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.e measurement of input and output torque of a precision reducer, the core component of an industrial robot, plays a vital role in
evaluating the robot’s performance..e TMSIS and TMSOS of a vertical cylindrical high-precision reducer detector were designed and
investigated in this study to realize the accurate measurement of input and output torque of the reducer. Because a transmission chain
connects the torque transducer and the reducer, the characteristics of the inevitable additional torque are analyzed in detail. A torque
calibration device is developed to realize the calibration of the torquemeasurement system..e readings of the torque calibration device
are compared with the data of the instrument’s torquemeasurement system to realize the instrument’s torque calibration..e improved
particle swarm optimization and Levenberg–Marquardt algorithm-based radial basis function neural network is used to compensate for
the error of the torquemeasurement system..e parameters of the RBF neural network are settled according to the characteristics of the
additional torque and the torque calibration results. .e experimental results show that the torque measurement accuracy of the torque
measurement system can reach 0.1% FS after torque calibration and error compensation.

1. Introduction

In recent years, as a transmission device, the reducer has had
a wide range of applications in machinery and automation
[1]. Particularly, as the critical component [2], the perfor-
mance of a reducer directly affects the motion accuracy and
efficiency of the entire robot transmission system [3].
.erefore, the performance detection of reducers consid-
erably influences the development of robots and the entire
manufacturing industry [4–6]. .e performance parameters
of the reducer generally include the no-load friction torque,
torsional stiffness, and transmission efficiency [3, 7, 8]. Many
scholars have extensively studied the optimization of the
internal parts [9], overall structure [10], and dynamic per-
formance of the reducer [11, 12]. However, these studies are
limited by measurement means and equipment, which

severely hinders the improvements to the reducer perfor-
mance. Experts in related fields have studied the reducer
testing equipment and made technological progress [13–15].
However, in terms of practical application, this equipment
cannot meet the development need of robot precision re-
ducers from practical application..emeasuring equipment
mainly needs to be improved [16, 17] in terms of instrument
structure, torsional stiffness [18], error analysis, and preci-
sion traceability [19].

Figure 1 shows the structure of a commonly used reducer
comprehensive performance tester. Because of the cantilever
support structure and the guide rail, the torsional rigidity of
the instrument is weak..e weak stiffness of the shaft causes
torque fluctuation [20], adversely affecting the measurement
accuracy of the instrument [21, 22]. Moreover, installing and
disassembling the tested reducer takes more than an hour in
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practicality, severely complicating industrial applications
[23].

.e authors previously invented a vertical cylindrical
worktable precision reducer comprehensive detector (Patent
No.: 201910175593.8). .rough the symmetry of the
structure and the force closed design, the instrument ef-
fectively solved many problems, such as weak stiffness,
complex deformation, and difficult precision traceability.
However, the torque sensor on the test instrument and the
reducer under test are installed in different locations, con-
nected by a transmission chain between the two. .e
transmission chain will produce bending and torsion de-
formation in the measurement process, resulting in mis-
alignment error. .e misalignment error will lead to the
bending moment [18], which consumes part of the torque
transmitted by the shaft [24]. As a result, there is a deviation
between the reducer’s actual input and output torque and
the instruments’ torque sensor reading value [21,25]. We call
this part of the torque deviation “additional torque.”
.erefore, the measurement results of the torque sensor on
the instrument cannot be used as the reducer’s actual input
and output torque [26–28].

.e characteristics of the additional torque are analyzed
in this paper. .e applicable neural networks theory im-
provement has provided a good reference for solving this
problem. Scholars have done much work on the optimi-
zation of the torque control system [29, 30] and optimal
reparameterization in industrial cyber-physical systems
(ICPSs) [31]. All the works above are well-established (fuzzy
systems, MLP) and promising techniques that are good
references for applying neural networks theory. Based on the
features of the additional torque and the applicable neural
networks theory, a new method of improving the torque
measurement accuracy using the improved particle swarm
optimization and Levenberg–Marquardt algorithm-based

(IPSO-LM) radial basis function (RBF) neural network is
presented to eliminate the influence of additional torque.

.e contribution of this paper is the method of im-
proving the torque measurement accuracy by the IPSO-LM-
RBF neural network, which is not limited to the background
of improving the torque measurement accuracy. A torque
calibration device is developed to realize the calibration of
the torque measurement system. .e parameters of the
IPSO-LM-RBF neural network are settled according to the
characteristics of the additional torque and the torque
calibration results. .e proposed method focuses on im-
proving our team’s previously developed measurement
device. It provides a reference for improving and applying
the IPSO-LM-RBF neural network to the torque measure-
ment area. Moreover, it also provides a reference for im-
proving the measurement device developed previously.

2. Structure and Characteristics of Torque
Measurement System

As shown in Figure 2, the instrument’s structure is vertical,
and its functional components are vertically connected in
series. .e device consists of five subsystems: the guide rail
mechanism, torque measurement system on the input side
(TMSIS), tested components (TC), torque measurement
system on the output side (TMSOS), and workbench. .e
case body and the worktop compose the workbench, and the
TMSOS fixed on the workbench extends from top to bottom.
Driven by the guide rail mechanism, the TMSIS can move
along the Y and Z directions, providing space for the re-
ducer’s installation and disassembly. Different types of tested
reducers can be installed in the TC. .e TC and the in-
strument are connected using standard positioning and
mechanisms to form the TC.
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Figure 1: One of the commonly used horizontal instruments for reducer testing.
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As the core components of the instrument measurement
system, the TMSIS and TMSOS are mainly composed of four
parts: motor, torque transducer, test mode conversion
components, and other connecting components. .e TMSIS
and TMSOS adopt a cylindrical structure, and the disc
support ensures that the transmission shaft is located in the
center of the cylinder..is design improves the instrument’s
stiffness, simplifies the device’s deformation, and reduces the
number of error sources. In addition, the test mode con-
version structure is designed for the measurement shafting,
which allows for the input or output shaft of the tested
reducer to be in an unconstrained, driven, or locked state to
meet the functional requirements of different dynamic and
static performance tests. .e structure of TMSIS and
TMSOS is shown in Figures 3 and 4.

As described above, the cylindrical structure of the
TMSIS and TMSOS improves the instrument’s stiffness,
simplifies the device’s deformation, and reduces the number
of error sources. .en, the characteristics of the TMSIS and
TMSOS are described in detail as follows:

2.1.MinimumDeformation. Because of the force change, the
TMSIS and TMSOS may have structural deformation or
operation state change in the measurement process. .ese
changes lead to torque fluctuation and affect the torque
measurement accuracy. .erefore, the stiffness of the torque
measurement system is improved to make its deformation as
small as possible and thereby ensure high measurement
accuracy. In most horizontal structures, discrete cantilever
supports are placed on a horizontal platform to hold each
series component. Figure 5 shows the deformation of a
cantilever bracket under torque. .e coaxially between
adjacent elements realized by the cantilever bracket is likely
to be damaged under the deformation caused by measuring
torque. .e deformation of a horizontal test bench is shown
in Figure 6. .ese deformations lead to torque fluctuation
and reduction of the torque measurement accuracy. Even if
the stiffener is added to the cantilever beam to improve the
stiffness, it can only alleviate this shortcoming to a certain

extent. It cannot change the low stiffness of the instrument in
essence.

.e torque measurement system described in this study
adopts a vertical cylindrical structure with disk support
inside. Each part of the shafting is supported by a disc fixed
in a vertical hollow cylinder. .erefore, the gravity of the
drive shaft does not affect the alignment of the shafting. .e
transmission shaft transmits torque to the hollow cylinder
through the disc plate in the measurement. .e torque is
transmitted to the hollow cylinder along the circumferential
direction, and the uniform force characteristics improve the
stiffness of the torque measurement system. At the same
time, the cylinder and the tested reducer are used to form an
axisymmetric spatial torque closed structure, thereby
making the measured torque an “internal force.” .e guide
rail structure is separated from the measured torque ring to
improve the system’s stiffness. .e deformation of the
torque measurement system shell under torque is shown in
Figure 7..e comparison of Figures 6 and 7 shows that when
bearing the same torque and the overall dimensions are the
same, the shell deformation of the torque measurement
system is less than that of the horizontal structure. .e
instrument used in this study significantly improves the
overall stiffness of the mechanism. At the same time, the
cylindrical worktable makes the materials distributed in a
ring, and the structure maximizes the torsional stiffness
obtained by the same volume of materials.

2.2. Minimum Misalignment Error Based on Common ref-
erence Axis. Misalignment error refers to the relative po-
sition error between two parts of the connecting elements,
i.e., the installation position error between two separate
parts. .e misalignment error of series components leads to
the bending and torsional deformation of the shaft. As the
deformation changes the stress state of the bearing part, the
additional torque is included in the measurement results. In
the traditional horizontal structure, the complex structure
and easy deformation of the cantilever support complicate
the quick alignment of various parts of the shaft system and
the alignment of the tested reducer and the shaft system. As
each component is an elastomer in dynamic measurement,
the complex deformation causes complex additional torque,
unfavorable for torque measurement.

.erefore, the torque measurement system of the vertical
cylindrical detector adopts the installation reference axis of
the tested reducer as the measurement reference axis of the
instrument. Moreover, the gravity direction of each com-
ponent is along the axis direction to reduce the influence of
gravity. Another essential feature of the cylindrical work-
table is that the deformation shape is simple. .e disc
support’s radial symmetry is conducive to ensuring the
accurate alignment of each axis on the measuring shafting.
.e additional torque caused by the deformation is easy to
compensate accurately.

2.3. Synchronous Acquisition. In the performance index of
the reducer, torque is the critical factor. Torque fluctuation
affects the measurement accuracy to a certain extent. .e
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Figure 2: Primary structure and subsystem diagram of the
instrument.
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fluctuation torque often presents a nonlinear relationship
between the input and output torque of the tested reducer.
.erefore, the synchronous acquisition of the TMSIS and
TMSOS torque signals must be emphasized. Otherwise, the
data at different times are not comparable and cannot ef-
fectively reflect the actual state of the transmission char-
acteristics of the tested reducer. Hence, the torque signals of
the TMSIS and TMSOS are input from the same interface of

the acquisition system, collected under the same clock,
aligned one by one according to the timemark, and stored in
the same file.

.e torque measurement system designed in this study
adopts a strain torque transducer, and the output signal is a
frequency signal based on the 422 communication protocol.
.rough the FPGA programmable module of the data ac-
quisition system, the frequency signals of the TMSIS and
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Figure 3: Structure of TMSIS.
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Figure 4: Structure of TMSOS.
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Figure 5: Simulation result of the simplified model of one fixed support that withstands torque.
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TMSOS are collected synchronously. .en, the frequency
signals are transmitted to the computer. .e computer
converts the torque signal according to the corresponding
relationship between frequency and torque. .rough this
method, the data of multiple torque transducers can be
collected synchronously. .e corresponding relationship
between frequency and torque is as follows:

T �
f − fe

fp − fe

× N whenf>fe( 􏼁,

T �
fe − f

fe − fr

× N whenf>fe( 􏼁.

(1)

In the equations above, f is the frequency, T is the
torque, fe is the zero point of the frequency, fp is the
maximum value of the frequency, and fr is the minimum
value of the frequency.

3. The Analysis of the Additional Torque

Although the designed vertical cylindrical precision reducer
detector has many advantages, the torque transducer in the
instrument and the reducer under test are connected by a
transmission chain between the two. .us, because of the
influence of the inevitable additional torque, the measure-
ment results of the torque transducers also cannot be
considered to be the actual input and output torque of the
reducer. .e additional torque at this apparatus can also be
included in the measurement results of other test systems
using the same transmission chain between the torque
sensor and the reducer. .e causing of the additional torque
is analyzed in detail in the following sections using TMSIS as
an example.

Many factors result in uneven frictional forces around
them [14, 24, 25]..e uneven frictional forces can lead to the
consumption of the torque of the transmission system,
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Figure 6: Deformation of a horizontal test bench.
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Figure 7: Deformation of the torque measurement system shell under torque.
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which is the additional torque. Figure 8 shows a bearing,
spline sleeve, and spline shaft (in blue) between the torque
transducer and the tested reducer when the TC is placed at
the test location. .e following section analyzes the three
main parts of the additional torques.

3.1. Additional Torque due to Friction at Bearings.
Irrespective of the type of bearing, friction torque is mainly
composed of two kinds of torque [32]. .e first one is the
torque related to the structures of bearings and the property
of lubricating oil. .e second one is the torque related to the
material of the bearings and the torque transmitted by the
shaft. .e expression of the components of friction torque
ΔT1 is shown in the following equation.

ΔT1� M0+M1. (2)

In the function, M0 is the torque related to bearings’
structures and the property of lubricating oil in N·mm.M1 is
the torque related to the material of the bearings and the
torque transmitted by the shaft in N·mm.

.e torque related to the structures of bearings and the
property of lubricating oil can be expressed as follows [32]:

M0� 160 × 10− 7f0D
3
m. (3)

where Dm is the average diameter of the bearing in mm,
f0 is the parameter related to the structures of bearings, and
the lubrication conditions in N/mm2.

.e torque related to bearings’ material and the torque
transmitted by the shaft can be expressed as follows [32]:

M1 � f1P1Dm �
f1TDm

r
, (4)

where f1 is the friction parameter related to the material of
the bearings and the torque transmitted by the shaft, P1 is the
bearing load in N, T is the torque transmitted by the shaft in
N·mm, and r is the shaft radius in mm.

3.2. Additional Torque Caused by Bending Related to Mis-
alignment Errors. .e spline sleeve and spline shaft play a
significant role in TMSIS. Under ideal working conditions,
the central axis of the torque transducer and the tested robot
reducers should be oriented along the same central line.
However, in actual production, this ideal situation does not
exist. Manufacturing errors in the components and as-
sembling errors often lead to deviations of the axle center-
line. .e status of the radial misalignment that exists be-
tween the torque transducer shaft and the tested robot re-
ducer is shown in Figure 9.

In Figure 9, O1Z1 represents the axis of the torque
transducer in TMSIS and O2Z2 represents the axis of the
input shaft of the tested robot reducer. ∆X represents the
offset between O2Z2 and O1Z1 axes in the radial direction.
When a radial error ∆X exists, the torque measured by the
torque transducer, which is also the torque transmitted by
the shaft, corresponds to the combination of bending mo-
ment and torque. .e torque transferred to the tested robot
reducer is lower than that measured by the torque

transducer. .e additional torque caused by bending related
to the radial error is given by [33],

ΔT2 � KL ΔX +
T
rε

􏼠 􏼡, (5)

where K is the coupling elastic coefficient, ∆X is the radial
error of the shaft, r is the shaft radius, L is the distance
between the torque transducer and the tested robot reducer,
ε is the strain coefficient, and T denotes the torque trans-
mitted by the shaft.

.e misalignment error consists of radial and angular
displacements. .e status of the angular misalignment be-
tween the torque transducer in TMSIS and the tested robot
reducer is shown in Figure 10.

In Figure 10, O1Z1 represents the axis of the torque
transducer in TMSIS and O2Z2 represents the axis of the
input shaft of the tested robot reducer. ∆θ represents the
angular misalignment error between the axes.

When an angular misalignment error exists, the torque
measured by the transducer, which is also the torque trans-
mitted by the shaft, represents the bendingmoment and torque
combination. .erefore, the torque transferred to the tested
robot reducer is smaller than that measured by the torque
transducer..e additional torque because of bending related to
the angular misalignment error is given by [33],

Δ
1
2
T3 � T(cosΔθ − 1) +

TcosΔθL
r

. (6)

where ∆θ is the angular misalignment error.

3.3. Additional Torque Caused by Compression of the Spline
Coupling. An involute spline coupling is used in TMSIS to
transmit the torque..e spline coupling engagement consumes
part of the transmitted torque because of many factors, such as
bending and compression [34]. .e additional torque caused
by bending is analyzed in the previous section. .e additional
torque caused by the compression of the spline coupling is
analyzed in the subsequent sections.

Under Hertz contact condition [35], the relationship be-
tween contact pressure and indentation depth is as follows:

α �

���

9π2

16
3

􏽳

P
2

k1 + k2( 􏼁
2

R1 + R2( 􏼁

R1R2
. (7)

In the equation above, α is the indentation depth, P is the
contact pressure, R1 is the radius of the spline sleeve, R2 is the
radius of the spline shaft, k1 is the elastic coefficient of the spline
sleeve, and k2 is the elastic coefficient of the spline shaft.

cϕ �
P
α

,

P �
T
R1

.

(8)

In the equation above, cϕ is the meshing stiffness of the
spline coupling considered to be a constant.

Hence, the additional torque can be expressed as follows
[34]:
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ΔT4 � T − Ti

� Cf ϕe− ϕi( 􏼁

�
T ϕe− ϕi( 􏼁

R1α

�
T ϕe− ϕi( 􏼁

R1

�����������������

T2 k1+k2( 􏼁
2 R1+R2( 􏼁

R3
1R2

􏽶
􏽴

� ϕe− ϕi( 􏼁

������������������
16
9π2

TR2

k1+k2( 􏼁
2 R1+R2( 􏼁

􏽳

.

(9)

Ti is the shaft torque, and ϕi and ϕe are the twisting angles
for the spline shaft and spline sleeve.

By combining formulae (3)–(11), the additional torque
T′caused by the combined influence of the factors above can
be obtained as follows:

T′ � ΔT1+ΔT2+ΔT3+ΔT4

� 160 × 10− 7f0D
3
m +

f1TDm

r
+ KL ΔX +

T
rε

􏼠 􏼡

+ T(cosΔθ − 1) +
TcosΔθL
r + ϕe− ϕi( 􏼁

��������������������
16
9π2

TR2

k1 + k2( 􏼁
2 R1 +R2( 􏼁

3

􏽳

.

(10)
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Figure 8: Components leading to additional torques. TMSIS: torque-measurement system on input side; TA: tested assemblies.
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Figure 9: Radial misalignment error ∆X. TA: tested assembly.
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Figure 10: Angular misalignment error ∆θ.
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Since the torque measured by the torque transducer is
equal to the torque transmitted by the torque transducer
shaft, we can conclude that the additional torque is no-linear
dependent on the torque transmitted by the shaft.

4. Torque Calibration and Error Compensation

TMSIS and TMSOS adopt the serial and vertical ar-
rangement of the multilevel parts. As one of the series links,
the torque sensor is the core component of the instrument,
and the measured torque value is a significant physical
quantity representing the performance of the reducer.
.erefore, the calibration of the torque sensor is essential.
.e existing calibration methods directly measure the
output end of the torque sensor [36]. However, as is an-
alyzed above, the friction at bearings, bending related to
misalignment errors, and compression of the spline cou-
pling produce additional torque. .erefore, there is a de-
viation between the reducer’s actual input and output
torque and the torque sensor’s reading value..erefore, it is
necessary to calibrate the measurement results of TMSIS
and TMSOS.

4.1. Torque Calibration Method. Comparing the known
high-precision standard torque with the measurement result
of the torque measurement system is a common calibration
concept. Considering that the main torque measurement
error originates from the additional torque, the calibration
goal is to eliminate the influence of the additional torque on
the measurement results. .erefore, a high-precision torque
calibrator is proposed in this study, as shown in Figure 11.
.e calibrator comprises two high-precision torque trans-
ducers to calibrate the TMSIS and TMSOS. .e external
interface of the torque calibrator is the same as TC and can
be connected with the instrument according to the standard
interface. .e torque calibrator is placed on the test station
instead of TC during calibration. .e upper and lower
flanges of the torque calibrator are connected with the
TMSIS and TMSOS, respectively, and pressed by a hydraulic
mechanism. .en, the two torque measurement systems are
calibrated, respectively. Because of the instrument’s accuracy
and stability of motor loading, when the torque calibrator is
used to calibrate the torque measurement system in the
device, 50 torque points evenly distributed in the whole
range are selected for calibration, and the load torque needs
to be filtered.

When the motor loads the torque, the readings of the
torque measurement system and the torque calibrator are
recorded simultaneously. By comparing the readings of the
torque transducer in the calibrator, which are regarded as
the standard torque, with the readings of the corresponding
torque transducer in TMSIS and TMSOS, the real-time
calibration data of the torque measurement system can be
obtained. .e specific process of torque calibration is shown
in Figure 12.

4.2. Error Compensation Method. .e causes of the addi-
tional torque are complex, and the number of points that
can be calibrated is limited. Suppose the error compen-
sation model of the torque measurement system can be
constructed according to the 50 groups of scattered points
calibrated by the torque calibrator and the error of the
torque measurement system can be continuously com-
pensated within the measurement range. Such a case
would strengthen the guarantee of the instrument.
.erefore, the radial basis function (RBF) neural network
is used to approach any function with arbitrary accuracy,
make full use of discrete calibration points, and realize
continuous difference compensation in the measurement
range.

As shown in Figure 13, the RBF neural network for torque
measurement error compensation is a three-layer unidirec-
tional propagation network. .e RBF neural network com-
prises the input, output, and hidden layers..e three-layer RBF
neural network can accurately realize any relationship between
the input and output. .is method can effectively simulate the
relationship between the measurement results of the torque
measurement system and standard torque tested by the torque
calibrator. .e parameters of the RBF neural network are
settled according to the characteristics of the additional torque,
the measurement results of the torque measurement system,
and standard torque tested by the torque calibrator. .ere is
one node in the network’s input layer, which uses the mea-
surement results of the torque transducer in the torque
measurement system, represented by Ti. .ere is one node in
the output layer, expressed as T’i. .e standard torque value is
used as the output layer node. .e 50 groups of scattered
points, within the measurement range, calibrated by the torque
calibrator are used to train the RBF neural network. .e
number of nodes in the hidden layer is automatically calculated
and set by the Newrbe function. Repeated debugging shows
that the RBF neural network converges the fastest with 50
nodes in the hidden layer, and the fitting effect is optimal.
.erefore, it is determined that there are 50 nodes in the hidden
layer, represented by Ri. .e weight from Ti to Ri is uik, using
the relationship between the additional torque and the torque
transmitted by the shaft shown in equation (10). .e input
signal is transformed by the function shown in equation (10)
and sent to the hidden layer. .e hidden layer unit is trans-
formed by the radial basis function and sent to the output layer.
.e radial basis function is the Gaussian basis function. .e
weight from Ri to T’i is Wik, using a linear function as a
function of the output layer. In the RBF function, the spread
value of the expansion coefficient is the most critical parameter
that size significantly impacts the RBF radial neural network
[37]. In this study, the spread value is determined as 17 by the
trial and error method.

.e measurement results of the torque transducers in
the torque measurement systems and the corresponding
standard torque values are used as the learning samples for
training. .e output of the hidden layer is expressed as
follows:
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Ri � e
−

uikTi − ci‖ ‖

2σ2
i

� e
−

Ti − 160×10− 7f0D3
m − fiTiDm/r− KL ΔX+Ti/rε( )− Ti(COSΔθ− 1)/r− ϕe− ϕi( )

�������������������
16/9π2TiR2/ k1+k2( )

2
R1+R2( )

3
􏽰

( 􏼁− Ci

����
����

2σ2
i .

(11)

In the equations above, ci is the center of the ith hidden
layer node, σi is the width of radial basis function, and ‖·‖ is
the Euclid Norm..e values of the center ci and width σi are
calculated in the training of the hidden layer. .e model of
the output layer node is expressed as follows:

T′i � 􏽘
50

k�1
WikRi. (12)

In the equations above, wik denotes the output weights
from Ri to T’i. .e weights are calculated in the training of
the last layer. .e total error calculation function is
expressed as follows:

e � 􏽘
n

i�k
􏽐
50

k�1
T′ik− tik( 􏼁

2
, (13)

Here, tik denotes the calculation result of the output layer
node. .e structure and parameters of the RBF neural
network can be acquired by adjusting the weights and
thresholds. .e trained RBF neural network can compensate
for the errors of the torque transducer with more optimized
fitting effects.

4.3. Calculation of Optimal Solution Based on IPSO-LM
Algorithm. Among the RBF neural network parameters, ci,
σi, and wik must be determined by learning and training..e
IPSO-LM algorithm is used to optimize the network pa-
rameters of the RBF neural network used in this study. .e
IPSO-LM algorithm combines the improved particle swarm
optimization (IPSO) and Levenberg–Marquardt (LM) al-
gorithms. Using the IPSO algorithm and LM algorithm to
optimize the parameters of the RBF neural network can not
only improve the prediction accuracy and make the pre-
diction valuemore accurate but also reduce the running time
of the algorithm.

In the IPSO algorithm, each particle represents a solution.
.e best solution among all solutions is the position of food.
Each particle will look for the position of food in this region,

and each particle will get its own position closest to the food in
the process of looking for food..is position is called extreme
individual value. .e best position that all particles will get in
the search process is the global extremum..rough these two
positions, these particles will constantly adjust their speed and
direction to approach the position of the food. .e particle
updates the speed and position of each particle through these
two extreme positions..e update formula of particle velocity
and position is as follows:

vm+1
ij � WVm

ij +C1r1 Pm
ij − Xm

ij􏼐 􏼑+C2r2 g
m
j − Xm

ij􏼐 􏼑, (14)

Xm+1
ij � Xm

ij +lvXm+1
ij , (15)

In the equations above, i� 1, 2, . . ., n, j� 1, 2, . . ., J,m� 1,
2, . . ., M, m is the iteration number. Xm

ij is the position of
particle i in space. Vm

ij is the velocity of particle i in space. c1
and c2 are acceleration factors, usually c1 � c2. r1 and r2 are
random numbers in the interval [O, 1], and w is the weight.

w � wmax − (wmax − wmin) ×
m

mmax
. (16)

In the equations above,mmax is the maximum number of
iteration, and wmax and wmin represent the maximum and
minimum weights.

LM algorithm is a combination of gradient descent
method and Gauss–Newton method. LM algorithm uses
approximate second derivative information, requires less
iteration time, converges very quickly, has good stability,
and avoids falling into a local minimum. .e iterative
formula is as follows:

qm+1� qm − A
T
MAm+μI􏼐 􏼑

− 1
A

T
mem. (17)

In the equations above, qm is the control input sequence
at themth iteration, qm+1 is the control input sequence at the
next iteration, μ is the scale factor, em is the error between the
predicted value of the network and the actual value, which
can be obtained through (13), and Am is the Jacobian matrix.

input layer

Ti T’i

uik wik

R1

R2

R50

hidden layer output layer

Figure 13: Torque error compensation model.
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· · ·

zem qm( 􏼁
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. (18)

.e IPSO algorithm solves the objective performance
function to obtain the optimal population solution’s optimal
control quantity result. .e IPSO-LM algorithm takes ad-
vantage of the fast convergence speed and high search ac-
curacy of the LM algorithm when it is close to the local
minimum and the global fast convergence ability of the IPSO
algorithm. It overcomes the disadvantage that the LM al-
gorithm is too dependent on the initial value, and the IPSO
algorithm is easy to fall into the local extremum. Taking the
result of the IPSO algorithm as the initial value of the LM
algorithm, the suitable optimal solution, i.e., the optimal
control quantity, is obtained repeatedly. .e algorithm steps
are as follows:

(1) Initialize the particle swarm optimization param-
eters and set the control quantity qm as the initial
particle. Set the current optimal position of each
particle pi and the current optimal position of all
particles g, i.e., g � pimin

.
(2) Update the speed and position of particles

according to equations (14) and (15), calculate the
fitness value of each particle, and record the extreme
individual value pi and the group extreme value g.

(3) Compare the current position of each particle with
pi. If it is better than pi, then update pi, otherwise let
pi be the same.

(4) Compare the current pi of each particle with g. If it
is better than pi, then update pi. Otherwise, pi re-
mains unchanged.

(5) If the termination condition is satisfied and the
maximum number of iterations is reached, the it-
eration is terminated. Moreover, g is the optimal
group solution, i.e., the current optimal control
quantity. Otherwise, return to step 2.

(6) Given the allowable training error values e, ad-
justment coefficient β, and the scale factor μ. Let
m� 0, μ� 10− 4, β� 10, and e� 10− 8. .e group
optimal solution g obtained by the IPSO algorithm
is taken as the initial value of the LM algorithm.

(7) Calculate the control input sequence at the (m+ 1)th
iteration qm+1 by equation (17).

(8) Calculate the Jacobian matrix Am by equation (18),
and calculate the error em between the predicted
value of the network and the actual value by
equations (12) and (13).

(9) If em < e, qm is the optimal control quantity, go to
step 11. Otherwise, take qm+1 as the new initial value
to calculate the error-index function em+1� qm+1em.

(10) If em+1 < em, let k� k+ 1, μ� μ/β, return to step 7.
Otherwise, the control quantity will not be updated,
and hence, let qm+1 � qm, μ� μβ.

(11) Stop.

5. Experiment and Result

.e torque calibration system was built according to the
characteristics of the additional torque and the torque
calibration and error compensation method described in the
third and fourth sections. Figure 14 shows the torque cal-
ibration experiment of the instrument. .e torque cali-
bration experiments were conducted to improve torque
measurement accuracy. .e torque calibrator was installed
on the instrument for the calibration experiment. In the
calibration experiment, the outputs of the torque trans-
ducers in the torque measurement systems, when there was
no load, were adjusted to 0 Nm. .e motor synchronously
loaded the torque to the torque calibrator and the torque
measurement system.

5.1. Torque Calibration and Error Curve Fitting. In cali-
bration, the torque calibrator’s standard torque and the
torque transducers’ readings in the torque measurement
systems were recorded simultaneously. .e full-torque
error curve was obtained by training the RBF neural
network according to the standard torque and the read-
ings of the torque transducers in the torque measurement
systems..e IPSO-LM algorithm was used to optimize the
network parameters of the constructed RBF neural net-
work. .e population size of the IPSO algorithm was set to
50, the acceleration factors c1 � c2 � 2, w was dynamically
updated by equation (18), r1 � 0.5, and r2 � 0.6. Since the
selection of iteration times affected the training time, the
maximum iteration time was preset to 1000. It was found
in the training that the fitness curve of the IPSO algorithm
had been stable when it was iterated 300 times. Hence, the
maximum number of iterations was set to 300 times. .e
allowable error value of the LM algorithm was set to 10− 8.
.e scale factor μ was 10− 4. .e adjustment coefficient β
was 10. A total of 60 groups of data were obtained in the
torque calibration experiment. In the experiment, the first
50 groups of data were selected for training the IPSO-LM-
RBF neural network, and the remaining ten groups of data
were used for testing. .e appropriate error curves of
TMSIS and TMSOS using the IPSO-LM-RBF neural
network are shown in Figure 15 and 16. From these
curves, the error compensation values of TMSIS and
TMSOS at any torque are obtained.

5.2. Verification of the Torque Calibration and Error Com-
pensation Method. .e compensation effect of additional
torque in the instrument using the proposed IPSO-LM-RBF
neural network was verified using the remaining ten groups
of data, and the torque measurement accuracy of TMSIS and
TMSOS was determined. .e torque measurement range of
TMSIS was ±50N·m, and the torque measurement range of
TMSOS was ±2000N·m. Positive and negative indicate
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loading in the clockwise or counterclockwise direction. We
selected 50 sampling points in the full range for comparative
analysis. .e torque measurement errors of TMSIS and
TMSOS before and after error compensation are shown in

Figures 17 and 18, respectively. .e results show that the
maximum error of TMSIS is 0.045N·m (0.9‰FS), and the
maximum error of the TMSOS is 1.9N·m (0.95‰FS). .e
repeatability of the torque measurement results after error

Figure 14: Calibration experiment of the torque transducers in the torque measurement system.
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Figure 15: Error curve fitting of the output torque of TMSIS.
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compensation was obtained using the remaining ten groups
of data. .ree groups of experimental data at TMSIS and
TMSOS are shown in Tables 1 and 2, respectively. By error
compensation, the torque measurement accuracy of TMSIS
and TMSOS can reach 1‰FS. For comparison, polynomial
fitting and BP neural network were used to compensate for
the error of the torque measurement system, respectively.

.e torque measurement error of TMSOS after compen-
sation is shown in Figure 19.

5.3. ComprehensiveUncertainty. As the comparison method
is used in the calibration of TMSIS and TMSOS in the
instrument, the sources of uncertainty mainly include the
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Figure 16: Error curve fitting of the output torque of TMSOS.
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Figure 17: Errors of TMSIS before and after compensation using the RBF neural network.
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measurement error of TMSIS and TMSOS, the possible data
drift of the torque transducers, the random error caused by
fluctuation of load, and measurement error of the torque
calibrator.

.e first component of uncertainty, U1, is caused by the
measurement error of the torque transducer in the torque
measurement system. According to the test report provided
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Figure 18: Errors of TMSOS before and after compensation using the RBF neural network.

Table 1:.ree groups of verification––repeating experimental data
of TMSIS.

Standard torque (N·m)
.e measurement result of TMSIS

(N·m)
Group one Group two Group three

1.001 1.010 1.021 1.041
2.000 2.050 2.021 2.034
3.001 3.041 3.021 2.991
3.999 3.979 3.959 3.968
5.000 5.034 5.025 5.043
6.001 6.011 6.025 6.037
6.999 6.969 6.978 6.964
8.001 8.045 8.008 7.996
9.000 8.992 9.008 8.992
9.999 10.032 9.959 9.977
11.001 10.975 11.007 10.971
11.999 12.001 12.039 12.023
13.001 13.020 12.989 12.964
14.000 14.027 13.954 13.976
14.999 15.023 14.985 15.024
16.001 16.039 15.981 16.034
16.999 17.024 17.030 17.011
18.001 18.013 17.972 18.044
18.999 19.023 19.049 18.956
20.000 19.992 20.049 20.001
21.001 20.954 21.045 21.002
22.000 22.021 21.985 21.958
22.999 22.975 22.993 23.044
24.000 23.963 24.020 23.996
25.001 25.000 25.021 24.970
25.999 25.953 26.010 25.998
27.001 26.991 27.025 26.989
28.000 27.999 28.045 28.034
29.001 29.014 29.017 28.986

Table 1: Continued.

Standard torque (N·m)
.e measurement result of TMSIS

(N·m)
Group one Group two Group three

30.000 29.953 30.044 29.987
31.001 31.036 31.021 31.038
31.999 31.991 32.032 32.039
33.001 32.960 33.005 33.017
34.000 33.999 34.031 34.011
35.001 35.001 35.024 34.997
35.999 36.017 35.950 35.999
37.001 37.046 37.021 36.961
38.000 37.965 37.965 38.025
39.001 38.963 38.957 38.986
40.001 40.023 39.974 39.960
40.999 41.016 41.010 41.003
41.999 41.972 42.007 41.967
43.001 42.968 42.987 42.969
44.001 43.985 43.971 44.038
45.001 44.952 44.951 45.009
46.001 45.982 45.950 45.950
47.000 47.016 47.012 46.965
48.001 48.000 47.959 48.002
48.999 48.965 48.997 49.019
49.999 50.011 50.030 49.954
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by the German metrology institute, when the torque
transducer leaves the factory, the uncertainty of this part is
U1 �±0.05% FS.

.e second component of uncertainty, U2, is caused by
the possible data drift of the torque transducer from the last
calibration owing to temperature changes. According to the
instructions of the torque transducer, the uncertainty of this
part is: U2 �±0.02% FS.

.e third component of uncertainty, U3, is caused by
random errors caused by the fluctuation of torque loaded by
the motor. According to the instability of torque loaded by
the engine after low-pass filtering, the uncertainty of this
part is U3 �±0.05% FS.

.e fourth component of the uncertainty, U4, is caused
by the measurement error of the torque transducer in the
torque calibrator. According to the test report provided by

Table 2: .ree groups of verification: repeating experimental data of TMSOS.

Standard torque (N·m)
.e measurement result of TMSOS (N·m)

Group one Group two Group three
40.01 41.88 41.00 38.00
80.02 81.68 79.28 79.08
120.03 118.60 359.68 359.96
160.02 161.44 161.32 158.00
200.04 199.80 200.24 201.16
239.96 238.44 241.52 241.84
279.98 281.08 278.96 278.52
319.97 319.00 318.12 320.24
359.99 359.88 359.00 360.40
400.03 399.80 399.52 401.04
440.01 440.52 438.32 441.28
480.01 478.00 481.28 479.88
519.99 520.12 518.72 519.24
559.99 560.24 558.84 561.36
600.02 599.76 600.80 600.12
639.99 639.12 638.92 640.28
679.99 678.04 680.28 680.04
720.00 719.64 720.00 718.24
760.01 761.16 761.32 758.64
799.99 801.88 801.32 798.48
840.00 840.32 840.40 838.52
880.00 879.68 878.88 878.76
920.00 921.92 920.92 919.08
959.98 960.04 958.00 958.24
999.99 998.00 999.56 1001.96
1040.01 1040.24 1040.52 1038.04
1080.02 1080.44 1078.12 1079.16
1119.99 1121.68 1121.36 1118.88
1159.99 1160.80 1162.00 1160.72
1200.01 1198.84 1200.92 1199.20
1240.01 1238.56 1240.44 1241.28
1279.98 1280.04 1281.12 1279.96
1320.03 1321.80 1319.96 1319.96
1359.98 1358.52 1359.64 1358.88
1399.99 1399.00 1400.08 1401.80
1440.02 1438.88 1438.52 1441.12
1480.00 1478.04 1479.92 1480.20
1520.01 1519.04 1519.76 1521.80
1559.99 1559.80 1561.04 1560.16
1600.02 1601.28 1599.96 1601.76
1640.02 1640.84 1639.08 1638.52
1679.98 1681.20 1680.96 1679.20
1719.98 1721.04 1721.56 1722.00
1760.01 1761.40 1758.56 1761.08
1799.99 1799.80 1798.60 1798.28
1839.97 1838.44 1838.96 1838.44
1879.98 1880.16 1878.44 1881.36
1919.97 1919.88 1920.80 1918.24
1959.98 1960.56 1959.60 1958.12
1999.99 1998.00 1999.72 2000.72
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the German metrology institute, when the torque transducer
leaves the factory, the uncertainty of this part is U4 �±0.05%
FS.

.e transfer coefficients of the above uncertainty com-
ponents are independent of each other. .erefore, the
comprehensive uncertainty u is expressed as follows:

u �

�����������

u21+u
2
2+u

2
3+u

2
4

􏽱

� ±0.09%FS. (19)

6. Conclusion

.e TMSIS and TMSOS of a vertical cylindrical high-
precision reducer detector were designed and investigated
in this study to realize the accurate measurement of input
and output torque of the reducer. Compared with the
problems of the horizontal instrument, the structure of the
vertical torque measurement system was optimized, and
the support mode of series components in shafting was
changed. As a transmission chain connects the torque
transducer and the reducer, the characteristics of the in-
evitable additional torque are analyzed in detail in the third
section. In terms of torque calibration and error com-
pensation, a high-precision torque calibrator was designed.
.e IPSO-LM-RBF neural network was used to construct
the torque measurement error model to compensate for the
error of the torque measurement system..e parameters of
the IPSO-LM-RBF neural network are settled according to
the characteristics of the additional torque and the torque
calibration results. Experiments showed that the torque
calibration and error compensation methods are simple
and effective. .e validation experiments and repeated

experiments of the error compensation model showed that
the measurement error of the torque measurement system
is within 1‰FS, and most of the errors can be
compensated.

.e torque measurement system of the precision reducer
detector in this study overcomes certain shortcomings of
existing instruments. It provides a reference for improving
and applying the IPSO-LM-RBF neural network to the
torque measurement area. Moreover, it also provides a
reference for improving the measurement device developed
previously.
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