows
in general. After sufficient time, the windows can be in any position. Because of
the limited drift, however, we still have guarantees about the time that is needed
to change the relative position of the windows.

Based on the above observation, we can use the limited clock-drift assumption to prove
the safety of modulo-N SCMP. As we saw in the case study of Figure 4.8, the lack
of clock synchronization may cause that requests which would be unacceptable by un-
bounded SCMP are accepted by modulo-N SCMP because their timestamp “wraps into
the window” of the server. Even in such cases, however, the limited drift assumption
guarantees that this wrap around does not happen “too fast.” If the modulo-N clocks
of the client and server are synchronized at one time (Phase 1), then there is a minimum
delay before the clocks may drift away so much that requests become acceptable again
(Phase 4). Between these phases there is a period when no requests are accepted. If
this period is so long that all the “old” packets disappear from the network during this
period, then the modulo-N protocol still satisfies the safety requirements.

A weaker CI requirement which is to replace the CI requirements (4.20)–(4.22), can be
informally stated as follows:

If there is a request R in the channel from b to a, and the modulo-N times-
tamp of the request R.ts mod N falls into the window of the server, then the
unbounded timestamp R.ts is higher than the timestamp of the last accepted
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request. In other words,

2(R ∈ Cb,a ∧ 〈R.ts falls into the modulo-N window〉 ⇒

⇒ R.ts > S.CR[a, b].ts rcvd [S.CR[a, b].lin]) (4.25)

In the next subsection, we extend the SCMP specification in order to be able to express
this CI requirement formally.

4.2.7 Modified SCMP specification

To treat the modulo-N case formally, we will modify the specification of unbounded
SCMP from the figures 4.3–4.6). The modified specification presented in this subsection
models the behavior of modulo-N SCMP as it is described above. The main difference
between the previous specification and this one is that the test in the server which
validates a new request is carried out using modulo-N numbers.

In order to facilitate its verification, the modified specification still uses unbounded
variables. The verification contains three main steps:

1. Proof that the modified specification satisfies the required safety properties (4.2)–
(4.4) when using unbounded identifiers (see Section 4.2.9).

2. Specification of the CI conditions which guarantee that the specification can be
implemented using modulo-N numbers (see Section 4.2.8).

3. Proof that the CI conditions are satisfied by the specification (see Section 4.2.10).

The first step is needed because this specification is different from the specification of
unbounded SCMP. Because the difference is not much, we will be able to use most of
the proof from Section 4.2.3 where we proved that unbounded SCMP satisfies the safety
requirements. Earlier results will also be used during the second step. From the CI
requirements formulated for the unbounded SCMP specification, assertions (4.14), (4.16),
(4.17) and (4.18) can be used with only minor modifications. Only the CI conditions
for the S.RecvPkt event have to be completely reformulated. The proof that the CI
conditions are satisfied by the system uses real-time properties of the protocol.

The specification of the modulo-N protocol can be found in Figures 4.9–4.12. The
structure of the specification is identical to the specification of the unbounded version.
The modified state variables and events are explained below.

An array of epoch variables is introduced in both the client and the server processes
to record the time when ClockT ick events happen. The variable t[i] records the real-
time when the local time became equal to i. We assume that the limited clock drift
requirement, defined by assertions (2.14) and (2.15), is satisfied by SCMP. The lower
and upper bounds of the clock period are γ and Γ, respectively.

It is also assumed that the limited packet lifetime assumption (see assertion (2.13)) holds
with the parameter L defining the upper bound on packet lifetimes in any of the channels.
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program ModN SCMP ;
type

ep addr = “type of endpoint addresses”;
clnt conn rec = record of

status : {closed, opening, open};
ts , lin : int;
ts sent : array [0 . . .∞] of int ∪ empty;
open to: array [0 . . .∞] of int ∪ empty;

srvr conn rec = record of
status : {closed, open};
ts , ts srvr , atime, lin: int;
ts rcvd : array [0 . . .∞] of int ∪ empty;
open to: array [0 . . .∞] of int ∪ empty;

OpenReq = record of
ts , lin : int;

OpenAck = record of
ts , lin , rin: int;

channel one channel Ca,b for each a, b pair of endpoints;
Client process in Figure 4.10;
Server process in Figure 4.11;
Initial condition in Figure 4.12;

Figure 4.9: Modulo-N SCMP: main program

The server CR also gets two new state variables. The variable atime records the value of
the local clock S.time whenever a request is accepted. The other state variable is ts srvr .
The value of ts and ts srvr are both related to the timestamp from the last accepted
request, but in a different way. The variable ts is the original timestamp from the last
accepted request. The variable ts srvr stores the unbounded value of the timestamp
from the last request as it is interpreted by the server. ts and ts srvr can be different
when the difference between C.time and S.time exceeds N due to clock drift.

Note, however, that these two variables are always equivalent modulo-N ,

2(S.CR[a, b].ts ≡ S.CR[a, b].ts srvr (mod N)) (4.26)

therefore they are not distinguishable in a modulo-N implementation. The modulo-N
equivalence of ts and ts srvr is assured by the definition of S.RecvPkt , the only event
which updates these variables. The exact role of ts and ts srvr can be seen later when
we discuss the CI requirements for the modified specification.

The modified test in the event R.RecvPkt for checking if a new request is acceptable
looks like this:

if R.ts ∈N (l, time + ǫ] then . . .
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process C;
var time: int;

t: array[0 . . .∞] of epoch;
CR: array[ep addr , ep addr ] of clnt conn rec;

event ClkTick ;
when true do

time + +; t[time] := τ ;
for each local CR[a, b] do

if CR[a, b].status 6= closed∧ CR[a, b].ts = time − WC then
CR[a, b].status := closed;

event Open(a, b);
when CR[a, b].status = closed do

CR[a, b].status := opening; CR[a, b].ts := time;
CR[a, b].lin + +; CR[a, b].ts sent [CR[a, b].lin] := time;

event SendPkt (a, b);
var R: OpenReq;
when CR[a, b].status = opening do

R.ts := CR[a, b].ts; R.lin = CR[a, b].lin;
send(Ca,b, 〈R, τ〉);

event RecvPkt(a, b);
var A: OpenAck ;

u: epoch;
when head(Cb,a) = 〈A, u〉 do

if CR[a, b].status = opening∧ CR[a, b].ts = A.ts then
CR[a, b].status := open;
CR[a, b].open to[CR[a, b].lin] := A.lin;

event Close(a, b);
when CR[a, b].status 6= closed∧ CR[a, b].ts < time do

CR[a, b].status := closed;

Figure 4.10: Modulo-N SCMP: client process
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process S;
var time, upper : int;

t: array[0 . . .∞] of epoch;
CR: array [ep addr , ep addr ] of srvr conn rec;

event ClkTick ;
when true do

time + +; t[time] := τ ;
for each local CR[a, b] do

if CR[a, b].status 6= closed∧ CR[a, b].ts srvr = time − WS then
CR(a, b).status := closed;

upper := max(upper , time − WS);

event RecvPkt(a, b);
var R: OpenReq;

u: epoch;
l: int;

when head(Cb,a) = 〈R, u〉 do
if CR[a, b].status = closed then

l := upper ;
else if CR[a, b].status 6= closed then

l := CR[a, b].ts srvr ;
if R.ts ∈N (l, time + ǫ] then

CR[a, b].status := open; CR[a, b].lin + +;
CR[a, b].ts := R.ts; CR[a, b].ts srvr := l + ((R.ts − l) mod N);
CR[a, b].atime := time ;
CR[a, b].ts rcvd [CR[a, b].lin] := R.ts;
CR[a, b].open to[CR[a, b].lin] := R.lin ;

event SendPkt (a, b);
var A: OpenAck ;
when CR[a, b].status = open do

A.ts := CR[a, b].ts; A.lin = CR[a, b].lin;
A.rin = CR[a, b].open to[CR[a, b].lin];
send(Ca,b, 〈A, τ〉);

event Close(a, b);
when CR[a, b].status = open do

upper := max(upper ,CR[a, b].ts srvr);
CR[a, b].status := closed;

Figure 4.11: Modulo-N SCMP: server process



4.2. SCMP 115

init
C.time = S.time = 0 ∧
(∀a, b : a is client, b is server :

C.CR[a, b].status = S.CR[b, a].status = closed∧
C.CR[a, b].lin = S.CR[b, a].lin = −1 ∧
C.CR[a, b].ts = S.CR[b, a].ts = S.CR[b, a].ts srvr = 0 ∧
S.CR[b, a].atime = −1 ∧
(∀i :

C.CR[a, b].open to[i] = S.CR[b, a].open to[i] = empty∧
C.CR[a, b].ts sent [i] = S.CR[b, a].ts rcvd [i] = empty));

Figure 4.12: Modulo-N SCMP: initial condition

This test whether R.ts is in the modulo-N interval (l, time + ǫ] corresponds to the test
in the sliding-window protocol that checks if the sequence number of the packet falls in
the receiver window (see the RecD event in Figure 3.5). Formally, it is defined in the
following way:

t ∈N (a, b] = t′ ∈ [a′ +N 1, a′ +N 2, . . . , b′]

where t′ = t mod N , a′ = a mod N , and b′ = b mod N . In particular, the interval is
empty if a ≡ b (mod N). This situation can happen in the protocol because we expect
the following assertion to hold:

2(S.time + ǫ ≥ l ≥ S.time − WS)

4.2.8 CI requirements for the modified specification

Having specified the modified protocol, we first reformulate the CI conditions. The CI
conditions (4.14), (4.16), and (4.18) can be used without modifications. Only the CI
condition (4.17) has to be slightly modified by replacing S.CR(a, b).ts with the new
state variable S.CR(a, b).ts srvr . The CI condition then becomes (4.29). For a complete
reference, we list below all the CI conditions:

2(C.CR[a, b].status 6= closed⇒

⇒ C.CR[a, b].time ≥ C.CR[a, b].ts > C.CR[a, b].time − WC) (4.27)

2(A ∈ Cb,a ∧ C.CR[a, b].status = opening⇒

⇒ C.CR[a, b].ts ≥ A.ts ≥ C.CR[a, b].ts −N + 1) (4.28)



116 Connection Management Protocols

2(S.CR[a, b].status 6= closed⇒

⇒ S.time + ǫ ≥ S.CR[a, b].ts srvr > S.time − WS) (4.29)

2(S.time + ǫ ≥ S.upper ≥ S.time − WS) (4.30)

The modified CI condition (4.29) illustrates the role of ts and ts srvr in the server’s CR.
When formulating CI conditions for the modified specification, ts and ts srvr can be
used alternately depending on the other variables involved. When the timestamp stored
by the server is compared to variables that have their value from the server’s clock, then
we use ts srvr in the CI condition. This is the case for the comparisons in the S.ClkTick
and S.Close events. On the other hand, when sending an acknowledgment A, then A.ts
is filled in from ts in order to assure that the timestamp carried by A is originating from
the client’s clock.

The CI conditions listed above cover the modulo-N tests in all events but S.RecvPkt .
The CI condition (4.25) for this event is informally stated at the end of the previous
subsection. Using the modified definition, the CI condition becomes

2((R ∈ Cb,a ∧ {R.ts ∈ (l, S.time + ǫ]} mod N) ⇒

⇒ R.ts > S.CR[a, b].ts rcvd [S.CR[a, b].lin])

where l is the local variable of the R.RecvPkt event. Using the specification of the event,
the above assertion can be replaced by the following two assertions when substituting
the value of l determined by the current state of the server:

2((R ∈ Cb,a ∧ S.CR[a, b].status 6= closed∧

∧{R.ts ∈ (S.CR[a, b].ts srvr , S.time + ǫ]} mod N) ⇒ (4.31)

⇒ R.ts > S.CR[a, b].ts rcvd [S.CR[a, b].lin])

2((R ∈ Cb,a ∧ S.CR[a, b].status = closed∧

∧{R.ts ∈ (S.CR[a, b].upper, S.time + ǫ]} mod N) ⇒ (4.32)

⇒ R.ts > S.CR[a, b].ts rcvd [S.CR[a, b].lin])

4.2.9 Safety using unbounded timestamps

Lemma 4.3 The modified SCMP specification satisfies the safety requirements defined
by the assertions (4.2)–(4.4) provided that the assertions (4.31) and (4.32) are satisfied
by the system.
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The proof of Lemma 4.3 is relatively straightforward, because we can use most of the
proof that the original SCMP specification satisfies these requirements. The only sub-
stantial difference is in the way of proving that S.CR[a, b].ts rcvd is monotone increasing
which is stated by assertion (4.9). For unbounded SCMP, we formulated assertion (4.12)
and (4.13) as a precondition of (4.9) with respect to the S.RecvPkt event. In case of
the modified specification, the CI conditions (4.31) and (4.32) are the preconditions of
assertion (4.9) with respect to the S.RecvPkt event. Therefore, (4.9) is preserved by the
event provided that (4.31) and (4.32) are satisfied by the system. The assertions (4.12)
and (4.13) are not necessary, furthermore assertion (4.13) does not even hold for the
modified SCMP specification.

4.2.10 Invariance of the CI requirements

Lemma 4.4 The modified specification satisfies its CI requirements defined by assertions
(4.27)–(4.32).

The invariance of (4.27), (4.29) and (4.30) can be proven from the specification of modulo-
N SCMP without using the real-time properties for the system. These proofs are rela-
tively straightforward.

On the other hand, the invariance of (4.28), (4.31) and (4.32) can only be proven by
exploiting the real-time properties of the protocol. In particular, we will use the max-
imum packet-lifetime assumption (2.13) and the limited clock-drift assumption (2.14)
and (2.15). An informal argument based on operational reasoning is given here to give
an idea why these assertions are satisfied by the system.

The CI condition (4.28) states that if there is an acknowledgment packet A in the channel,
then its associated timestamp cannot be arbitrary. It is easy to prove that

2(A ∈ Cb,a ⇒ C.CR[a, b].ts ≥ A.ts)

This assertion holds simply because C.time is monotone increasing. As for the lower
limit on A.ts, we will prove a stronger assertion

2(A ∈ Cb,a ⇒ A.ts ≥ C.time − N + 1)

This assertion is expected to hold because the client and the server both limit the lifetime
of an incarnation and the lifetime of packets in the channels is also limited.

Figure 4.13 illustrates this in an example. An incarnation is started at time t0 when
C.time = n. The client sends a request R at time t1, the request is received and accepted
at t2 by the server, at t3 the server sends back an acknowledgment which is received at
t4 by the client. Note that although all the intervals are depicted on the right side of the
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Figure 4.13: Oldest possible acknowledgment

figure, the WC and WS clock ticks are measured on the clock of the client and server,
respectively.

At t1 the client’s clock is less than R.ts + WC because the client closes an incarnation if
it becomes WC ticks old. The maximum packet-lifetime assumption (2.13) implies that
t2 − t1 < L and t4 − t3 < L. The server keeps an incarnation open for at most ǫ + WS

ticks. From the upper limit on the time between two ticks of the server’s clock (2.15),
we know that t3 − t2 < (ǫ + WS) · Γ. Therefore t4 − t1 < 2L + (ǫ + WS) · Γ. The clock
of the client advances at most (t4 − t1)/γ ticks between t1 and t4. Combining all these
together, we get that

2(A ∈ Cb,a ⇒ A.ts + WC +
2L + (ǫ + WS) · Γ

γ
> C.time)

From the above assertion we can see that (4.33) is a sufficient condition for the invariance
of (4.28)

N > WC +
2L + (ǫ + WS) · Γ

γ
(4.33)

The CI conditions (4.31) and (4.32) both state that if the timestamp of a request is
in the modulo-N window of the server, then the unbounded timestamp of the request
must be greater than the timestamp of the last accepted request. To show how these CI
conditions can be enforced, we will construct situations when the conditions would be
violated and then find sufficient conditions that exclude these situations.

Specifically, we consider the case shown in Figure 4.14. The server accepts a request R
at time t3. The question is “which is the oldest possible timestamp still in the channel
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Figure 4.14: Oldest possible request

at the moment of t3?” The request accepted at t3 was sent at t2, therefore its timestamp
R.ts is less than or equal to the value of the client’s clock C.time at t2. It is evident that
t2 ≤ t3.

Let us assume that the request R′ carrying the oldest timestamp in the channel was
transmitted at t1. Because R′ is still in the channel, t3 − t1 < L must hold. R′.ts carries
the value of the client’s clock from t0 when this incarnation was started. The client does
not keep an incarnation open for more than WC clock ticks. Combining all these, we get
that

R.ts − R′.ts < WC +
L

γ

Because R is accepted at t3, R.ts must be within the server’s window. This window is
not larger than [S.time −WS , S.time + ǫ]. To avoid the acceptance of R′, its timestamp
must be outside of the window. This can be achieved if

R.ts − R′.ts < N − (ǫ + WS)

A pictorial explanation of this inequality can be found in Figure 4.15. The requirement
is that even if the newest timestamp R.ts appears to be in the lowest part of the window,
the oldest timestamp R′.ts must not wrap into the window from the other end. This is
assured by the above inequality.

Therefore, combining the above two inequalities, we get that (4.34) below is a sufficient
condition for the invariance of the CI conditions (4.31) and (4.32).

N > WC +
L

γ
+ ǫ + WS (4.34)

This completes the argument that the CI conditions of the modified SCMP specification
are satisfied by the system. Of course, the above argument was not intended to replace
a rigorous proof, the proof of the invariance of the CI conditions based on temporal logic
can be found in Appendix B.
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0
S.time −WS
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Figure 4.15: The server window and the range of timestamps in the channel

Theorem 4.5 The modified SCMP specification satisfies the desired safety requirements
(4.2)–(4.4) even when using modulo-N identifiers provided that constraints (4.33) and
(4.34) are met.

Theorem 4.5, which is our main result, follows from Lemma 4.3 and 4.4.

Let us summarize the results of this section. First we have shown, that if we want
to implement the unbounded SCMP specification from Section 4.2.1 using modulo-N
identifiers, then we must assume synchronized clocks. Then we have constructed a
modified specification (see Section 4.2.7) and we have proven that this specification of
SCMP

• satisfies the safety requirements;

• can be implemented using modulo-N identifiers without assuming clock synchro-
nization.

The important result of this verification is that the safety of SCMP does not necessarily
depend on the synchronization of the clocks. On the other hand, the dependency on the
existence of maximum packet-lifetimes and on the limited clock drift is not unique to
SCMP. In fact, we expect that every protocol which uses modulo-N identifiers over a
channel which may reorder packets depends on these assumptions.

4.2.11 Modeling of failures

A CM protocol must be prepared for the failure of hosts which is usually called a crash.
When a host crashes, it loses the contents of its memory and stops working. The actions
taken by a host to recover from crashes should preserve the safety requirements and
should assure that normal communication commences as soon as possible.

To model a crash, we have to introduce a new state variable rstatus which can be either
running or down; and two new events Crash and Recover . Then we add rstatus =
running to the enabling condition of the events in Figure 4.4 and 4.5 except the ClkTick
events. We assume that the clocks do not stop working, or if they do then they can be
reinitialized after the crash.
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event Crash { The client and server events are identical. }
when rstatus = running do

rstatus := down;

event C.Recover
when rstatus = down and “time has advanced since the crash” do

rstatus := running;
for each CR[a, b] do

CR[a, b].status := closed;

event R.Recover
when rstatus = down do

rstatus := running;
upper := time + ǫ;
for each CR[a, b] do

CR[a, b].status := closed;

Figure 4.16: Crash recovery at the client and at the server

The specification of the Crash and Recover events is in Figure 4.16. Crash simply sets
rstatus to down for both clients and servers. A client is only allowed to recover from a
crash when its clock advanced at least by one tick. This restriction is necessary because
the status of every connection is set to closed during the recovery and assertion (4.10)
has to be preserved.

A server is allowed to recover immediately after a crash. Setting upper to time + ǫ, the
monotonicity of time and the assertion below

2(S.CR[a, b].ts rcvd [S.CR[a, b].lin] ≤ time + ǫ)

assure that (4.12) will be preserved by the recovery procedure thus no duplicate requests
will be accepted.

Based on the above hints, it is trivial to extend the verifications for the extended protocol
which models crashes. The constraints for the safety of the modulo-N protocol remain
valid. There is another crash-recovery mechanism discussed by [LSW91] which requires
safe storage for a server state variable. That mechanism can be modeled in a similar
way.

4.3 Hybrid 2WHS and 3WHS protocols

The protocols discussed in this section use either 2WHS or 3WHS to open a connection
depending on the current protocol state. In this respect, they are different from SCMP
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which always opens connections with 2WHS. The advantage of these hybrid protocols
is that they can use the available data storage as a cache: if there is information about
the connecting peer in the cache then the request can be validated without the 3WHS,
otherwise a 3WHS must be performed. This allows to trade memory for connection
setup latency. Connection information can be discarded from the cache to free memory,
but this will increase the probability that subsequent connection setups must go through
the 3WHS.

The discussion is based on the family of protocols presented by Shankar and Lee in [SL93,
SL95]. The protocols are called SC (server cache). Modifications to the specification
and refinements to the analysis were proposed by the author in [OHdG96b]. These
modifications and some others will be discussed here.

The caching in these protocols is such that there is always a minimum required caching
period. Data must remain in the cache for at least this period, otherwise the protocol
can fail. After this minimum period, data can be discarded freely. One of our proposals
discussed here is a technique to shorten the minimum caching period in most situations.
The technique is called implicit 3WHS and it will be described in Section 4.3.4.

The correctness conditions for SC include the maximum incarnation lifetime I . That
is, the correctness of the protocol is not guaranteed without a bound on the length of
connections. This is an undesirable property because connections are opened and closed
by users of the transport service and it usually it is difficult or even impossible to enforce
a maximum connection duration. Another caching technique is proposed in [SL95] to
eliminate the dependency on I . We propose an alternative solution which combines the
connection management and data transfer protocols. The advantage of our technique is
that it does not require additional memory.

4.3.1 Basic protocol

The first part of the specification SC can be found in Figure 4.17. No formal verification
of SC is presented in the thesis. Because of this and in order to simplify the discussion,
auxiliary variables are not shown in this specification. Extending the specification with
the necessary auxiliary variables is straightforward if one wants to carry out a correctness
proof like the one presented in Section 4.2.

State variables and message formats

Similarly to SCMP, the protocol specification consists of clients C and servers S. Both
clients and servers maintain their status information in connection records CR. A client
maintains the following state variables in its connection record:

• Status : The status of the connection from the client’s standpoint. closed if the
client has no active connection; opening if the client has a pending open request;
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program SC ;
type

ep addr = 〈type of endpoint addresses〉;
clnt conn rec = record of

Status : {closed, opening, opnclng, open, closing};
Lin, Din: {nil} ∪ {0, 1, . . .};

srvr conn rec = record of
Status : {closed, opening, open, closing};
Lin, Din: {nil} ∪ {0, 1, . . .};
Cache : {old, nil} ∪ {0, 1, . . .};

CRQ, DRQ = record of
sin: {0, 1, . . .};

CRR, CRA, CRRA, DRA = record of
sin, rin: {0, 1, . . .};

REJ = record of
rin: {0, 1, . . .};

channel 〈one channel Ca,b for each a, b pair of endpoints〉;

process C;
var CR: array [ep addr , ep addr ] of clnt conn rec;

LinGen: array [ep addr ] of {0, 1, . . .};
Client events are specified in Figure 4.18 and 4.19;

process S;
var CR: array [ep addr , ep addr ] of srvr conn rec;

LinGen: array [ep addr ] of {0, 1, . . .};
Server events are specified in Figure 4.20, 4.21, and 4.22;

Figure 4.17: SC: main program

opnclng if the client’s open request is not acked yet, but the user has already
indicated its intention to close the connection; open if the connection is established;
and closing if the client has a pending close request.

• Lin: The local incarnation number. Lin is nil if the client is closed, otherwise it
identifies the incarnation of the client side involved in the current connection.

• Din: The distant incarnation number. Its value is nil if the client’s open request
has not been acked yet, otherwise it identifies the incarnation of the server side
involved in the connection.

Furthermore, there is an incarnation number generator LinGen. Unique incarnation
numbers are taken from this generator. In implementations of SC , incarnation numbers
can be generated either by a counter as it is done in the specification here, or by a
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monotone clock. The only requirement is that LinGen is not incremented faster than a
certain rate in order to maintain protocol correctness (see (4.48) below). All connections
originating from a client endpoint a share the generator LinGen[a].

The server maintains similar variables in its connection record with the following differ-
ences:

• Status has different values. The opening state means that the server is currently
involved in a 3WHS with the client. The opnclng state has no meaning for the
server. The server enters the closing state when the client requests a disconnect.

• Cache: Normally, it stores the last incarnation number of the client. The incar-
nation number in open requests is compared to this. Cache is nil if nothing is
known about the last connection attempt from the client and a 3WHS is needed
to open a new connection. The value old means that the last value stored in the
cache has expired but no connection has been accepted from the client since then.
Any open request can be accepted with the 2WHS in this case.

Messages are identified by their type and by the numbers of the client and server incar-
nations. The following message types are sent by clients:

• CRQ: Connection request, sent when opening.

• CRRA: Acknowledgment to a CRR message to complete the 3WHS.

• DRQ: Disconnect request.

• REJ : Reject, sent in response to an unacceptable message.

The list of message types send by servers:
• CRR: Reply to a CRQ when 3WHS is used.

• CRA: Acknowledgment to a CRQ when 2WHS is used.

• DRA: Acknowledgment to a DRQ when closing.

• REJ : Reject, sent in response to an unacceptable message.

In all message types the header field sin carries the local incarnation number of the
sender, rin carries the remote incarnation number of the intended receiver. Some of the
fields are missing in certain message types.

Messages can also be classified as primary or secondary. Primary messages are sent
repeatedly until a response is received or a timeout occurs. Secondary messages can
only be sent in response to the reception of a primary message. It is also possible that a
primary message is sent in response to a primary message. This is the case in the 3WHS
when a CRR is sent in response to a CRQ .

Client events

Figure 4.18 lists the client events related to user actions and the events to send primary
messages. Figure 4.19 list the receive events of the client.
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event ConnReq(a, b);
when CR[a, b].Status = closed then

CR[a, b].Status := opening; CR[a, b].Lin := LinGen[a] + +;
event DiscReq(a, b);

when CR[a, b].Status ∈ {opening, open} then
if CR[a, b].Status = opening then CR[a, b].Status := opnclng;
else CR[a, b].Status := closing;

event Abort(a, b);
when CR[a, b].Status 6= closed∧ 〈no resp. for more than WC sec〉 then

CR[a, b].Status := closed; CR[a, b].Lin := nil; CR[a, b].Din := nil;
event SendCR(a, b);

when CR[a, b].Status ∈ {opening, opnclng} then
CRQ.sin := CR[a, b].Lin; send(Ca,b,CRQ);

event SendDR(a, b);
when CR[a, b].Status ∈ {opnclng, closing} then

DRQ.sin := CR[a, b].Lin; send(Ca,b,DRQ);

Figure 4.18: SC: client events, part 1

The event ConnReq is triggered by the user when it wants to open a new connection.
The status is changed to opening and an incarnation number is generated. Another
user-activated event is DiscReq. This event indicates that the user wants to close the
connection. Depending on the current state of the client, the state becomes either
closing or opnclng. The Abort event is triggered by a timeout. If a response is
outstanding for more than WC seconds then the connection is forcibly closed. The
bound WC on the retransmission period of CRQ is required by protocol correctness.

The states opening and opnclng indicate that an ack of the client’s CRQ message is
expected. Sending a CRQ message is thus enabled in these states (event SendCR).
Similarly, DRQ messages can be generated in the states opnclng and closing.

CRR messages are received in response to a CRQ if the server has no cached information
to validate the request. The first clause in RecvCRR event processes CRR messages that
acknowledge a previously sent CRQ. The state is changed to open or closing, the
server incarnation is recorded in Din and a CRRA message is sent to complete the
3WHS. The second clause processes duplicate CRR messages. A CRRA message is sent
in response. The third clause can happen after a server crash or early connection discard.
CRR.sin > CR[a, b].Din indicates that we are connected to an old server incarnation.
The connection is closed and a REJ is sent. The same is done if a CRR is received in
the closed state.

A CRA message with the proper incarnation number in opening and opnclng states
indicates a successful 2WHS. The state is changed and the remote incarnation identifier
is stored Din. DRA messages are accepted in closing state only if they have the proper
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event RecvCRR(a, b);
when head(Cb,a) = CRR then CRR := recv(Cb,a);

if CR[a, b].Status ∈ {opening, opnclng} ∧ CRR.rin = CR[a, b].Lin then
if CR[a, b].Status = opening then CR[a, b].Status := open;
else CR[a, b].Status := closing;
CR[a, b].Din := CRR.sin;
CRRA.sin := CR[a, b].Lin; CRRA.rin := CR[a, b].Din; send(Ca,b,CRRA);

elif CR[a, b].Status ∈ {open, closing} ∧ CRR.rin = CR[a, b].Lin ∧
CRR.sin = CR[a, b].Din then

CRRA.sin := CR[a, b].Lin; CRRA.rin := CR[a, b].Din; send(Ca,b,CRRA);
elif CR[a, b].Status ∈ {open, closing} ∧ CRR.rin = CR[a, b].Lin ∧

CRR.sin > CR[a, b].Din then
CR[a, b].Status := closed; CR[a, b].Lin := nil; CR[a, b].Din := nil;
REJ .rin := CRR.sin; send(Ca,b,REJ );

elif CR[a, b].Status = closed then
REJ .rin := CRR.sin; send(Ca,b,REJ );

event RecvCRA(a, b);
when head(Cb,a) = CRA then CRA := recv(Cb,a);

if CR[a, b]Status ∈ {opening, opnclng} ∧ CRA.rin = CR[a, b].Lin then
if CR[a, b].Status = opening then CR[a, b].Status := open;
else CR[a, b].Status := closing;
CR[a, b].Din := CRA.sin;

elif CR[a, b].Status ∈ {open, closing, closed} then 〈no action〉;
event RecvDRA(a, b);

when head(Cb,a) = DRA then DRA := recv(Cb,a);
if CR[a, b]Status = closing∧ DRA.rin = CR[a, b].Lin ∧

DRA.sin = CR[a, b].Din then
CR[a, b].Status := closed; CR[a, b].Lin := nil; CR[a, b].Din := nil;

elif CR[a, b].Status ∈ {opening, opnclng, open, closed} then 〈no action〉;
event RecvREJ(a, b);

when head(Cb,a) = REJ then REJ := recv(Cb,a);
if CR[a, b]Status ∈ {opening, opnclng, closing} ∧ REJ .rin = CR[a, b].Lin then

CR[a, b].Status := closed; CR[a, b].Lin := nil; CR[a, b].Din := nil;
elif CR[a, b].Status ∈ {open, closed} then 〈no action〉;

Figure 4.19: SC: client events, part 2
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event MakeNil(b, a);
when CR[b, a].Cache 6∈ {nil, old} ∧

〈entry was updated between c
(nil)
S and c

(old)
S seconds ago〉 then

CR[b, a].Cache := nil;
event MakeOld (b, a);

when CR[b, a].Cache 6∈ {nil, old} ∧

〈entry was updated between c
(old)
S and CS seconds ago〉 then

CR[b, a].Cache := old;
event Release(b, a);

when CR[b, a].Status = closing∧
〈client had sufficient time to ask for retransmissions〉 then

CR[b, a].Status := closed; CR[b, a].Lin := nil; CR[b, a].Din := nil;
event Abort(b, a);

when CR[b, a].Status 6= closed∧ 〈no resp. for more than WS sec〉 then
CR[b, a].Status := closed; CR[b, a].Lin := nil; CR[b, a].Din := nil;

event SendCRR(b, a);
when CR[b, a].Status = opening then

CRR.sin := CR[b, a].Lin; CRR.rin := CR[b, a].Din; send(Cb,a,CRR);

Figure 4.20: SC: server events, part 1

incarnation identifiers. Although DRQ messages can also be generated in the opnclng

state, the corresponding DRA can only be accepted if the preceding CRA has already
been received and the state has moved to closing. If the 3WHS is used, then the DRA
can never overtake the CRR message. A REJ message causes the current connection to
be aborted.

Server events

Figure 4.20 contains the non-receive events of server S, the receive events are listed in
Figure 4.21 and 4.22.

The MakeNil and MakeOld events specify the constraints on the caching policy. Each
entry must stay in the cache for at least c(nil)

S seconds. When this minimum caching

period has expired, the entry may be set to nil. If the entry was longer than c
(old)
S in

the cache, then it may be set to old. This is preferred because connections are opened
with a 2WHS when CR[b, a].Cache = old. If modulo-N incarnation numbers are used,
then it is also important that an entry is not kept in the cache longer than the maximum
caching period CS.

The event Release closes a connection in the closing state. The length of staying in the
closing state must be long enough that the client can retransmit the DRQ message if
the DRA is lost. The server side of the connection is closed by a timer because the last
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event RecvCR(b, a);
when head(Ca,b) = CRQ then CRQ := recv(Ca,b);

if CR[b, a].Status = closed∧ 〈rejecting connections〉 then
REJ .rin := CRQ .sin; send(Cb,a,REJ);
if CR[b, a].Cache = old ∨ CRQ.sin > CR[b, a].Cache 6= nil then

CR[b, a].Cache := CRQ.sin;
elif CR[b, a].Status = closed∧ 〈accepting connections〉 ∧

CR[b, a].Cache = nil then
CR[b, a].Status := opening; CR[b, a].Lin := LinGen[b] + +;
CR[b, a].Din := CRQ.sin;

elif CR[b, a].Status ∈ {closing, closed} ∧ 〈accepting connections〉 ∧
(CR[b, a].Cache = old ∨ CRQ .sin > CR[b, a].Cache 6= nil) then

CR[b, a].Status := open; CR[b, a].Lin := LinGen[b] + +;
CR[b, a].Din := CRQ.sin; CR[b, a].Cache := CRQ.sin;
CRA.sin := CR[b, a].Lin; CRA.rin := CR[b, a].Din; send(Cb,a,CRA);

elif CR[b, a].Status = opening∧ CRQ.sin > CR[b, a].Din then
CR[b, a].Lin := LinGen[b] + +; CR[b, a].Din := CRQ .sin;

elif CR[b, a].Status = open ∧
(CR[b, a].Cache = old ∨ CRQ .sin > CR[b, a].Cache 6= nil) then

if 〈willing to reopen〉 then
CR[b, a].Lin := LinGen[b] + +; CR[b, a].Din := CRQ.sin;
CR[b, a].Cache := CRQ.sin;
CRA.sin := CR[b, a].Lin; CRA.rin := CR[b, a].Din; send(Cb,a,CRA);

else
CR[b, a].Status := closed; CR[b, a].Lin := nil; CR[b, a].Din := nil;
CR[b, a].Cache := CRQ.sin;

elif CR[b, a].Status = open ∧ CRQ .sin = CR[b, a].Cache 6∈ {nil, old} then
CRA.sin := CR[b, a].Lin; CRA.rin := CR[b, a].Din; send(Cb,a,CRA);

Figure 4.21: SC: server events, part 2

message (DRA) in a connection is sent by the server.

The server’s Abort event is equivalent to the client’s same event. In the opening state
the server generates CRR messages (event SendCRR) until a CRRA is received which
moves the state to open or the connection is timed out.

The RecvCR event of the server is shown in Figure 4.21. The first clause specifies the
processing of CRQ messages when the server is not accepting new connection requests.
Note that it is the user of the transport service who decides whether the server is ac-
cepting or rejecting connections. A REJ is sent in response to the CRQ, but Cache is
updated if the request would otherwise be acceptable.

The second clause is taken when there is no cached entry and a 3WHS is needed. The
third clause happens when the connection can be opened by a 2WHS. If the server
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event RecvCRRA(b, a);
when head(Ca,b) = CRRA then CRRA := recv(Ca,b);

if CR[b, a].Status = opening∧ CRRA.sin = CR[b, a].Din ∧
CRRA.rin = CR[b, a].Lin then

CR[b, a].Status := open; CR[b, a].Cache := CRRA.sin;
elif CR[b, a].Status ∈ {open, closing, closed} then 〈no action〉;

event RecvDR(b, a);
when head(Ca,b) = DRQ then DRQ := recv(Ca,b);

if CR[b, a].Status = {open, closing} ∧ DRQ.sin = CR[b, a].Din then
if CR[b, a].Status = open then CR[b, a].Status := closing;
DRA.sin := CR[b, a].Lin; DRA.rin := CR[b, a].Din; send(Cb,a,DRA);

elif CR[b, a].Status = closed then
REJ .rin := DRQ .sin; send(Cb,a,REJ);

elif CR[b, a].Status = opening then 〈no action〉;
event RecvREJ(b, a);

when head(Ca,b) = REJ then REJ := recv(Ca,b);
if CR[b, a].Status = opening∧ REJ .rin = CR[b, a].Lin then

CR[b, a].Status := closed; CR[b, a].Lin := nil;
elif CR[b, a].Status ∈ {open, closing, closed} then 〈no action〉;

Figure 4.22: SC: server events, part 3

is still in the closing state, then the client reopens the connection before the server
released the previous connection record. Since CRQ .sin > CR[b, a].Cache indicates that
the message is new, it is considered as an implicit acknowledgment of the server’s DRA
message in the previous connection.

The fourth clause happens if the server starts a 3WHS in response to an old CRQ
message and then receives a recent CRQ. Since the connection has not moved beyond
the opening state, the server simply reconnects to the new client incarnation and restarts
the 3WHS. Generating a new server incarnation is important because the client may
have become connected to the old incarnation already.

The fifth clause shows the situation when the client reopens after a timeout or crash.
The server opens a new connection if the user is willing to reconnect otherwise it simply
discards the old connection. Finally, the sixth clause describes the response to a duplicate
CRQ.

The reception of a CRRA message in the opening state causes the server to change its
state to open. A DRQ is replied by a DRA is the open and closing states. If necessary,
the state is also changed to closing. DRQ messages are replied by a REJ in the closed
state. In the opening state no action is taken. DRQ messages in this state can be caused
by the client receiving a DiscReq event before the connection becomes established.

The typical opening sequences are shown in Figure 4.23 and 4.24. The first figure shows
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Figure 4.23: Opening a connection by 3WHS
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Figure 4.24: Opening a connection by 2WHS

a 3WHS between client a and server b. The notation (M, sin , rin) stands for a message
of type M with the appropriate header fields. The other figure shows the situation when
the server has an entry in its cache for the client. In this case a 2WHS can be used to
open the connection.

4.3.2 Protocol properties

Although the auxiliary variables are not included in the SC specification which were
used to formally specify the desired property (4.1) in Section 4.1, the desired property
can stated informally. If incarnation x of endpoint c becomes open to incarnation y
of endpoint d, i.e., CR[c, d].Status = open, CR[c, d].Lin = x, and CR[c, d].Din = y,
then incarnation y of d is either open to x of c, or y of d never becomes open to any
incarnation.

These correctness constraints are satisfied by SC if the following condition is satisfied
[OHdG96b, SL95]:

c(nil)
S > WC ∧ c(old)

S > WC + L (4.35)

In words, this means that the minimum caching period c
(nil)
S of the server must be longer

than the retransmission timeout WC of the client. The cache entry can be replaced by old

if it stayed in the cache longer than the client’s retransmission timeout plus the maximum
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packet lifetime L. Some other constraints are determined in [SL95] and [OHdG96b], but
those are only needed if we want to model crashes (see also Section 4.2.11).

In order to implement the protocol using modulo-N incarnation numbers, correct in-
terpretation conditions must be formulated. It can be done using (3.5) repeatedly for
each event where modulo-N identifiers are compared. Without formulating these CI
conditions, we list assertions that can be used to deduce the bound K of (3.5) in these
CI conditions. The real-time conditions for the correctness of the protocol are obtained
from these bounds.

Modulo-N incarnation numbers cannot be used without an upper bound on the rate of
generating new incarnation number. The parameter α denotes the minimum time be-
tween two incarnation generations. That is, LinGen must not be read and incremented
faster than the rate 1/α. The constraint may be explicitly enforced by the implementa-
tion or α must be chosen such that it is physically impossible to exceed this limit.

The following assertions are satisfied by SC (proofs in [OHdG96b, SL95]) where a and
b denote a client and a server endpoint, respectively:

2(CRQ ∈ Ca,b ∧ S.CR[b, a].Status ∈ {closed, open, closing} ∧

∧ S.CR[b, a].Cache 6∈ {nil, old} ⇒ (4.36)

⇒ S.CR[b, a].Cache −
L + WC

α
≤ CRQ.sin ≤

≤ S.CR[b, a].Cache +
max(L, WS) + WC + CS

α
)

2(CRQ ∈ Ca,b ∧ S.CR[b, a].Status = opening⇒

⇒ S.CR[b, a].Din −
L + WC

α
≤ CRQ.sin ≤ (4.37)

≤ S.CR[b, a].Din +
L + WC + WS

α
)

2(CRRA ∈ Ca,b ∧ S.CR[b, a].Status = opening⇒

⇒ S.CR[b, a].Din −
2L + WC + WS

α
≤ CRRA.sin ≤ (4.38)

≤ S.CR[b, a].Din +
L + WC

α
)

2(DRQ ∈ Ca,b ∧ S.CR[b, a].Status ∈ {open, closing} ⇒

⇒ S.CR[b, a].Din −
L + I

α
≤ DRQ.sin ≤ (4.39)

≤ S.CR[b, a].Din +
L + WC + I

α
)
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2(CRR ∈ Cb,a ∧ C.CR[a, b].Status ∈ {open, closing} ⇒

⇒ C.CR[a, b].Din −
L + WS

α
≤ CRR.sin ≤ (4.40)

≤ C.CR[a, b].Din +
L + WC

α
)

2(DRA ∈ Cb,a ∧ C.CR[a, b].Status = closing⇒ (4.41)

⇒ C.CR[a, b].Din −
L + I

α
≤ DRA.sin ≤ C.CR[a, b].Din)

2(CRRA ∈ Ca,b ⇒ (4.42)

⇒ S.CR[b, a].Lin −
2L + WS

α
≤ CRRA.rin ≤ S.CR[b, a].Lin)

2(REJ ∈ Ca,b ⇒ (4.43)

⇒ S.CR[b, a].Lin −
2L + WS

α
≤ REJ .rin ≤ S.CR[b, a].Lin)

2(CRA ∈ Cb,a ⇒ (4.44)

⇒ C.CR[a, b].Lin −
2L + WC

α
≤ CRA.rin ≤ C.CR[a, b].Lin)

2(REJ ∈ Cb,a ⇒ (4.45)

⇒ C.CR[a, b].Lin −
2L + I

α
≤ REJ .rin ≤ C.CR[a, b].Lin)

2(CRR ∈ Cb,a ⇒ (4.46)

⇒ C.CR[a, b].Lin −
2L + WC + WS

α
≤ CRR.rin ≤ C.CR[a, b].Lin)

2(DRA ∈ Cb,a ⇒ (4.47)

⇒ C.CR[a, b].Lin −
2L + I

α
≤ DRA.rin ≤ C.CR[a, b].Lin)

The minimum value of N to assure the correct interpretation of modulo-N incarnation
numbers can be obtained from the above assertions:

N · α ≥ L + WC + (4.48)

+ max{L + WC + CS , WC + WS + CS, 2L + WC + WS, L + 2I}
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Figure 4.25: Incarnations x and y of client a become open to incarnation u of server b.

4.3.3 Modifications

The specification SC is based on the protocol presented by Shankar and Lee in [SL95],
but a number of modifications have been applied to the the original specification based
on the results published in [OHdG96b]. These modifications are intended to improve the
behavior of the protocol. They will be explained one-by-one below.

Handling of CRQ messages in the opening state

The following code fragment is from the RecvCR event in Figure 4.21:

elif CR[b, a].Status = opening∧ CRQ.sin > CR[b, a].Din then
CR[b, a].Lin := LinGen[b] + +; CR[b, a].Din := CRQ .sin;

This code fragment is executed when the server receives a recent CRQ message after
starting a 3WHS with an old CRQ. The reception of the CRQ with the newer client
incarnation number indicates that S.CR[b, a].Din holds an old value, therefore a new
incarnation number is generated and the new client incarnation is recorded in Din. In
the original specification, Din is also updated but no new incarnation is generated.

To understand the importance of generating a new server incarnation in this case, con-
sider Figure 4.25. The figure shows a situation when two different incarnations of client
a become open to the same incarnation of server b. Of course, this must be prevented
because it is a violation of the correctness requirement. The way to prevent this hazard
in the original specification is to add the constraint wC > WS to (4.35). That is, the
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Figure 4.26: Multi-packet transaction in the original specification.

minimum wait time of the client in case of no response from the server must be higher
than the maximum wait time of the server.

With our modification applied, there is no need for the above constraint. The situation
depicted in Figure 4.25 simply cannot occur because the server always starts a new
incarnation if it receives a message from a new client incarnation. In the current example,
the server would respond with a (CRR, v, y) to the (CRQ , y) message. Therefore it is not
possible that two client incarnations receive a message from the same server incarnation.
The advantage of this modification is thus the elimination of a real-time constraint.

Early disconnect request by the client

Our specification allows the user to request a disconnect while the client incarnation is
still in the opening state. A consequence of this behavior is that DRQ messages can
be generated even before the client becomes open to the server. On the contrary, the
original specification allows the DiscReq event in the open state only.

To keep the analysis tractable, no data transfer messages are included in the specification.
The trivial way to add the data transfer function to the protocol is to define new packet
types that have additional fields, such as sequence number and window size. Concerning
the analysis of misinterpretable incarnation numbers, data transfer messages (DT and
DTA) are equivalent to DRQ and DRA messages [Sha91, SL95].

The advantage of the 2WHS over the 3WHS is the reduced latency for transaction-
oriented applications. Sending DT messages only after the client enters the open state
limits these advantages to the cases when the client’s request fits into the CRQ message.
In case the request is longer, the subsequent data-transfer messages must wait until the
CRA message arrives from the server as shown in Figure 4.26. This means a delay of
one round-trip time (RTT), exactly the same delay that is imposed by the 3WHS. As
the bandwidth of networks increases, the number of messages that could be sent within
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Figure 4.27: Multi-packet transaction in SC .

one RTT also increases making the effects of this drawback more significant.

That is why our specification allows the client to send DRQ and thus DT messages
before the connection becomes open. Figure 4.27 shows the same message exchange
with our protocol. Note the reduced delay of the transaction.

Our modification has a drawback, however. It raises the upper bound in assertion (4.39).
The coefficient of I in constraint (4.48) becomes 2 from the original 1 due to this modi-
fication. Since I the incarnation lifetime is expected to be significantly larger than the
other real-time constants in (4.48), the minimum safe value of N increases. On the other
hand, a technique will be discussed below which allows to eliminate I from (4.48).

Closing handshake

The original specification instructs the server to close immediately upon the reception of
a DRQ message. Closing means to set Status to closed and to discard the incarnation
numbers stored in Lin and Din. In order to allow the client to ask for retransmissions of
the DRA message which was sent in response to the DRQ message, the server responds
to DRQ messages in the closed state with a DRA message.

This can result in the message exchange shown in Figure 4.28. There is an open but
idle connection between client and server, when the server tries to transmit to the client.
Because of a temporary network failure, the server receives no response and eventually
aborts the connection. The same can happen if the server crashes and then recovers.
The client decides to close the connection when the network is repaired. The client closes
normally even though the server has aborted the connection. That is, the client is unable
to distinguish between an orderly close and this situation.

In our specification, the above described situation cannot happen. A DRA message can
only be sent while the server is in the closing state. After that the server responds with
a REJ to old DRQ messages. Therefore, the client can be sure that the server closed
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Figure 4.28: Ambiguous closing handshake in the original protocol.
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Figure 4.29: Ambiguous closing handshake in SC .

normally if it receives a DRA message. On the other hand, a different kind of ambiguity
can occur. It is possible that the client receives a REJ message even though the server
closed normally as it is depicted in Figure 4.29.

It is well-known that fully reliable close cannot be achieved over unreliable communica-
tion channels [Bel76] (see also the “two-army problem” in [Tan89]). Therefore none of
the closing techniques can provide a fully reliable close because it is impossible to avoid
the situation when one party has already discarded its connection state while the other
is still asking for retransmissions. The difference between the two techniques is in the
handling of this ambiguous case. The one used by Shankar and Lee is optimistic because
it responds with a positive acknowledgment DRA in the lack of state information. Our
proposed method is pessimistic because it responds with a negative acknowledgment
REJ is those situations. One advantage of our method is that it allows to lower the
bound in (4.41).
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Figure 4.30: Why must c
(nil)
S > WC hold?

4.3.4 Reducing the necessary caching period

One important feature of connection management protocols is the size of the cache
needed. In case of big servers, this can be a considerable amount of memory. The
necessary cache size is determined by the size of a cache entry and the caching period.
In SC a cache entry consists of a single identifier bundled with some control information
such as the associated endpoint addresses and the cache residency time.

The necessary caching periods (c(nil)
S and c(old)

S ) are determined by (4.35). Our goal is to
reduce these bounds. Although these bounds are tight in the sense that for any bound
lower than these it is possible to create a protocol sequence which violates the correctness
properties, we will show that the caching period can be reduced in common situations.

The proposal can be best explained through the cases where the conditions of (4.35)

are indeed necessary. Figure 4.30 shows a situation when the violation of c
(nil)
S > WC

can result in two server incarnations becoming connected to the same client incarnation.
From the protocol specification, t4− t1 < WC must hold because the client did not abort
incarnation x. The CRR message from the server incarnation v must arrive before the
client aborts incarnation x, otherwise the 3WHS never completes. On the other hand,
t3− t2 > c

(nil)
S since x is replaced by nil in the cache. Combining these with the obvious

t1 < t2 and t3 < t4 yields the first part of (4.35).

Figure 4.31 shows a similar case to explain the bound on c
(old)
S . Here the second in-

carnation of the server also connects by 2WHS. The longest possible gap between two
CRQ messages from the same client incarnation is WC + L, therefore c(old)

S > WC + L is
necessary to avoid the sequence in Figure 4.31.

From these examples we can formulate the general rule for discarding a cached entry. A
cache entry x can be set
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Figure 4.32: The implicit 3WHS.

• to nil when the server cannot complete a 3WHS with incarnation x of the client
any more;

• to old when no more (CRQ, x) messages exist or can be generated.

The 3WHS can be completed until the client is in the opening state4. The upper bound
on the lifetime of a CRQ message from that incarnation is L seconds after it left the
opening state.

In the above examples, the server’s estimate of the upper bound of incarnation x being
in the opening state is t + WC , where the first (CRQ, x) message is received at time
t by the server. Another indication of the client being in a state other than opening

is the completion of the 3WHS. When the server receives a CRRA message, it can be
sure that the client is not in the opening state any more. Therefore, the server can set

the cached entry to nil at any later time without enforcing the c
(nil)
S minimum caching

period. Furthermore, the cache can be set to old L seconds after the reception of the
CRRA.

This optimization is not limited to the cases when the 3WHS is used to open the con-

4The opnclng state is equivalent to opening in this respect.
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nection. The caching period can be shortened in the same way when the server is sure
that the client is in the open state or beyond. A clear indication of this is when the
server receives a message from the client which is a reply to an earlier server message.
This is shown in Figure 4.32. The sequence is like a 3WHS, but the data transfer can
start before the handshake completes. It will be called implicit 3WHS .

Therefore the required cache residency time can be reduced when the 3WHS, either
explicit or implicit, completes. The optimization can result in a considerable reduction
of the cache size, since during normal operation the majority of connection setup requests
succeeds. Furthermore, WC is likely to be much longer than L, thus the bigger part of
the compulsory cache residency time is eliminated. The only cases when the server has
to cache an entry for the full period required by (4.35) are when the server opens with
2WHS and

• the client never becomes open due to a transient network failure as shown in
Figure 4.30 and 4.31;

• the communication is a short transaction and all the client data is carried in the
first few packets which are sent before the server’s CRA arrives.

The first case occurs only rarely and the second case can be avoided by modifying the
specification of the client such that it acknowledges the CRA message if there are no
more data messages to be sent when the CRA arrives.

4.3.5 TCP for Transactions

The practical importance of the protocol SC is shown by the fact that a recently pro-
posed extension to TCP is based on very similar techniques. TCP for Transactions
(T/TCP) is specified in [Bra92, Bra94] and it has already been implemented in some
operating systems [Ste96]. It is instructive to examine how the techniques of the ab-
stract specification SC appear in the actual transport protocol, T/TCP. To facilitate
this analysis, the most important features of T/TCP are captured in the specification
T/TCP in Figure 4.33. This specification is obtained by modifying the specification SC
where it is necessary.

The most important difference between T/TCP and SC is that T/TCP allocates only
one cache entry for each remote host. In the specification SC , cache entries were assigned
to pairs of endpoint addresses. If a1 and a2 are different client endpoint addresses, then
the server endpoint b has two separate entries, CR[b, a1].Cache and CR[b, a2].Cache,
regardless of the fact whether a1 and a2 belong to the same host or not. In case of
T/TCP , these connections share the same Cache entry if a1 and a2 belong to the same
host.

The definition of host and endpoint addresses was discussed in Section 4.1. A host
address in the formal model is equivalent to an IP address in TCP/IP terminology. An
endpoint address of the formal model is equivalent to an 〈IP address,TCP port〉 tuple.
The function host(a) gives back the host address of the endpoint a.
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program T/TCP ;
type

host addr = 〈type of host addresses〉;
ep addr = 〈type of endpoint addresses〉;
clnt conn rec = record of

Status : {closed, opening, opnclng, open, closing};
Lin, Din: {nil} ∪ {0, 1, . . .};

srvr conn rec = record of
Status : {closed, opening, open, closing};
Lin, Din: {nil} ∪ {0, 1, . . .};

〈Packet types are not affected.〉
channel 〈one channel Ca,b for each a, b pair of endpoints〉;

process C;
var CR: array [ep addr , ep addr ] of clnt conn rec;

LinGen: {0, 1, . . .};
event ConnReq(a, b);

when CR[a, b].Status = closed then
CR[a, b].Status := opening; CR[a, b].Lin := LinGen + +;

〈No other client events are affected by the modification.〉;

process S;
var CR: array [ep addr , ep addr ] of srvr conn rec;

Cache : array [host addr ] of {old, nil} ∪ {0, 1, . . .};
LinGen: {0, 1, . . .};

Modified server events are specified in Figure 4.34 and 4.35;

Figure 4.33: T/TCP: main program

Allocating only one cache entry per host is a way to reduce the amount of memory
used by the protocol. The saving can be significant when a client host opens many
connections from different endpoint addresses to the same server within a short period.
This is exactly what happens in most TCP implementations which assign successive
endpoint addresses (port numbers in TCP terminology) to connections opened by a user
in a series. Such a sequence of connections occupies n different cache entries in case of
SC , but only one in case T/TCP .

Because of the single cache entry per remote host, T/TCP uses a single incarnation
number generator LinGen per host. This is necessary because all incarnation numbers
created at the client host C are stored in the same cache entry by the server. The
monotonicity of these client incarnation numbers can only be guaranteed if they are
generated by a common source at host C.

The client specification needs no further changes besides the definition of LinGen. The
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event MakeNil(b, a);
when Cache [host(a)] 6∈ {nil, old} ∧

〈entry was updated between c
(nil)
S and c

(old)
S seconds ago〉 then

Cache[host(a)] := nil;
event MakeOld (b, a);

when Cache [host(a)] 6∈ {nil, old} ∧

〈entry was updated between c
(old)
S and CS seconds ago〉 then

Cache[host(a)] := old;
event RecvCRRA(b, a);

when head(Ca,b) = CRRA then CRRA := recv(Ca,b);
if CR[b, a].Status = opening∧ CRRA.sin = CR[b, a].Din ∧

CRRA.rin = CR[b, a].Lin then
CR[b, a].Status := open;
if Cache [host(a)] ∈ {nil, old} ∨ CRRA.sin > Cache[host(a)] then

Cache[host(a)] := CRRA.sin;
elif CR[b, a].Status ∈ {open, closing, closed} then 〈no action〉;

〈The events Release, Abort, SendCRR, RecvDR, and RecvREJ are not affected.〉;

Figure 4.34: T/TCP: modified server events, part 1

modifications to the server events are shown in Figure 4.34 and 4.35. The most important
changes are related to the way a 3WHS is done:

• In the event RecvCR, a 3WHS is started when CRQ .sin < Cache[host(a)]. In the
specification SC , a 3WHS is started only when the cache is nil; the CRQ message
is discarded when sin is less than the cached value.

• In the event RecvCRRA, the cache cannot be updated unconditionally with the
client’s incarnation number CRRA.sin. A check must be made first to see if
CRRA.sin is greater than the value currently in the cache.

These modifications are necessary because the situation in Figure 4.36 is possible in
T/TCP . Assume that a1 and a2 are endpoint addresses belonging to the client host
C, and b is an endpoint address of server S. Assume further that both of these end-
points become opening to b, i.e., CR[a1, b].Status = CR[a2, b].Status = opening and
CR[a1, b].Lin = x1 < CR[a2, b].Lin = x2. It is possible that b becomes open to a2 first
even though incarnation x1 of a1 started earlier than incarnation x2 of a2. In that case,
the server has x2 (> x1) in its cache when the valid request (CRQ, x1) of a1 arrives.
Therefore, the server engages in a 3WHS with the client if CRQ .sin is less than the
cached incarnation number in order not to reject possibly valid CRQ messages.

The other modification in the event RecvCRRA is also related to the situation depicted
in Figure 4.36. Assume that the 3WHS with incarnation x1 of a1 completes normally, as
it is shown in the figure. In SC , the client incarnation number was simply written to the
cache at this point. In case of T/TCP , it must be checked first if the client’s incarnation
number is greater than the value in the cache. It is important that the cached value is
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event RecvCR(b, a);
when head(Ca,b) = CRQ then CRQ := recv(Ca,b);

if CR[b, a].Status = closed∧ 〈rejecting connections〉 then
REJ .rin := CRQ .sin; send(Cb,a,REJ);
if Cache [host(a)] = old ∨ CRQ.sin > Cache[host(a)] 6= nil then

Cache[host(a)] := CRQ.sin;
elif CR[b, a].Status = closed∧ 〈accepting connections〉 ∧

(Cache[host(a)] = nil ∨ CRQ .sin < Cache[host(a)] then
CR[b, a].Status := opening; CR[b, a].Lin := LinGen + +;
CR[b, a].Din := CRQ.sin;

elif CR[b, a].Status ∈ {closing, closed} ∧ 〈accepting connections〉 ∧
(Cache[host(a)] = old ∨ CRQ .sin > Cache[host(a)] 6= nil) then

CR[b, a].Status := open; CR[b, a].Lin := LinGen + +;
CR[b, a].Din := CRQ.sin; Cache[host(a)] := CRQ.sin;
CRA.sin := CR[b, a].Lin; CRA.rin := CR[b, a].Din; send(Cb,a,CRA);

elif CR[b, a].Status = opening∧ CRQ.sin > CR[b, a].Din then
CR[b, a].Lin := LinGen + +; CR[b, a].Din := CRQ.sin;

elif CR[b, a].Status = open ∧
(Cache[host(a)] = old ∨ CRQ .sin > Cache[host(a)] 6= nil) then

if 〈willing to reopen〉 then
CR[b, a].Lin := LinGen + +; CR[b, a].Din := CRQ .sin;
Cache[host(a)] := CRQ.sin;
CRA.sin := CR[b, a].Lin; CRA.rin := CR[b, a].Din; send(Cb,a,CRA);

else
CR[b, a].Status := closed; CR[b, a].Lin := nil; CR[b, a].Din := nil;
Cache[host(a)] := CRQ.sin;

elif CR[b, a].Status = open ∧ CRQ .sin = Cache[host(a)] 6∈ {nil, old} then
CRA.sin := CR[b, a].Lin; CRA.rin := CR[b, a].Din; send(Cb,a,CRA);

Figure 4.35: T/TCP: modified server events, part 2

not lowered, because if x1 were written to the cache, then a duplicate of (CRQ, x2) could
be erroneously accepted later on.

The difference between SC and T/TCP can be explained in another way which will help
us to find the correctness conditions of T/TCP . In case of SC , the validation of CRQ
messages has three possible outcomes:

• CRQ is known to be new when CRQ.sin > Cache. In this case a 2WHS is sufficient
to open the connection.

• CRQ may be new when Cache contains nil. In this case a 3WHS is necessary to
open the connection.

• CRQ is known to be old when CRQ.sin < Cache. In this case the request is
ignored or rejected.
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Figure 4.36: Two client endpoints establishing connections to a server.

In case of T/TCP , the third case is not applicable. A CRQ message may be new even
if CRQ.sin < Cache as it was shown above. Therefore in T/TCP , a 3WHS is always
possible unlike in SC which has situations when neither a 2WHS nor a 3WHS can be
used to open a connection.

This observation is important for the correctness of the protocol. To see how a protocol
error shown in Figure 4.30 can occur with T/TCP , consider Figure 4.36 once more.
Assume that the first CRQ message from incarnation x1 is not lost. In this case the
connection is opened by a 2WHS at time t2 because the cache contains the value old.
Let the server create incarnation y1 at t2 while processing the (CRQ, x1) message. The
CRQ message of incarnation x2 is accepted at t3. A retransmission of (CRQ , x1) is
received at t4. Assume that the server aborts incarnation y1 somewhere between t2 and
t4 due to no response from the client. Therefore at t4 the server starts a new incarnation
y2 in response to the retransmitted (CRQ, x1) message. If the reply, the (CRR, y2, x1)
message reaches the client before it aborts incarnation x1, then the 3WHS can succeed
and the server can become connected to the same client incarnation twice.

The protocol error above can be avoided by the following constraint:

wS > WC (4.49)

where wS is the lower bound of the server’s waiting period. From the protocol specifi-
cation t4 − t2 > wS and t5 − t1 < WC follow, therefore (4.49) assures that the 3WHS
cannot be completed any more when the server aborts its incarnation due to no response
from the client. (4.49) is an additional term to the conditions in (4.35) which is needed
for T/TCP only due to its different caching scheme.
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4.4 Discussion of CM protocols

Several different CM protocols have been analyzed so far. The purpose of this section is
to discuss some issues that are common to all of them and to compare the protocols.

4.4.1 State management

Each CM protocol stores state information about the active connections in connection
records (CR). The SC family of protocols, both the specification SC and T/TCP ,
use a cache as well. The cache can be seen as a reduced CR which contains essential
information about recent connections.

In the formal model, there is a CR for each possible connection and that makes the formal
verification simpler. There is no need to create a CR for every potential connection in
an implementation, however. Actually, it is not even feasible due to the large number
of potential connections. An implementation maintains a CR for a connection only if
it is not in the closed (idle) state. The lack of a CR for a connection implies that the
connection is in the closed state.

Cache management policies in SC and T/TCP

Similar techniques can be applied to implement the Cache in the SC and T/TCP
protocols. Each entry in the cache can store an incarnation number, or have the special
values nil or old. Similarly, to CRs, it is not feasible to store every logical cache
entry of the formal specification in the physical cache maintained by an implementation.
The actual cache management policy, which depends on how the events MakeNil and
MakeOld are invoked, determines the correspondence between logical and physical cache
entries.

Different cache management techniques are discussed in [SL95]. One possibility is when
nil entries are not stored in the physical cache. That is, no entry in the physical cache for
a connection means that the corresponding logical cache entry is nil. The disadvantage
of this technique is that the first connection between a client and server is always opened
by the 3WHS.

An alternative cache management policy is when no entries in the cache are ever set to
nil. That is, the event MakeNil is never invoked. This means that each entry in the
cache must be retained for at least c

(old)
S seconds. On the other hand, in this case the

lack of an entry in the physical cache can be defined to mean that the corresponding
logical cache entry is old. The advantage is thus that CRQ messages from a client which
has no corresponding entry in the physical cache of the server are always accepted by
the 2WHS.
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It is also possible to combine these two cache management policies. The implementation
can maintain a flag which indicates which interpretation of the physical cache is in
effect. By default, the lack of an entry in the physical cache means that the logical entry
is old. If, however, an entry from the physical cache must be discarded earlier than
c(old)
S , then the interpretation changes so that no entry in the physical cache means nil.

The interpretation can be changed back to “no entry means old” if no cache entries
are discarded from the physical cache for a period of c

(old)
S . This combined management

policy allows to determine the trade-off between memory usage and connection-setup
latency dynamically.

State management in SCMP

For the first sight, the techniques used in SCMP (timestamps and synchronized clocks)
look quite different from the caching techniques used in the SC family of protocols. In
fact, the differences are not substantial as the following analysis reveals.

Assume an implementation of SC which uses a clock in each host to implement LinGen
and which uses the second cache management policy (“no entry means old”). If the
LinGen clocks are synchronized, then the non-old entries in the cache are within close
bounds of each other.

The basic difference between SCMP and the above described version of SC is that
SCMP exploits the fact that incarnation numbers are from synchronized sources in
its hypothetical cache management policy. Assume that the physical cache of the SC
implementation is full of non-old entries. The server is not allowed to discard these
entries before their c(old)

S -timer expires in order to prevent the protocol error shown in
Figure 4.31.

The protocol SCMP maintains the upper bound of the timestamps (incarnation numbers
in SC ) from the discarded CRs in upper . Discarding a CR in SCMP is equivalent to
discarding a cache entry in SC in this context. In the protocol, upper acts as a collective
entry in the cache for all the entries that were discarded. This assures that no duplicate
connection request are accepted (example in Figure 4.31) even if the entries are discarded

earlier than the compulsory caching period c(old)
S in case of SC .

On the other hand, upper is only an estimate of the discarded timestamps. Therefore,
it is possible that a valid request is rejected even if its timestamp is larger than the last
timestamp used on that connection. This happens if the CR of the connection has already
been discarded and upper happens to be larger the the timestamp of the new request.
The probability of such cases depends on the quality of the clock synchronization.

Therefore, clock synchronization allows to reduce the caching period in SCMP with
respect to the caching period in SC . The drawback is that valid requests may be rejected
if the clock synchronization assumption is violated. All other differences between SCMP
and SC are marginal.
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4.4.2 Incarnation lifetime

The correctness of SC and T/TCP depends explicitly on the incarnation lifetime I
when modulo-N identifiers are used (see (4.48)). In the specification SCMP , there is no
explicit parameter to denote the maximum incarnation lifetime, but the event ClkTick
aborts connections that are in a state other than closed longer than a certain period
(see Figure 4.4 and 4.5). This is an implicit bound on incarnation lifetimes.

The dependency on the incarnation lifetime is problematic. The lifetime of a connection
is determined by the user of the transport service and the actual connection lifetime
varies strongly from application to application. Enforcing an upper bound on I is not a
good solution, it would be much better to remove I from the condition for the correctness
of the protocol.

The following example shows how a long-lived incarnation can cause a protocol error.
The example uses SC , but the same argument holds for SCMP and T/TCP . Assume
that a long-lived connection is immediately followed by another connection between the
same client-server pair. If the connection lasted long enough, then it is possible that
the new connection receives the same incarnation number x because LinGen wrapped
around. The problem with this is that DRQ and data packets of the old connection can
be erroneously accepted in the new connection because they carry the same modulo-N
incarnation number.

Note that the error could occur because the uniqueness of the incarnation number as-
signed to the new connection is not guaranteed if the previous incarnation uses an in-
carnation number too long. Limiting I is one way to eliminate this hazard because it
provides an explicit bound on the age of incarnation numbers.

Another technique called Lin-generator cache, is proposed in [SL95]. The idea is to assure
that successive connection attempts are identified with “close-by” incarnation numbers.
The Lin-generator cache stores the latest incarnation number of each connection for
a period of 2L. When an entity with a Lin-generator cache becomes involved in a
connection attempt with a remote entity, it obtains its local incarnation number as
follows: if its Lin-generator cache contains an entry for the remote entity, it uses an
incarnation number one higher than the entry; otherwise, it uses an arbitrary incarnation
number.

This technique restores the uniqueness of incarnation numbers assigned to new con-
nection attempts by remembering the last used incarnation number on that connection
until all messages with the old incarnation number disappear from the network. The
disadvantage is that it requires an additional cache.

We propose an alternative method without additional caching. If the incarnation num-
bers carried in the DRQ and data packets are always taken from the current value of
LinGen, then we can always generate unique incarnation numbers from LinGen when a
new connection attempt is made. This is implied by the monotonicity of LinGen and the
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Figure 4.37: Accepting a new DT packet as part of an old connection.

limited packet lifetime. The server accepts such a data packet if its incarnation number
is not lower than the most recent incarnation number that was received on the same
connection. The technique is identical to the technique used to check the timestamp in
data packets of PAWS in Section 3.3.

It is crucial that all CRQ, CRR, and CRA messages of a connection get their incarnation
numbers assigned in the original method defined in SC . That is, the number is taken
from LinGen when the incarnation is started and all retransmissions of the message
carry the same incarnation number.

Furthermore, data and DRQ messages sent in the opening and opnclng states must
be treated specially. These messages can be erroneously accepted by an old server
incarnation if the DRQ message of the old connection and the CRQ message of the new
connection is lost. The situation that is shown in Figure 4.37, can happen because in the
modified protocol the server accepts a DRQ (or DT ) message if its incarnation number
is higher than the highest incarnation number received so far. From the figure we can
see that x ≤ x′ < y ≤ y′ holds.

To avoid the above error, the client is required to send a CRQ message along with DT
and DRQ messages that are sent in the opening and opnclng states. In these states,
the client does not know if the server has already seen the CRQ message of the new
connection attempt. The server processes these compound messages if a CRQ message
were immediately followed by the DT or DRQ message. Processing the CRQ first assures
that the server recognizes the opening of the new connection, therefore the DT/DRQ
message cannot be delivered to the old incarnation.

If these modifications are applied to the protocol SC , for example, then the real-time
conditions for the correctness of the protocol change as described below. The changes
to the other protocols SCMP and T/TCP are similar. The client is allowed to a keep
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a connection incarnation indefinitely once it has entered the open5 state. The upper
bound WC on the length of the opening state is still necessary.

The server is allowed to keep a connection incarnation indefinitely when it has completed
a 3WHS with the client, either explicit or implicit. The upper bound WS of completing
the 3WHS remains in effect. When the server completes the 3WHS, i.e., it receives an
ack of its CRR or CRA, then it is sure that the client is not retransmitting the CRQ
message. All the subsequent DT , DTA, DRQ, and DRA messages are validated using
the technique for validating the timestamps in PAWS and no limits on the length of
a data transfer session are necessary to guarantee the correct interpretation of these
timestamps.

An advantage of the technique is that it does not affect the crash-recovery mechanisms of
the CM protocol. This is so because the modified protocol draws the incarnation numbers
from the same incarnation number generator as the original connection management
protocol to which the modification is applied. Any connection setup protocol must
assure that the incarnation numbers used after recovery from a crash could not have
been used before the crash. Since the packets of the modified protocol use the same
incarnation numbers, pre-crash packets can never be mixed with post-crash packets so
the modified protocol will work as expected.

Notice that the incarnation numbers in DT , DTA, DRQ, and DRA messages can be
eliminated if PAWS is used for the data-transfer part of a transport protocol. To do
this, the same clock must be used to generate the incarnation identifiers of the CM
protocol and the timestamps of PAWS. The incarnation number CRQ.sin behaves like
an initial timestamp for PAWS, because it is used at the server to initialize the PAWS
variable R.TsRec. If data transfer is to be established in the reverse direction then
CRA.sin can used to initialize R.TsRec at the client side. SCMP could be used for the
connection management part in the same way.

A technique is proposed in [Sha91] to combine connection management and data trans-
fer protocols systematically. The technique keeps the identifier spaces of the connection
management and data transfer protocols separate. Our technique works by merging the
identifier spaces of the connection management and data transfer protocols. The ad-
vantages of our technique are that (i) it eliminates the dependency on the incarnation
lifetime and (ii) it reduces the protocol header overhead. On the other hand, the tech-
nique in [Sha91] can be applied to any pair of CM and data transfer protocols, while our
technique works with specific protocols only.

5Or closing if open was skipped due to an early disconnect request



Chapter 5

Conclusion

This thesis is devoted to the design and analysis of reliable transport protocol mecha-
nisms. Data transfer and connection management protocols belong to this area. Several
such protocols have been proposed since the inception of computer networking. The de-
sign of these protocols is heavily influenced by the current networking technology. This
influence appears in, sometimes implicit, assumptions about

• the properties of the network-level service, such as packet lifetimes, and the pres-
ence of reordering and/or duplication in the network;

• the relative cost of computing (CPU cycles) versus network bandwidth;

• the existence of auxiliary services such as clock synchronization.

The increased research and development activities in transport protocol design around
the late eighties, early nineties can be attributed to the influence of advances in high-
speed networking technologies such as ATM and improvements in the TCP/IP protocol
suite.

The goal of the research which lead to this thesis was to increase the understanding
of these protocol mechanisms by systematic analysis and comparison. We believe that
many of the different protocols proposed in the literature can be traced back to a few
fundamental protocol mechanisms. Although the definition of the basic mechanisms from
which all reliable transport protocols can be derived is not presented here, we believe
that the discussion of many protocol design issues throughout the thesis takes us one
step closer to the ultimate goal.

Another important goal which was defined at the very beginning of the research is that
we always take into account the effect of using a bounded identifier space in our analyses.
It may sound obvious that all identifiers in protocols must be from a modulo-N space
for some N , but still many protocol verifications in the literature assume that identifiers
are unbounded integers. Certainly, in some situations one can argue that N is very large
and can be assumed unbounded. But in many cases such an assumption is likely to be
invalid, for example in very high-speed networks where the identifier space is consumed
relatively fast. Therefore we strongly believe that understanding the effects of using
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modulo-N identifiers in transport protocols is crucial to the thorough understanding of
these protocols.

5.1 Contributions

We have contributed to the understanding of protocol design in two ways:
• by the formal verification of some protocols, PAWS in Section 3.3 and SCMP in

Section 4.2;

• by informally discussing several other protocol design issues, such as the data
transfer protocol SNR in Section 3.4, the connection management protocols SC
and T/TCP in Section 4.3, and issues regarding the way connection management
and data transfer protocols are combined into a full-featured transport protocol in
Section 4.4.2.

The data transfer protocol, PAWS has been verified in Section 3.3. PAWS [JBB92] is an
interesting technique to extend the sequence number space of sliding-window protocols
and at the same time to add extra functionality, namely simplified round-trip time
measurements. The formal verification has revealed some problems with the protocol
correctness which have been corrected. Furthermore it provided the exact terms under
which the protocol can be operated safely. The comparison with the plain sliding-
window protocol has shown that the design of PAWS is a trade-off between the extra
functionality and protocol implementation constraints such as lower allowed transmission
rate and more restricted liveness assumptions.

Another data transfer protocol was analyzed in Section 3.4. SNR [NRS90, GNS95]
presents a different trade-off between the transmission rate and restrictions on the net-
work and protocol behavior. SNR allows a higher maximum transmission rate at a given
N than the plain sliding-window protocol by assuming that neither the network nor the
transport protocol creates duplicates. The assumption of no duplicates allows SNR to
use the sequence number space more efficiently; in SNR the maximum window size is
equal to the whole sequence space, while in the plain sliding-window protocol it can be
at most half of the sequence number space. On the other hand, the “no duplicates”
assumption creates a coupling between protocol correctness and performance because
the retransmission policy, which is normally influenced by performance considerations
only, must assure that no duplicates are created. This lack of orthogonality between
protocol correctness and performance can be costly in certain networking environments,
such as the Internet. An alternative specification of SNR has also been presented which
captured the idea of periodic state exchange, but kept the performance and protocol
correctness issues independent.

The novel idea in the design of SCMP [LSW91] is the use of network-wide synchronized
clocks and timestamps. The formal verification of SCMP is presented in Section 4.2.
Our verification has proven that SCMP satisfies the desired safety properties of the
connection management service in [Sha91]. The novelty of our verification is the proof
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of the conjecture that only minimal assumptions about the network are sufficient for the
safety of the protocol. In particular, clock synchronization is not necessary for safety;
even if modulo-N timestamps are used, bounded clock drift is sufficient. Obviously, the
lack of clock synchronization adversely affects the performance of the protocol because
valid connection requests can be rejected.

So-called cache based connection management protocols are analyzed in Section 4.3.
The common feature of these protocols is that they use the memory for protocol state
information as a cache. If the necessary information is present in the cache then con-
nections are opened by the low latency 2WHS, otherwise the 3WHS must be used. Such
a cache based protocol SC was described in [SL95]. Modifications to the original SC
specification have been presented in the thesis which allow to eliminate some real-time
conditions for the correctness of the protocol and to reduce the latency of multi-packet
transactions. Some issues regarding the graceful close of a transport connection have
also been analyzed. Furthermore, the concept of implicit 3WHS have been introduced
and it has been shown how it can be exploited to reduce the required caching period in
common situations.

The formal model of T/TCP [Bra92, Bra94] has been derived from the specification of SC.
T/TCP is an extension to the standard transport protocol of the Internet which provides
TCP with the option of opening connections with the 2WHS. It has been shown that
the basic difference between SC and T/TCP is in the granularity of caching. SC assigns
a (logical) cache entry to each remote transport endpoint while T/TCP assigns cache
entries to remote hosts. The effects of this difference on the other protocol mechanisms
have been described and analyzed.

The relation between SCMP and the SC family of protocols has been described in Sec-
tion 4.4. The outcome of our analysis is that SCMP can be considered as a specialization
of the SC protocols which uses a very specific cache management technique based on the
assumption of synchronized clocks. The use of clock synchronization allows SCMP to
use its cache more efficiently.

We have also shown that the correctness of connection management protocols can be
assured without assuming a maximum incarnation lifetime. This result is practically
important because the incarnation lifetime is determined by applications and it is very
difficult to enforce an upper bound on incarnation lifetimes. This result contradicts
the claim in the literature that dependency on the maximum incarnation lifetime is
mandatory when modulo-N identifiers are used. Our solution can be easily implemented
when the identifier spaces of the connection management and data transfer protocols are
shared. It has been argued informally that the usage of this technique does not affect
the crash-recovery behavior of the protocol.
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5.2 Remaining issues

No progress properties of the connection management protocols have been proven in
Chapter 4. Progress of the connection management service could be defined such that
if a is opening to b, then eventually a becomes open to b and b becomes open to a.
With the generic channel fairness assumption (see Section 2.3.3) which were used in
the verification of the data transfer protocols in Chapter 3, progress of the connection
management service cannot be proven. This is so because the opening message can be
retransmitted for only a limited period and the the channel is not guaranteed to deliver
a message in any finite time. Making stronger assumptions, such that at least one out
of k messages are delivered, allows to prove progress. This is the approach used in
[LLSA93] to prove the progress of SCMP formally, and in [SL95] to prove the progress
of SC informally.

Some protocols such as SNR in Section 3.4 and SC and T/TCP in Section 4.3 have
not been verified formally. Operational reasoning based on several case studies and
informal arguments was used to establish properties of these protocols. These informal
proofs provide lots of information about the behavior of a protocol, but they do not
fully substitute a formal verification. The case studies of the informal verifications can
greatly simplify a later formal verification using the assertional framework introduced in
Chapter 2.

Even the formal verifications of PAWS in Section 3.3 and SCMP in Section 4.2 could
be formalized further. With a little more effort, all aspects of the specification language
could be formalized. This would have a number of advantages: (i) the specifications
could be automatically syntax checked, (ii) the formal specifications could be the basis of
conformance testing protocol implementations, and (iii) algorithmic verification support
could be used. Rewriting the proofs in [Olá95, OHdG95c] into a machine readable format
is likely to be a much more difficult task. The reason for carrying out this task could
be the promise of applying automated proof checkers to make sure that the verifications
contain no logical errors.

Formal verification provides information about the worst-case behavior of a protocol.
The real-time conditions for the correctness of a protocol are often sufficient to decide if
the protocol is suitable for a particular purpose or to rank different protocols. In many
situations, however, the quantitative behavior is equally or even more important. It
is performance analysis that can provide this information. For example, to assess the
memory usage of the different cache management policies in Section 4.4.1, performance
analysis techniques must be used. Usually both types of analyses must be carried out to
make a well-founded decision.
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Appendix A

Proofs of Section 3.3

In this appendix the details of verifying PAWS are presented. The overall structure of
verifying PAWS was discussed in Section 3.3. The proofs presented here are taken from
the report [Olá95] with minor modifications.

Since many of the assertions are in the form of 2P and P → Q, we will have to use
the invariance rule (2.1) quite often. The use of this rule requires us to show that
(∀e ∈ E : {P}e{P}) holds.

To make it easy to handle these proofs, we will use X and X ′ to denote the value of
state variable X immediately before and after the occurrence of an event. Similarly, P ′

denotes the assertion P with all its state variables replaced by their primed versions. We
say that the assertion P is not affected by event e if none of the state variables in P are
updated by action(e).

Note that the channel events do not invalidate any of the invariants. The only reference
to the contents of a channel C is in the form of 2(P ∈ C ⇒ Q), where P is a packet
and Q is predicate that may depend on the value of P . The channel events cannot
violate such assertions because none of them produces a packet which is different from
the packets already in the channel.

A.1 Safety

A.1.1 Correct interpretation conditions

The assertions (A.1)–(A.5) reformulate the CI requirements (3.41)–(3.46) from Sec-
tion 3.3.4 in a form that is easier to handle. Their usefulness is expressed by Lemma A.1
below.

159
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2(D ∈ CS,R ∧ D.Ts ≥ R.TsRec ⇒

⇒ R.Nxt + RW ≥ D.Seq + D.Len ≥ D.Seq ≥ R.Nxt + RW − NS + 1) (A.1)

2(A ∈ CR,S ∧ A.TsEcho ≥ S.TsEchoRec ⇒

⇒ S.Nxt ≥ A.Ack ≥ S.Nxt − NS + 1) (A.2)

2(D ∈ CS,R ∧ R.RecOld ⇒ D.Ts ≥ R.TsRec) (A.3)

2(S.EchoRecOld ⇒ S.Clk − TW S ≥ S.TsEchoRec) (A.4)

2(A ∈ CR,S ⇒ S.Clk ≥ A.TsEcho ≥ S.Clk − TW S + 1) (A.5)

Lemma A.1
(a) (A.1)∧ (A.3) ⇒ (3.41);

(b) (A.2) ∧ (A.4)∧ (A.5) ⇒ (3.42);

(c) (A.5) ⇒ (3.44).

Proof: R.RecOld∨D.Ts ≥ R.TsRec is in the antecedent of (3.41). In case of R.RecOld =
true, (A.3) implies the antecedent of (A.1) which implies (3.41). In case 6= R.RecOld ,
(3.41) and (A.1) are equivalent.

Similarly, if S.EchoRecOld = true, then A.TsEcho ≥ S.TsEchoRec is implied by (A.4)
and (A.5). Because of (A.2), (3.42) is satisfied in this case. If S.EchoRecOld = false,
then (3.42) and (A.2) are equivalent.

(A.5) ⇒ (3.44) is true because the parameter TW S is represented as a modulo-NC

number, thus TW S < NC must hold. 2

A.1.2 Real-time assumptions

The assertions below formulate some straightforward properties of the epoch variables
S.tS, S.tC, and R.tC.

2(S.tS[0 . . . S.Nxt − 1] 6= λ ∧ S.tS[S.Nxt . . .∞] = λ) (A.6)

2(S.tC[0 . . . S.Clk − 1] 6= λ ∧ S.tC[S.Clk . . .∞] = λ) (A.7)
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2(R.tC[0 . . . R.Clk − 1] 6= λ ∧ R.tC[R.Clk . . .∞] = λ) (A.8)

2(n ∈ [1 . . . S.Clk − 1] ⇒ γS < S.tC[n] − S.tC[n − 1] < ΓS) (A.9)

2(n ∈ [1 . . . R.Clk − 1] ⇒ γR < R.tC[n] − R.tC[n − 1] < ΓR) (A.10)

Lemma A.2 (A.6)–(A.10) are invariants of the protocol provided that (3.47)–(3.50) are
satisfied.

Proof: The assertions (A.6)–(A.10) hold in the initial state of the system which can be
checked by substitution.

S.ClockTick affects (A.7) and (A.9). (A.7)’ holds because S′.Clk = S.Clk + 1, only
S.tC[S.Clk ] is changed to a non-λ value and (A.7) was true before the event. The lower
limit on S.tC[n] − S.tC[n − 1] is simply the implication of (3.47) and (A.6) because
for any n ∈ [0 . . . S.Clk − 1], S.tC[n] 6= λ. Because of (A.8), we know that in case of
n ∈ [1 . . . S ′.Clk −2] the upper limit also holds. S′.tC[S ′.Clk −1]−S ′.tC[S ′.Clk −2] < ΓS

is implied by (3.48), S.tC[S ′.Clk − 1] = τ and the increasing time axiom (2.9).

We can prove in the very same way that R.ClockTick preserves (A.8) and (A.10). Proving
that Accept(data) preserves (A.6) is similar to proving that S.ClockTick preserves (A.7).
Other protocol events do not affect any of the invariants (A.6)–(A.10). 2

A.1.3 Correct interpretation of sequence numbers

The assertions below complement the assertions (3.51)–(3.59). These two sets of asser-
tions can then be used to prove the invariance of the CI conditions for the sequence
numbers as it is stated by Lemma A.4.

2(Source[n] = empty⇔ S.TsMin[n] = empty⇔ S.TsMax [n] = empty) (A.11)

2(n ∈ [0 . . . S.Nxt − 1] ⇒ S.tC[S.TsMin[n] − 1] ≤ S.tS[n]) (A.12)

2(n ∈ [0 . . . S.Nxt − 1] ∧ S.Clk > S.TsMin[n] ⇒

⇒ S.tS[n] ≤ S.tC[S.TsMin[n]]) (A.13)

2(CA ∈ CR,S ⇒ CA.Ack ≤ R.LAck) (A.14)
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2(S.Una ≤ R.LAck ≤ R.Nxt ∧ R.Nxt − RW ≤ R.LAck) (A.15)

2(D ∈ CS,R ⇒ D.Seq + D.Len − 1 ≤ D.SnMax ≤ D.Seq + RW − 1 ∧

∧ D.SnMax ≤ S.Nxt − 1) (A.16)

2(D1,2 ∈ CS,R ∧ D1.Ts > D2.Ts ⇒ D1.SnMax ≥ D2.SnMax) (A.17)

2(D ∈ CS,R ∧ D.Ts > R.TsRec ⇒ D.SnMax ≥ R.SnMax ) (A.18)

2(R.Nxt > R.LAck ⇒ R.SnMax ≥ R.LAck) (A.19)

2(R.Nxt = R.LAck ⇒ R.SnMax ≥ R.LAck − RW ) (A.20)

2(CA ∈ CR,S ⇒ CA.Ack − RW ≤ CA.SnMax ≤

≤ min{CA.Ack + CA.Wnd − 1, S.Nxt − 1}) (A.21)

2(SA ∈ CR,S ⇒ SA.SnMax ≤ min{SA.Ack + RW − 2, S.Nxt − 1}) (A.22)

Lemma A.3 (3.51)–(3.59) and (A.11)–(A.22) are invariants of the protocol.

Proof: By simple substitution into the proof rules (see [Olá95]). 2

The following lemma states our first constraint on the real-time parameters of the pro-
tocol:

Lemma A.4 The inequality (3.60) is a sufficient condition for the correct interpretation
of sequence numbers, i.e.,

(3.60) ∧ (3.6)–(3.12) ∧ (3.51)–(3.59) ∧ (A.11)–(A.22) ⇒ (A.1) ∧ (A.2)

Proof: (3.7) and (A.16) imply that D.Seq + D.Len ≤ S.Nxt and using (3.6) we get
D.Seq ≤ D.Seq + D.Len ≤ R.Nxt + RW which is the first part of (A.1).

Now we have to prove the lower limit on D.Seq . Applying (3.54) we get:

D.Ts ≤ S.TsMax [D.SnMax ]
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From (3.55):

S.TsMin[R.SnMax ] ≤ R.TsRec

Combining these two, we get:

D.Ts ≥ R.TsRec ⇒ S.TsMax [D.SnMax ] ≥ S.TsMin[R.SnMax ]

and applying (3.52) and (3.53) for the above:

S.TsMax [D.SnMax ] ≥ S.TsMin[R.SnMax ] ⇒ D.SnMax ≥ R.SnMax − ⌈ΓS · B⌉

Using (A.16), i.e., D.SnMax ≤ D.Seq + RW − 1, and (3.58), i.e., R.SnMax ≥ R.Nxt −
⌈ΓS · B⌉, we get:

D.Ts ≥ R.TsRec ⇒ D.Seq ≥ R.Nxt − ⌈ΓS · B⌉ − 2RW + 1

Therefore we can see that NS ≥ 3RW +⌈ΓS ·B⌉ is sufficient to satisfy (A.1) which yields
(3.60).

(A.2) can be proven by using the same steps for the reverse channel. (3.1), (3.8), and
(3.9) imply the upper limit, A.Ack ≤ S.Nxt . For the lower limit, from (3.53), (3.56),
and (3.57) we get

A.TsEcho ≥ S.TsEchoRec ⇒ A.SnMax ≥ S.SnMax − ⌈ΓS · B⌉

and using (3.6), (3.8), and (3.59)

A.TsEcho ≥ S.TsEchoRec ⇒ A.Ack ≥ S.Nxt − ⌈ΓS · B⌉ − 3RW + 1

Therefore, NS ≥ 3RW + ⌈ΓS · B⌉ is sufficient for (A.2) to hold, as well. 2

A.1.4 Correct interpretation of timestamps

The following assertions are needed to prove the invariance of the CI conditions for
timestamps:

2(S.TsEchoRec ≤ R.TsRec ≤ S.Clk) (A.23)
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2(D ∈ CS,R ⇒ D.Ts ≤ S.Clk) (A.24)

2(A ∈ CR,S ⇒ A.TsEcho ≤ R.TsRec ∧ A.EchoExp ≤ R.TsExp) (A.25)

2(R.TsExp ≤ R.Clk) (A.26)

2(〈D, t〉 ∈ CS,R ⇒ S.tC[D.Ts − 1] ≤ t) (A.27)

2(〈D, t〉 ∈ CS,R ∧ S.tC[D.Ts] 6= λ ⇒ t ≤ S.tC[D.Ts]) (A.28)

2(R.tC[R.TsExp] 6= λ ⇒ S.tC[R.TsRec − 1] ≤ R.tC[R.TsExp]) (A.29)

2(S.tC[R.TsRec] 6= λ ⇒ R.tC[R.TsExp − 1] ≤ S.tC[R.TsRec] + LS,R) (A.30)

2(〈A, t〉 ∈ CR,S ∧ R.tC[A.EchoExp + TW R − 1] 6= λ ⇒

⇒ t ≤ R.tC[A.EchoExp + TW R − 1]) (A.31)

2(〈A, t〉 ∈ CR,S ∧ R.tC[A.EchoExp + TW R − 1] 6= λ ⇒

⇒ t ≤ R.tC[A.EchoExp + TW R − 1]) (A.32)

2(〈A, t〉 ∈ CR,S ⇒ S.tC[A.TsEcho − 1] ≤ t ∧ R.tC[A.EchoExp − 1] ≤ t) (A.33)

2(A ∈ CR,S ∧ S.tC(A.TsEcho) 6= λ ⇒

⇒ R.tC[A.EchoExp − 1] ≤ S.tC[A.TsEcho] + LS,R) (A.34)

Lemma A.5 (3.45) and (A.23)–(A.34) are invariants of the protocol.

Note that (3.45) is included in the lemma because (3.45) is a precondition of (A.31) and
(A.32) with respect to the SendACK and SendSACK events. The invariance of (3.45)
and (A.23)–(A.34) can be proven by simple application of the proof rules and without
using the real-time assumptions (see [Olá95]).

The inequalities below are similar to the inequalities (3.61)–(3.63) with the only difference
that here we make a distinction between the delays in the two channels. It is easy
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to see that (3.61)–(3.63) can be obtained from (A.35)–(A.37) by simply substituting
L = LS,R = LR,S.

NC ≥

⌈

LS,R + TW R · ΓR

γS

⌉

+

⌈

LS,R

γS

⌉

+ 3 (A.35)

TW R ≥

⌈

LS,R

γR

⌉

+ 1 (A.36)

TW S ≥

⌈

LS,R + TW R · ΓR + LR,S

γS

⌉

+ 1 (A.37)

The following lemma states that (A.35)–(A.37) are sufficient for the correct interpretation
of timestamps. Note that (a) and (c) state that the appropriate CI condition is implied
by invariants and some extra restrictions. On the other hand, (b) states somewhat less:
(A.36) implies that R.ClockTick does not invalidate (A.3), but we still have to show that
other events also preserve it.

Lemma A.6 The inequalities (A.35)–(A.37) are sufficient conditions for the invariance
of (3.43), (A.31), and (A.33):

(a) (A.35) ∧ (A.23)–(A.34) ⇒ (3.43);

(b) (A.36) ∧ (A.23)–(A.34) ⇒ {(A.3)}R.ClockTick{(A.3)};

(c) (A.37) ∧ (A.23)–(A.34) ⇒ (A.5).

We prove Lemma A.6 is three steps:

Case (a)

Proof: Let us start with the first part of (3.43) which requires that there is an upper
limit of D.Ts if the receiver’s recent timestamp is still valid. From the increasing time
axiom (2.9), (A.27) and 〈D, t〉 ∈ CS,R we get

S.tC[D.Ts − 1] ≤ t ≤ τ

Using the fact that R.RecOld = false and (3.45):

R.Clk ≤ R.TsExp + TW R − 1
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and substituting this into (A.8) results in

R.tC[R.TsExp + TW R − 1] = λ

Combining the above inequalities with (3.50) and (A.10) leads to

τ ≤ R.tC[R.TsExp − 1] + TW R · ΓR

Using the first inequality, we get

S.tC[D.Ts − 1] ≤ R.tC[R.TsExp − 1] + TW R · ΓR

Let us first assume that S.tC[R.TsRec] = λ. In this case,

(A.6) ⇒ S.Clk ≤ R.TsRec ∧ (A.23) ⇒ S.Clk ≥ R.TsRec

thus R.TsRec = S.Clk must hold. Since D.Ts ≤ S.Clk due to (A.24), in this case (3.43)
is satisfied.

The other case is when S.tC[R.TsRec] 6= λ. Now we can use (A.30) from which we get

R.tC[R.TsExp − 1] ≤ S.tC[R.TsRec] + LS,R

Combining this with earlier results, we get

S.tC[D.Ts − 1] − S.tC[R.TsRec] ≤ LS,R + TW R · ΓR

Because of the limit on the minimum clock tick length (3.47), the above inequality implies

D.Ts ≤ R.TsRec +

⌈

LS,R + TW R · ΓR

γS

⌉

+ 1

therefore, the upper limit of D.Ts in (3.43) is satisfied if

KR ≥

⌈

LS,R + TW R · ΓR

γS

⌉

+ 1 (A.38)

The second step is to establish the sufficient conditions for the lower limit of D.Ts in
(3.43). Let us assume that S.tC[D.Ts] = λ. In this case, we know that D.Ts = S.Clk
must hold, thus D.Ts ≥ R.TsRec also holds.



A.1. Safety 167

Let us now examine the case when S.tC[D.Ts] 6= λ. From (A.28) and (2.13) we get

S.tC[R.TsRec − 1] ≤ τ ≤ S.tC[D.Ts] + LS,R

Following the same argument as in the first step of the proof, we get

R.TsRec −

⌈

LS,R

γS

⌉

− 1 ≤ D.Ts

and thus the required lower limit on D.Ts is implied by

KR ≤ NC −

⌈

LS,R

γS

⌉

− 2 (A.39)

Since the specific value of KR is not important, the existence of KR is sufficient, we can
combine (A.38) and (A.39) into a single inequality which is exactly (A.35). 2

Case (b)

Proof:

We want to prove that R.ClockTick preserves (A.3) if (A.36) holds. (A.3)’ holds if
R′.RecOld = false. If R′.RecOld = R.RecOld = true, then (A.3)’ is implied by (A.3).
The only remaining case is when R′.RecOld = true and R.RecOld = false. In this
case, R′.Clk = R.Clk +1 = R.TsRec +TW R. (3.49)’ must hold after the event, because
it is an assumption. From this we get

R′.tC[R′.Clk − 1] − R.tC[R.TsExp] > (TW R − 1) · γR

Because R.TsExp < R.Clk , we get

S.tC[R.TsRec − 1] ≤ R.tC[R.TsExp]

by applying (A.29). Altogether, we have

R′.tC[R.Clk ] = τ > S.tC[R.TsRec − 1] + (TW R − 1) · γR

Let us now suppose, that there is a packet 〈D, t〉 in CS,R for which D.Ts < R.TsRec.
Applying (A.28) for this packet, we get

t ≤ S.tC[D.Ts] ≤ S.tC[R.TsRec − 1]
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Combining this with the previous result yields

τ − t > (TW R − 1) · γR

Because (2.13) states that no packet can stay longer than LS,R in CS,R,

(TW R − 1) · γR ≥ LS,R

is sufficient to assure that no such packet like D can exist in the channel. This condition
is equivalent to (A.36). 2

Case (c)

Proof: The upper limit on A.TsEcho is implied by (A.23) and (A.25). To prove the lower
limit, let us consider a packet 〈A, t〉 ∈ CR,S. If S.tC[A.TsEcho] = λ, then A.TsEcho ≥
S.Clk must hold because of (A.7). On the other hand, (A.23) and (A.25) imply that
A.TsEcho ≤ S.Clk , thus A.TsEcho = S.Clk in this case. Let us consider now when
S.tC[A.TsEcho] 6= λ. In this case, we get

R.tC[A.EchoExp − 1] ≤ S.tC[A.TsEcho] + LS,R

from (A.34). Applying (A.32) for the above inequality yields

t ≤ S.tC[A.TsEcho] + LS,R + TW R · ΓR

In order to satisfy (A.5), we want to assure that A.TsEcho > S.Clk − TW S. (2.13)
says that τ − t < LR,S; from (A.7) and the increasing time axiom, we know that τ ≥
S.tC[S.Clk − 1]. Therefore,

S.tC[S.Clk − 1] ≥ S.tC[S.Clk − TW S ] + LS,R + TW R · ΓR + LR,S

is sufficient to assure that no acks with A.TsEcho ≤ S.Clk − TW S exist. Because of
(A.7), (A.37) is sufficient for the above inequality to hold. 2

Now we have enough results that we can prove the following theorem which states that
the protocol satisfies its safety requirements:

Theorem A.7 The correct interpretation conditions (3.41)–(3.46) are invariants of the
protocol provided that the real-time requirements (3.60)–(3.63) are satisfied.

The statement of the theorem follows from the lemmas we have proven so far. This
completes the proof of the protocol’s safety.
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A.2 Progress

The progress properties of the protocol are stated by the following theorem:

Theorem A.8 The assertions (3.13)–(3.15), (3.30)–(3.40), and (A.40) are satisfied by
the system provided that the liveness assumptions (3.27)–(3.29) hold.

Assertion (A.40) is another assertion that is used in the proof of Theorem A.8:

R.Nxt ≥ n; S.Una ≥ n (A.40)

Proof: In order to simplify the description of the proofs, we will always assume that
assertions are written in the form of A; B or A → B, whenever possible. This means,
for example, that A = S.Nxt > R.Nxt = n and B = R.Nxt > n during the proof of
(3.13).

For the proof of (3.32), let A and B denote S.Una = n ∧ S.Clk = m and D ∈ CS,R ∧
D.Ts > m ⇒ D.Seq ≥ n, respectively. A ⇒ B holds because of the invariant 2(D ∈
CS,R ⇒ D.Ts ≤ S.Clk) which is implied by (3.51), (3.54), and (A.16). We know that
S.Una and S.Clk are monotone increasing, thus it is enough to prove that

{S.Una ≥ n ∧ S.Clk ≥ m ∧ B}e{B}

holds for any event e. Only the SendD and SendP events could violate this assertion,
but S.Una ≥ n assures that B holds after the event.

Let us write (3.33) in the form of A → B. A ⇒ B follows from (3.51) and (3.53). We
also know that S.Una, S.Nxt and S.Clk are monotone increasing, thus it is enough to
establish the truth of the following statements for any event e of the system:

{B ∧ S.Nxt > S.Una = n ∧ S.Clk ≥ m}e{B}

{B ∧ S.Nxt ≥ S.Una > n ∧ S.Clk ≥ m}e{B}

The first statement is true because the precondition implies that SendP , which could
generate zero-length packets, is disabled. In the second case no packets with D.Seq = n
can be generated because S.Una > n is in the precondition.

In case of (3.34), A ⇒ B follows from (A.23). R.Nxt and R.TsRec can only be changed
in the RecD event, thus it is enough if we show that {B}RecD{B}. Because S.Una is
monotone increasing, R.Nxt = n ⇒ S.Una = n. Using (A.15) we also get R.LAck = n.
B could be violated after the occurrence of a RecD(D) event if D.Ts > m holds. From
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(3.32) we know however, that in this case D.Seq ≥ n. If D.Seq > n = R.LAck , then
R.TsRec is not updated; if D.Seq = n, then D.Len > 0 because of (3.33), thus R.Nxt > n
will hold which means that B holds vacuously.

(3.30) can now be proven with the help of (3.34). The leads-to via message set rule
(2.12) can be used to prove (3.30). Let A and B denote S.Nxt > R.Nxt = S.Una = n
and R.Nxt > n, respectively. We prove that

A ∧ S.Clk = m; B

via message set M = {D : D.Type = DATA, D.Seq = n, D.Len > 0, D.Ts ≥ m}.
{A}e{A ∨ B} holds for every event because of the monotonicity of S.Nxt , R.Nxt and
S.Una. We can also show that the RecD(M) event will establish B. Because of (3.34)
we only have to show that

{A ∧ R.TsRec ≤ m}RecD(M){B}

which is easy to verify. Finally, we have to show that

A ∧ S.Clk ≥ m ∧ count(M) = k ; B ∨ count(M) > k)

This assertion is implied by the liveness assumption (3.27). By now, we have proven
that A ∧ S.Clk = m; B for any value of m, thus A; B also holds.

(3.35) is also proved from the leads-to via message set rule with A = R.Nxt > S.Una =
n ∧ S.Clk ≥ m, B = S.Una > n ∨ (¬R.RecOld ∧ R.TsRec ≥ m) and M = {D :
D.Seq = n, D.Ts ≥ m}. {A}e{A∨ B} is easy to check, {A}RecD(M){B} holds because
R.LAck ≥ S.Una = n and R.TsRec is updated if D.Seq ≤ R.LAck holds. (3.27) assures
that messages from M will be sent until progress is made, i.e., B is established.

The proof of (3.36) is basically the same as the proof of (3.32); it is based on the
monotone increasing property of R.Nxt and R.TsRec. A ⇒ B holds because of the
invariant 2(A ∈ CR,S ⇒ A.TsEcho ≤ R.TsRec) which is part of (A.25). Because R.Nxt
and R.TsRec are monotone increasing, it is enough to show that

{B ∧ R.Nxt ≥ n ∧ R.TsRec ≥ m}e{B}

holds for any event e. It is easy to check that both of the SendACK and SendSACK
events satisfy this rule.

The assertion (3.37) and its proof are very similar to the assertion (3.34). A ⇒ B is
implied by (A.23). Using (3.36) for the case R.Nxt = l > S.Una = n ∧ R.TsRec = m,
we get A ∈ CR,S ∧ A.TsEcho > m ⇒ A.Ack ≥ l. Thus it is enough to show that

{B ∧ (A ∈ ∧A.TsEcho > m ⇒ A.Ack > n)}e{B}
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holds for any event. Only the RecACK event can update S.TsEchoRec, but in case
S.TsEchoRec is updated then S.Una is also updated to A.Ack , thus B will hold.

In order to prove (3.14), we first establish that (A; B)∨ (A → A). This is so because
{A}e{A ∨ B} holds for every event. Then we show that A → A leads to contradiction,
thus A; B must hold. From (3.35) and (3.29) we get

2(A ∧ S.Clk ≥ m) ⇒

⇒ 23(¬R.RecOld ∧ R.TsRec ≥ m)

⇒ (count(N) = k ; count (N) > k)

where N = {A : A.Ack > n∧A.TsEcho ≥ m}. The channel-fairness assumption assures
that messages from the set N are eventually delivered to the sender S. Using (3.37), it
is easy to show that the reception of any of these messages causes B to hold after the
occurrence of the RecACK event. Thus A; B must hold.

(3.38) can be proven in the same way as (3.35), but in this case the liveness assumption
(3.28) has to be used.

(3.38) can be proven from the leads-to via message set rule (2.12) with A = S.Una +
S.Wnd = S.Una = n∧S.Clk ≥ m, B = S.Una +S.Wnd > n∨(¬R.RecOld ∧R.TsRec ≥
m) and M = {D : D.Seq = n ∧ D.Ts ≥ m}. {A}e{A∨ B} can be checked for each
event, {A}RecD(M){B} holds because A ⇒ R.LAck = n and R.TsRec is updated when
D.Seq ≤ R.LAck holds. (3.28) assures that messages from M are repeatedly sent until
B is established.

In case (3.39), A ⇒ B holds because of the invariant (A.25). We also know that R.Nxt +
R.Wnd and R.TsRec are monotone increasing, thus it is enough to show that

{B ∧ R.Nxt + R.Wnd > n ∧ R.TsRec ≥ m}e{B}

holds for every event e. The SendACK event satisfies this statement because A.Ack +
A.Wnd = R.Nxt + R.Wnd holds right after the occurrence of the event.

(3.40) is proven from (3.39) in the same way as (3.37) was proven from (3.36). (A.40)
can be proven from the leads-to well founded closure rule (2.8) because

(i) R.Nxt ≥ n → R.Nxt ≥ n;

(ii) 2(S.Una ≥ n ∨ (∃x : x > 0 : S.Una = n − x);

(iii) R.Nxt ≥ n∧S.Una = n−w; S.Una ≥ n∨ (∃x : w > x > 0 : S.Una = n−x).

(i) is the monotone increasing property of R.Nxt , (ii) is trivial, and (iii) is an alternative
form of (3.14) which we have proven already.
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(3.13) and (3.15) can be proven with the help of (A.40). (3.15) holds because of (3.31)
and the following assertion which comes from (A.40):

R.Nxt = n ∧ R.Wnd > 0; S.Una ≥ n ∧ R.Nxt + R.Wnd > n

S.Una ≥ n ⇒ S.Una + S.Wnd ≥ n. If S.Una + S.Wnd = n, then we can apply (3.31):

S.Una + S.Wnd = S.Una = n ∧ R.Nxt + R.Wnd > n; S.Una + S.Wnd > n

Similarly, (3.13) holds because

S.Nxt > R.Nxt = n; S.Nxt > n ∧ S.Una ≥ n

If R.Nxt > n, then we have proven (3.13), if R.Nxt = n, then S.Una = n must hold as
well, and (3.30) implies (3.13). This completes the proof of Theorem A.8. 2



Appendix B

Proofs of Section 4.2

B.1 Proof of Lemma 4.1

Here we want to show that the safety requirements of SCMP (4.2)–(4.4) imply the
generic safety requirement (4.1) for any CM service. Just for the reference we present
the assertions in question once more:

2((connected [a,b](i, j)∧ connected [a,b](k, l)) ⇒ (i = k ⇔ j = l)) (B.1)

S.CR[b, a].open to[i] = j → C.CR[a, b].open to[j] ∈ {i, empty} (B.2)

C.CR[a, b].open to[i] = j → S.CR[b, a].open to[j] = i (B.3)

S.CR[b, a].open to[i] = j ∧ k 6= i → S.CR[b, a].open to[k] 6= j (B.4)

All the above assertions are written in such a way that the hosts of endpoint a and b are
denoted by C and S, respectively.

All we have to show is that whenever the antecedent of (B.1) holds, then its consequent
is implied by the assertions (B.2), (B.3) and (B.4). Using the definition of connected [a,b],
we expand the antecedent of the implication in (B.1):

(C.CR[a, b].open to[i] = j ∨ S.CR[b, a].open to[j] = i) ∧

∧ (C.CR[a, b].open to[k] = l ∨ S.CR[b, a].open to[l] = k) (B.5)

Based on (B.5), we have to consider four cases:

173
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1. C.CR[a, b].open to[i] = j ∧ C.CR[a, b].open to[k] = l

It is trivial that i = k ⇒ j = l in this case. In case of j = l, we can use (B.3).
The assumptions of this case plus (B.3) imply that i = S.CR[b, a].open to[j] =
S.CR[b, a].open to[l] = k which concludes this case.

2. C.CR[a, b].open to[i] = j ∧ S.CR[b, a].open to[l] = k

S.CR[b, a].open to[l] = k and (B.2) imply that C.CR[a, b].open to[k] = l or empty
If i = k, then C.CR[a, b].open to[i] = j 6= empty implies that j = l. If j = l then
C.CR[a, b].open to[i] = j = l and (B.3) implies that S.CR[b, a].open to[l] = i, thus
i = k.

3. S.CR[b, a].open to[j] = i ∧ C.CR[a, b].open to[k] = l

This is identical to the previous case if the indices are permuted.

4. S.CR[b, a].open to[j] = i ∧ S.CR[b, a].open to[l] = k

If i = k, then (B.4) would be violated if j were not equal to l. If j = l, then i = k
trivially.

B.2 Proof of Theorem 4.2

The statement we have to prove is that the assertions (4.2)–(4.13) are satisfied by SCMP.
We will use the proof rules of Chapter 2 to transform the assertions into simpler forms
until we obtain a number of Hoare-triples in the form {F}e{F} which must hold for
every event e in the system.

There are six assertions, namely (4.2)–(4.7) in the form F → G. We can use Rule (2.4)
and (2.5) to simplify them. Whether we use the former or the latter rule depends on the
formula to be converted. Let us notice that for any history variable h, such as open to,
ts sent and ts rcvd , it is easy to prove that

h(i) = j → h(i) = j

which means that once the value of the variable is non-nil, it will not change any more.
Therefore when applying the proof rules (2.4) and (2.5), our goal is to have one of the
formulas in the above form.

Applying Rule (2.5) for assertion (B.2) we get:

2(S.CR[a, b].open to[i] = j ⇒ C.CR[b, a].open to[j] ∈ {i, empty}) (B.6)

S.CR[a, b].open to[i] = j → S.CR[a, b].open to[i] = j (B.7)
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Applying Rule (2.5) for assertion (B.3) we get:

2(C.CR[a, b].open to[i] = j ⇒ S.CR[b, a].open to[j] = i) (B.8)

C.CR[a, b].open to[i] = j → C.CR[a, b].open to[i] = j (B.9)

Applying Rule (2.5) for assertion (B.4) we get:

2(S.CR[a, b].open to[i] = j ∧ k 6= i ⇒ S.CR[a, b].open to[k] 6= j) (B.10)

S.CR[a, b].open to[i] = j → S.CR[a, b].open to[i] = j (B.11)

Applying Rule (2.4) for assertion (4.5) we get:

2(R ∈ Ca,b ∧ R.lin = l ∧ R.ts = t ⇒

⇒ l 6= empty∧ t 6= empty∧ C.CR[a, b].ts sent [l] = t) (B.12)

C.CR[a, b].ts sent [l] = t → C.CR[a, b].ts sent [l] = t (B.13)

Notice that here we used a pedantic form of (B.12) in order to make it easier to un-
derstand how the proof rule was applied. Applying Rule (2.4) for assertion (4.6) we
get:

2(S.CR[a, b].open to[i] = j ⇒

⇒ S.CR[a, b].ts rcvd [i] = C.CR[b, a].ts sent [j] 6= empty) (B.14)

S.CR[a, b].open to[i] = j → S.CR[a, b].open to[i] = j (B.15)

Applying Rule (2.4) for assertion (4.7) we get:

2(A ∈ Ca,b ∧ A.lin = l ∧ A.rin = r ∧ A.ts = t ⇒

⇒ (l 6= empty∧ r 6= empty ∧ t 6= empty∧ S.CR[a, b].open to[l] = r ∧ (B.16)

∧ S.CR[a, b].ts rcvd [l] = t))

S.CR[a, b].open to[l] = r → S.CR[a, b].open to[l] = r (B.17)

S.CR[a, b].ts sent [l] = t → S.CR[a, b].ts sent [l] = t (B.18)
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Similarly to (B.12), a pedantic version of (B.16) is used to make the application of the
proof rule clear. Note that from the above assertions (B.7), (B.11), (B.15) and (B.17)
are equivalent.

Finally, here are further assertions needed for the verification. These assertions were
generated as necessary preconditions while trying to prove the invariance of the already
introduced assertions.

2(0 ≤ i ≤ C.CR[a, b].lin ⇒ C.CR[a, b].ts sent [i] 6= empty) (B.19)

2(i > C.CR[a, b].lin ⇒ C.CR[a, b].ts sent [i] = empty) (B.20)

2(0 ≤ i ≤ S.CR[a, b].lin ⇒ S.CR[a, b].ts rcvd [i] 6= empty) (B.21)

2(i > S.CR[a, b].lin ⇒ S.CR[a, b].ts rcvd [i] = empty) (B.22)

2(C.CR[a, b].status = opening⇒

⇒ C.CR[a, b].open to[C.CR[a, b].lin] = empty) (B.23)

2(i > C.CR[a, b].lin ⇒ C.CR[a, b].open to[i] = empty) (B.24)

2(i > S.CR[a, b].lin ⇒ S.CR[a, b].open to[i] = empty) (B.25)

By now we have enough assertions to prove that these are indeed invariants of SCMP.
Since some of the assertions listed above are equivalent, here comes the list of assertions
whose invariance has to be shown: (B.6), (B.8), (B.10), (B.12), (B.14), (B.16), (4.8),
(4.9), (4.10), (4.11), (4.12), (4.13), (B.19), (B.20), (B.21), (B.22), (B.9), (B.13), (B.7),
(B.18), (B.23), (B.24) and (B.25).

All of these invariants are either in the form of P → P or 2P , where P is a pure
predicate (no temporal operators). For the assertions in the first form we have to prove
that {P}e{P} is true for every event of the system as follows from proof rule (2.1). For
invariants in the second form, besides proving P → P , we also have to prove that P is
true in any initial state of the system (see proof rule (2.2). By substitution it is easy
to check that for all invariants of the second form, the predicate P is true in all initial
states.

Let Pi denote the predicate of assertion (i). To show that event e satisfies {Pi}e{Pi}, we
can use proof rule (2.3) and define a subset J of the assertions assumed to be invariant
such that their conjunction forms a sufficient precondition of Pi with respect to e. That
is, instead of proving {Pi}e{Pi} we only have to prove the weaker {

∧

j∈J Pj}e{Pi}.

The assertions listed above are preserved by every event of the system.
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B.3 Proof of Lemma 4.4

Here we prove that the modified SCMP specification (given in Section 4.2.7) satisfies
the CI requirements (4.27)–(4.32). As we mentioned in Section 4.2.10, the invariance of
some of these assertions can be proven without exploiting the real-time properties of the
system. We start our proof with these assertions (Appendix B.3.1).

Each of the assertions are in the form 2Pi, where each Pi is a pure predicate. The
invariance of such assertions can be proven by using the proof rule (2.2) from Chapter 2.
It is easy to verify that each Pi is satisfied in the initial states. What remains to prove
is that the Hoare-triple {Pi}e{Pi} is satisfied by every event e.

B.3.1 Proof without real-time assumptions

Assertion (4.27), repeated below, is affected by the events C.ClkTick , C.Open, C.RecvPkt
and C.Close.

2(C.CR[a, b].status 6= closed⇒

⇒ C.CR[a, b].time ≥ C.CR[a, b].ts > C.CR[a, b].time − WC)

C.ClkTick preserves the assertion because it increments C.time and explicitly checks for
CRs records whose timestamp would become lower than C.time − WC . The C.Open
event sets the consequent of the implication to true (C.CR[a, b].time = C.CR[a, b].ts),
thus it cannot falsify the assertion. C.RecvPkt may change C.CR[a, b].status, but only
if it equals opening. In that case, however, the truth of (4.27) before the event assures
that it will be satisfied after the event as well. Finally, C.Close changes the antecedent
of the implication to false, which implies the truth of the implication.

Assertion (4.29), repeated below, is affected by the events S.ClkTick , C.RecvPkt and
S.Close.

2(S.CR[a, b].status 6= closed⇒ S.time + ǫ ≥ S.CR[a, b].ts srvr > S.time −WS)

The cases of S.ClkTick and S.Close are analog to the cases for the client above. In case
of S.RecvPkt , we have to show that R.ts ∈N (l, S.time + ǫ] implies that R.ts srvr =
l + ((R.time − l) mod N) satisfies (4.29). Because (4.29) and (4.30) are true before the
execution of the event, we know that S.time − WS ≤ l ≤ S.time + ǫ holds. Therefore,
it is enough to show that 0 < (R.ts − l) mod N ≤ S.time − l + ǫ holds after the event.
Substituting these values into the specification of ∈N in Section 4.2.7, we get that the
assertion is preserved by this event.

Assertion (4.30), repeated below, is affected by the events S.ClkTick and S.Close.

2(S.time + ǫ ≥ S.upper ≥ S.time − WS)
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In case of S.ClkTick the assignment upper := max(upper , time − WS) assures that the
assertion remains valid after the event. In case of S.Close, the truth of assertions (4.29)
and (4.30) before the event guarantees that (4.30) remains true.

2(A ∈ Cb,a ∧ C.CR[a, b].status = opening⇒

⇒ C.CR[a, b].ts ≥ A.ts ≥ C.CR[a, b].ts −N + 1)

B.3.2 Proof with real-time assumptions

In order to prove the invariance of assertions (4.28), (4.31) and (4.32), we have to exploit
the real-time properties of the system. The assumption about the maximum packet
lifetime in the channels, assertion (2.13) and the assumptions about the minimum and
maximum interval between clock ticks, assertions (2.14) and (2.15) will be used here.
We will list the necessary assertions for the proof, but we will not prove the truth of
each Hoare-triple.

2(R ∈ Ca,b ⇒ C.t[R.ts] ≤ R.t) (B.26)

2(R ∈ Ca,b ⇒ (R.t ≤ C.t[R.ts + WC] ∨ C.t[R.ts + WC ] = λ)) (B.27)

The assertions (B.26) and (B.27) reflect the operation of the client and create the link
between the timestamps in requests in the channels and the time of the client which
produced these requests. The truth of these assertions is based on the property (see
assertion (4.27)) that C.time is at least R.ts and less than R.ts + WC when a request is
sent.

2(C.t[S.CR[a, b].ts] ≤ S.t[S.CR[a, b].atime + 1] ∨

∨ S.t[S.CR[a, b].atime + 1] = λ) (B.28)

2(S.t[S.CR[a, b].atime] ≤ C.t[S.CR[a, b].ts + WC] + L ∨

∨ C.t[S.CR[a, b].ts + WC ] = λ) (B.29)

The assertions (B.28) and (B.29) follow from the previous two assertions, the assump-
tion (2.13) and the definition of the S.RecvPkt event. Assertion (B.28) uses (B.26) and
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the fact that a packet is received not earlier than it is sent. Assertion (B.29) uses (B.27)
and the assumption that a packet stays at most L seconds in the channel before it is
delivered.

2((R ∈ Ca,b ∧ R.ts < C.CR[a, b].ts) ⇒

⇒ (R.t ≤ C.t[C.CR[a, b].ts + 1] ∨ C.t[C.CR[a, b].ts + 1] = λ)) (B.30)

2((R1, R2 ∈ Ca,b ∧ R1.ts < R2.ts) ⇒

⇒ (R1.t ≤ C.t[R2.ts + 1] ∨ C.t[R2.ts + 1] = λ)) (B.31)

2((R ∈ Ca,b ∧ R.ts < S.CR[b, a].ts) ⇒

⇒ (R.t ≤ C.t[S.CR[b, a].ts + 1] ∨ C.t[S.CR[b, a].ts + 1] = λ)) (B.32)

The assertions (B.30)–(B.32) reflect that incarnations do not overlap. That is, when the
client starts a new incarnation it will no more resend the request of older incarnations.

2(S.CR[a, b].atime − WS < S.CR[a, b].ts srvr ≤ S.CR[a, b].atime + ǫ) (B.33)

Assertion (B.33) states the fact that when the last request was accepted, its timestamp
must have been in the server’s imaginary window. The truth of the assertion follows
from assertions (4.29) and (4.30) and from the specification of the S.RecvPkt event.

Now we have enough information to prove the invariance of (4.31) and (4.32). Our goal
is to find a lower bound on R.ts of old packets that may be still in the channel and then
to provide a sufficient constraint which assures that old requests cannot be erroneously
accepted.

From the clock-rate assumption (2.14), we get (B.34).

2((S.time − S.CR[a, b].atime − 1) · γ ≤ S.t[S.time] − S.t[S.CR[a, b].atime + 1] ∨

∨ S.t[S.CR[a, b].atime + 1] = λ) (B.34)

Combining (B.28) and (B.34) yields (B.35).
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2(C.t[S.CR[a, b].ts] ≤ S.t[S.time] − (S.time − S.CR[a, b].atime − 1) · γ ∨

∨ S.t[S.CR[a, b].atime + 1] = λ) (B.35)

Assertion (B.36) formulates a simple property of the epoch variables S.t which record
the clock tick events.

2(λ 6= S.t[S.time] ≤ τ ) (B.36)

The combination of (B.35) and (B.36) results in (B.37).

2((C.t[S.CR[a, b].ts] ≤ τ − (S.time − S.CR[a, b].atime − 1) · γ) ∨

∨ S.t[S.CR[a, b].atime + 1] = λ) (B.37)

Let us now combine (B.27) with the clock-rate assumption (2.14) which results in (B.38).

2(R ∈ Ca,b ⇒ (τ ≤ C.t[R.ts + WC] + L ∨ C.t[R.ts + WC ] = λ)) (B.38)

Combining (B.37) and (B.38), we get (B.39).

2(R ∈ Ca,b ⇒

⇒ (C.t[S.CR[b, a].ts] + (S.time − S.CR[b, a].atime − 1) · γ ≤

≤ C.t[R.ts + WC] + L ∨ (B.39)

∨ S.t[S.CR[b, a].atime + 1] = λ ∨ C.t[R.ts + WC ] = λ))

Rearranging (B.39) and using the clock-rate assumption (2.14), we get (B.40).

2(R ∈ Ca,b ⇒

⇒ S.CR[b, a].ts − R.ts ≤
L

γ
+ WC − (S.time − S.CR[b, a].atime − 1)) (B.40)
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Assertion (B.40) is important because it gives a lower bound of the timestamp of any
request in the channel. In order to prove the invariance of the assertions (4.31) and
(4.32), we will show that any request having a timestamp older than the latest accepted,
fails the modulo-N test of the S.RecvPkt event. Using the assertions (4.29), (4.30) and
the definition of the ∈N relation, we get that (B.41) is a sufficient condition for the truth
of (4.31) and (4.32).

2(R ∈ Ca,b ⇒

⇒ S.CR[b, a].ts srvr − (S.CR[b, a].ts −R.ts) > S.time + ǫ − N) (B.41)

Rearranging (B.41) and using assertions (B.33), (B.40) we get assertion (B.42).

2(R ∈ Ca,b ⇒ S.CR[b, a].ts srvr − (S.CR[b, a].ts − R.ts) >

> S.time − WC − WS −
L

γ
− 1) (B.42)

Therefore, assertion (B.43) is a sufficient condition for the truth of (B.41). Rearranging
assertion (B.43) we get the real-time constraint (4.34).

2(S.time − WC −WS −
L

γ
− 1 ≥ S.time + ǫ − N) (B.43)

We still have to prove the invariance of assertion (4.28). Instead of (4.28), we prove a
somewhat stronger statement (B.44).

2(A ∈ Ca,b ⇒ A.ts ≥ C.time − N + 1) (B.44)

Combining assertions (4.29) and (B.33), we get (B.45).

2(S.CR[a, b].status = open ⇒ S.time − S.CR[a, b].atime < WS + ǫ) (B.45)

Using the assertions (4.7), (B.29), (B.45) and the clock-rate assumption (2.15) we get
(B.46).

2(A ∈ Ca,b ⇒ A.t ≤ C.t[A.ts + WC] + L + (WS + ǫ) · Γ) (B.46)
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Combining this with the maximum packet-lifetime assumption (2.13) and then with the
clock-rate assumption (2.14), we get (B.47) and then (B.48).

2(A ∈ Ca,b ⇒ C.t[C.time] ≤ τ ≤ C.t[A.ts + WC] + 2L + (WS + ǫ) · Γ) (B.47)

2(A ∈ Ca,b ⇒ C.time − A.ts ≤
2L + (WS + ǫ) · Γ

γ
+ WC) (B.48)

From assertion (B.48) we can obtain a sufficient constraint (B.49) for the truth of (B.44).
Notice that (B.49) is equivalent with the real-time constraint (4.33).

2(A ∈ Ca,b ⇒
2L + (WS + ǫ) · Γ

γ
+ WC ≤ N − 1 (B.49)

This completes our proof.
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