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ABSTRACT 
 

A main challenge in the field of special effects is to create special effects in real time in a 

way that the user can preview the effect before taking the actual picture or movie sequence. 

There are many techniques currently used to create computer-simulated special effects, 

however current techniques in computer graphics do not provide the option for the creation 

of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of 

special effects, it is neither portable nor does it provide work in real-time capabilities. Real-

time special effects may, however, be created optically. Such approach will provide not only 

real-time image processing at the speed of light but also a preview option allowing the user 

or the artist to preview the effect on various parts of the object in order to optimize the 

outcome. 

 

The work presented in this dissertation was inspired by the idea of optically created special 

effects, such as painterly effects, encoded in images captured by photographic or motion 

picture cameras. As part of the presented work, compact relay optics was assessed, 

developed, and a working prototype was built. It was concluded that even though compact 

relay optics can be achieved, further push for compactness and cost-effectiveness was 

impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with 

multi-aperture micro-optics was proposed and demonstrated for the first time, which 

constitutes one of the key contributions of this work. This new paradigm was further 

extended to the most general case of magnifying multi-aperture micro-optical systems.  Such 
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paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 

and a reduction in weight by a factor of about 500. 

 

Furthermore, an experimental quantification of the feasibility of optically created special 

effects was completed, and consequently raytracing software was developed, which was later 

commercialized by SmARTLensTM.  While the art forms created via raytracing were 

powerful, they did not predict all effects acquired experimentally.  Thus, finally, as key 

contribution of this work, the principles of scalar diffraction theory were applied to optical 

imaging of extended objects under quasi-monochromatic incoherent illumination in order to 

provide a path to more accurately model the proposed optical imaging process for special 

effects obtained in the hardware. The existing theoretical framework was generalized to non-

paraxial in- and out-of-focus imaging and results were obtained to verify the generalized 

framework. In the generalized non-paraxial framework, even the most complex linear 

systems, without any assumptions for shift invariance, can be modeled and analyzed.  
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CHAPTER 1: INTRODUCTION 

 

 

In the introductory part of this work, computer-simulated special effects will be first 

discussed with an emphasis on their application in the movie making and art, followed by 

discussion on how the field of Optics relates to Art. Furthermore, various approaches to the 

modeling of the imaging process will be outlined. We shall then motivate this research and 

present a summary and outline of the dissertation. 

 

1.1 Computer-Simulated Special Effects 

 

Computer simulated special effects are virtually everywhere in modern-day life, starting from 

the moviemaking and going through areas such as art, science, music, business and   internet. 

One can find computer-simulated special effects in movies like “Star Wars”, “The Mummy” 

and “The Matrix”, and at the same time on popular web sites offering virtual 3-D tours 

before purchasing a new house or car, or in a computer-based training program for medical 

doctors. The field of computer-simulated special effects grew exponentially over the last few 

years due to the availability and cost-effectiveness of powerful new computers and software 

on the current market. For example, ten years ago a typical state-of-the art computer system 

would have been a Silicon Graphics running IRIX that would have cost of the order of 

$200,000. Nowadays a typical PC station running state-of-the-art software would cost less 

than $3,000.  
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In this research, we shall focus on computer-simulated special effects for the creation of 

painterly effects on images. One of the early steps towards creation of computer-based 

painterly effects was line drawing on grey-scale raster by using brush extrusion [Whitted, 

1983]. In parallel, the problem of texture synthesis was investigated in various works [Lewis, 

1984], [Gardner, 1984], [Gagalowicz and Ma, 1986], [Miyata, 1990], [Wijk, 1991]. 

 

The problem of appropriate texture synthesis turns out to be central to the area of the 

computer-based special effects. One cannot create realistic special effects using computers 

without using textures that approach the reality. That is why most of the work in the field of 

computer-simulated special effects is focused on identifying and generating textures based on 

real world entities – such as wood, stone, brick wall, skin, cloud, rough sea, breast tissue etc. 

[Heeger, Bergen, 1995], [De Bonet, 1997], [Rolland and Strickland 1997], [De Bonet and 

Viola, 1998].  An interesting part of that problem relates to studying human visual perception 

[Bergen and Andelson, 1988], [Bergen, 1991], [Bergen and Landy, 1993], developing 

computational models of visual masking based on psychophysical data, and studying how 

one visual pattern affects the perception of another [Ferweda at al., 1997]. 

 

In the domain of computer-generated painterly effects, a problem is the determination of the 

appropriate orientation of the brush strokes and painterly rendering of the obtained image. An 

image for example may be “painted” with a series of spline brush strokes chosen to match the 

color of the source image [Hertzman, 1998], or rendered in a way that simulates artistic 

effects of watercolors [Curtis et al, 1997]. Other approaches to this problem are to select sets 

of orientable textures that follow the extracted features of the source object [Salisbury et al, 
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1997], or to visualize two-dimensional vector fields [Cabral and Leedom, 1993] and energy 

function, which after optimizing guides the streamlines at a specified density [Turk and 

Banks, 1996].  

 

An interesting application of computer-simulated special effects is the creation of painterly 

effects that transform ordinary video segments into animations that have a hand-painted look 

[Litwinoxicz, 1997]. Similar techniques may be used to create special effects on streaming 

video. An example of computer-generated special effects modifying video segment is the 

movie “What dreams may come”, directed by Vincent Ward in 1998. 

 

The most common approach employed in computer graphics to render special effects is 

raytracing [Spencer and Murty, 1961]. In this approach, appropriate sources of light are 

considered that emit light propagating as rays. The light illuminates the objects of interest, 

which are then visualized in the computer. Various techniques exist allowing the simulation 

of appropriate lighting and rendering [Phong, 1975], [He at al, 1991], [Westin, 1992], [Pharr 

et al, 1997]. 

 

1.2 Optics and Art 

 

Although the field of computer-simulated special effects is developing and dominant, it has a 

major disadvantage. It requires the user or the artist to first record the images and to later 

modify them using appropriate equipment. Thus, the user is unable to preview the effect 

before the image is actually taken. For example if the users want to create computer-
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simulated painterly effects on a picture, they can only use pictures that are already taken. 

Another example is moviemaking where the scene is first filmed and then special effects are 

added using computers. This disadvantage disappears if the images can be modified optically 

at the aiming of a camera. In this work, we shall focus on optically created special effects in 

photography and moviemaking.  

 

If users are able to create special effects optically, at the speed of light, then they can preview 

the effect before actually taking the picture or the picture sequence. However, it is much 

more difficult to create special effects optically since the whole process has to be done in 

hardware. Also, the equipment must be portable and cost effective. Finally, in order to design 

optimized and cost effective hardware we need to be able to accurately model the optical 

imaging process. 

 

Optics has been used in Art as early as the 15-th century when some artists used 

combinations of convex and concave mirrors to project images onto canvas. For example as 

the researcher David Hockney points out in Van Eyck’s painting “Arnolfini Wedding” dated 

1434,  the artist depicted a convex mirror in the background that illuminates the entire scene 

in detail from the back [Hockney, 2001]. Researchers speculate that at this time some artists 

were using primitive optical systems to capture the perspective and the relationship of objects 

in the real world on canvas and then were finishing the paintings in freehand. Hockney also 

claims to observe effects of optical aberrations and depth of field and focus in the 16th-

century paintings of Hans Holben and Lorenzo Lotto. Then, David Hockney and Charles 

Falco built a camera obscura on the Panavision soundstage and replicated the mirror-lens 
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projection system that they believe the old masters used to make their paintings [Hockney 

and Falco, 2000], [Zone, 2001].  

 

Often times, when the word “Optics” is mentioned people tend to think in terms of lenses and 

mirrors only. However, an interesting approach for the creation of optical special effects is to 

use luminescence. For example, technologies such as optical fiber, black light, infrared light, 

fluorescence and ultraviolet light can create a variety of effects when used to illuminate 

different textiles, such as taffeta, satin, damask, velvet, jersey and lace [Helmi, 2001]. 

Another example is the creation of light emitting woven fabrics, based on the combination of 

optical and woven fibers, which when illuminated appropriately create painterly effects 

within the fabric [Hoggard, 1997]. 

 

A different area for optically simulated special effects is photographic camera design. There 

are various ways special effects can be created using either conventional or custom designed 

cameras. For example in 1999, Chicago-based Schumacher Camera announced the creation 

of the Revolution, an innovative snorkel lens system allowing the user to shoot at infinite 

angles without special rigging equipment [A lens revolution, 1999]. Innovative research by 

Frazier lead to a lens with large depth of field for special effects as it relates to 

cinematography [Frazier, 1998].  An emerging technology is that of Hylen who proposed a 

camera that allows imaging through an optical texture phase plate, creating textured-like 

images. [Hylen, 1997] 
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Finally, an innovative approach to use optics in art is also using spectral imaging for mapping 

of pigments in work of art [Baronti et al, 1998] and using a holographic technique called 

moiré patterns, which when recorded with a horizontal parallax create fascinating artistic 

effect [Liu et all, 1995]. 

 

1.3 Modelling of the Imaging Process 

 

As preciously mentioned, the most common approach to render objects in computer graphics 

is raytracing. Other approaches include scalar diffraction theory, Fourier transforms and 

convolution with point spread functions, and statistical optics.  

 

In the raytracing approach, the light is considered to propagate in straight lines, called rays, 

until it encounters an optical surface. Upon encountering an optical surface, the normal to the 

surface at the point where the ray hits the surface is being calculated and the vectorial law of 

refraction is consecutively applied. Such computations allow calculating the new direction of 

propagation of the ray. By sequential raytracing the location where a ray hits the observation 

point can be calculated, which allows calculating the light distribution at any point of 

interest.  

 

Even though raytracing is a powerful method, it can only solve a limited number of problems 

where effects due to the wave or quantum nature of the light are negligible. However, when 

those effects cannot be neglected a more rigorous approach is required. For example if the 

problem is to model the imaging process through a complex optical surface, where the local 
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normal to the surface can not always be calculated, or if the surface contains features that are 

of the same order of magnitude as the wavelength, the raytracing will fail. In such problems, 

it is appropriate to use an approach based on Scalar Diffraction Theory. The light in such 

approach may be considered as a distribution of amplitude and phase that propagate through 

the optical system.  In the special case when the system is linear, the propagation of the light 

can be modeled by applying a space-variant transfer function on the initial field distribution.  

Finally, if the system is also shift-invariant, the transfer function is also space-invariant. 

 

Under the scalar diffraction theory, for a linear and shift-invariant system, the modeling of 

the light propagation can also be expressed in terms of Fourier transforms. Alternatively, one 

can calculate the overall point spread function (PSF) of the optical system and then convolve 

the object with the PSF. Such approach, which is most commonly applied, is only valid if the 

overall behavior of the system is linear and shift invariant. 

 

If the optical system contains an optical surface located outside the pupil of the optical 

system, such as close to the image plane, that exhibits different optical properties across its 

surface, the overall system may not exhibit linear shift-invariant properties and in this case 

the imaging can not be described in terms of a convolution of the object with a PSF.  In such 

systems two approaches are possible – one can propagate the optical field surface by surface, 

or alternatively one can calculate a probability density scattering function at each zone of the 

unique optical surface, and the computed or measured associated statistics can be combined 

with raytracing for imaging through such optical system. In the latter approach if a ray 

encounters a given zone of the unique surface within the optical system of interest, it will be 
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refracted at an angle in accordance with the probability calculated from the surface 

probability density function.  Each of these approaches will be discussed in detail later in this 

work. 

 

1.4 Motivation 

 

A main challenge in the field of special effects is to create special effects in real time in a 

way that the user can preview the effect before taking the actual picture.  

 

There are many techniques currently used to create computer-simulated special effects, 

however current techniques in computer graphics do not provide the option for the creation 

of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of 

special effects, it is neither portable nor does it provide work in real-time capabilities. Real-

time special effects may however be created optically. Such approach will provide not only 

real-time image processing at the speed of light but also a preview option allowing the user 

or the artist to preview the effect on various parts of the object in order to optimize the 

outcome. 

 

In order to create a system that can optically modify and encode special effects into scenes 

we need the capabilities to correctly model the imaging process through such system. The 

need for accurate modeling of the imaging process as well as the need for optically simulated 

special effects motivates our current work. 
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1.5 Research Summary 

 

Traditionally computer-simulated special effects are used in both photography and 

cinematography. These methods have some major disadvantages that we aim to remove by 

using optically simulated special effects.  

The purpose of this work is to present a theoretical and experimental framework for 

modeling of the imaging process through a non-shift invariant optical system. 

 

The framework presented in this work provides the accuracy required by the task and 

furthermore extends beyond the domain of special effects. The methods implemented to 

model the imaging process can be used to quantify any optical system that can be described 

in terms of the Scalar Diffraction Theory. Establishing such methods allow us to develop an 

experimental framework to implement optically simulated special effects. 

 

1.6 Dissertation Outline 

 

The remaining part of the dissertation is organized in the following way: 

 

Chapter 2 gives an overview of existing compact optical relay systems, describes related 

work in the field of compact relay lenses for special effects, and reviews existing models of 

the imaging process. 
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Chapter 3 provides an in-depth discussion of the design of compact relay lenses and their 

applications.  Novel compact imagers based on microlenslet arrays are presented.  

 

Chapter 4 discusses experimental methods including the fabrication of the optical texture 

plates and the experimental modeling of an optical relay system, which combined with 

optical texture plates, can be used for optically-simulated special effects. Results from the 

experiments completed are provided in this chapter as well. Furthermore, Chapter 4 discusses 

raytracing as an imaging process in the context of the vectorial law of refraction. In this 

chapter, results produced by our implementation of the raytracing approach are presented. 

 

Chapter 5 details the physical optics modeling of the imaging process through a unique 

optical surface such as an optical texture plate. In this chapter, a rigorous mathematical 

framework is established, and software is implemented both for single PC and for a Beowulf 

cluster. Problems related to the implementation of the mathematical model are discussed in 

detail and results from the simulations conducted are provided. 

 

Chapter 6 summarizes the results and the contribution of the research. In this chapter the 

implementation of the research conducted as well as future work are discussed. 
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CHAPTER 2: RELATED WORK 
 

 

In this chapter, related work in compact relay lenses for various optical applications is first 

reviewed, followed by various approaches to modeling the imaging process.  

 

2.1 Relay Lenses 

 

Many optical imaging systems require an intermediary image of an object to be formed, 

which then need to be relayed to a final image plane. Relay lenses are found for example in 

copy machines [Kawazi and Ogura, 1980], scanning devices, telescopes, conventional 

photographic cameras, endoscopes [Zobel, 2001] etc. In relaying an intermediary image to a 

final image plane, compact relay systems are often desired. 

 

For some imaging devices, such as copiers or scanners, one of the common approaches to 

relaying the object is to use a stack of two 1-D linear arrays of lenses, with an intermediary 

image in between, which is moved across the object plane forming a composite image of the 

object in the detector plane. The image itself is typically binary (either white or black) and is 

further processed in the software or hardware of the imaging device, eliminating the need for 

high image quality.  

 

Relay systems based on arrays of lenses are found in photolithography [Volkel et al, 1996] 

where a stack of four microlens arrays are used for 1:1 imaging of extended object planes, 

 11



and in 3-D integral imaging where macro-lens arrays in conjunction with microlens focusing 

screens are used [Davies et al, 1994]. Also, gradient-index fiber array arranged in rows to 

produce an erect image with unit magnification are employed in copy machines [Kawazi and 

Ogura, 1980], and gradient-index lens arrays are used in the design of line scanning systems 

[Toyama and Takami, 1982].  

 

2.2 Relay Lenses for Special Effects 

 

One of the main efforts in the photographic and cinematographic community is to create 

lenses with sufficient depth of field or alternatively depth of focus in order to create special 

effects in the obtained photographs or photograph sequences. A major break-through in this 

effort was the wide angle, large field of view, close focusing optical system conceived by J. 

Frazier [Frazier, 1998] during his work as a cinematographer shooting wildlife films in the 

outback of Australia [Probst, 1999]. With this lens, based on the concept of creating an 

intermediary image, which is then relayed to the final image plane, an almost infinite depth 

of field might be achieved. Another effort is to create special effects by encoding optical 

phase plates in an intermediary image, which is then relayed to the final image plane [Hylen, 

1997]. 

 

 

 

 12



2.3 Modelling of the Imaging Process 

 

There are various possible approaches that can be used to describe an imaging process. The 

simplest among these approaches is raytracing, which is extensively used in various optical 

modeling software such as ASAP, Light Tools and TracePro. In this approach light 

propagates in the optical system as rays and upon encountering an optical surface the normal 

to the surface is calculated, then the vectorial law of refraction is applied to establish the new 

direction of the ray [Mouroulis and Macdonald, 1997], [Rolland, Shaoulov and Gonzales, 

2001]. However, the raytracing approach imposes certain limitations on the surface of the 

optical elements, such as continuous second derivatives. For surfaces that cannot be 

described in such a way, such as fine structure optical phase plates, this approach can lead to 

inconsistent results with the experimental results. 

 

The limitations upon the model of the surface of the optical elements will disappear if the 

imaging process is modeled using the concepts of physical optics. In this approach, a certain 

field distribution in the object plane is considered and consequently propagated through free 

space and optical elements sequentially. The field distribution at the image plane is directly 

obtained after applying the respective propagation kernels. 

 

In existing off-the-shelf software, the main approach to imaging is the use of the Gaussian 

beam decomposition method. In this method, a Slowly Varying Envelope (SVEP) 

approximation is inherited. An arbitrary smooth field distribution in the object plane is 

assumed, which is then decomposed into a set of Gaussian wavelets. The sum of the wavelets 

 13



must approximate the original field to a certain degree, which imposes certain restrictions 

upon the original field. One potential problem in this approach is the fact that if the borders 

of the object are sharp, they can never be correctly modeled. Once the initial field in the 

object plane is decomposed into Gaussian wavelets each of the wavelets is propagated 

through free space up to a given point of interest or just before an optical element. At this 

point, the field is calculated again as the sum of all wavelets and is either resampled and 

propagated again or the final result is calculated.  

 

Another approach in existing software such as ASAP and Light Tools is the Beam 

Propagation Method (BPM), in which the initial field distribution is propagated by applying a 

time domain finite-difference method. In that method the propagation time is sampled with 

certain finite-difference step and then the new field distribution at the new moment of time is 

calculated.  
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CHAPTER 3: DESIGN AND ASSESSMENT OF COMPACT RELAY 

LENSES 

 

 

3.1 Conceptual Design of an Imaging System for Optically Created Special 

Effects 

 

The key idea of using optical phase plates, to optically encode special effects in images, is to 

insert an optical phase plate close to the plane of the image and optically alter the image to 

obtain the desired special effect. The most intuitive optical layout of such optical system is 

demonstrated in the Fig.3.1. Alternatively, one can modify the image in some intermediate 

image plane and record the modified image on a detector (film, CCD, etc.).  

 
 
 
 

 

 

 

   

 

Figure 3.1 Optical layout of an imaging system, where an optical phase plate is inserted close 

to the final image location. 

 

The initial experiments demonstrated that the configuration demonstrated in Fig. 3.1, while 

simple, is not the optimal in terms of controlling the optical special effects in the final image. 
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Severe shadows on the final image were observed.  It was concluded from early experiments 

conducted by Steve Hylen, expert photographer, that the best configuration should allow the 

formation of an intermediary image in an intermediate image plane, where the intermediary 

aerial image can be modified by inserting an optical phase plate. Furthermore, the modified 

intermediary image should be relayed by some compact relay optics to the final image 

location where it would be recorded using a detector device, such as a photographic film or a 

CCD. The conceptual optical layout of such imaging system is demonstrated in Fig.3.2. 

 

 
 
 
 
 
 
 
 
 

Object       Objective Lens       Relay Optics 

Phase Plate Final Image Intermediary Image 

Figure 3.2 Optical layout of an imaging system, where an optical phase plate is inserted in an 

intermediate image plane where it is modified and is further relayed to the final image plane. 

 

In the configuration shown in Fig. 3.2, an objective lens forms an aerial intermediary image 

of the object in some intermediate image plane. In, or close to this plane (i.e. ~5mm 

distance), an optical phase plate can be inserted to optically modify the image in a controlled 

fashion.  Finally, the modified image is relayed by relay optics to the final image location, 

where it is recorded.  
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3.2 Design of Compact Macro-Optics Relay Lenses 

 

Based on the conceptual design demonstrated in Fig.3.2, an experimental setup was built to 

assess the feasibility of the conceived system. Based on the preliminary results from the 

experimental setup, we concluded that the conceived conceptual design for optically created 

special effects was feasible. The experimental procedures are further detailed in Chapter 4.  

Furthermore, an optimized solution allowing the integration of the conceived conceptual 

design in both conventional off-the-shelf cameras and single-use cameras had to be proposed 

and assessed.  

 

While the objective lens is a standard component of any commercially available camera, the 

key challenge in the conceived system was designing an ultra compact custom relay optics. 

One core issue in designing such relay optics is to match the exit pupil of the objective lens 

with the entrance pupil of the relay optics, which allows all of the light exiting the objective 

lens to be relayed to the final image plane with close to zero vignetting. To achieve this, 

several measurements of the size and location of the exit pupil of a standard 50mm Nikon 

objective lens were performed, using a collimated He-Ne laser beam as a source, as detailed 

in Chapter 4. The measurements yielded a pupil size of about 5mm located approximately 

40mm behind the last optical surface of the objective lens. Thus, the main specifications in 

the relay optics design were determined and summarizes in Table 3.1 
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Table 3.1 Optical specification of a relay lens: Design of a Relay Lens to Interface a 50mm 

Nikon Objective 

Design parameter Design criterion/Goal 

Camera objective lens F/7 

Nikon lens pupil position 15mm from last surface 

Texture plate 0.7mm thick 

Film image size 24mm by 36mm format 

Spectral weights From 430nm to 650nm 

Compact Less than 100mm length 

Clearance to film Greater than 40mm 

Clearance to film Greater than 5mm 

Pupil matching Must be achieved 

Field curvature Minimized 

Modulation Transfer Function Greater than 20% at 20 cycles/mm 

Prototype cost including lens barrel Less than $15,000 (achieved $7,500)

 

Based on the table of specifications, a final design was conceived as shown in Fig. 3.3. 

[Rolland, Hua and Shaoulov, 2002]  First, a field lens (i.e. achromatic doublet) is used to 

demagnify the image produced by the standard 50mm Nikon objective lens by a factor of 2. 

Such imaging allows bringing the image closer to the objective lens as well as using smaller 

optical phase plates (i.e. ½ of the standard 35mm film size) to modify the intermediate 

image. The field lens is also used to correct for field aberrations in the system. Furthermore, 

a modified double Gauss is used to relay the modified intermediate aerial image to the final 

image plane, while magnifying it back to its original size (i.e. 24 by 36mm). The optical 

Lagrange invariant controls all the size-angle relationships. The dissymmetry in the double 

Gauss is dictated by the change in the F-number by a factor of 2 on each side of the relay lens 

(i.e. the magnification on each side of the double Gauss changes by a factor of 2).  
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25.00   MM   Using Glasses from 2000 Schott Series 

Relay Lens Objective Lens Model 

K5 

LAF2 LAK9/SF6 

SF6/LAFN21 

Film 

Field Lens 

LAF2/SF10 

Figure 3.3  Optical layout of a compact relay 1:1 system. 

 

The performance of the conceived relay lens is demonstrated in Fig. 3.4 (a) and (b) and it is 

thus seen that the desired criteria of MTF greater than 20% at 20lp/mm is satisfied. The MTF 

is well behaved over all fields and the astigmatism is negligible. Thus, the image quality of 

the system is controlled by spherical aberration and transverse chromatic aberrations. 

However, since the system is designed specifically to introduce special effects into aerial 

intermediary image some additional blur is desirable. 
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Figure 3.4  Optical design assessment (a) ray fan plots; (b) Modulation transfer functions. 

 

Based on the conceived design, a prototype was build and tested as further detailed in 

Chapter 4.  Such relay lens was conceived to interface to a 50 mm photographic camera. 

While compact and lightweight for its purpose, the conceived relay lens was still too bulky 

(i.e. ~120mm object to image distance, and ~800 grams of weight) to be integrated into a 

single use camera for example. Other alternatives for even more compact design were thus 

considered. The main goal was to achieve a more compact, robust, and low cost optical relay.  
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To satisfy such requirements, optical magnifying systems based on microlenslet arrays were 

investigated. 

 

3.3 Imaging with Microlenslet Arrays 

 

The imaging properties of microlenslet arrays and associated baffles for binary (i.e. black and 

white) imaging, such as the imaging needed in copiers and scanners, were first investigated 

by R.H. Anderson. [Anderson, 1979]    In his work, Anderson demonstrated that arrays of 

simple lenses combined with appropriate baffles could be used in close-up imaging systems 

for black and white document copiers, oscilloscope cameras, as well as binary code scanners. 

Microlenslet-array based imaging systems were consequently further investigated for optical 

scanners and copiers, [Anderson, 1979], [Kawazi, Ogura, 1980], [Toyama, Takami, 1982], 

3D integral photography, [Davies et. al, 1994]   printers, [Mir, 1983] and photolithography. 

[Volkel et. al, 1996]  Current state-of-the-art micro-optics fabrication facilities make possible 

the manufacturing of microlenslet arrays of extremely short focal length with apertures of 

various shapes and size comparable to the wavelength. Microlenslet arrays with refractive, 

diffractive, anamorphic, spherical and aspherical positive and negative optical surfaces are 

currently available. 

 

First, we investigated various first-order paraxial layouts for 1:1 imaging and associated 

baffle placement to eliminate ghost images. Furthermore, we detailed the technical aspects of 

the software simulations with respect to how rays are precisely being traced to maximize 

efficiency and how many rays were necessary to obtain high signal-to-noise ratio images.   
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We then quantified the image quality in terms of lensletization, a tiling effect that may be 

observed in images formed with microlenslet arrays.  Such tiling effect, which highly 

degrades image quality, is dominant in certain first-order layouts.  First steps to image quality 

assessment in such systems is thus to establish conditions for minimized tiling, and in this 

context discuss the compactness, the resolution limit imposed by diffraction, and the optical 

aberrations of such systems. Finally, we generalized the theory of imaging with micro-optics 

to optical magnifying systems for imaging at various magnifications and we established the 

detailed relationships necessary to describe the most general case of imaging with two stacks 

of microlenslet arrays and the appropriate baffles. A key contribution of this work is the 

replacement of bulk macro-optical system by multi-aperture micro-optics. 

 

3.3.1 Paraxial Layout of 1:1 Imaging with a Pair of Microlenses 

 

Many possible configurations of two lenses satisfy 1:1 image relay conditions. [Shaoulov, 

Rolland, 2002, 2003] The difference among them lies in the overall length of the optical 

system and its field of view. The arrangements investigated in our work are shown in Fig. 

3.5. We consider for all systems that each pair of lenses is of same focal length f and same 

diameter D.  In this case, the overall length denoted as OAL of such system defined as the 

distance from the object to the final image plane is given by 

     
||||

2 2

fx

x
OAL

−
=     ,    (3.1) 

where x is the distance from the object to the first lens in each pair.  
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The minimum of the function given by Eq. (3.1) takes place at |x| equal to 2|f|, which yields 

the most compact configuration.  Thus the most compact possible arrangement is the “2f-4f-

2f”, thereafter referred to as the 2f-system, in which the object is located at a distance 2f in 

front of the first lens, an intermediary image is formed at a distance 2f after the first lens with 

a magnification of -1, which is consequently imaged at a distance 2f after the second lens 

with a magnification of -1. Thus, the total magnification of the system is +1. Provided the 

symmetry of the systems, the full field of view measured in the image plane, denoted as FOV 

in millimeters, and defined as 100% vignetting at its edge is most generally given by 

( 1)FOV K D= −      ,    (3.2) 

where K denotes the system type, e.g. for the 2f-system K equal 2 and the full FOV is equal 

to the diameter of the lens, D, in millimeters. 

 

2 f 2 f 2 f 2 f 

3/2 f3f 3/2 f 3f

4f 4/3 f 4/3 f 4f

6f 6/5 f 6/5 f 6f

5f 5/4 f 5/4 f 5f

7f 7/6 f 7/6 f 7f

Figure 3.5 Paraxial layouts of 1:1 imaging with a single pair of microlenses. 
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3.3.2 Optical Layout of 1:1 Imaging with a Stack of Two Microlenslet Arrays 

 

The concept shown in Fig. 3.5 is simple and compact, yet it cannot be simply extended to 

arrays of lenses because of the formation of ghost images. [Anderson, 1979] The formation 

of ghost images is illustrated in Fig. 3.6 with the most compact arrangement, which is the 2f-

system, where five elements in each array are considered for illustration.  The raytrace 

demonstrates 1:1 image formation as well as multiple ghost images.[Shaoulov, Rolland, 

2002, 2003] Thus, appropriate baffle arrays must be used in combination with the arrays of 

lenses to prevent ghost images.[Anderson, 1979] 

 

 
Image 

2f 2f 2f 2f 

Ghost 

Object 

 

 

 

 

Figure 3.6 Ray sketching illustrating the presence of ghost images for a stack of two 

microlenslet arrays without any baffles. 

 

In order to determine the location and size of the appropriate baffles needed to eliminate 

ghost image formation in the system, let’s consider the 2f-system shown in Fig. 3.6.  Let’s 

denote the first and second lens L1 and L2, respectively.  From the theory of pupils and stops, 

we observe that both L1 and L2 limit equally the amount of light entering the system from a 

considered point object on axis, thus any one of them can be chosen as the aperture stop, the 
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other one being automatically the window. [Mouroulis, Macdonald, 1997], [Rolland, 

Shaoulov, Gonzales, 2001] Let’s assume without loss of generality that L1 is the aperture 

stop (AS) of the system. We could as well assume L2 to be the AS of the system, leading to 

identical results. The exit pupil of the optical system is by definition the image of the AS in 

image space. From the Descartes imaging equations, the location and size of the exit pupil 

for the 2f-system are calculated to be at 4/3 |f| after the second lens and three times smaller 

than the diameter of L1, respectively. Similarly, the location of the entrance window is 

computed as the image of L2 through L1. In the most general case, Eq. (3.1) can be expressed 

in terms of K as follows 
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Thus, the location of the entrance pupil with respect to L1 is given by 
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Because of the symmetry of the system, the location of the exit pupil will be the same with 

respect to L2. Furthermore, the image of the AS through L1, and alternatively through L2, is 

demagnified by a factor of 

1,2

1
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 .     (3.5) 

Thus, the size of the entrance and the exit pupils is given by 

. ., . .

1

1
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K
D
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D

−
=

+
,    (3.6) 

where we again assumed 
1 2L LD D D= = . Thus, we generalized all size and location 

relationships in the relay 1:1 systems. 
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The formation of ghost images may be prevented by placing baffles at the locations of the 

entrance window or the exit pupil, computed from Eqs. (3.4) and (3.6).  In his investigation, 

Anderson had proposed baffles at both locations, however one set of baffle is sufficient given 

that they are optical conjugate of each other.[Anderson, 1979] Such simplification, validated 

in the simulations presented further in this Chapter, will bring significant benefits to the cost 

of fabrication and packaging.  One of the two possible locations of the baffle for the 2f-

system (i.e. a baffle located at the entrance window) is shown in Fig. 3.7.  With the 

appropriate baffle, we predict a ghost-free image formation of each object point.   

 

Object Image

Entrance Window, W’ Window, W

 

Figure 3.7 Microlenslet arrays 1:1 imaging 2f-sytem with appropriate baffle to minimize 

ghost images. 

 

A property of a multi-aperture optical imaging system (i.e. an optical system with a stack of 

two microlenslet arrays) is the sampling of the object by each set of sub-apertures (i.e. pair of 

microlenslets in the stacks), where each set of sub-apertures operates over a limited field of 

view given by Eq. (3.2).  Using paraxial layout, image formation with a stack of two arrays is 

shown in Fig. 3.8. (a) and (b) for the 2f- and the 5f-systems, respectively.  It is only through 
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the entire stack that the entire field of view is imaged. Thus, another key contribution of our 

work is the conclusion that increasing the overall FOV, when using a multi-aperture micro-

optics, requires simply adding more lenses to each array, while leaving the imaging 

properties of the system otherwise invariant (as opposed to the bulk macro-optical systems, 

where increasing the overall FOV of the system requires complete redesign of the system 

itself).  Under the most compact configuration, it is shown in Fig. 3.8.(a) that the imaged sub-

fields of view (sub-FOV) through each pair of microlenslets do not overlap, thus creating 

gaps in the irradiance distribution of the final image, while the effect is less pronounced if 

existent for the other systems.  This new effect in optical imaging with multi-apertures (e.g. 

microlenslet arrays), first demonstrated here in images, is denoted as lensletization. To 

overcome this effect, an overlap of the sub-FOVs for each individual set of apertures (i.e. 

pair of microlenses) is required at the expense of compactness and the natural loss in 

resolution that accompanies the overlapping sub-FOVs.  Further analysis will be presented in 

Section 3.3.3.2 to quantify the impact of lensletization on image quality for the investigated 

configurations. Given an extended small object seen by each lenslet, lensletization decreases 

with increased vignetting induced by the baffle and the amount of overlap of the sub-images 

formed by adjacent lenslets.  For example in the 2f-system, the FOV of each individual pair 

of lenses measured in the object plane is equal to the aperture of the lens, and therefore 

pronounced lensletization occurs. As the overlap of the sub-FOVs, lensletization decreases at 

the expense of a loss in compactness.  Such trade-off will be further investigated in Section 

3.3.5.  In the configurations with overlapping sub-FOVs (i.e. K > 2), the presence of varying 

vignetting across the sub-fields as well as the effect of optical aberrations on each point seen 
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by multiple lenslets do not allow for modeling and evaluation of the lensletization effect as a 

simple convolution. 

 

Parts of the object
plane sampled 

Parts of the object
plane sampled 

Irradiance Profiles

Total Irradiance Profile

 

Irradiance Profiles

 

Figure 3.8 Illustration of the irradiance profiles of an extended object imaged through (a) 

a 2f-system microlenslet arrays relay lens; (b) A 5f-system. 

 

3.3.3 Modeling the Imaging Properties of the System with Simple Light 

Sources 

 

In order to analyze further the imaging properties of microlenslet arrays, a computer model 

for imaging was developed using custom-designed software based on the ASAPTM kernel.  

The first aspect of modeling is to define the light source or equivalently an object to be 

imaged.  In order to first gain insight into basic imaging properties, such as image resolution, 

noise, and lensletization, we selected as an initial light source a white ellipse on a black 

background, which allows simple metrics to be used to quantify image quality.  

Consequently, more complex grayscale light sources, such as bitmap portraits, will be 

presented to comprehensively assess the grayscale imaging capability of microlenslet arrays.  
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In the case of grayscale images, image quality may be assessed qualitatively, as well as 

quantitatively as the difference between the relayed image and the initial image (i.e. also 

referred as the object). 

 

The optical layout of a 2f-system using two arrays of 11 by 11 microlenses in each array 

combined with an associated baffle, located without loss of generality before the lenslet 

arrays, is shown in Fig 3.9.   Furthermore, each lens in the array is a square F/5 plano-convex 

lens, 0.15 mm thickness, and 5mm focal length.  Because we use simple plano-convex 

singlets, which inherently have significant axial chromatic aberration, we only consider 

imaging one color grayscale image, which we selected without loss of generality to be λ 

equal to 656nm. Such parameters, combined with an elliptically shaped light source, are used 

in all the simulations presented in this Chapter.  

 

Figure 3.9 ASAPTM layout of the 2f-system microlenslet array based relay system with two 

11 by 11 arrays of microlenses and the appropriate baffle.  The object to be imaged is not 

represented in the figure, however from right to left, the baffle, the two microlenslet arrays 
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made of plano-convex square lenses, and the detector upon which an image will be formed 

given an object in front of the baffle, are shown. 

 

3.3.3.1 Establishing a minimum number of rays  

 

In raytracing-based simulations, noise may be modeled per Bernoulli’s trials, a probability 

law that statistically describes whether a ray reaches the detector or not.  Let us consider the 

noise associated with each pixel in the detector.  In this case, the probability of a ray reaching 

a pixel is small with respect to 1, and the probability density of noise associated with a pixel 

reduces to a Poisson distribution.[ASAP, 2002]  Thus, the standard deviation of the noise is 

equal to the square root of the number of rays per pixel, n, in the image plane. Given the 

quantification of raytracing efficiency, the signal-to-noise ratio (SNR) in the imaging 

process, which varies as the square root of n, enables selecting a minimum number of rays 

emitted per pixel in object space.   

 

Let’s denote η the efficiency of raytracing defined as the ratio of the total number of rays 

reaching the detector plane over the total number of the rays x emitted from the object, and as 

N the total number of pixels in the object and thus in the image.  The SNR as a function of x 

may then be expressed as   

        SNR (dB)(x)  =  10 log10 (  η
N

x
)        .                           (3.7)  
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To further quantify the SNR as a function of the number of rays per pixel (i.e. n = x/N), we 

need to first quantify the efficiency η which varies with each configuration and the optical 

raytracing approach implemented, thereafter referred to as the approach.  First, it can be 

shown that efficiency varies with the various configurations, and for the most optimum 

approach, the efficiency increases from about 5% in the 2f configuration to 40% in the 7f 

configuration, respectively.  However, if it can be shown to vary in the most optimum 

approach, it necessarily varies in the other sub-optimum approaches. One sub-optimum 

approach is when no optimization is established in a bitmap raytrace. In this case, the 

efficiency of the process is extremely low.  For example, for the 5f-system, 0.4% efficiency 

was established as detailed in next paragraph.  Thus, in order to limit the simulations to 1% 

Poisson noise, or equivalently a SNR of 100 (20dB), approximately  202 10× rays would need 

to be traced for a 91 by 91 pixels bitmap object! Using a standard 2.0 GHz processor, such 

calculation would take approximately 6 weeks. 

 

 

Figure 3.10 SNR for the 5f-system as a function of the number of rays emitted from the 

object, using Eq. (3.7).  In this plot N equal 8281 pixels, and η equal 34%. 
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Losses in the system, and thus efficiency, were then evaluated by setting a test detector 

surface consecutively at different planes and evaluating the number of rays reaching that test 

surface. The raytrace started with a given number of rays emitted from the object.  Then the 

loss per element was evaluated as a function of the difference between the number of rays 

just before and just after each optical element. Such raytracing allowed identifying the 

surfaces where the actual loss of rays occurred and determining the overall efficiency of the 

raytrace. The results produced showed that out of 100% light-rays on the test surface just 

before the first baffle, 0.4% reached their aimed destination, thus yielding an overall 

efficiency of the raytrace of 0.4% in this case.  

 

One level of optimization in optical raytracing procedures is to direct the rays towards the 

entrance pupil of the optical system. While in the case of multi-aperture micro-optics, such as 

stacks of microlenslet arrays, no single pupil exists but instead many sub-pupils must be 

considered, a fictive pupil can be defined that encompasses all the sub-pupils. Rays are 

directed toward the fictive pupil, which is accomplished by placing a diffuser in front of the 

object.  Such diffuser captures all rays emitted from the object before scattering and redirects 

them towards the entrance fictive pupil of the optical system. Such optimization increased the 

efficiency of the raytrace by a factor of about 45 (e.g. from 0.4% to 17.5% for the 5f-system), 

which still required tracing approximately 500 million rays for a 91 by 91 pixels object.  A 

property of this scattering technique is that each ray reaching the diffuser splits into one 

“parent” ray, which propagates according to Snell’s law of refraction, and at least one “child” 

ray, which is generated uniformly within the cone defined by the fictive pupil.  
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Building on this scattering technique, which is standard in ASAPTM Software, the raytrace 

was further optimized by splitting the raytrace in two separate raytraces.  The rays were first 

traced from the source to the diffuser, then only the “child”, or scattered rays, (i.e. as opposed 

to both the “parent” and “child” rays) were raytraced from the diffuser towards the entrance 

fictive pupil of the system. This last optimization further increased the overall efficiency of 

the raytrace by a factor of about 2 (i.e. the efficiency was 34% for the 5f-system) from the 

last optimization or a factor of 90 from the original, non-optimized, raytracing.  The SNR(x) 

for the most efficient raytracing approach is shown in Fig. 3.10 for the 5f-system.  Results 

show that 100 million rays, which are feasible to trace within a day, yield a SNR of 18dB or 

equivalently 1.6% noise.  To satisfy 1% of noise in the final raytrace, raytracing 250 million 

rays would still be required. However, no significant contribution to the accuracy of the 

results would be achieved.  In the simulation presented, we traced 100 million rays, which 

produced results with less than 5% noise (e.g. 1.6% noise in the 5f-system). Such noise level 

allowed for the quantitative evaluation of the image quality of the system while keeping the 

duration of a single raytrace within the range of a few hours.  

 

Results of simulations using an elliptical light source and 100 million rays are shown in Fig. 

3.11 for the various imaging configurations reported in Fig. 3.5.  Fig. 3.10 also reports 

additional analysis of the simulations as now discussed in Section 3.3.3.2.  
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3.3.3.2 Quantification of Lensletization 

 

The lensletization effect defined in Section 3.3.2 was quantified by computing the 

normalized autocorrelation function of the image as well as the normalized autocorrelation 

function of the original object for a cross section through the center of both the object and 

image (i.e. the ellipse), as shown in Fig. 3.11 (a), and Fig. 3.11 (b) – (g).  The computed 

normalized autocorrelation functions from the images obtained with the various 

configurations were subtracted from the normalized autocorrelation function of the object to 

assess the departure of the autocorrelation function of the image from its expected value.  In 

Fig. 3.11 (a), we present the object, the irradiance distribution along the central cross-section, 

and the computed normalized autocorrelation function. In Fig. 3.11 (b), we presents the 

image obtained for the 2f-system, the irradiance distribution along the central cross-section, 

the computed normalized autocorrelation function, and the subtracted normalized 

autocorrelation function of the object and the image.  Similar functions are shown for the 

other configurations in Figs. 3.11 (c) – (g).  

 

The effect of lensletization due to the microlenses in the arrays is observed as an oscillating 

curve in the subtracted autocorrelation functions. The lensletization in the image of the 2f-

system, as well as the 3f-sytem while less pronounced, is clearly observed. While the 2f-

system is most compact, the lensletization makes this configuration unsuitable for imaging of 

grayscale images. Lensletization subjectively appears to be negligible for the 4f-system, and 

becomes even less pronounced as expected for the 5f, 6f, and 7f systems. Quantitatively, we 

computed both the peak-to-valley (P-V) error in the subtracted normalized autocorrelation 
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function, and the RMS error.  The data obtained are presented in Table 1. Results show that 

both the P-V and RMS error are twice as large or higher for configurations below the 5f-

system. We can establish in these simulations that a P-V < 2% in the subtracted 

autocorrelation or an RMS error of < than 0.6% in RMS leads to negligible lensletization.  In 

the case of the simulations presented, the propagation of noise from the images to the 

autocorrelation function was found to be negligible, which is consistent with the results of 

both P-V and RMS error presented.  In this case of low noise, both the P-V and RMS error 

may quantify the lensletization effect. In the case of noisiest images, further investigation 

would be required to quantify how noise in the images propagates to the autocorrelation 

function to establish whether the P-V would still be an acceptable measure of lensletization.  

The RMS error intrinsically includes both the lensletization effect and the standard deviation 

of the noise in the computed autocorrelation.  

 

Table 3.2 Peak-to-valley error in the difference between the normalized autocorrelation of 

the object and the resulting image. 

System 

Configurations 

Peak-to-Valley RMS Error 

2f 0.675 0.182 

3f 0.020 0.006 

4f 0.020 0.006 

5f 0.009 0.002 

6f 0.009 0.003 

7f 0.010 0.003 

 

 36



 

(a) (b) 

(c) (d) 

(e) 

 

Figure 3.11 Imaging and irradiance distribution of an ellipse: (a) original image   (b) image 

 37



through the 2f-system (c) image through the 3f- system   (d) image through the 4f-system (e) 

image through the 5f-system (f) image through 6f-system (g) image through the 7f-system. For 

the irradiance distributions the grey level value vs. the number of pixels in the object is plotted. 

The autocorrelation functions of the image are plotted in arbitrary units. 

 

3.3.4 Modelling of the Imaging Properties of the System for Greyscale Images 

 

Imaging simulations with grayscale objects (i.e. bitmap images) were created using the 

various imaging configurations presented in Fig. 3.5. The number of rays used was 100 

million rays as well.  Results are shown in Fig. 3.12.  To our knowledge, the modeling of 

imaging of grayscale bitmaps through stacks of microlenslet arrays is first demonstrated in 

this work.  The challenge with imaging grayscale bitmap images is that no artifacts such as 

apparent lensletization are tolerable in the image.  Therefore, the range of optical 

configurations yielding no apparent artifacts must be established.  In the case of binary 

images (i.e. black and white patterns), simple post-processing operations on the images such 

as thresholding can be applied to recover necessary image quality for the task at hand (e.g. 

recognizing a letter).  Such processing is not applicable to grayscale images and a 

fundamental question was whether a system may be designed to eliminate lensletization 

artifacts, while preserving sufficient image quality in terms of resolution, and the ability to 

represent sufficiently a range of grayscales.  It has been only through this investigation of 

imaging grayscale images that the issue of intensity variations in the image, which we have 

further defined as lensletization, has become critical to the system optimization.  Results 

indicate that artifacts of the microlenslet arrays are observed in the 2f, 3f, and 4f systems, 
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which is consistent with the results obtained and quantified for the ellipse light source.  No 

artifacts seem observable for the 5f, 6f, and 7f systems (and naturally any system beyond 7f 

as well). 

 

An analysis of the image quality of the 5f-system shows that the diffraction limited point 

spread function (PSF) is 33µm, which in the simulation is less than the pixel size in the 

image (i.e. 55µm). Given that simple plano-convex singlets were considered in the 

simulations, the monochromatic (i.e. λ equal 656 nm) modulation transfer function (MTF) is 

found to hold reasonably well across the sub-fields of view of each pair of microlenses in the 

stack. The plano-convex lenses are oriented with their convex side towards the longer 

conjugate to minimize the aberrations.  The MTF satisfies 20% modulation at 18 cycles/mm 

up to 80% of the full FOV.  The equivalent PSFs shown in Fig. 3.13 for the 0%, 70%, 95%, 

and 100% vignetted FOVs, illustrate the broadening of the PSF with FOV.  Furthermore, the 

system is not fully symmetrical around the aperture stop and the local distortion across each 

sub-fields of view is computed to be less than 10% up to 70% of the full sub-fields of view, 

and 25% at the edge of each sub-field of view.  Finally, given that each lenslet is a singlet 

and the system is not symmetric around the pupil, the system currently suffers from both 

axial and transverse chromatic aberrations.  A simulation of a red, green, and blue (i.e. λ 

equal 656nm, 587nm, 486nm, respectively) self-emitting image is shown in Fig. 3.14.  Per 

the simulation, the overall chromatic aberrations are shown to contribute additional blur to 

the image in its present un-optimized stage.  
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Figure 3.12 Imaging and irradiance distribution of a grayscale bitmap object: (a) original 

image;   (b) image through “2f” system; (c) image through “3f” system;   (d) image 

through “4f” system; (e) image through “5f” system; (f) image through “6f” system; and 

(g) image through “7f” system. 

 

(a) (b) 

 

Figure 3.13 Simulation of imaging of an RGB image through a stack of two microlenslet 

arrays to qualitatively assess the impact of chromatic aberrations on image formation. 
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Figure 3.14 Normalized PSF plots for 0%, 70%, 95% and 100% vignetted sub-fields of 

view for a pair of plano-convex lenses. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -80 -60 -40 -20 0 20 40 60 80 10

Transverse distance (mm)

N
o

rm
a
li

ze
d

 P
S

F
 (

a
.u

.)

0

100% vignetted FOV

95% vignetted FOV

70% vignetted FOV

0% vignetted FOV 

 

 

3.3.5 Systems compactness 

 

The compactness of each configuration, defined as the overall length (OAL) from the light 

source to the image plane, is given by 

22

1

K
OAL f

K
=

−
,                   (3.8) 

where the OAL is shown to scale linearly with focal length   If we set the focal length of each 

microlens to 0.5mm according to commercially available microlenslet arrays and we consider 

the 5f-system, which yields no lensletization, the OAL is only 6.25mm.  Results of 

compactness computations as a function of the system configuration (i.e. the M parameter) 

are reported in Table 3.3. 
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Table 3.3  Overall compactness of the microlenslet arrays. 

 Type of system OAL(mm) for  f = 0.5mm 

7f 8.2 

6f 7.2 

5f 6.25 

4f 5.3 

3f 4.5 

2f 4.0 

 

 

 

 

 

 

 

3.3.6 Paraxial Layout of 1:M Imaging with a Stack of Two Dissimilar 

Microlenslet Arrays. 

 

Once the feasibility of replacing bulk macro-optics with multi-aperture micro-optics was 

established and detailed relationships describing the imaging process were obtained, the next 

step was to generalize our findings to the most general case of multi-aperture optical systems 

of various magnifications. 

 

There are numerous possible configurations that can be used to create an optical 1:M 

magnifying system, as shown in Fig. 3.15 for a system with an overall magnification of M 

greater than 1, which can be further extended to imaging with a stack of two dissimilar 
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microlenslet arrays, as shown in Fig. 3.16.[Shaoulov, Martins, Rolland, 2003] The general 

case for a stack of two microlenslet arrays is illustrated in Fig. 3.15. 

 

x1’ x2’ x2x1

  

 

 

 

Figure 3.15 Paraxial optical layout of a generalized magnifying system with an overall 

magnification of M > 1. 

 

Object 

Image 

Microlenslet Array 2 

Baffle

Microlenslet Array 1 

 

Figure 3.16 Optical layouts of 1:M imaging with a stack of two arrays of microlenses. 

 

 43



Provided that the microlenses in the first and the second arrays are of focal length f1 and f2 

respectively, the object distance from the object to the first lens (L1) is x1, the image distance 

from L1 to the intermediate real image is x1’, the object distance from the intermediate real 

image to the second lens (L2) is x2, and the image distance from L2 is x2’, the overall length 

of such system defined as the distance from the object to the final image plane is given by 

 

( )'' 2211 xxxxOAL +++=  .    (3.9) 

 

For simplicity we assumed the absolute value of all quantities (i.e. x1’ denotes 1 'x , etc.) 

Let’s further assume that the first and the second microlenslet arrays operate at magnification 

of magnitudes m1 and m2, respectively. The magnitude of the overall magnification M of the 

system is defined as  

21mmM =  ,     (3.10)  

where m1 and m2 are given by 

1
1

1

'x
m

x
=   and 2

2

2

'x
m

x
= ,    (3.11)  

respectively. The relationships describing the optical relationships between x1, x1’, x2, x2’, f1 

and f2 are given by Descartes equations 

'

1

'

11

111 fxx
=+   and 

'

1

'

11

222 fxx
=+  ,   (3.12) 

where we assumed both microlenslet arrays are immersed in air (i.e. the index of refraction 

on both sides of each individual lenslet is equal to 1). Substituting Eq. (3.11) in Eq. (3.10) for 

the OAL we obtain  
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( ) ( ) ( 22112221112211 11'' mxmxxmxxmxxxxxOAL + )++=+++=+++=  (3.13) 

 

Furthermore, substituting Eq. (3.11) in Eq. (3.12) we obtain 

1

1 1 1

1 1

'

m

m x f

+
=   and  2

2 2 2

1 1

'

m

m x f

+
=     (3.14) 

which further solves for x1 and x2

         '
1

1

1

1
1 f

m

m
x

+
=   and  '

1
2

2

2
2 f

m

m
x

+
= .    (3.15) 

Substituting Eq. (3.15) in Eq. (3.13) we obtain for OAL 

( ) ( )
'

1
'

1
2

2

2

2
1

1

2

1 f
m

m
f

m

m
OAL

+
+

+
= .    (3.16) 

 

Thus, the OAL of a magnifying optical system based on a stack of two dissimilar 

microlenslet arrays is described by a 4-dimensional function in the { }1 2 1 2; ; '; 'm m f f space. 

Various 3-dimensional slices of the 4-dimensional function describing the OAL may be 

considered, however since the magnification is the driving factor for our research, 3-

dimensional slices with respect to m1, or alternatively m2, are of particular interest.  

Furthermore, the minimum of the function given by Eq. (3.16) after substituting without loss 

of generality for m2 using Eq. (3.10) yields the most compact configuration of the two 

microlenslet arrays and is given by 

0
1

=
∂
∂

m

OAL
,      (3.17) 

which yields 
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Further simplification of Eq. (3.18) yields 

( )( ) ( )( )1 2 2 2 2 1 1 2' 1 1 ' 1m f m m m f m m 1− + = − + .  (3.19) 

Thus, in the most general case the most compact arrangement (i.e. the minimum OAL) of a 

magnifying optical system based on a stack of two dissimilar microlenslet arrays is described 

by a 4-dimensional surface in the { }1 2 1 2; ; '; 'm m f f space. One of the solutions to Eq. (3.19) 

occurs at  , which simplifies the system to the microlenslet-arrays based 1:1 

relay system with an OAL 

121 === Mmm

'4'4 21 ffOAL += .     (3.20) 

 

Given that for a 1:1 relay system '' 21 ff = , Eq. (3.20) further simplifies to 

'8'4'4 111 fffOAL =+= ,    (3.21) 

which describes a 2f configuration for 1:1 relay system. Previously in Section 3.3.1 we 

discussed that the most compact solution for a 1:1 optical relay system is the 2f 

configuration, however it is seen from Eq. (3.21) that the 1:1 relay system with a 2f 

configuration is a global minimum of the generalized function describing the OAL of an 

optical system of any positive or negative magnification.  
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Furthermore, for a desired M (i.e. if M is given), Eq. (3.19) may be solved for m1 to minimize 

OAL.  In this case, it can be shown that 

    

21

21

2

2

1
1 ⎥

⎦

⎤
⎢
⎣

⎡
+

+
=

fMf

fMMf
m  .      (3.22) 

 

Furthermore in all cases (i.e. ∀ M), to best eliminate ghost images in the final image plane, 

the intermediary sub-images after the first microlenslet array must not overlap in order to 

enable placement of a baffle at the entrance pupil of the system.  Such condition naturally 

requires m1<1.   Without loss of generality, let f2 = γ f1.   Then Eq. (3.22) that sets the 

minimum OAL, combined with the requirement of  m1<1, leads to a system with an overall 

demagnification (i.e. M < 1).   Thus, for an M >1, a configuration can be established, but it 

will not correspond to the minimum OAL.  It should be noted, however, that the most 

compact arrangement may not correspond to optimal first-order image quality, as previously 

also found in the 1:1 relay system. Specifically, first-order image quality is also highly 

dependent on image lensletization.  Overcoming this effect was discussed in detail in Section 

3.3.2 and requires overlapping the individual sub-fields of view of each individual pair of 

lenses at the expense of an increase in OAL and a natural decrease in resolution. [Shaoulov, 

Rolland, 2003] 
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3.3.7 Modelling the Imaging Properties of the Generalized Magnifying 

System with Greyscale Light Sources 

 

To validate the feasibility of the conceived 1:2 imaging system, an F/5-500µm focal length 

microlenslet array was selected in the front location without loss of generality, and an F/8.3-

1000µm was selected in the back location. Furthermore, the microlenses in each array were 

square plano-convex lenses with a thickness of 150µm.  The microlenslet arrays operate at 

m1 equal 0.5 and m2 equal 4, respectively.  In such configuration, it can be shown from basic 

principles that the second lenslet in each pair is the aperture stop of the system and therefore 

the baffle has to be placed in the location of the entrance pupil, which is conjugate of the 

aperture stop.  Furthermore, the baffle must be established for the correct magnification of 

the pupils.  In the case investigated, a set of micro-baffles with computed diameter of 40µm 

was placed at the appropriate location in the system.   

 

A software model for imaging assessment was developed using custom developed software 

based on ASAPTM. The optical layout of the system made of 11 by 11 microlenses in each 

array is shown in Fig.3.17. An analysis of the minimum amount of rays satisfying 99% 

accuracy of the raytraced image was performed using the same methodology as described in 

Section 3.3.3.1, and we found that the minimum number of rays needed was 2.5 billion. With 

the current state of the hardware and software technology such accuracy will require over 3 

weeks of computational time.  Based on the accuracy of the raytrace analysis shown in Fig. 

3.18, an accuracy of 97% was selected for image quality feasibility because it satisfies the 
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criterion of about 48 hours computational time on a 2.8 GHz PC as well as the criteria of 

more than 95% accuracy commonly accepted as a threshold for assessing feasibility. 

[Cassarly, 2003] 

  

 

 

Baffle 

Front microlenslet array 

Back microlenslet array 

Detector 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 ASAPTM layout of 1:2 microlenslet arrays based magnifying system with two 11 

by 11 arrays of microlenses and the appropriate baffle.  From right to left, the baffle, the two 

dissimilar microlenslet arrays made of square plano-convex lenses, and the detector upon 

which an image will be formed given an object in front of the baffle, are shown. 
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Figure 3.18 Accuracy of the raytrace in percents as a function of the number of rays 

emitted from the object. 
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Results of the simulation shown in Fig. 3.19 first demonstrate that a 1:2 relay lens based on a 

stack of two dissimilar microlenslet arrays can be achieved with no ghost images, yet a small 

residual lensletization of the image may be observed.  Such lensletization would be overcome 

in a final, application-optimized configuration, by further overlapping the sub-FOVs.  With 

commercially available microlenslet arrays, such system would have an overall length of 8.7 

mm and weight of about 1 gram.  An analysis of the image quality of the system shows that 

the diffraction limited point spread function is 41.67µm. Such spot size is large compared to 

the 10µm pixel size found in most commonly available CCD cameras.  A smaller pixel size 

of 10µm may be achieved by increasing the apertures of the microlenslets in both arrays to 

410µm in the front and 500µm in the back, respectively. However, increasing the apertures 

of microlenslets while keeping their focal length invariant naturally occurs at the expense of 

decreasing the working F-number.  Such decrease leads to a more complex performance-
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optimization task, yet it does not compromise the feasibility of the design. In this case, the 

OAL is still compact and about 9.5mm. Such resolution requires simulations with more 

pixels to cover an equivalent FOV, thus less rays per pixel leading to a raytrace accuracy of 

about 85% based on the same criterion of about 48 hours computational time on a 2.8 GHz 

PC . The results obtained for that system were consistent with the results obtained with the 

97% accuracy, confirming the feasibility of the system. This simple analysis however points 

to the reason we originally chose microlenslets of smaller diameter so we can run simulations 

at higher accuracy with the intrinsic understanding that diffraction is limiting and can be 

reduced with larger size microlenslets.   

 

(a) (b)

 

 

 

 

 

Figure 3.19 Imaging of grayscale object through 1:2 microlenslet array based magnifying 

system: (a) object and (b) magnified image. 

 

If the system is made of simple plano-convex lenses, as considered for the feasibility 

investigation, both monochromatic and chromatic aberrations will be limiting the image 

quality.  However, because the sine condition is quasi-satisfied (i.e. <0.02% discrepancy), if 

the lenslets located in the sub-pupils are aspherized so there is no spherical aberration, then 

coma will also be negligible.  Furthermore, per MTF analysis, astigmatism is currently 
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limiting the image quality and may be corrected by aspherization of the lenslets in the first 

array, which is the entrance window.  Distortion for any pair of lenslet is non-negligible and 

requires further investigation in how it practically affects image quality.   Finally, given that 

simple plano-convex lenslets were used, the system will suffer both axial and transverse 

chromatic aberrations.  An analysis shows that axial chromatism is significant and will need 

to be corrected using a lenslet doublet in the pupil.  Lateral color, however, is less than 5µm 

at the edge of the field of view, thus will most likely not require any further minimization.  

However, if an application required no lateral color, another lenslet doublet located in the 

entrance window could be used. 

 

3.4 Discussion and Future Work 

 

While relaying and magnifying images using compact multi-aperture based optical systems 

can only be done at the expense of resolution, such technology offers new solutions for 

applications where resolution is not a stringent requirement.  Such relay and magnifying 

systems may find further application in the improved design of head-mounted 

displays.[Shaoulov, Martins, Rolland, 2004], [Martins, Shaoulov, Rolland, 2004] 

Specifically, in the case of relaying and magnifying images in head-mounted displays, slight 

loss in resolution can help depixelization of the micro-display generating the images. Thus, 

this is a case where a slight loss in the resolution actually benefits the system.  In the case of 

optically created special effects, the images created are highly distorted and blurred by 

optical phase plates inserted out of focus within the relay optics in order to generate images 

modified with special effects as demonstrated in Fig. 3.2. [Shaoulov, Rolland, 2001]  In such 
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imaging framework, resolution is not a key qualifier of image quality, but artifacts such as 

lensletization must be avoided.  

 

Future work on the relay systems will further expand the research to investigate how stacks 

of microlenslet arrays may be optimized to satisfy various image quality criteria from the 5f 

to the 7f configurations, in which lensletization was shown to be negligible.  Aspherization of 

the singlets may be used in a more advanced configuration to minimize spherical and 

astigmatic aberrations, two main limiting monochromatic Seidel aberrations. Also, whether it 

is possible to design better systems by stacking more than two microlenslet arrays is a 

question of investigation.  Trade-offs of image quality and cost of alignment must be 

evaluated across specific application requirements.  Axial color can be corrected by using 

doublet-lenslets within each stack.  Such improvement requires a new fabrication process, 

which is under investigation in our laboratory.  In this investigation, we will need to draw a 

sufficient number of rays to ensure that the simulations are not limited by the Poisson noise 

imposed by raytracing a finite number of rays.  Under low noise conditions, the impact of 

optical aberrations and diffraction are clearly quantifiable.   

 

Furthermore, a comprehensive modeling of the rigorous theoretical framework set by Eqs. 

(3.9) to (3.18) may be used to design the most compact task-driven optical solution for 

various problems, which will allow the replacement of bulk macro-optical systems with ultra 

compact multi-aperture micro-optical systems, wherever possible. That could lead to 

significant gain in compactness, weight and cost-effectiveness in many areas currently 

utilizing bulk macro-optics. 
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 Finally, working prototypes will be fabricated in future application driven cases to further 

demonstrate the imaging capabilities of multi-aperture micro-optics. 
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CHAPTER 4: EXPERIMENTAL METHODS AND RAYTRACING AS 

AN IMAGING PROCESS 

 

 

Based on the methods discussed in Chapters 1, 2 and 3, images with optically encoded 

special effects, such as effects resembling art forms, can be formed using optical phase 

plates. The experimental foundation of this work is discussed in this Chapter, as well as 

custom developed optics and software to assess and quantify the proposed methods. Results 

captured with custom-designed cameras as well as software simulations are presented to 

demonstrate and verify the feasibility of the proposed approach. 

 

4.1 Experimental Assessment of Optically Creating Special Effects 

 

4.1.1 Experimental Setup 

 

Conceptually the experimental setup uses a standard objective lens to form an aerial image in 

some intermediate image plane, then modifies the aerial image in this plane by using an 

optical phase plate inserted in, or around this intermediate plane, and finally optically relays 

the modified image on an image-capturing device (e.g. film or CCD) where the final image is 

recorded. A conceptual design of the experimental setup utilized to assess the feasibility of 

the concept is demonstrated in Fig. 4.1. 
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Figure 4.1 Layout of the bench optical system used to assess imaging through optical phase 

plates. 

 

Following the conceived conceptual design, an actual experimental setup was built consisting 

of a standard 20mm focal length Nikon objective mounted on a translational stage, used to 

form the intermediate image from a 3D scene (e.g. a still life, a portrait, etc.) located in front 

of the objective. The location of the image produced by this objective (i.e. the intermediate 

image of the conceived system) was first measured experimentally for the selected scene 

location. The distance from the scene to the objective (i.e. approximately the object distance 

of the objective, the exact object distance being measured from the principal plane object of 

the lens to the object location) was selected such that the scene itself remained within the 

depth of field of the objective lens for the desired F/# (i.e. ~F/7 for example). Thus, in the 

final setup the effects of defocus would be only caused by the controlled defocus of either the 

objective lens or the relay optics. The optical phase plates, which may be mathematically 

synthesized, [Rolland, Strickland, 1997] [Rolland, et.al., 1998] are micro fabricated using 

PC
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laser etching technology, which will be briefly discussed in Section 4.1.3. In our 

experiments, the optical phase plates were located on a separate translation stage allowing for 

defocusing the optical phase plate with respect to the aerial intermediate image produced by 

the objective, as well as allowing moving the phase plate in the lateral plane (i.e. along the 

axis perpendicular to the optical axis). The intermediate image itself could be defocused as 

well, using the controls of the objective. A second 50mm Nikon objective (AF Nikkor 50mm 

f/1.8)  was set as a 1:1 imaging system allowing relaying the intermediary image to the final 

image plane where a color CCD camera connected to a PC controlling the experiment was 

located. A He-Ne laser was used to identify the optical axis of the front objective and to align 

the relay objective to the same optical axis. [Shaoulov, Rolland, et. al., 2001] A photograph 

demonstrating the actual setup built is shown in Fig. 4.2. 

 

Figure 4.2 Bench optical setup in the testing of imaging though optical phase plates. 

 

Utilizing the experimental setup, various final images as a function of the location of the 

optical phase plate and the defocus of the intermediary image were observed and recorded. 

 57



One set of such images, as a function of various defocus of the intermediate image plane and 

the optical phase plate used is demonstrated in Fig. 4.3. Since there is no figure of merit 

suitable to evaluate the degree to which the modified images resembled actual art forms, the 

selection was based on subjective perception. It was qualitatively established that the best 

results were obtained when the optical phase plate and the intermediary image were both 

about 5mm out of focus.  However, the experimental setup was rather inconvenient to work 

with because it was bulky and was fixed to the optical table.  Furthermore the image was not 

directly seen by the human eye (i.e. as in an actual camera, where the image is previewed in 

the viewfinder). Consequently the fixed setup led to difficulties in illuminating the scene and 

manipulating dynamically the defocus of the optical phase plate and the objective, while not 

allowing enough flexibility for the experimental measurements. Thus, a new design for the 

relay optics compatible with a standard Nikon objective and standard Nikon camera body 

was sought and conceived as a next step, as detailed in section 4.1.2. 
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Figure 4.3  Images obtained on the bench setup with: (a) 5mm defocus of the optical phase plate 

with respect to the intermediate image plane; (b) same as in (a) with some additional defocus 

introduced by the front objective; (c) closeup view of the scene with the same amount of defocus as 

in (b); (d) another closeup view of the scene with the same amount of defocus as in (b). 
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4.1.2 Relay Lens Prototype 

 

After achieving the conceptual design of the relay optics, the actual design was finalized in 

collaboration with Optical Research Associates Corporation.  There were two important 

conceptual ideas that determined the final design.  

 

First, in order to make the design as compact as possible, a field lens was set close to the last 

optical element of the standard 20mm Nikon objective. Consequently the size of the 

intermediate image decreased by a factor of 2. Therefore, a modified 1:2 double Gauss lens 

was used to relay the intermediate image to the final image location, as discussed previously 

in Chapter 3.  The final image was relayed with a clearance of 40mm from the last optical 

surface in order to account for the required clearance imposed by the standard body of the 

Nikon camera. To ensure the compatibility between the designed compact relay optics and 

the standard camera body, we performed measurements of the back focal length (BFL) of 

three standard Nikon objectives, a 50mm standard Nikon Lens used as the relay optics in the 

experimental setup, a 20mm standard Nikon Lens used as the objective lens in the 

experimental setup, and a 35mm standard Nikon Lens used as a control point in our 

measurements (i.e. since all standard Nikon Lens must be compatible with the standard 

Nikon camera body, all the measured BFLs must be the same within the measurements’ 

error).  To perform the necessary measurements of the BFL of the three standard Nikon 

objectives, the Nodal Slide Method was used. [Malacara, 1978] [Harvey, 2004] 
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The Nodal Slide Method, which gives accurate experimental results, involves a few steps as 

further detailed. The experimental setup is demonstrated in Fig. 4.4. [Harvey, 2004] First, we 

set the front nodal point of the objective under investigation on the axis of rotation of the 

rotational stage used to mount the objective to the bench. Then we moved the microscope 

carrier to focus the vertex of the test lens on the image plane. Then the Nodal Slide was 

rotated and the fine scale of the test lens carrier was adjusted until the image was stationary, 

which indicated that the lens was set to operate at its Nodal points.. Then the Nodal Slide was 

refocused and reading A, locating the back focal point of the test lens, was recorded. Further, 

the Nodal Slide carriage was moved until the rear surface of the test lens came in focus. 

Reading B was recorded as the new position of the Nodal Slide carriage. The difference 

between A and B determined the back focal length of the lens under investigation, as 

measured from the vertex of the lens to the focal point of the lens. Furthermore, to determine 

the location of the back principal plane the readings from the fine scale of the test lens 

carriage were recorded in positions A and B, denoted as a and b, respectively. The difference 

between a and b determined the location of the principal plane with respect to the measured 

vertex of the investigated lens. Thus, the effective focal length of the lens was measured and 

compared with the manufacturer specification, allowing assessing the experimental error. 

Results of the experimental measurements are summarized in Table 4.1. The experimental 

results demonstrated that a clearance of ~40mm for the relay optics would be sufficient to 

ensure compatibility with any standard Nikon objective, and thus with any standard Nikon 

camera body as well.  
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Figure 4.4  Nodal slide method used to measure the BFL of the lens under test. (Courtesy 

of J. Harvey and A. Krywonos) 

 

Table 4.1. Measurements of three Nikon photographic lenses 

 50mm standard 
Nikon lens 

20mm standard 
Nikon lens 

35mm standard 
Nikon lens 

A(average), cm 21.35 21.61 22.58 

σA, cm 0.04 0.05 0.05 

B(average), cm 25.12 25.47 26.41 

σB, cm 0.05 0.06 0.06 

a(average), mm 6.12 16.92 3.71 

σa, mm 0.1 0.3 0.1 

b(average),  mm 19.61 -0.5 1.63 

σb, mm 0.3 0.05 0.1 

BFL(average),  mm 37.70 38.60 38.30 

δ’ (average), mm 13.49 -17.42 -2.08 

f’(average), mm 51.19 21.18 36.22 

Error, % 2.38 5.9 3.49 

 

The second important conceptual idea was to relay the exit pupil of the standard objective 

through the relay system, thus minimizing vignetting. Various measurements of the exact 

location of the exit pupil for a standard AF Nikkor 50mm f/1.8 objective were thus 

performed. For the exit pupil experimental measurements we used similar experimental setup 

to the one used to measure the BFL of the Nikon objective. Results for the exit pupil 
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measurements demonstrated that it is located at a distance of 15mm away from the last 

surface of the lens. 

 

Finally, the field curvature of the standard AF Nikkor 50mm f/1.8 was measured,   allowing 

us to constraint the field curvature of the objective-relay assembly optics to be equal or less 

than the measured value for the objective lens. For the field curvature experimental 

measurements, we used a setup similar to the one presented in Fig. 4.4 consisting of a 

collimated He-Ne Laser beam, a polarizer to reduce the intensity of the beam, a test Nikon 

f50/1.8 AF Nikkor Lens operating at a low F/# (i.e. F/22), and a measuring microscope, 

placed on a transnational stage. First we cleaned and collimated the laser beam using a 

pinhole and a microscope objective assembly to obtain a collimated beam.. Furthermore, we 

set the test Nikon f50/1.8 AF Nikkor Lens to work at its nodal points. Thus, the focal point of 

the Nikon lens was always along the optical axis and we were able to directly measure the 

field curvature as the departure of the measured best focus from the paraxial focal plane. We 

expected the field curvature, denoted as W220 to be parabolic, according to the theory. 

[Slyusarev, 1984]  Then we performed our measurements by scanning the location of the 

focal point and looking for the minimum of the so-formed curve as a function of the lens tilt 

with respect to the optical axis. By scanning with a step of 1 degree, we found the desired 

minimum. Thus, the orientation normal to the laser beam (i.e. the location defining the 

paraxial focal point) was provided for the Nikon f50/1.8 AF Nikkor Lens under investigation. 

Furthermore, we re-calibrated our setup by setting the measured location defining the 

orientation of the test lens normal to the optical axis to correspond to 0 degrees tilt on the 

rotational stage, and then we scanned trough the working FOV, calculated to be 25 degrees 
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for a standard 35mm film (i.e. 24 by 36mm film format). The results of the experimental 

measurements are presented in Table 4.2 and a quadratic fit for the field curvature, measured 

as the departure of the best focal point from the paraxial focal plane, in mm, against the 

normalized field angle, is demonstrated in Fig. 4.5.  The bars at each point represent the 

standard deviation of each measurement. 

 

Table 4.2. Measurements of field curvature for standard 50mm Nikon objective.  

Field Angle θ, degrees Cosine of the Field 

Angle θ 

Measured Value of the 

Best Focus Departure 

from the Paraxial 

Focal Plane, mm 

Standard deviation, 

mm 

26 0.899 5.391 0.018 

21 0.934 3.378 0.014 

16 0.961 1.878 0.011 

11 0.982 0.895 0.013 

6 0.995 0.329 0.004 

5 0.996 0.319 0.306 

4 0.998 0.132 0.019 

3 0.999 0.096 0.015 

2 0.999 0.049 0.039 

1 0.1000 -0.016 0.027 

0 1 0 0.022 

-1 0.1000 0.006 0.024 

-2 0.999 -0.012 0.006 

-3 0.999 0.054 0.036 

-4 0.998 0.093 0.01 

-5 0.996 0.119 0.009 

-6 0.995 0.167 0.016 

-9 0.988 0.541 0.066 

-14 0.970 1.285 0.011 

-19 0.946 2.632 0.019 

-24 0.914 4.780 0.068 

-26 0.899 5.321 0.052 
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Figure 4.5  Measurement of the field curvature of a standard Nikon 50mm Nikon lens and 

a quadratic fit of the data, representing the field curvature. 

 

Thus, the specifications for the relay system were fully determined and summarized in Table 

4.3. The MTF performance of the optimized relay system was previously presented in 

Chapter 3, Fig. 3.4 and showed that it holds well over the entire field of view. [Shaoulov, 

Rolland, et. al., 2001] In addition, the field curvature of the achieved relay system is within 

the constraint imposed by the measured field curvature for the standard Nikon objective. 

Thus, we achieved a final design satisfying all the constraints imposed by our application and 

ensuring maximum compactness within the paradigm of bulk macro-optical systems. 

However, much more compact solutions can be provided with the novel paradigm of imaging 

with multi-aperture micro-optics, as discussed in Chapters 3 and 6. 
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Table 4.3. Specification for the design of a compact relay lens to create optical special effects 

by utilizing optical phase plates. 

Parameter Specification Achieved 

Detector Standard 35mm film Compatible 

Field of view Determined by the film size 52 degrees 

F/number From F/1.8 to F/22 F/1.8-F/22 

Magnification 2 2 

Effective  
focal length 

Determined by the clearance to the film 40mm 

Spectral range From 400nm to 750nm 400nm-750m 

Image quality MTF greater than 20% at 20lp/mm 20% 

Vignetting Pupil matching that minimizes vignetting 0% vignetting 

Overall length  Less than 100mm 85mm 

Prototype cost  Less than $15,000 $7,500 

 

Based on the final design of the relay system a prototype was built by Coastal Optics Co., 

which is shown in Fig. 4.6. Using the prototype of the relay system together with a standard 

Nikon f50/1.8 AF Nikkor Lens and a standard Nikon camera body, results with various 

previously fabricated optical phase plates and amount of defocus were obtained. One such set 

of results, courtesy of Steve Hylen, is demonstrated in Fig. 4.7.  However, the selection of 

optical phase plates creating various special effects at this point was based on a trial-and-

error method. Thus, the need of software predicting the visual appearance of an image 

modified with a given optical phase plate used within the designed hardware became 

apparent in order to design and fabricate optimized plates targeted at specific special effects. 
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Figure 4.6  Compact relay lens prototype. 
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Figure 4.7  Images of special effects obtained with the prototype relay lens shown in Fig. 

4.6 and proprietary phase plates. (Courtesy of Steve Hylen). 

 

4.1.3 Fabrication of the Optical Phase Plates. 

 

The optical phase plates discussed in this research are optical surfaces created out of a 

bitmap, each gray level of which corresponds to certain height etched in an optically 

transparent material (e.g. epoxy), placed on top of a glass substrate.  A typical bitmap used to 
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generate an optical phase plate consists of 6000 by 4000 pixels, which are mapped on a glass 

plate of 0.5mm substrate thickness with an 18 by 12 millimeters transversal size of and 

optical surface height distribution of 25 micrometers. The desired size of the optical phase 

plate is determined by the intermediate image size in the designed relay optics (i.e. ½ the 

standard 35mm film format). The size of the bitmap, in pixels, was selected to maintain the 

desired aspect ratio of 1.5, determined again by the standard 35mm film format. Thus, each 

bitmap pixel is mapped onto a 4.8 by 4.8 micrometers area on the glass plate while the 

optical surface height distribution varies anywhere between 0 and 25 micrometers. The 

features on the glass surface are etched using a proprietary dry laser etching technology 

implemented by Rochester Photonics (currently subdivision of the Corning Inc.), as 

conceptually demonstrated in Fig. 4.8, courtesy of Joe Burkenburg. Four of our typical 

optical phase plates are shown in Fig 4.9. The properties of the fabricated optical phase plates 

were further verified utilizing a Zygo interferometric microscope and found to be within the 

fabrication specifications, as demonstrated in Fig. 4.10. 
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Figure 4.8 Dry laser etching instrument utilized in the fabrication of optical phase plates. 
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Figure 4.9 Four optical phase plates fabricated through the dry laser etching process. 
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The major problem of this fabrication technology is the cost effectiveness (i.e. 4K for one 

master plate). Making the master optical phase plate is an expensive process, which rules out 

the trial-and-error method of creating optical phase plates for each desired special effect, 

further justifying the need of software enabling the correct modeling of the imaging process 

through such complex optical systems. 

 

Figure 4.10  Interferometric measurements of the optical phase plates. 
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4.2 Software Modelling of the Imaging Process within the Raytracing 

Paradigm 

 

4.2.1 Raytracing in the Theoretical Framework of the Vectorial Law of 

Refraction 

Geometrical optics is a part of optics involving phenomena that can be discussed within the 

framework of Fermat’s principle, from which laws of reflection, refraction and propagation 

can be derived. [e.g. Marechal, 1952]  Let’s define the optical length of the light path as the 

integral 

∫=
S

ndsOPL ,      (4.1) 

where ds is an element of the arc length of the light path and n is the index of refraction along 

the ray. Assuming two points in an isotropic medium, Fermat principle states that the optical 

path that the light actually takes is the extremum of all possible optical paths between these 

two points.  It reduces to a minimum for points in the regular neighborhood, which is the 

region in space where one, and only one, light path passes through each point.  This region is 

limited by the envelope of the light paths, known as the caustic.  For light paths beyond the 

caustic, the optical path length is actually stationary.[Born, Wolf, 1999]  Further, solely 

propagation in homogenous and isotropic medium where the light can be shown to propagate 

along paths of infinite radii of curvature (i.e. straight lines) will be assumed. Such paths 

provide a model for light propagation referred to as light rays. [Forbes, Alonso, 1998] 
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The laws of reflection and refraction are illustrated in Fig. 4.11, assuming that light is 

incident on the surface between two media. The point where the light intersects the surface is 

called the point of incidence.  Typically, at any point of incidence, the normal N
G

 to the 

surface can be established.  If a ray propagates along the direction of the normal (i.e. the case 

of normal incidence), a component is reflected on itself, while the other is transmitted 

undeviated. In the most general case, the angle subtended by the surface normal and the 

incident ray, known as the angle of incidence i, is non-zero and yields deviated reflected and 

refracted rays.  The angle subtended by the surface normal and the reflected or refracted ray 

shall be denoted i’.  Starting with Fermat’s principle, a vectorial law applicable to either 

reflection or refraction can be derived, [Marechal, 1952] that is given by: 

                                                    N ) cos cos(u u' ini' n'nn' −=− .   (4.2) 

The scalar law of reflection, obtained by taking n’ = -n, states that the angle of reflection is 

numerically equal to the angle of incidence (i.e. i’ = -i upon reflection).  Such a convention 

for changing the sign of the index of refraction upon reflection allows unification of the laws 

of refraction and reflection.  In this respect, such convention is advantageous over other 

possible conventions. 
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Figure 4.11 Reflection and refraction of light at the surface between two media. 
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A large class of optical systems consists of a series of refracting and/or reflecting surfaces 

providing the desired deviation of the rays of light, together with appropriate stops and 

apertures to limit the angular and spatial extent of the rays. An optical designer must trace the 

path of selected rays through the system, which is done by repeated application of the 

vectorial reflection and refraction laws through the system.  Such process is known as real 

raytracing. 

 

In the current treatment, optical systems with a common axis of revolution, referred to as the 

optical axis, are assumed.  In the approximation of small angles of incidence on surfaces and 

with respect to the optical axis, the optical system is said to work in the Gauss or paraxial 

approximation, and raytracing under these assumptions is referred to as paraxial raytracing. 

 

4.2.2. Modelling of the Imaging Process by Utilizing a Custom Developed 

Raytracing Software 

 

The first approach that we explored to model the imaging process through an optical phase 

plate consisted in tracing rays from each point in object space through the entire system. 

Computationally, the object was considered self-luminous and a discrete version of the object 

was considered (i.e. the object was considered as being made of pixels). Each pixel emits 

rays in blue, green, and red colors (i.e. blue, green and red wavelengths) in the amount 

respective to the gray level value that each pixel has in the respective color. Furthermore, the 

rays that are emitted from each pixel of the considered object propagate in air towards the 
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entrance pupil of the optical system and are further transferred through it, thus forming the 

final image. 

 

Upon encountering the first optical surface, the rays are refracted according to the Descartes’ 

vectorial law of refraction as specified in Eq.4.2.[Mouroulis, Macdonald, 1997] For the 

imaging part through conventional optics, simple paraxial raytracing was used in the 

approach,[Rolland, Shaoulov, Gonzales, 2001] in order to first study the effect of the random 

phase plate alone.[Shaoulov, Rolland, et. al., 2001]  However, as part of the future work, real 

raytracing through a real lens could be implemented to fully predict the imaging through a 

designed lens with its own optical aberrations, as further discussed in Chapter 6.   

 

Naturally, the most challenging task is to trace rays through optical phase plates, as the ones 

shown in Fig. 4.9, because they are fine in structure and rapidly varying, but also deep 

compared to the wavelength (i.e. up to 25μm). In the raytracing approach to modeling of the 

imaging process, the local normal to any optical surface at the point where the ray intersects 

that surface is computed in the case of the lenses in the system, or estimated in the case of the 

optical phase plate.  For the optical phase plate, it represents a challenge because the surface 

is not smooth compared to the wavelength and contains potential discontinuities of the 

normal to the surface.  Therefore, notions of smooth variations of the normal orientation and 

computation come in play.  Moreover, to model mathematically the surface, a function that 

approximates the surface (such that the second derivative of this function is continuous 

across the optical surface) is needed to be able to apply the vectorial law of refraction. This 

imposes some severe restrictions over the way the optical phase plates are modeled, 
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significantly departing from the actual optical phase plates’ structure, demonstrated in Fig. 

4.11. [Shaoulov, Rolland, et. al., 2001]  Physical optics modeling discussed in Chapter 5, and 

the potential application of statistical optics combined with real raytracing discussed in 

Chapter 6, will further aim at removing this restrictions. 

 

After raytracing through the optics and the plate, the final image must look like a typical 

image we obtained in the experimental setup.  Because of the finite apertures of the lenses 

and the optical phase plate, the Point Spread Function (PSF) of the optical system must be 

considered as well.  Although in the case of lenses the definition of a PSF is well established, 

a component of the future work lies in defining mathematically PSFs for shift-variant optical 

systems including those utilizing optical phase plates, and in comparing the obtained results 

to the measured data.  The PSF accounts for the finite size of the aperture of the optical 

system for in-focus imaging, given that for out-of-focus imaging it can be modeled as the in-

focused PSF convolved with a cylinder function, corresponding to the actual amount of 

defocus. Raytracing modeling in conjunction with a simple filtering final operation to 

account for the optical phase plate PSF led to encouraging results, yet the methods did not 

lead to accurate physical modeling of the optical imaging process under all imaging 

conditions.  We achieved some good agreements between the raytracing results and the 

experimental results for large-scale optical phase plates. Also, we achieved a speed of 

computation within seconds.  In addition, the raytracing approach led to the development of 

in-house made raytracing software.  Some typical results are presented in Fig. 4.12. 
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Figure 4.12  Simulation of optically created special effects using raytracing combined with an 

optical phase plate-based filter operation. 

 

 

4.2.3. Exploration of Raytracing through Texture Phase Plates using 

Commercially Available Software 

 

Another part of the theoretical model and the software application developed is verifying the 

obtained results using benchmark software, such as ASAPTM. Currently ASAP is one of the 

most sophisticated commercial off-the-shelf (COTS) optical modeling software available for 
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raytracing, and as such was a logical choice as a dependent verification tool. The software 

was used in conjunction with Rhinoceros, which is a stand-alone CAD modeling software.  

 

The main limitation of ASAPP

 TM is the number of the optical surfaces the software is able to 

handle, which could not exceed 9,999. For order-of-magnitude comparison, a typical 

mathematically synthesized optical phase plate created of a 6000 by 4000 pixels might 

consist of as many as 96,000,000 surfaces. A way to work around that limitation was to 

create the optical phase plate surface in a CAD program using another in-house developed 

software, and then export the surface into ASAP TM, where a real raytrace was further 

performed. To utilize this method the bitmap was first imported as a cloud of points into the 

custom made plug-in. Furthermore, the custom developed software performed triangulation 

among each set of adjacent points in the cloud, thus creating a surface, as shown in Fig. 4.13. 

Finally, the custom designed software exported the surface either directly into an ASAP 

library code, or into a CAD-compatible format. A typical ASAP library exported from our 

custom designed software may consist of as many as 100,000 lines of code for a simple 

surface created out of a 100 by 100 pixel bitmap. If instead, the CAD-compatible format is 

selected, then the output of the custom designed software needs to be further imported in 

Rhinoceros, where a b-spline approximation of the surface is performed by using the adjacent 

points in the triangulation as control points (a proprietary procedure called “drape” in 

Rhinoceros). Both procedures are extremely computationally intensive, and optical phase 

plates generated out of a bitmap with more than a 1000 by 1000 pixels would be impossible 

to model on the current state of the art computer hardware. 
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Figure 4.13  Optical texture plate created as a surface using a custom developed software 

module. 

 

A typical optical phase plate made of a mathematically synthesized bitmap source of 400 by 

400 pixels and rendered in ASAPTM is shown in Fig. 4.14. To the authors’ knowledge, a real 

raytrace and analysis of such complicated optical systems have never been utilized before 

using ASAP TM. One of our achieved results is presented in Fig. 4.15, where ¼ of the self-

emitting image used as an object is covered with the optical phase plate shown in Fig. 4.14. 

Although this approach requires more work on the scale of the optical phase plates used, it 

provides a tool to verify the results previously obtained in the custom-developed raytracing 

model. However, the amount of time needed to model and raytrace one single optical phase 

plate made this approach non viable for further investigation, which led us to abandon further 

exploration of this approach to raytracing through phase plates.   
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Figure 4.14 Optical phase plate modeled in ASAP. 

 

  

 

Figure 4.15 Result from the full raytrace in ASAP TM using an optical phase plate 

covering the upper left ¼ of the object (right) and the original picture (left). 
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4.3. Discussion and Future Work 

 

The research presented in this Chapter led to the design and the development of a novel 

optical system consisting of a standard 50mm Nikon objective and custom designed relay 

optics, allowing the photographer to create pictures resembling art forms such as painting at 

the speed of light. This unique application of photography allows the photographers to 

perform real time image processing by changing the scene and the optical wave plate used as 

a function of their own artistic perception.  We showed how custom-developed raytracing 

software combined with a texture-based filtering process led to the generation of new art 

forms. Because of the satisfying effects and the high speed of computing we achieved, such 

art forms were commercialized by SmARTlensTM Corporation.  However, because 

raytracing, without the texture-based filter process, did not predict images obtained with the 

newly developed hardware and we had a need to be able to predict such imaging process in 

order to design appropriate phase plates, the research led into the development of a 

theoretical model and custom designed software discussed in Chapter 5. 
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CHAPTER 5: PHYSICAL OPTICS MODELLING OF THE IMAGING 

PROCESS THROUGH OPTICAL PHASE PLATES 

 

 

The application of the Scalar Diffraction Theory to imaging with quasi-monochromatic 

incoherent light fields presented in this work was motivated by the domain of optically 

created special effects, specifically as it applies to propagating an optical field through non-

shift-invariant optical phase plates strategically positioned within the optics utilized to create 

the desired special effects. A key contribution of this work is the presentation of a 

generalized non-paraxial theoretical framework based on the Rayleigh-Sommerfeld 

diffraction formulation allowing for the application of the scalar diffraction theory to imaging 

with quasi-monochromatic incoherent illumination across large fields of view (FOVs). This 

generalized framework extends the paraxial-imaging framework reviewed in Section 5.2 to 

the non-paraxial case. [Shaoulov, Rolland, et. al, 2004] 

 

5.1 Introduction 

 

Many imaging situations, from microscopy to space optics, can be well-modeled using 

raytracing theory, as previously discussed in Chapter 4.  Some exceptions to that rule include 

modeling propagation of optical waves in nonlinear media, or accounting for coherent or 

partially coherent light propagation occurring in optical fibers, medium with microscopic 

refractive index variations, and integrated optical components and systems, for example. A 
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good model to describe propagation of light in such systems is the finite-element beam 

propagation method.[Vincetti, et al,, 2000]  Another approach to modeling the propagation of 

optical waves in an optical system, the Gaussian beam decomposition method, is generally 

applicable in the case where the slowly varying envelop approximation (SVEA) holds. Such 

approach is often used to model laser beams or optical field propagation through bulk optics. 

[Montoya-Hernandez, et al., 1999]  Finally, for linear shift-invariant systems (LSI), imaging 

may be modeled using Fourier transform methods, where the final image is obtained as a 

convolution of the object with a transfer function.[Goodman, 2000] The linearity of an 

optical system in the most general case implies that the superposition principle holds 

   

 ( , ) ( , ) ( , ; , )
2 2 2 1 2 2

g x y g h x y d dξ η ξ η ξ η= ∫∫  (5.1) 

where g1 is the input function of a scene’s points whose coordinates may be denoted as ξ and 

η, g2 is the output function of the image points of coordinates x2 and y2 in the case of Eq. 

(5.1), and h represents the system’s point response that is a function, generally speaking, of ξ, 

η, x2 and y2.  The linearity of an optical system further implies that the performance of the 

system is independent of the magnitude of the input function.  

 

Furthermore, the shift invariance property of an optical system implies that the system can be 

described by a transfer function h, independent of the input and the output (i.e. the output of 

the system is equal to the input to the system convolved with a transfer function intrinsic to 

the system itself, while independent of the input and the output). It should be noted that Eq. 

5.1. can describe either linear, or LSI systems, depending on the specified properties of the 
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transfer function. The relationships describing an LSI are summarized in Fig. 5.1. in the 

spatial and the Fourier domain, respectively. [Gaskill, 1978] 

g(x)=f(x)*h(x) 
LSI 

F(ξ) G(ξ)=F(ξ)H(ξ) 

h(x), H(ξ)

f(x) 

 

Figure 5.1 General relationships describing a LSI optical system. 

 

Furthermore, some imaging system may have a large field of view (FOV) as in live image 

capture.[Rolland, Hylen, 1999], [Shaoulov, Rolland, 2001] It is beyond the scope of this 

Chapter to detail such an imaging system for special effects or to demonstrate the creation of 

special effects, which also requires an optimization of optical texture plates. In this Chapter, 

we present a non-paraxial imaging approach that will be essential in future work related to 

modeling image formation through such phase plates. The modeling approach will also be 

broadly applicable to non-shift invariant imaging systems, beyond that of creating special 

effects. 

 

It is important to note that a system may be non-shift invariant and optical aberration free. 

Such case may be encountered in the creation of optical special effects, where the non-shift 

invariance is created by the texture plates and not the optical aberrations of the imaging 

optics. However, optical aberrations may contribute to non-shift invariant optical imaging if 

not fully balanced across the entire FOV. For the live image capture application, the imaging 

optics should be designed to be distortion free and well corrected to the extent possible for 
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optical aberrations, given that the optics may be utilized with or without the phase plates. 

Also, if a phase plate is utilized, the imaging optics will be used slightly out of focus as 

previously discussed throughout this work, therefore the main challenge to this problem is 

not to model imaging through an aberrated optics, but rather to correctly model 1st order wide 

FOV imaging, in or out of focus, and to have a modeling approach that will naturally allow 

in the future the insertion of an optical phase plate anywhere within the optics. If a non-shift 

invariant texture phase plate is located along the optical path, a non-shift invariant imaging 

model is required regardless of the fact that the imaging optics may be diffraction limited 

(i.e. “perfect optics”). 

 

The raytracing approach was first implemented in early stages of our investigation as 

discussed in Chapter 4, however the application of this approach was limited by the 

assumption of spatial incoherence everywhere along the optical path and failed to provide a 

theoretical model describing the behavior of an optical phase plate. [Shaoulov, Rolland, 

2001]  Furthermore, because phase plates are in general non-shift-invariant, the final image 

cannot be obtained as a simple convolution. Thus, the use of Fourier Transforms based 

algorithms is not applicable to describe correctly the imaging process. Specifically, there is 

no advantage to use the Fresnel Approximation in the scalar diffraction theory, and the 

associated approximations and simplifications that are conventionally used to introduce 

Fourier transforms, as part of the imaging process. [Goodman, 2000]  In practice, for very 

specific image formation problems, it would be interesting to compare various modeling 

approaches with their associated approximations. Moreover, because the structure of the 

texture plates is rough, neither Gaussian Beam Decomposition algorithms, nor stationary 
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scattering techniques such as the Harvey-Shack technique, are applicable. Thus, in order to 

model the imaging process through a structure imposing such restrictions, a different 

approach had to be investigated, and custom software implementation had to be developed. 

 

5.2 Review of the Theoretical Framework for Quasi-Monochromatic 

Incoherent Illumination 

 

Scalar Diffraction Theory has been previously proposed to model quasi-monochromatic 

incoherent imaging for describing light propagation through a linear optical system. 

[Goodman, 2000]   Such modeling is based on the classical Rayleigh-Sommerfeld diffraction 

representation.  

 

Let’s consider a linear optical system consisting of an object, an aberration-free optics, and 

an imaging surface (e.g. a plane is a special case) as shown in Fig. 5.2. If we denote the local 

coordinate systems in the object, the exit pupil, and the image as [ξ;η], [x;y] and [u;v], 

respectively, and the optical field in the object plane by its complex amplitude Uo(ξ;η), then 

the complex amplitude in the imaging plane Ui(u;v) will be expressed as  

 ( ) ( ) ( )0, , ,iU u v d d U h u v; ,ξ η ξ η ξ η
∞ ∞

−∞ −∞

= ∫ ∫  (5.2) 

where h(u,v;ξ,η) is the transfer function of the investigated system for a point [  given ]vu,

][ ηξ , . [Goodman, 2000]   

 

 87



 

Coordinates in the object: ξ,η 

Object 

z1 z2

Optics

U0

Ui

Coordinates in the optics: x, y Coordinates in the image: u,v 

r1

r2

Imaging surface 

 

Figure 5.2 Layout of an optical system consisting of an object illuminated with a spatially 

incoherent quasi-monochromatic light field of complex amplitude U0, an aberration-free 

optics, and an arbitrary imaging plane. 

 

To derive a closed form expression for the transfer function of the investigated system, let’s 

first consider the light propagation from the object to the lens, denoted by Ul(x,y). 

Furthermore, we will assume the object to be a self-emitting amplitude mask, i.e. each point 

of the object will be considered as a source of a spherical wave of the type 

 
ijkr

i

e

j rλ
 (5.3) 

Therefore, the propagation from the object to the lens is described by the Rayleigh-

Sommerfeld integral 

 ( ) ( ) ( ) ( )0, , ; , , ,lU x y h x y U P x y d dξ η ξ η ξ
∞

−∞

= ∫ ∫ η

 . (5.5) 

, (5.4) 

where P(x,y) is a pupil function defined as 

( )
1, within the pupil

,
0,  outside the pupil

P x y
⎧

= ⎨
⎩
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Also, the optical field immediately after the lens is described by 

( ) ( )
( )2 2

2' , ,

k
j x y

f

l lU x y U x y e  (5.6)  
− +

=

where 
( )2 2

2

k
j x y

fe
− +

 is the paraxial lens propagator in the parax

Eqs. (5.2) – (5.6) the optical field distribution at the final image plane can be written as 

 

ial approximation. Combining 

( ) ( ) ( )

( )
( )

( )

( )
( )

( )
( ) ( )

2 2

2 2
2

2 2
2

2

2

2

2

2

2 0

2

, , ; , ' ,

            , , ; ,

1
            , cos

1
           cos , , ; ,

i l

k
j x y

f

l

k jkrj x y
f

l

kjkr j x y
f

U u v h u v x y U x y dxdy

dxdyU x y e h u v x y

e
dxdyU x y e

j r

e
dxdy e d d U h x y

j r

θ
λ

θ ξ η ξ η ξ η
λ

∞ − +

−∞

∞ − +

−∞

∞ ∞− +

−∞ −∞

= =

= =

= =

=

∫ ∫

∫ ∫

∫ ∫ ∫ ∫

∞

−∞
∫ ∫

( )
( )

2 2
2 1

2

2 0 12

2 1

1
           cos , cos

kjkr jkrj x y
fe e

dxdy e d d U
r r

θ ξ η ξ η θ
λ

∞ ∞− +

−∞ −∞

=

= − ∫ ∫ ∫ ∫

 (5.7) 

where cosθ1,2 are the obliquity factors. Thus, if we consider the pupil function we can further 

write 

( ) ( )
( )

( )
2 2

2 11
kjkr jkrj x y

i

e e
U u 2

2 0 12

2 1

, , cos , cosfv dxdy P x y e d d U
r r

θ ξ η ξ η θ
λ −∞ −∞

= − ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫ .(5.8) 

 

The irradiance in the final image plane is given from 

 

∞ ∞− +⎡ ⎤

( ) ( ) ( ), ,i i i ', 'I u v U u v U u v∗= . (5.9) 

Considering the general expression for Ui(u,v) 

 ), ; ,U u v d d U h u v( ) ( ) (0, ,ξ η ξ η ξ η
∞ ∞

=  (5.10) 
−∞ −∞
∫ ∫i
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we can rewrite Eq.(5.10) as 

0, , ; , ' ' ', ' , ; ', 'h u v d d U h u vξ η ξ η ξ η ξ η ξ η
∗∞ ∞ ∞ ∞

−∞ −∞

⎡ ⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎦ ⎣ ⎦
∫ ∫  (5.11) 

where  

 

( ) (0,iI u v d d Uξ η
−∞ −∞

= ⎢
⎣
∫ ∫ ) ( ) ( ) ( )

{ }, ', , 'ξ ξ η η ∈\  (5.12) 

Thus, Eq.(5.11) can be further simplified to 

)0, , , ; , ' ' ', ' , ; ', 'I u v d d U h u v d d U h u v( ) ( ) ( ) ( ) (0i ξ η ξ η ξ η ξ η ξ η ξ η
∞ ∞ ∞ ∞

∗ ∗

−∞

= ∫ ∫ ∫ ∫  (5.13) 

 

Furthermore, to express the irradiance distribution in the image, we must consider the 

atistical properties of the light. By assuming ergodicity of the statistical imaging process 

−∞ −∞ −∞

st

and applying Fubini’s theorem,[Royden, 1968] the irradiance distribution in the image may 

be further written as 

( ) ( ) ( ) ( ) ( )* *

0 0, , ', ' , ; , , ; ', 'I ' 'u v U U h u v h u v d d d dξi η ξ η ξ η ξ η ξ η ξ η= ∫ ∫ ∫ ∫  (5.14) 

where the brackets in the left hand side term denote the mean over time and the brackets in 

the right-hand side denote ensemble average.[Goodman, Statistical Optics, 2000]    Finally, 

∞

−∞

assuming spatially incoherent illumination we obtain       

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2*, ', ' , ' ' , ' 'U U U I0 0 0 0ξ η ξ η ξ η δ ξ ξ δ η η ξ η δ ξ ξ δ η η= − − ≡ − − (5.15) 

and thus Eq. (5.14) yields 

 ( ) ( ) ( ) 2

0, , , ; ,iI u v I h u v d dξ η ξ η ξ η
∞

−∞

= ∫ ∫  (5.16) 

 90



Thus, Eq.(5.16) provides the relationship between the irradiance distribution in the image and 

the irradiance distribution in the object illuminated with quasi-monochromatic and spatially 

ework to Plane-to-Plane and Plane-to-

Curve Imaging Configurations 

 

In the special case of intere of free space propagation, 

llowed by propagation through an aberration-free optics of focal length f, and consequent 

 

incoherent light under the assumption of ergodicity of the imaging process. Furthermore, the 

expression for the transfer function must be formally established to apply this framework to 

different imaging configurations (e.g. paraxial; non-paraxial aberration free; non-paraxial 

combined with optical aberrations; any of the above with defocus, given that defocus is best 

considered as a 1st-order imaging property). 

 

5.3 Application of the Paraxial Fram

st for this work, a system is consisting 

fo

propagation through free space, the paraxial transfer function based on applying Rayleigh-

Sommerfeld formula and Eqs. (5.8) and (5.14) is given by 

 

( )
( )

( )

2

2 2

1 2

2

1 2

1 2

2

1 22

1 2

, ; , ; , cos cos

1
                         cos cos

jkr
f

k
j x y

jkr jkrf

h u v x y e
j r j r

e e e
r r

2 2
11 1

kjkr j x ye eξ η θ θ
λ λ

θ θ
λ

− +

⎞
= − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= −

 (5.17) 

Integrating over (x,y) we obtain 

− +⎛ ⎞ ⎛
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( ) ( ) ( )

( )
( )2 2

1 22

1 22

1 2

, ; , , , ; , ; ,

1
                 , cos cos

k
j x y

jkr jkrf

h u v dxdyP x y h u v x y

dxdyP x y e e e
r r

ξ η ξ η

θ θ
λ

∞

−∞

∞ − +

−∞

= − =

=

∫ ∫

∫ ∫
 (5.18) 

 

or after rearranging the terms 

 ( ) ( )
( )2 2

1 2

2

1 2

1 2

, ; , , cos cos

kjkr jkrj x y
fe e

h u v dxdyP x y e
j r j r

ξ η θ
λ λ

∞ ∞ − +

−∞ −∞

⎡ ⎤
θ

⎡ ⎤ ⎡
= ⎢ ⎥

⎤
⎢ ⎥ ⎢

⎢ ⎥
⎥

⎣ ⎦ ⎣⎣ ⎦
∫ ∫

⎦
 (5.19) 

where k is the wave number, λ is the central wavelength, cosθ1 and cosθ2 are the obliquity 

factors, and P(x,y) is a pupil function equal to one inside the pupil and zero everywhere else.  

In Eq.(5.19) r1 and r2 are defined as 

 
( ) ( )

( ) ( )

1 2
2 2 2

1 1

1 2
2 2 2

2 2

r x y z

r u x v y z

ξ η⎡ ⎤= − + − +⎣ ⎦

⎡ ⎤= − + − +⎣ ⎦

 (5.20). 

The obliquity factors occur by considering the geometry of parallel object-to-pupil and pupil-

to-image plane-to-plane imaging. Thus, one may infer that this expression would hold some 

validity in the non-paraxial region once the parabolic approximation to the optics transfer 

function is replaced by the exact expression. We shall demonstrate in Section 5.4. that such 

inference fails. Eq.(5.19) is quite similar to the framework presented in Section 10-6 in 

Gaskill, [Gaskill, 1978]  however, it has been made formally a function of all four variables, 

thus allowing to model non-shift invariant systems.  

 

Furthermore, from the theory of first order imaging properties, it is known that even for 

perfectly stigmatic imaging (i.e. aberration-free, or point-to-point, imaging), the image is not 
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distributed on a plane surface but rather on a curved surface, called the Petzval surface, as 

shown in Fig. 5.3. Without loss of generality in illustrating the Petzval surface, Fig. 5.3 

depicts the case of an object at optical infinity.[Slyusarev, 1984], [Malacara, 1994]  In this 

case, the surface can be shown to describe a portion of a sphere with radius f. 

 

Petzval image surface 

 

Aberration-free optics 
Ideal Gaussian image 

plane On-axis plane wave 

Off-axis plane wave 

On-axis spherical wave 

Off-axis spherical wave 

 

Figure 5.3 Illustration of stigmatic imaging on a curve surface for an object located at 

optical infinity. 

 

If the object is located at finite distance from the optics, the surface shape may be computed 

using first order imaging equations.[Mouroulis, Macdonald, 1996], [Rolland, Shaoulov, 

Gonzales, 2001]  Thus, a next step in the formal representation of the basic framework set in 

Eq.(5.19) is to consider a plane-to-Petzval-surface imaging process in order to fully validate 

that sharp imaging occurs on the predicted curved surface. If field curvature imposed by 
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Petzval curvature is severe, as occurring if the optics is not specifically designed with 

multiple elements to flatten the field and is imaging large FOVs, the image formed on a plane 

will be extremely blurred in intensity as one goes up in the FOV along the detection plane. 

Also in a simulation with a limited dynamic range (i.e. 0-255 greylevels) to represent 

intensity variations, most of the image will appear to fall within the lowest level of the 

greyscale, thus making it difficult to assess the validity of the imaging process, even simply 

according to its first order imaging properties. We will demonstrate such limitations in 

Section 5.4 and 5.5.  Imaging on a curved surface as opposed to a plane, does not signifies 

that we ignore the Petzval curvature. To the opposite, it signifies that we take it into account 

in the validation of first-order imaging properties. Such a choice is a necessary step in the 

validation procedure. Thus, the expression for r2 in Eq.(5.20) was modified to 

 ( ) ( )
1 2

2 2 2' 'r u x v y z2 2
⎡ ⎤= − + − +⎣ ⎦ (5.21) 

where z’2 is calculated from the Descartes’ first order i

5.4  Generalized Non-Paraxial Theoretical Framework Based on the 

 

araxial imaging is generally rigorously defined for infinitely small object size and small 

 

maging equation,[Mouroulis, 

Macdonald, 1996], [Rolland, Shaoulov, Gonzales, 2001] given z’1 separately for each set of 

points [ξ;η] and [u;v].   

 

Rayleigh-Sommerfeld Scalar Diffraction Theory 

P

angles of incidence on optical elements. Thus, any real imaging scenario, unless on axis only, 

usually violates the paraxial approximation. In imaging, one then often distinguishes between 
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paraxial, quasi-paraxial imaging (i.e. which applies for FOVs < 10 degrees and an optics of 

an F-number (F#) of 10 or more), and non-paraxial (i.e. FOV > 10 degrees or an optics of F# 

less than 10). Non-paraxial imaging comprises two components in imaging: first-order 

properties, and higher-order imaging properties. First-order properties assume an aberration-

free optics and the ability to model in focus imaging on the Petzval surface, as well as 

imaging with defocus. Higher-order properties include optical aberrations. This work focuses 

on the first-order non-paraxial imaging properties for an aberration-free system. The 

introduction of optical aberrations is a straightforward step as further described thereafter.  

First, let’s remove the paraxial parabolic approximation in the lens function given in Eq. 

(5.6). Starting with the Descartes’ equation 

 ' Cυ =υ +  (5.22) 

or 

' '

' '

n n n

z z f
= +  (5.23) 

in the case of propagation through air we can write 

 
2 1

1 1 1
' 1      n n= = ∴ = +

1 1 1
   

' ' 'z z f z z f
∴ = +  (5.24) 

Considering the case of finite conjugates as shown in Fig. 5.4 we can apply the Pythagorean 

Theorem and express the optical path difference with no approximation as 

 ( )2 2 2

1,2 1,2 1,2z zδ ρ− + =  (5.25) 

we can rewrite Eq. (5.25) as 

 

2

1

2

2

2 2 2

1 1 1 1

2 2 2

2 2 1 2

2

2

z z z

z z z

δ δ ρ

δ δ ρ

− + + =

− + + =
 (5.26) 
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The solutions to the Eqs. (5.26) are given as 

1,2

1,2

1
2 2 2

1 1 1

1
2 2 2

2 2 2

z z

z z

δ ρ

δ ρ

⎡ ⎤= − ± −⎣ ⎦

⎡ ⎤= − ± −⎣ ⎦

  (5.27) 

Furthermore, to identify the correct sign in the Eqs. (5.27),

let’s consider an object at infinity (i.e. a plane wave) 
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 (5.28) 

Thus, it is seen that only the “+” sign describes correctly the imaging scenario for δ1. 

Furthermore, if we consider an object at infinity (i.e. a plane wave), then the image must be 
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Therefore, it is seen that only the “+” sign describes correctly the imaging scenario for δ2 as 

well. Thus, we established the correct solutions of Eqs. under the considered imaging 

scenario, which will allow us to further remove the parabolic approximation from the lens 

transfer function. Let’s consider the overall optical path difference (OPD) as sho

5.4. 

 

wn in Fig. 
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 (5.30) 

In the lens coordinate system (x,y) the OPDs can be written as 

2 1,2 1,2 1,2

2 2x yδ = +  (5.31) 

Thus, the OPD can be expressed as 
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 (5.32) 

and the lens transformation function in the most general case can be written as 

( )
1 1

2 2 2 22 2
1 1 2 2

1 2 1 22 2
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⎡ ⎤⎡ ⎤ ⎡ ⎤+ +⎢ ⎥− + − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎢ ⎥Δ ⎣ ⎦
 (5.33) 

 

et’s consider again an object at infinity and demonstrate 

that the solution converges to the well known parabolic approximation 

=

To check the validity of Eq.(5.49) l
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Thus, Eq.(5.50) demonstrates that the parabolic approximation for the 

 (5.34) 

lens transfer function 

follows naturally from the most general expression given by Eq.(5.49).  There is no need to 

make the parabolic approximation and thus such approximation will not be made. 

Figure 5.4 Calculation of the optical path difference in the most general case of a 

converging optical system. 

 

A key to generalize the basic framework for non-paraxial imaging was the realization that the 

phase transformation performed by the optics, whether it is the parabolic approximation or 

the exact form, has to be applied on a transformation plane tilted with respect to the optical 

z1 
z2 

δ1 δ2 

W1 W2 

ρ 
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axis mal to 

the chief ray for each point [ξ;η in Fig. 5.5. The physical meaning 

f the tilted summation plane may be best understood by considering the special case of an 

. Equivalently, the transformation must be applied in such a way that it remains nor

] in the object, as illustrated 

o

extended object at infinity. The wavefront reaching the optics from a point in the FOV is 

tilted with respect to the optical axis and perpendicular to the chief ray. The lens function is 

to transform such plane wavefront into a spherical wavefront whose center of curvature lays 

off-axis on the Petzval surface. Such an imaging property may be accomplished by an optics 

transformation function that is rotationally symmetric, while not strictly speaking quadratic, 

with respect to the chief ray. The concept of the tilted plane for summation applies equally 

well for an object at finite distance from the optics, given that the tilted summation plane is 

perpendicular to the chief ray in all cases and tangent to the incident wavefront emanating 

from any object point in the FOV. Therefore, the expressions for r1 and r2 in Eq.(5.30) were 

modified to 
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where [x’;y’] are the coordinates in the tilted lens transformation plane. Thus, the transfer 

function introduced in Eq.(5.28) can be written as 

 

 (5.35) 
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−∞ −∞

= − ∫ ∫ (5.36) 

 
where the projected pupil function P(x’,y’) is again equal to 1 inside the projection of the 

aperture on the tilted plane and equal to zero outside. Also, z’1 and z’2 are related through the 
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Descartes’ equation given in Eq. (5.24), and the function describing the optics as a focusing 

element with no aberrations is an exact expression, instead of the parabolic approximation. 

The lens term in Eq.(5.36) was derived by considering the dephasing needed to be introduced 

by a converging lens to map a diverging spherical wavefront to a converging spherical 

wavefront. With this mathematical formulation, there is no need for the obliquity factors 

ust 

q was 

given that the summation planes are always perpendicular to the chief rays. 

Computed image surface 

 

Optics transformation 

Ideal Gaussian image plane

plane 

On-axis optics focus phase factor 

r1

r2

r1’ 

r2’ 

Object plane 

Aberration-free optics 
transformation plane with tilt

Off-axis optics focus phase factor 

Figure 5.5 Generalized non-paraxial imaging framework with the transformation plane 

normal to the chief ray and tilted with respect to the paraxial transformation plane. 

 

5.5 Results 

 

In order to fully demonstrate the capability of the model described in Section 5.4, we m

first choose reasonable values for the parameters of the optical system not only within the 

uasi-paraxial region, but preferably within the non-paraxial region. Thus, the object 
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con  focal 

ngth, allowing testing of both the paraxial and the non-paraxial frameworks for various 

FOVs.  

thlon processor nodes.[Spector, 2000]  The computation to generate the simulated 

ages was easily spatially partitioned to handle sub sections of the object to be imaged.  

sidered located at a distance of 2f away from an F/5 aberration-free optics of 20mm

le

 

The mathematical framework was implemented using conventional numerical quadrature 

techniques.[Burden, Fairies, 2000]   Given the high number of computations involved, the 

computation time for the simulation of one imaging condition was over three weeks on a 

single processor platform. Thus, an alternative computational approach had to be established. 

The next generation implementation was developed on a Beowulf cluster utilizing 96 dual 

1.3Ghz A

im

This distribution resulted in implicit load balancing.  The time complexity and accuracy in 

terms of the size of the matrix elements, as well as the scalability on a parallel platform are a 

subject of the future work because they require an in-depth investigation on various parallel 

architectures including 32-bit versus 64-bit processors, as well as on SMP (Symmetric Multi 

Processing) and NUMA (Non Uniform Memory Access) based computing 

platforms.[Donagarra, 2002]  With the Beowulf cluster implementation the computation time 

was reduced to minutes which allowed us to further investigate the modeling approach. 

 

The generalized non-paraxial theoretical framework for plane-to-curve imaging was 

compared to the paraxial or more precisely the quasi-paraxial framework for plane-to curve 

imaging reviewed in Section 5.3, by using a 256 greylevel bitmap object filling 40 degrees 

FOV.  Eq.(5.19), which defines the paraxial and quasi-paraxial framework, may be thought 
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to be paraxial or quasi-paraxial because of the parabolic approximation to the optics 

transformation function. However, the main reason for this equation to be limited to the 

uasi-paraxial region is the application of the optics transformation function on a plane 

optics or other ways (i.e. 

ombination of positive and negative separated optical elements) to reduce the Petzval 

q

perpendicular to the optical axis, as we shall show in the simulations.  Eq.(5.36) addresses 

both limitations of Eq.(5.19) by using an exact optics transformation function and applying it 

in a plane perpendicular to the chief ray for each point in the FOV. 

 

All results presented correspond to plane-to-curve imaging, where the Petzval surface was 

computed for the geometry provided, to ensure that a lack of a good image or even an image 

across the full FOV is not a consequence of Petzval curvature. Under realistic imaging 

conditions with an optimized optics, the Petzval curvature will be moderate, and in the case 

of plane-to-plane imaging it will only cause slight blur as the image extends further in the 

FOV. However, because we do not use a field flattener within the 

c

curvature, the Petzval surface curves severely in the case we considered, and must be 

accounted for by imaging on its curved surface. In the case where optimized optics with their 

flattened Petzval curvature and associated optical aberrations is considered, the optics 

transformation can be built accordingly. The optics transformation is always applied in the 

exit pupil to model the entire optics via one phase transformation. Furthermore, under all 

imaging conditions, the images of the face where presented upright for easier comparison, 

accounting for the optics providing inverted images. 
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Results shown in Fig. 5.6.(a) demonstrate that the paraxial framework fails for large FOVs as 

expected. Only a portion of the face imaged within the quasi-paraxial region is seen sharply. 

Past the quasi-paraxial region, the image dims so quickly, that when displayed on a 0-255 

greylevel scale, it is non-perceivable. To further yield insight into the issue of dynamic range 

(i.e. relative brightness for various points in the FOV), an object with a small square at the 

dge was selected as the object to be imaged as shown in Fig. 5.7(a). The result from the e

paraxial framework is demonstrated in Fig. 5.7.(b), where the white square appears at 

expected but somewhat dimmer. Also, the intensity within the square is non-uniform. In this 

simple stimulus case, because there is not light intensity anywhere else in the object and the 

non-uniformities within the square are relatively small, no other part of the object competes 

for the dynamic range, thus when the image output is scaled from 0-255 graylevels, no matter 

how dim in average the square at the edge is, it will be displayed at graylevels close to 255. 
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               (b)        (c)       (a) 

Object 

Figure 5.6 Results of imaging a 40 degree FOV object in a 2f imaging configuration for 

plane-to-curve imaging: (a) paraxial/quasi-paraxial model given by Eq.(2), (b) Non-

paraxial model given by Eq.(5) for in-focus imaging (c) same as (b) but with 3mm out-of 

-focus imaging. 
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Figure 5.7 Demonstration of the existence of low light levels at the edge of the FOV in 

the case of the paraxial model in the case of plane-to-curve imaging: (a) Object with one 

white square at the edge of the FOV (b) Image. 

               (b)       (a) 

 

If we now consider an object with two squares, one in the center and one at the edge, as 

shown in Fig. 5.8(a), results from both the paraxial and the non-paraxial framework are 

shown in Figs. 5.8.(b) and 5.8.(c), respectively. Results indicate that using the paraxial 

framework, the square at the edge now disappears, indicating that it is a lot dimmer than the 

one in the center. The non-paraxial framework yields imaging of both squares with equal 

brightness on the curved surface as one expects from an appropriate 1st-order non-paraxial 

imaging framework. 

 

Results shown in Fig. 5.6.(b) demonstrate that the expanded non-paraxial framework works 

for large FOVs. Finally, to verify the first-order defocusing imaging properties with the non-

paraxial framework, the imaging surface was placed 3mm out of focus toward the optics. 
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Results presented in Fig. 5.6.(c) demonstrate that the generalized non-paraxial theoretical 

framework works for out-of-focus imaging as well.  

               (b)        (c)       (a) 

Figure 5.8 Demonstration of the existence of low light levels at the edge of the FOV in 

the case of the paraxial model and for plane-to-curve imaging: (a) Object with one white 

square in the middle, and one white square at the edge. (b) Image of (a) using the paraxial 

model; the square at the edge is extremely dim with respect to that in the center and thus 

cannot be seen within a limited 255 greylevels display (c) Image of (a) using the non-

paraxial model. Such imaging scenario models accurately imaging with a 40 degree FOV.

 

Finally, we intend for this work to bring forth the fact that within the paraxial framework, the 

parabolic approximation to the optics transformation function can be insignificant compared 

to the fact that, in that regime, the optics transformation is applied in a plane perpendicular to 

the optical axis. Furthermore, if we are correct, the non-paraxial framework would work 

equally well with or without the parabolic approximation to the optics transformation for 

moderate F-number, as long as the summation occurs in a plane perpendicular to the chief 

ray. Thus, we ran a simulation with the non-paraxial equation under both cases of the optics 
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transformation. Results presented in Fig. 5.9. indicate that the non-paraxial framework works 

equally well with the parabolic approximation to the optics transformation function and with 

the exact expression, while results presented in Fig. 5.6.(a) and (b) indicated that even when 

the exact expression to the optics transformation function was used, imaging failed if the 

optics transformation was not applied in a plane perpendicular to the chief ray. 

 

 

Figure 5.9 Results of the non-paraxial theoretical framework for plane-to-curve imaging: 

(a) using no approximation for the optics transformation, except assuming an aberration-

free optics. (b) using nevertheless the parabolic optics transformation approximation, 

which could be thought to be responsible for having the model provided by Eq.(5.25) fail. 

Results reveal that the parabolic approximation for the optics transformation leads to 

negligible effects on overall imaging even for non-paraxial imaging, thus such 

approximation could be employed even in some non-paraxial case (i.e. moderate F-

number) if it was to reduce the complexity of the computations. 

               (b)       (a) 
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5.6  Discussion and future work 

 

In conclusion, the formulation of the Rayleigh-Sommerfeld scalar diffraction theory was 

applied to optical imaging of extended objects under quasi-monochromatic incoherent 

illumination. The existing theoretical framework was generalized to non-paraxial in- and out-

of-focus imaging and results were obtained to verify the generalized framework. In that 

framework, the optical system was considered linear. In the generalized non-paraxial 

framework even the most complex linear systems, without any assumptions for shift 

invariance, can be modeled and analyzed. Finally, this work will be extended in the near 

future to include higher order aberrations in the optics transformation equation and special 

effects imaging, by including a propagation stage through optical phase plates. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 

 

The work presented in this dissertation was inspired by the idea of optically created special 

effects, [Hylen, 1997] [Rolland, Hylen, 1999] such as painterly effects, encoded in images 

captured by photographic cameras at the speed of light. We shall summarize our contribution 

in Section 6.1, and discuss future work in Section 6.2. 

 

6.1  Summary of Contribution 

 

As part of the work presented, compact relay optics was assessed and developed, as 

discussed in Chapters 3 and 4. It was concluded that even though compact relay optics can be 

achieved, further push for compactness and cost-effectiveness was impossible in the 

paradigm of bulk macro-optics systems. Thus, a new paradigm for imaging with multi-

aperture micro-optics was presented and demonstrated for the first time, which constitutes 

one of the key contributions of this work. This new paradigm was further extended to the 

most general case of magnifying multi-aperture micro-optics systems.  Such new paradigm 

allows extreme reduction of the size of imaging optics by a factor of ~10 and reduction of the 

weight by a factor of ~500, while the cost reduction is by a factor of ~100 after the initial 

cost is accumulated (e.g. after the master is made in the case of multi-aperture micro-optics 

based on imaging with stacks of microlenslet arrays). The application of such multi-aperture 

micro-optics extends beyond the domain of optically created special effects, and includes 

potential applications such as magnifying miniature displays within head-mounted displays 
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(HMDs) and 3D integral imaging.  An astonishing property of multi-aperture micro-optics is 

that the increase of the desired field of view for a given optical system can simply be 

achieved by adding more micro-optical elements to the arrays, instead of redesigning the 

entire optical system as required in the case of bulk macro-optical systems. In terms of image 

quality, we established that trade-offs exist between resolution, lensletization, and the 

compactness of the multi-aperture micro-optical systems, e.g. in the case of 1:1 relay 

systems, the most compact configuration is also the worst in terms of lensletization, and we 

established that less compact arrangements yield less artifactual images. The compactness, 

simplicity, robustness and cost-effectiveness of the multi-aperture micro-optical systems 

demonstrated in this work hold a tremendous potential for commercialization and gradual 

replacement of expensive bulk-macro-optical systems in many applications. This part of our 

work led us to a US Patent [Shaoulov, Martins, Rolland, 2003], two peer-reviewed journal 

publications [Shaoulov, Rolland, 2003] [Shaoulov, Martins, Rolland, 2004] and four 

conference proceedings [Shaoulov, Martins, Rolland, 2004] [Martins, Shaoulov, Rolland, 

2004], [Shaoulov, Martins, Rolland, 2003] [Shaoulov, Rolland, 2002]. 

 

Another key contribution of this work was the experimental quantification of the feasibility 

of optically created special effects proposed by Hylen [Hylen, 1997] and the consequent 

development of a raytracing based software, which was commercialized by SmARTLensTM. 

This unique application of photography allows the photographers to perform real time image 

processing by changing the scene and the optical wave plate used as a function of their own 

artistic perception. Furthermore, the unmatched potential of this approach is in the art of 

movie-making, where entire sequences in a movie may be shot with the special effects 
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directly included in the movie, instead of performing post-shot computer processing, as 

currently utilized in the moviemaking industry. This work puts the foundation of the 

development of a commercially available high-end camera for photographic special effects 

and led to a conference proceeding [Shaoulov, Rolland, et. al., 2001] and a commercial 

product. [SmARTLensTM, 2004] 

 

Finally, as key contribution of this work, the principles of scalar diffraction theory were 

applied to optical imaging of extended objects under quasi-monochromatic incoherent 

illumination as discussed in Chapter 5. The existing theoretical framework was generalized 

to non-paraxial in- and out-of-focus imaging and results were obtained to verify the 

generalized framework. In that framework, the optical system was considered linear. In the 

generalized non-paraxial framework even the most complex linear systems, without any 

assumptions for shift invariance, can be modeled and analyzed. This work led us to one peer-

reviewed journal publication [Shaoulov, Satya, Schiavone, Clarkson and Rolland, 2004] and 

one peer-reviewed conference abstract [Shaoulov, Satya, Schiavone, Clarkson and Rolland, 

2003]. 

 

6.2 Future Work 

 

As part of the future work, the image quality of multi-aperture micro-optics can be further 

quantified for specific driving applications. The work will further expand the research to 

investigate how stacks of microlenslet arrays may be optimized to satisfy various image 

quality criteria for various arrangements, in which lensletization was shown in Chapter 3 to 
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be negligible.  Aspherization of the singlets demonstrated in Chapter 3 may be used in a 

more advanced configuration to minimize spherical and astigmatic aberrations, two main 

limiting monochromatic Seidel aberrations. Also, whether it is possible to design better 

systems by stacking more than two microlenslet arrays can be investigated. The design of 

task-driven optical solutions for various potential applications will allow the replacement of 

bulk macro-optical systems with ultra compact multi-aperture micro-optical systems, 

wherever possible. Such designs could lead to significant gain in compactness, weight and 

cost-effectiveness in many areas currently utilizing bulk macro-optics. Finally, fully working 

prototypes may be fabricated and tested in various application driven cases.  

 

As part of the future work related to the raytracing approach presented in Chapter 4, a 

modified approach utilizing the raytracing approach in conjunction with a shift-variant point-

spread function based on the Bidirectional Transmission Distribution Function (BTDF) of the 

optical phase plates can be developed and explored. [Goodman, Statistical Optics, 2000]  

 

Finally, the generalized non-paraxial quasi-monochromatic theoretical framework presented 

in Chapter 5 can be extended to include higher order aberrations in the optics transformation 

equation and special effects imaging, by including a propagation stage through optical phase 

plates. 
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