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Abstract— In this paper, a design method and application
of fuzzy power system stabilizers for electrical power systems
subject to random abrupt variations of loads are considered.
A new control design method that uses recently developed
techniques based on linear matrix inequalities with damping
and control input constraints for fuzzy logic control design is
proposed. Random abrupt variations caused by fluctuations
in the load patterns are described as Markovian jumps in the
parameters of the electrical power system. To illustrate the
effectiveness of the control design method, simulation results
on a single-machine infinite-bus model are presented and
compared to the results of a classical power system stabilizer.

I. INTRODUCTION

Power system stabilizers (PSS’s) have long been re-
garded as an effective way to enhance the damping of
electromechanical oscillations in power systems. The PSS’s
were developed to extend stability limits by modulating
the generator excitation to provide additional damping to
the oscillations of synchronous machine rotors [1]. Many
methods have been used in the design of PSS, such as
root locus and sensitivity analysis [1], pole placement [2],
adaptive control [3] and robust control [4], [5]. The main
problem with these methods is that the control law is based
on a linearized machine model and the control parameters
are tuned to some nominal operating conditions. In case of
a large disturbance, the system conditions will change in a
highly nonlinear manner and the controller parameters are
no longer valid. In this case, the controller may even add
a destabilizing effect to the disturbance by, for example,
adding negative damping. To overcome this, the control
design method must consider the nonlinear dynamics of
the power system. In this context, some stabilizing control
solutions for power systems have appeared [6], [7], [8], [9].

Fuzzy logic controllers (FLC) have appeared as an effec-
tive tool to stabilize power systems [10], [11], [12], [13]. In
the context of PSS’s, FLC has been shown to be an efficient
tool to reduce electromechanical oscillations [10], [13]. It
has been used in generating unit controls coordinated to
the automatic voltage regulator (AVR). The FLC combine
qualitative and quantitative knowledge about the system
operating through some hierarchy. Basically, there exist two
kinds of FLC: the Mamdani FLC [14] and the Takagi-
Sugeno FLC [15]. They are both flexible in the control
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solution, but they differ in the control design. The Mamdani
FLC design is heuristic, based on human knowledge and
the Takagi-Sugeno FLC design is more systematic, based
on nonlinear and robust control design methods as well as
on human knowledge.

In this paper, we propose a new FLC to reduce os-
cillations of electrical power systems subject to random
abrupt variations of loads. The FLC uses knowledge about
the nominal operating conditions and the probability of
occurrence of the random abrupt variations caused by
fluctuations in the local load patterns, which are described
as Markovian jumps in the parameters of the electrical
power system. The stochastic stabilization of the power
system is accomplished by using a fuzzy-model-based con-
trol design which employs recently developed techniques
based on linear matrix inequalities (LMI’s) with damping
and control input constraints. Simulation results on a single-
machine infinite-bus (SMIB) power system illustrate the
effectiveness of the proposed control design method, which
are compared to the results of a classical PSS.

II. ELECTRICAL POWER SYSTEM MODELING

Consider a SMIB power system as shown in Figure 1
whose dynamics is obtained from the classical Park model
of a synchronous machine [16] adopting balanced condi-
tions and neglecting the stator winding resistance, volt-
ages due to magnetic flux derivatives, damper windings,
saturation effects and the frequency deviation in speed
voltage terms. In addition, the transmission line resistance
is neglected. Also consider that the generating unit control
consists of a AVR coordinated to a PSS. Under these con-
siderations, the SMIB power system dynamics is described
as follows
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ω̇ =
1

2H

[
Pm − E

′
qIq

]
(2)

Ė
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′
dIq , with δ the power angle of the generator, [rad]; ω

the rotor speed of the generator, [rad/s]; ω0 the synchronous
machine speed, [rad/s]; Pm the mechanical input power,
[p.u.]; E

′
q the transient EMF in the quadrature axis of the

generator, [p.u.]; Efd the equivalent EMF in the excitation



coil, [p.u.]; Iq the quadrature axis current, [p.u.]; Id the
direct axis current, [p.u.]; Vq the quadrature axis voltage,
[p.u.]; Vd the direct axis voltage, [p.u.]; H the inertia
constant, [p.u.]; τ

′
do the direct axis transient open circuit

time constant, [s]; Te the AVR time constant, [s]; Ke

the AVR gain; Vref the AVR reference voltage, [p.u.]; Vt

the generator terminal voltage, [p.u.]; Vs the PSS voltage,
[p.u.]; V∞ the infinite-bus voltage, [p.u.]; x

′
d the direct axis

transient reactance, [p.u.]; xd the direct axis reactance, [p.u.]
and xe the external equivalent reactance, [p.u.]. In what
follows, we obtain the currents Iq and Id considering the
effects of random abrupt variations in the load-bus of the
SMIB power system.

Suppose that different loads coupled to the load-bus
can be active or not during a period of operating of the
SMIB power system. The dynamics of the load-bus affect
the dynamics of the nominal operating conditions of this
system. The frequency of occurrence of each load in the bus
can be determined and then the operating conditions of the
system can be divided according to which load it supplies.
This modeling is useful, for example, in the operating of
industrial power plant in a co-generation scheme, where
the power excess can be sent to the global network. In
this case, the control solution must guarantee efficiency in
reducting electromechanical oscillations and stability of the
power plant during the load variations. Figure 2 illustrates
the load configuration in the load-bus adopted.

Now, consider a finite set S = {1, 2, . . . , N} as a set
of operating modes of the SMIB power system, with N
the number of these modes. Also consider that the load
variations are governed by a stochastic process {r} which
is a finite-mode Markovian jump process taking values in
the set S with transition probability given by

Pr{r(t + ∆) = j|r(t) = i} :={
πij∆ + o(∆), i �= j
1 − πi∆ + o(∆), i = j

(5)

where ∆ > 0, lim∆→0 o(∆)∆−1 = 0, πij ≥ 0 is
the probability rate between modes i and j, for i �= j;
i, j ∈ S and ∀i ∈ S, πi := −πii =

∑N
j=1,j �=i πij . The

matrix Π := [πij ] is called a transition rate matrix. We
assume that the Markov process {r} has initial distribution
µ := (µ1, µ2, . . . , µN), with µi := Pr{r0 = i} and that
r0 = r(0) is a non random initial condition. The initial
distribution yields the probability of each operating mode
to remain in its initial mode. Using this description, each
transition between the modes i and j has a probability rate
πij , which depends on the operating conditions of the SMIB
power system during a period of time. We suppose that
the load activation instants are known. Figure 3 illustrates
the transition among modes of the SMIB power system
according to the load variations.

Now consider that the SMIB power system supplies two
different random loads: Z1 = jX1 and Z2 = jX2 with
X1 and X2 the reactances [p.u.]. Thus, it is possible to

Fig. 1. Unifilar diagram of the SMIB power system.

Fig. 2. Configuration of the load-bus.

determine the currents Iq and Id as

Iq =
XeqV∞sinδ

x
′
d(xe + Xeq) + xeXeq

Id =
XeqV∞cosδ − (xe + Xeq)E

′
q

x
′
d(xe + Xeq) + xeXeq

where k�, � = 1, 2, ..., 6, are parameters which vary ac-
cording to the equivalent load Xeq in the load bus of the
SMIB power system. The operating conditions of the system
according to the load variations are modeled as a Markov
chain with three different operating modes (N = 3), which
correspond to the possible combinations between loads Z 1

and Z2 as following: mode 1 - only load Z1, mode 2 - only
load Z2 and mode 3 - both loads Z1 and Z2. We consider
that the system under nominal operating conditions is given
by mode 3. However, during a period of time, the dynamics
of the system can be changed following the process {r}
with the following initial distribution

µ = (0.30, 0.20, 0.50) (6)

Fig. 3. Transition modes of the SMIB power system.



TABLE I

PARAMETERS WHICH VARY ACCORDING TO THE RANDOM ABRUPT

VARIATION IN THE LOAD.

Mode k1 k2 k3 k4 k5 k6 Vref

1 0.86 1.82 1.10 0.50 0.27 0.27 1.42
2 0.76 2.06 0.97 0.44 0.24 0.24 1.39
3 0.61 2.44 0.79 0.36 0.20 0.20 1.35

and the transition rate matrix

Π =

⎡
⎣ −3.60 1.40 2.20

2.10 −2.80 0.70
1.32 0.28 −1.60

⎤
⎦ (7)

The numerical values of physical parameters are: ω0 =
377, H = 1.50, Pm = 1, τ

′
do = 6, Te = 0.01, Ke = 100,

V∞ = 1.20, x
′
d = 0.32, xd = 1.60, xe = 0.70, X1 =

0.60 and X2 = 0.40. Table I shows the numerical values
of parameters k�, � = 1, 2, ..., 6 and Vref for each mode.
In the control literature, the SMIB power system (1) - (7)
can be recognized as a typical example of Markovian jump
nonlinear systems [17], a class of hybrid systems, which has
different operating modes governed by the Markovian jump
process {r} defined before. In what follows, we present a
new approach to stabilize this class of systems using fuzzy-
model-based control design method.

III. FUZZY-MODEL-BASED CONTROL

The FLC design proposed here considers a non local
approach, which is conceptually simple and straightforward,
following the Takagi-Sugeno (TS) fuzzy systems theory
wherein linear feedback control techniques can be used. TS
fuzzy systems are used to approximate nonlinear systems
by a fuzzy blending of local linear subsystems. In fact, it is
proved that the TS fuzzy systems are universal approxima-
tors [18]. The control design is based on the fuzzy system
modeling via the so-called parallel distributed compensation
(PDC) scheme, where a linear controller is designed for
each local linear subsystem. The overall controller is again
a fuzzy blending of all local linear controllers, which is
nonlinear in general. Our goal is to represent the nonlinear
dynamics of the SMIB power system (1) - (7) in each
operating mode by a TS fuzzy system in order to obtain a
FLC to reduce the electromechanical oscillations. Figure 4
shows the block diagram using the FLC proposed.

A. Fuzzy System Modeling

Adopting x = [δ, ω, E
′
q, Efd]T as the vector of state

variables and u = Vs as the input vector, an N -mode SMIB
power system can be described in a generic state-space
representation as

ẋ = f(x, u, r); x0 = x(0); r0 = r(0) (8)

where f(·, ·, ·) is a vector of smooth nonlinear functions
with respect to the first and the second arguments, r ∈ S,
r and S are as defined before, x0 is the initial state which,

Fig. 4. Control system block diagram of the SMIB power system.

for simplicity, is a fixed non random constant vector and r 0

is the initial operating mode of the SMIB power system.
The fuzzy system proposed to approximate system (8) has

two levels in its structure, one representing the Markovian
jump process {r} and the other representing the nonlinear-
ities in the state variables x, which is given by

ẋ = f̂(x, u, r)

=
N∑

i=1

R∑
j=1

mi(r)nij(x) (Aijx + Biju) (9)

where x and u are as defined before, Aij and Bij , i ∈ S,
j = 1, 2, . . . , R are matrices of appropriated dimensions
representing the local linear approximations of the system
nonlinearities with

mi(r) =
Mi(r)∑N

�=1 M�(r)
(10)

and

nij(x) =
∏n

k=1 Nijk(xk)∑R
j=1

∏n
k=1 Nijk(xk)

(11)

the mode indicator and normalized membership functions,
respectively, mi(r) ∈ {0, 1} is the grade of membership of
r in a crisp set Mi and Nijk(xk) ∈ [0, 1] is the grade of
membership of xk in a fuzzy set Nijk . TS fuzzy systems
have been successfully used to approximate the nonlinear-
ities of real systems [18], [19]. In the present approach,
the approximation error in each mode i e = f(x, u, i) −
f̂(x, u, i) can be reduced considering more local linear
approximations and/or other type of membership functions
to choose regions of the subspace that better represent the
dynamics of the nonlinear system under random abrupt
variations.

We consider the nominal operating conditions of system
(1) - (7) for δ ∼= π/6 ± 20% which assures the real and
reactive powers as P = 1.0 ± 20% p.u. and Q = 0.5 ±
20% p.u., respectively, and two local linear approximations
(R = 2) around the following linearization points x̄:
mode 1 - x̄R=1 = [2π/15 0 2.86 1.49]T and x̄R=2 =
[π/5 0 1.98 0.71]T ; mode 2 - x̄R=1 = [2π/15 0 3.24 1.27]T
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Fig. 5. Membership functions adopted.

and x̄R=2 = [π/5 0 2.24 0.52]T and mode 3 - x̄R=1 =
[2π/15 0 4.01 0.92]T and x̄R=2 = [π/5 0 2.77 0.20]T . In
order to obtain matrices Aij and Bij , i = 1, 2, 3 and j =
1, 2, we use the Teixeira & Żak linearization formula [19].

The mode indicator membership functions m i(.), i =
1, 2, 3 are crisp functions which represent the operating
modes, in this case mi(r) = 1, if r = i and mi(r) = 0,
otherwise. The normalized membership functions n ij(.),
j = 1, 2 are obtained from standard membership functions
available in the Matlab Fuzzy Control Toolbox, which
represent the range of the state variables x1 and x3 in each
transition mode as shown in Figure 5.

B. Fuzzy PSS Design

The fuzzy PSS proposed here shares the same structure
of the fuzzy system (9) which is given by

u = −
N∑

i=1

R∑
j=1

mi(r)nij(x)Fijx (12)

where Fij ∈ Rm×n, i ∈ S, j = 1, 2, . . . , R, are the state
feedback gains to be designed, mi(.) and nij(.) are as in
(10) and (11), respectively. Substituting (12) in (9) and using
the fact that mi(z)m�(r) = 0, i �= �, i, � ∈ S, it results

ẋ =
N∑

i=1

mi(r)

⎡
⎣ R∑

j=1

R∑
k=1

nij(x)nik(x)(Aij − BijFik)

⎤
⎦ x.

(13)
Defining Gij := Aij −BijFij and Hijk := Aij −BijFik +
Aik − BikFij , i ∈ S, j, k = 1, 2, . . . , R and using the
fact that nij(x)nik(x) = nik(x)nij(x), after some algebraic
manipulations, system (13) can be written as

ẋ =
N∑

i=1

mi(r)

⎡
⎣ R∑

j=1

n2
ij(x)Gij +

R∑
j<k

nij(x)nik(x)Hijk

⎤
⎦x.

(14)

In (14), for instance for R = 3,
∑3

j<k ajk = a12+a13+a23.
Using the concept of stochastic stabilizability and a

coupled Lyapunov function of the type V (x, i) = xT Pix,
Pi = PT

i , Pi > 0, it is possible to derive convex problems
using LMI’s in order to obtain the state feedback gains F ij ,
i ∈ S and j, k = 1, 2, . . . , R. In our approach, we use
the stabilizing fuzzy control design including the following
performance indices: decay rate, in order to reduce the
speed of response and control input constraints to guarantee
the operating conditions of the SMIB power system (see the
appendix for the preliminary results).
Design Problem: Given αi and γi, i ∈ S, find a set of
positive definite matrices Xi and a set of matrices Yij

of appropriated dimensions satisfying the following LMI’s
∀i ∈ S [

Tij Zi

ZT
i −Wi

]
< −2αi

[
Xi 0
0 0

]
;

j = 1, 2, . . . , R (15)[
Uijk Zi

ZT
i −Wi

]
< −2αi

[
Xi 0
0 0

]
;

j < k; j, k = 1, 2, . . . , R (16)[
1 xT

0

x0 Xi

]
≥ 0; (17)[

Xi Y T
ij

Yij γiI

]
≥ 0;

j = 1, 2, . . . , R (18)

where

Tij := XiA
T
ij + AijXi − Y T

ij BT
ij − BijYij − πiXi

Uijk :=
XiA

T
ij + AijXi − Y T

ik BT
ij − BijYik

+XiA
T
ik + AikXi − Y T

ij BT
ik − BikYij − πiXi

Zi :=
[
π

1/2
i1 Xi . . . π

1/2
ii−1Xi π

1/2
ii+1Xi . . . π

1/2
iN Xi

]
Wi := diag

{
X1 . . . Xi−1 Xi+1 . . . XN

}
Yij := FijXi

Xi := P−1
i .

IV. SIMULATION RESULTS

In order to test the efficiency of the fuzzy PSS proposed,
we obtain the solution of (15-18) using the Matlab LMI
toolbox for decay rates α1 = α2 = 4, α3 = 0, control
input constraint γi = 0.1, i = 1, 2, 3 and the following
initial conditions x0 = [π/6 −0.001 3.3 4.5]T and r0 = 3.
We consider the nominal operating conditions of the SMIB
power system in mode 3 as δ ∼= π/6 (∼= 30◦) for P ∼=
1.0 and Q ∼= 0.5. Using µ and Π previously defined, we
use the software provided in [20] to simulate transitions
among operating modes which are given by the Markovian
jump process {r}. Figure 6 shows load variations during
a period of operation of the SMIB power system. Table II
presents the control design results. We compare the results
obtained using the fuzzy PSS with the results obtained using
a classical PSS which was tuned according to [1]. Figures 7
and 8 show the main system responses.
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Fig. 6. Load variations during a period of operation of the SMIB power
system.

TABLE II

CONTROL DESIGN RESULTS.

Mode Feedback gains

1
F11 = [−0.10 − 0.47 0.49 0.01]
F12 = [−0.13 − 0.62 0.49 0.01]

2
F21 = [−0.09 − 0.49 0.43 0.01]
F22 = [−0.12 − 0.60 0.43 0.01]

3
F31 = [−0.08 − 0.61 0.35 0.01]
F32 = [−0.10 − 0.67 0.35 0.01]

Note that the error e given by the fuzzy approximation
to the SMIB power system is small and can be further
decreased considering more linearization points or other
type of membership functions. The use of decay rate and
control input constraints in the stabilizing control design
problem reduces electromechanical oscillations in the state
variables x and control input u. The advantage of using
Markov jump systems to model the SMIB power system can
be clearly seen, for instance, we could include in the SMIB
power system a more refined description of the variation
in the load-bus. Taking into account this information, we
can provide less restrictive conditions for stability using
controllers which provide better performance. Another im-
portant point concerns the stability of the SMIB power
system. Using the conventional methods, the power system
must be stable for all deviations of the load-bus, whereas in
the stochastic stability framework, stability of all operating
modes is not even required. In this case, stability in each
mode is given in terms of matrices (Aij , Bij , Π), ∀i ∈ S

and j = 1, 2, . . . , R, i.e., the stability in each mode of the
SMIB power system is verified whenever λmax[1/2πiI] >
λmax[Aij ], whereas in the conventional methods, stability
in each mode is verified only if λmax[Aij ] < 0.

V. DISCUSSION AND CONCLUSIONS

The fuzzy PSS proposed here is proved to be very ef-
fective in reducing electromechanical oscillations. The sim-
ulation results for both fuzzy and classical PSS show that
the LMI-fuzzy-model-based control design achieves better
regulation. Moreover, the fuzzy PSS is more flexible as it
uses in the design knowledge of the system operation. The
design method presented in this paper can be accomplished
by a systematic procedure using convex programming with
efficient interior-point algorithms. Further work includes
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the development of a dynamic feedback FLC to consider
incomplete information of the state of a system using the
same fuzzy modeling presented.
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APPENDIX

In this appendix we present the preliminary results for
the stabilizing fuzzy control design proposed here.

Definition 1: [17] The fuzzy system (9) is said to be
stochastically stable if there exists a state feedback fuzzy
control law (12) satisfying

lim
T→∞

E

[∫ T

0

x(t, x0, r0, u)T x(t, x0, r0, u) dt|x0, r0

]

≤ xT
0 Mx0 (19)

for some symmetric positive definite matrix M of appro-
priated dimensions.

Proposition 1: The fuzzy system (9) is stochastically
stabilizable with state feedback fuzzy control law (12) if
there exist a set of positive definite matrices Xi and a
set of matrices Yij of appropriated dimensions, i ∈ S and
j = 1, 2, . . . , R, satisfying the following LMI’s ∀i ∈ S

XiA
T
ij + AijXi − Y T

ij BT
ij − BijYij

−1/2πiXi +
N∑

�=1; � �=i

Xi(πi�X
−1
� )Xi < 0;

j = 1, 2, . . . , R (20)

XiA
T
ij + AijXi − Y T

ik BT
ij − BijYik

+XiA
T
ik + AikXi − Y T

ij BT
ik − BikYij

−1/2πiXi +
N∑

�=1; � �=i

Xi(πi�X
−1
� )Xi < 0;

j < k; j, k = 1, 2, . . . , R (21)

where Xi and Yij are as defined before.
Proof: The proof is omitted due to lack of space.

Proposition 2: Assume that the decay rate αi := αr=i,
αi > 0, i ∈ S is known. The condition

AV (x, i) ≤ −2αiV (x, i) (22)

is enforced to all trajectories of the fuzzy system (9) with
state feedback fuzzy control law (12), if there exist a set
of positive definite matrices Xi and a set of matrices Yij

of appropriated dimensions satisfying LMI’s (15) and (16)
∀ i ∈ S.

Proof: The proof is omitted due to lack of space.
Proposition 3: Assume that the initial condition x0 is

known. The constraint

E[uT u |x, r = i ] ≤ µ2
i (23)

is enforced to all trajectories of the fuzzy system (9) with
state feedback fuzzy control law (12), if LMI’s (17) and
(18) hold ∀i ∈ S.

Proof: The proof is omitted due to lack of space.


