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teristics of the active devices in analog circuit, the fuzzy ele-

ments can be implemented in very simple structures. This

brings a reduction in the circuit complexity which implies bet-

ter speed performance and reduced chip area consumption.

Until now the main drawback of the analog approaches has

been their poor flexibility.

Some programmable analog fuzzy chips have been sug-

gested. Yamakawa et al. programs the membership functions

and the fuzzy rules over digital registers which needs a rather

large chip area. With a 2µm BiCMOS technology, the die size

of the fuzzy inference part (rule chip) is 11.0 x 10.9 mm2

while the defuzzifier chip takes an area of 3.4 x 2.9 mm2 with

a 3 µm bipolar technology. The processing speed of the fuzzy

system is 1,400,000 fuzzy inference/s without defuzzification

and 625,000 fuzzy inference/s including defuzzification [9].

Kettner et al. generates the layout from existing generic mac-

rocells which are programmable only during the prototyping

phase [6]. Ungering et al. introduce a mixed-mode fuzzy con-

troller with a digital inference unit to achieve more flexibility.

To avoid A/D and D/A converters, they used sorted pointers

instead of the analog membership values. Unfortunately, this

limits the number of the overlapping membership functions.

By using FPGAs (XILINX 4010) for the digital part and Op-

amps for the analog part, an operation  speed of some 10KHz

was achieved [23].

To overcome these drawbacks, we propose a novel archi-

tecture for the hardware implementation of fuzzy logic con-

trol. After a short summary of the fuzzy inference algorithm,

which forms the theoretical background of our hardware, we

give a description to the new analog approach in section III.

To get a better understanding of the advantages of the archi-

tecture presented, a real-time collision avoidance for an au-

tonomous system is chosen. In section IV a brief description

to the autonomous system is given. For this kind of applica-

tion not only the processing speed is of great importance but

also the flexibility of the implemented rule-base. With chang-

ing goals and/or environment new rule-bases are  required.

The system implementations of the control strategy in analog

and digital techniques are presented in section V. A compari-

son between the two approaches concludes the paper.

II. FUZZY INFERENCE

The fuzzy inference engine is the kernel of any fuzzy logic

controller. Its dynamic behaviour is generally characterized

by a set of fuzzy rules of the form:

 if       (a set of conditions are satisfied)

then   (a set of consequences can be inferred).

Abstract  In this paper we present an analog

fuzzy logic hardware implementation and its appli-

cation to an autonomous mobile system. With a sim-

ple structure the fabricated fuzzy controller shows

good performance in processing speed and area con-

sumption. Accomplished with 13 reconfigurable

rules, a speed of up to 6 MFLIPS has been achieved.

To stress the advantages of the new architecture -

speed and flexibility - the same control strategy is

implemented on the new analog fuzzy controller and

on a digital multi-purpose microcontroller in soft-

ware. The results of the two implementations show

that the analog approach is not only faster but also

enough flexible to compete digital fuzzy approaches.

I. INTRODUCTION

Motivated by Zadeh, explored and validated by Mam-

dani,   fuzzy logic control (FLC) has been used successfully in

numerous control systems. Most applications rely on conven-

tional digital computers or microprocessors programmed with

a sequential calculation of the fuzzy logic quantities to per-

form the logic inferences. It limits generally applications to

low-speed problems. Real-time systems often require very

short time responses. In these cases, a hardware implementa-

tion seems to be the only solution.

The first fuzzy chip was reported in 1986 at AT&T Bell

Lab [21]. Since then many different approaches have been

suggested [6][9][26]. Depending on the design techniques

employed they are classified into two groups: digital and ana-

log. The digital approach originated from Togai and Watan-

abe’s work [21] and resulted in some useful chips

[15][20][24]. Generally a digital fuzzy system is either a

fuzzy (co-)processor [14][22] or a digital ASIC [3][18], which

contains logic circuits to compute the fuzzy algorithm, memo-

ries to store fuzzy rules, and generators or look-up tables for

membership functions of the input and output variables. Com-

pared to its analog counterpart, the digital approach has

greater flexibility, easier design automation, and good com-

patibility with other digital systems. However, most of the

digital systems require A/D and D/A converters to communi-

cate with sensors and/or actuators. Furthermore, the digital

systems are more complex and need larger chip area, e.g. the

synthesis of a 4-bit maximum operation in [24] results in a

CMOS unit of nearly 100 transistors.

The research on analog fuzzy systems started with the pio-

neering work of Yamakawa [25][26], and was followed by

many researchers [4][6][8][9][13]. With the nonlinear charac-
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The if-clause, an antecedent, is a condition in the application

domain; the then-clause, a consequent, is a control action

given to the process under control. With a set of fuzzy rules

the fuzzy inference engine is able to derive a control action for

a given set of input values. In other words, a control action is

determined by the observed inputs which represent the state of

the process to be controlled with the control rules. The

approach used in fuzzy control is based on the approximate

reasoning method of the generalized modus ponens (GMP).

For example, for a two-input single-output n-rule fuzzy sys-

tem, the GMP states:

  Premise: is A’ and y is B’

Implication R1: if x is A1 and y is B1 then z is C1

………
also Ri: if x is Ai and y is Bi then z is Ci

………
also Rn: if x is An and y is Bn then z is Cn


 Conclusion:  z is C’,

in which x, y and z are linguistic variables and represent two

inputs (process states or sensor measurements) and one output

(control action). Ai, Bi and Ci are fuzzy sets defined on the

appropriate universe U, V and W, respectively, with i = 1, 2,

…, n. The fuzzy conditions in the antecedents are combined

by the connective “and”, while the sentence connective “also”

links the rules into a rule set, or equivalently a fuzzy rule base.

It should be noted that Ai, Bi, Ci, as well as A’, B’ are apriori

known but C’ will be deduced.

 Basically a fuzzy inference process involves two con-

cepts, the fuzzy implication and the compositional rule of in-

ference. For the fuzzy rule “if x is Ai and y is Bi then z is Ci”,

the fuzzy relation can be expressed as:

Ri = (Ai x Bi) → Ci, (1)

where x represents the Cartesian product; → denotes an oper-

ator for fuzzy implication. For a n-rule system, the fuzzy rela-

tion R is therefore a n-ary matrix:

R = {R1, R2, …, Ri, …, Rn}. (2)

If we have the observations A’ and B’, then the fuzzy conclu-

sion C’ can be inferred by

C’ = (A’, B’) ο R, (3)

where “o” represents the compositional operator. This fuzzy

reasoning is called the compositional rule of inference.

It is proved [7] that if the sentence connective “also” in the

rule base is interpreted as union operation

, (4)

then the fuzzy control action inferred from the complete set of

fuzzy control rules is equivalent to the aggregated results

derived from individual control rule:

C’ = (A’, B’) ο  = . (5)

Within the numerous inference strategies, Mamdani’s tech-
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nique is the most commonly used in the existing fuzzy control

systems owing to its simplicity. In this method, the minimum

operation is adopted for computing a fuzzy implication rela-

tion, and the max-min as the compositional rule of inference.

 If we interpret the sentence connective “and” in the ante-

cedent of the fuzzy rule as the intersection operation, the Car-

tesian product is realized by the minimum operation:

. (6)

The membership function for the ith fuzzy relation can then

be calculated as:

. (7)

 The conclusion deduced from the ith rule C’i for the inputs A’

and B’ can be computed with the max-min compositional rule

of inference:

(8)

where

(9)

αi is  called the firing strength (or weight) of the ith rule for

the inputs A’ and B’. In practical applications, the inputs are

usually singletons, e.g., the measurements from sensors, A’ =

x0 and B’ = y0. The related membership functions µA’(x) and

µB’(y) are equal to zero except at the point x = x0, and y = y0,

where µA’(x0) = 1, and µB’(y0)=1. In this case, the firing

strength can be reduced to:

. (10)

The n fuzzy rules in the rule base are aggregated with the

union operation. The overall output is then computed by com-

bining the individual result from each rule in the rule base:

. (11)

For simplification in hardware implementations, a set of sin-

gletons is usually  adopted in the consequent part of the fuzzy

rule. Assume this set consists of k terms, i.e.,

 (i = 1, 2, …, n, while j = 1, 2, …, or k),

then the inferred control action as a response to the actual

input (x0, y0) can be written as

, (j = 1, 2, …, k) (12)

where  is the contribution of the

ith rule to the jth term in the consequent part.

Experiments and theoretical investigations proved that

Mamdani’s technique yields better control results than that of

other methods in fuzzy control applications [7]. Moreover, the

operators used in this approach are very easy to implement in

hardware.
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III. ANALOG FUZZY LOGIC CONTROLLER

A fuzzy logic controller is a system realization of the fuzzy

control algorithm. Basically it consists of three function

blocks: a fuzzification interface, a fuzzy inference engine, and

a defuzzification interface. As mentioned earlier in the intro-

duction, several problems exist in the implementation of

fuzzy logic controllers with analog technology. To overcome

these problems we propose a new architecture with the fol-

lowing main features:

• an adjustable membership function circuit;

• a reconfigurable inference engine; and

• a small area defuzzification block.

A short description of each block with the stress on the archi-

tecture novelty is described in the following.

A. Fuzzification circuit (MFC)

The input data of a fuzzy logic controller are usually crisp

values acquired from sensor measurement. Therefore, a fuzzi-

fication interface is needed to calculate the belonging (mem-

bership) of the observed inputs to the defined linguistic terms

in the preconditions of the fuzzy rules. This conversion is

done by so called membership function circuits (MFCs). The

output of a MFC gives the grade of membership of the input

to a related linguistic term in current or voltage mode.

Basically, a fuzzy term can be defined by a membership

function of  trapezoidal shape as shown in Fig. 1. The core of

the function corresponds to the region which has a full mem-

bership (µ = 1); the ascending and descending boundaries are

the regions with partial matching or membership (0 < µ < 1);

the support of the defined fuzzy term is then the sum of the

core and the boundaries in which µ > 0. Commonly four types

of membership functions are adopted in the hardware design

of fuzzy systems: S-shaped function, Z-shaped function, trian-

gular-shaped function and trapezoidal-shaped function. The

first three types of function can be considered as special

shapes of the last one.

Various approaches have been proposed to generate analog

nonlinear membership functions in either current or voltage

mode. As a general case in the solutions reported in

[6][9][10], a MFC is built of two stages: the first for S- and Z-

subfunctions generation and the second for the combination of

these subfunctions. The positive and negative slopes of the

generated membership function are regulated within the S-

and Z-subfunction circuits, while the position and the type of

the function are assigned with reference voltages or currents

in the combination part.

 Fig. 2 shows the schematic diagram of the proposed mem-

bership function circuit. In is built of a coupled differential

amplifier which has two differential pairs (DP1 and DP2) and

a common load R. The two reference voltages,  low reference

Vr1 and high reference Vr2,  where Vr1 < Vr2, define the mem-

bership function. Thanks to the coupling effect of the load re-

sistor R, the subfunction generation and the final output

combination are completed within one stage.

Depending on the relative values between the input voltage

Vi and the reference voltages Vr1 and Vr2, the circuit operates

in one of the five regions (I to V) shown in Fig. 1. Assume

that the current sources Iss in DP1 and DP2 are ideal and

equivalent, the input devices in each differential pair are sym-

metric, the half widths of the transfer regions of DP1 and DP2

are T1 and T2 ( , and βi is the transconductance

parameter of the input devices in DP1 and DP2 with i = 1 and

i= 2  respectively, then the five operating regions of the MFC

illustrated in Fig. 1 can be described as follows:

• Region I: when Vi < Vr1 - T1, M11 and M21 are in their

cutoff regions while M12 and M22 are in the saturation

states. The current through the load resistance R is equal

to Iss. The output voltage is Vout = VDD - IssR = ,

which corresponds to a membership function value 0.

• Region II: when Vr1 - T1 ≤ Vi ≤ Vr1 + T1, DP1 is in its

transfer region. If Vr2 - Vr1 > T1 + T2, then DP2 keeps the

same state as in region I. As Vi increases, the member-

ship function circuit gives a linear ascending answer be-

tween 0 and 1.

• Region III: when Vr1 + T1 < Vi < Vr2 - T2, both M11 and

M22 are in cutoff states, the current flowing through the

load R is zero. The output voltage is Vout = VDD =

which corresponds to a membership function value 1.

• Region IV: when Vr2 - T2 ≤ Vi ≤ Vr2 + T2, DP1 keeps the

same state as in region III and DP2 operates in its transfer

region, antisymmetric to the case in region II. AsVi in-

creases, the membership function circuit gives a linear

descending answer between 1 and 0.

• Region V: when Vi > Vr2 + T2, the coupled differential

amplifier operates as in region I but DP1 and DP2 have a

T
i

2Iss βi⁄=

V
0
o

V
1
o

Fig. 1.   Trapezoidal shape of a shape membership function

Fig. 2.   The schematic diagram of the MFC.
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reverse role. The output voltage is  which corre-

sponds to a membership function value 0.

Normalized with  the generated mem-

bership function can be summarized as:

(13)

As shown in Fig. 1 and Eq. 13, the definition of the imple-

mented membership function is dependent on the reference

voltages Vr1, Vr2, transconductance parameters β1 and β2, and

current Iss. By changing the values of these parameters in the

circuit presented in Fig. 2, the membership function  has dif-

ferent shape types, slopes, and position on the voltage axis.

For instance, from the general membership function with trap-

ezoidal shape (Fig. 3-d), we get a triangular shape when

Vr1 + T1 = Vr2 - T2 (Fig. 3-c). The same function  changes to a

S- or Z-shape type if Vr1 is equal to the highest potential in the

circuit (i.e., VDD) or Vr2 is equal to the lowest potential (i.e.,

Vss) respectively (see Fig. 3-a and -b).

The positive and negative slopes of the membership func-

tion are mainly determined by the transconductance parame-

ters of the input devices in DP1 and DP2, respectively. Fig. 4
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presents the change in slopes of the membership function

when the widths of the input devices are varied from 20µm to

100µm in DP1 (Fig. 4-a) and DP2 (Fig. 4-b). To conclude the

description of the membership function circuit, an example is

presented  in Fig. 5. It gives a possible 5-term fuzzification

distribution for negative large (NL), negative small (NS), …,

positive large (PL). The complete set of linguistic terms with

different definitions are built by choosing different values for

Vr1, Vr2, β1 and β2 with the same MFC.

A. Reconfigurable inference engine

The next block in a fuzzy controller is the fuzzy inference

engine. With Mamdani’s inference technique, the inference is

completed by a set of intersection and union operations. In our

proposed architecture, these operations are realized with mini-

mum (min) and maximum (max) circuits, which are imple-

mented with a CMOS analog technology in voltage-mode.

 Fig. 6-a shows the basic structure of a two-input max cir-

cuit. It consists of two NMOS devices M1, M2 and a current

source Iss. Two inputs are connected to the gates of M1 and

M2 separately. The output Vmax, which is connected to the

common source of the input devices, has always the bigger

value of the two inputs V1 and V2 with an offset voltage

Fig. 6.   Basic structure of (a) max and (b) min operators.
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1V V2
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( a )

VSS
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Fig. 3.   Four types of membership functions realized by the MFC

shown in Fig. 2. (a) S-function, (b) Z-function, (c) triangular

function and (d) trapezoidal function.
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(c) (d)
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Fig. 4.   Membership functions with different slopes

(a) positive and (b) negative.

Fig. 5.   Fuzzification with 5 fuzzy terms.

(a) (b)



--  5  --

Fig. 8.   A reconfigurable fuzzy inference engine.
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(14)

Symmetrically, a min operator can be easily implemented by

using PMOS devices.  As indicated in Fig. 6-b, the output

voltage of this circuit is:

(15)

where  is an offset voltage in the circuit.

The HSPICE simulation results of the two-input max and

min circuits are shown in Fig. 7-a and -b, respectively. The ba-

sic max or min circuit can be extended to a multi-input circuit

by putting several input transistors in parallel.

For the purpose of rule reconfiguration, analog multiplex-

ers (MUXs) have been introduced in the inference engine.

Fig. 8 shows the block diagram of a three-input n-rules recon-

figurable inference engine. If the consequent part of the fuzzy

rules are labelled with k linguistic terms, then the possible

combination of the rules is n*k. Inserting n MUXs between

the if and then parts, the outputs of n antecedent parts are con-

nected to k consequent parts following the configuration of the

rule base. By means of the control pins S1,..., Sn, the MUX for

each rule is defined individually. Depending on the selected

voltage, the switch connects the weight calculated in the if

part to the chosen then part. For example, the rule i can be

changed from

Ri: if A is Ai and B is Bi and C is Ci then z is NL

into

Ri: if A is Ai and B is Bi and C is Ci then z is Z
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just by changing the voltage applied to the control pin Si. In

the first case the pin Si was connected to a voltage correspond-

ing to NL and in the second case  to a voltage corresponding

to Z. Tests have shown that the circuit is very robust to fluctu-

ations related to the applied control voltage. Up to 10% error

in the applied voltage were neglected by the switch mecha-

nism.

A. Defuzzification Circuit

The output of a fuzzy inference engine is a fuzzy set which

represents the possible distribution of the control action. For

practical use, a crisp control output is usually required. Thus a

defuzzification interface is necessary to convert the inferred

fuzzy control action into a nonfuzzy (crisp) value. Among the

suggested defuzzification strategies, the centre of gravity

(COG) method is the most commonly used. In the case of a

discrete universe, the output can be calculated as

(16)

where k is the number of discrete fuzzy elements; µC’(zj) is

the inferred (or final) membership function related to the jth

singleton term zj in the consequent z, i.e., the weight of zj for

the final output computation. The theoretical analysis and

experiment results proved that the COG strategy has a good

steady-state performance. A FLC based on the COG method

generally yields a lower mean square error than that based on

other methods [7].

Several solutions have been proposed to build defuzzifica-

tion circuits with COG method [9], [27]. In most cases a divi-

sion circuit is used  which necessitates a relatively large

design area. To avoid this,  we developed a new defuzzifica-

tion circuit which calculates the center of gravity without  em-

ploying a division circuit [5]. As shown in Fig. 9, the

proposed implementation is based on the principle of a volt-

age follower-aggregation circuit. For a k-term defuzzification,

k transconductance amplifiers (A1 to Ak) are used to aggre-

gate the inputs V1 to Vk . They represent the values of k sin-

gleton terms in the consequence part of the fuzzy inference

system. Assume that the transconductance of an amplifier Aj

is Gj, i.e., G1 for A1, G2 for A2 ,..., Gk for Ak, then the current

z

µ
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Fig. 9.   The schematic of the defuzzifier circuit.
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from the jth amplifier Aj to the common point Vout is Ij =

Gj (Vj - Vout). Based on Kirchhoff’s current law, the sum of

the currents Ij coming from the k amplifiers is zero. Thus  we

have:

. (17)

This  means that the output voltage of the circuit Vout is the

average of the inputs Vj. The contribution of each input to the

output is weighted by the transconductance of the correspond-

ing amplifier  Gj.

From circuit analysis it is known that the transconductance

Gj of an amplifier is proportional to the root of the current

source Iss when the amplifier operates in its linear region, and

that a voltage-current converter (VCC) circuit converts an in-

put voltage Uj into a current Ij with a square law. If we use a

voltage-current converter to drive the current source of a

transconductance amplifier and set the inputs of the converters

to the outputs of the inference engine, then the proposed cir-

cuit in Fig. 9 represents the defuzzified value of the inference

process:

, (18)

where Vj is the value of the jth singleton term in the conse-

quent, and Uj is inferred membership value related to Vj.

A. Chip Realization

To confirm the performance of the presented architecture,

and fit the requirements of the application presented in section

IV, a three-input one-output reconfigurable FLC has fabri-

cated. Fig. 10-a presents the block diagram of the controller.

The input variables are fuzzified with three linguistic terms:

small, medium and large, while the output variable are charac-

terised by 5 singletons. Due to the overlap of the membership

functions, 13 well-distributed fuzzy rules cover the whole

control surface. Thus, for each point on the control surface

there is at least one rule activated [11].

This design was fabricated with a 2.4µm CMOS process,

and has an area of 3.6 x 4.5 mm2 (Fig. 10-b). The test meas-

urements of the chip show for a pulse input a rise time of

160ns and a decay time of 140ns (Fig. 11) . This corresponds

to a speed of 6M FLIPS (Fuzzy Logic Inferences Per Second)

including the defuzzification process. The power consumption

is about 550 mW for the supply voltage of ±5V.

IV. A FUZZY LOGIC AUTONOMOUS DRIVEN SYSTEM

A. The Platform MORIA

An autonomous mobile robot (AMR) has to cope with un-

certain, incomplete or approximate information. Moreover it
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has to identify sudden perceptual situations and to manoeuvre

in real-time. Therefore an AMR has been often used as a test-

bed for fuzzy logic strategies [1][12][16]. Our proposed hard-

ware solution has several advantages for a successful

implementation like:

• fast response time,   real-time behaviour;

• analog I/O, direct control of the actuators (motors).

• reconfigurable rule-base, flexibility.

Our in-house autonomous system MORIA (Fig. 12) was used

as a testbed for the proposed analog fuzzy chip. “MORIA” is

an industrial mobile vehicle driven by two motors, one for

forward / backward movement and the other for steering angle

turning. The vehicle has a length of 175 cm (including the

bumper with a length of 45 cm), a width of 73 cm and a height

of 60 cm. It can transport a payload of 150 kg by a natural

weight of 400 kg. Six sonar sensors mounted in two groups on

(a)

(b)

Fig. 10.   A fuzzy logic controller;

(a) the block diagram, and (b) the photomicrograph
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the platform - three at the front and three at the back - form

the sensory input for the recognition of the environment. In

addition the system has a communication link (infrared) by

which a remote computer keeps in touch with the platform.

The role of this link is to test the behaviour of the robot when

the navigation commands (goals) come from a central unit,

e.g., coordinating several robots, and the robot itself has just a

collision avoidance strategy based on the local environment

information.

A.  The control strategy

The developed fuzzy logic strategy represents the collision

free navigation of an autonomous system for an unstructured

real world environment. The heart of the system is a set of

context dependent fuzzy rules. For a dynamic system such as

the autonomous robot, the mapping of the output - moving

speed and steering angle - depends not only on the current in-

put - sonar values -, but also on the targets given by a planner.

 The control strategy is divided into two modules. The first

module is the navigator which insures a collision free naviga-

tion based on the local information given by sensors. The in-

put variables to the controller are the data given by the sonor

sensors and a command given by the planner. From the availa-

ble six sensors only the three placed in the moving direction

are estimated. Thus with each change in direction the evalu-

ated sensor group is switched. The sensors provide an inaccu-

rate measured distances between the robot and the obstacles.

This information is fuzzified with the fuzzy terms like “near”,

“far”, etc. By this means the system becomes robust against

noise and measurement inaccuracies, which are covered by

the membership function corresponding to each label.

The planner gives the global goal which is a list of linguis-

tic commands enabling the robot to reach any given point in

the environment. For example a list of commands could be:

“turn first left”, “straight ahead”, “next turn right”, “stop”.

These commands can either be sent by a central computer or

by the user through the infrared communication link. It gives

an additional input to the navigation module which changes

the behaviour of the autonomous system independent of the

given goal. For a detailed description of the avoidance strat-

egy, see also [19].

V. IMPLEMETATION

A.  Analog Implementation

For the analog implementation of the navigation strategy,

Fig. 12.   Platform MORIA.

we use prototypes of the presented analog fuzzy logic controller

(see Section III. A).The input data has been obtained from the

sonor sensors.  The analog outputs drive the two motors and

thus control the speed and direction of the platform. Fig. 13

shows the block diagram of the implemented control strategy

in analog hardware.

 Two fabricated fuzzy chips were used to implement the con-

trol strategy. As the fuzzy controller needs to evaluate  the sen-

sors only in the driving direction, a switch system selects the

sensor groups, connecting the inputs of the controller either to

the three sensors in front or at the rear of the vehicle. As shown

in Fig. 14, each input variable is fuzzified with three member-

ship functions.  The output variables are characterized by five

singleton terms.

The control actions left turn (LT) , right turn (RT) generated

by the fuzzy chips for the obstacle avoidance can be regarded as

the direct response to the local environment (sensor data), and

these are based on the predefined fuzzy rules indicated in Fig.

15. The global linguistic command sent by the planer changes

the final orientation control by assigning different  weights to

LT and RT. For example, the command turn right, implies a big-

ger weight (m >1) to RT; for the command go ahead, both RT

and LT get the same weight.

 It should be noted that in some cases local reactions super-

seed the global command in some cases. For instance, a com-

mand turn next left, which implies a change in  weight for LT

into big, will not be executed,  if the output of the fuzzy control-

ler based on the local environment estimation requires a weak

action , which corresponds to a  small weight for LT. Thus when

the robot travels along a corridor, the global command turn next

left is not executed at once if the robot recognizes a wall on the

left side. After giving the turn left command, the robot will turn

a litle bit to the left and follow the wall on the left side until it is

possible to execute the given command, without hitting the

wall. This implementation insures a collision free driving.

A.  Digital Implementation

As mentioned in the introduction, a digital implementation

has usually a greater flexibility and an easier design automation

than analog approaches. To compare the speed and the flexibil-

ity of our analog controller with a digital approach we imple-

mented the same control strategy - same number of rules and

same membership function - on a multi-purpose digital control-

ler.

For a more realistic comparison between two approaches,

we consider data dependencies of the fuzzy controller algorithm

and available operations of today’s microprocessors. The opti-

mized digital calculation of the fuzzy algorithm is done in four

steps [17]:

• All calculation operations are executed with integer num-

bers (8-bit).

• The membership functions are stored in look-up tables.

• Since the FRBS is a universal approximator [2] the most

suitable algorithm for the digital processor is used.

• Data dependencies, especially the property of the minimum

operator (min(x, 0) = 0) reduces the number of operations

drastically; if one sub-premise of the antecedent of a rule is

zero, then the output of the rule is zero and thus further cal-
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culation are unnecessary; a sub-premises is calculated

just once, and reused whenever appropriate (see Fig. 16).

Based on these optimizations only a few rules have to be

evaluated completely.

Table 1 shows a benchmark of the rule base with the opti-

mization described above. The C code is compiled with the

GNU compiler on two different general purpose processors.

Although the above mentioned optimization were applied, the

proposed analog hardware implementation is about 100-1000

times faster then the software implementation on general pur-

pose microprocessors.

VI. CONCLUSIONS

The distinctive features of the analog controller can be

summarized as follows:

• Monolithic structure. Employing min-max operations

and the centre of gravity defuzzification method, the

whole fuzzy control algorithm is integrated on a single

chip with a standard CMOS technology.

• Parallel inference engine. Working in voltage-mode, the

fuzzy inference engine can be organized in parallel.

Therefore the inference speed is independent of the

number of implemented fuzzy rules.

• Simple circuitry. Implemented with the nonlinear charac-

teristics of active devices in an analog technique, each

building block contains only a few components. Con-

Table 1: Inference speed (FLIPS) of the fuzzy controller

for different processors

# activated

rules

SUN SPARC 2

PC 486/33
SUN SPARC 10

2 120K 352K

6 68K 240K

9 26K 200K

13 23K 171K

Fig. 16.   Optimized antecedent evaluation. Rules 2 and 3 are

skipped when the first premise is found to be zero.

1. rule:        IF A is small   AND ...
= 0

2. rule:        IF A is small   AND ...

3. rule:        IF A is small   AND ...

4. rule:        IF A is medium  AND  B is small  AND  C is small ...

          reusing         

5. rule:        IF A is medium  AND  B is small  AND  C is medium
= 0

6. rule:        IF A is medium  AND  B is small  AND  C is medium

7. rule:        IF C is medium...

8. rule:        IF A is big  AND  B is small

 reusing

9. rule:        IF A is big  AND  B is medium

Fig. 13.   Control strategy for the MORIA navigator

Fig. 14.   Fuzzy set definitions for (a) the input and (b) the output

variables.

Fig. 15.   Fuzzy rule sets for the (a)right turning (RT); (b) left

turning (LT) strategy.
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structed with such building blocks, a fuzzy controller

takes a very small design area and has low power con-

sumption.

• High-speed processing. The simple circuitry and the par-

allel structure of the inference engine make it possible to

reach processing speeds of 6 MFLIPS.

• Reconfigurable rule base. Through the added control

pins an on-line rule change is possible.

The presented experimental results show that it is possible

to build a real-time navigation system with low-price  hard-

ware and inaccurate sensors. The presented  analog and digital

implementation  have both fulfilled the real-time reaction re-

quirement of 20ms. Some classical problems still remain, as

for example oscillation. We attribute them partly to the limita-

tion of the small rule bases and the small number of available

sensors.

By implementing the same control strategy in software on

a multi-purpose microprocessor and in hardware with a new

fuzzy chip, we have shown that not only the analog approach

is faster (with an inference time less than 160ns) but also

enough flexible (reconfigurable) to compete digital fuzzy ap-

proaches.
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