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Abstract:  As the fiber-to-the-home network construction increased, optical 
fiber cables are demanded to be easier to handle and require less space. 
Under this situation, a single mode fiber (SMF) permitting small bending 
radius is strongly requested. In this paper, we propose and demonstrate a 
novel type of bending-insensitive single-mode holey fiber which has a 
doped core and two layers of holes with different air-hole diameters. The 
fiber has a mode field diameter of 9.3 µm at 1.55 µm and a cutoff 
wavelength below 1.1 µm, and shows a bending loss of 0.011 dB/turn at 
1.55 µm for bending radius of 5 mm and a low splice loss of 0.08 dB per 
fusion-splicing to a conventional SMF. 
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1. Introduction 

The increasing demand for large capacity and low cost in optical communication systems 
imposes a great importance on dense and flexible optical wiring, which is realized by optical 
fibers which operate under small bending radius. However, the standard single-mode fiber 
(SMF) has a disadvantage that the minimum radius allowed for the fiber to be bent is 
approximately 30 mm, and therefore a large space has to be occupied when using the SMF. 
From this point of view, bending-insensitive optical fiber with a small allowed bending radius 
has been strongly requested. 



Recently, photonic crystal fibers [1], also called holey fibers (HFs) or microstructured 
optical fibers, have been under intensive study. They can offer a number of unique and useful 
properties not achievable in standard silica glass fibers. Especially, HFs with a Germanium-
doped core [2], also known as hole-assisted fibers, have attracted great attention because of 
their excellent bending loss characteristics. This makes the hole-assisted fibers to be a good 
candidate for dense and flexible optical wiring in the fiber-to-the-home system. So far, various 
HFs with low bending loss have been reported [3]-[5]. HFs with low bending loss can be 
realized by increasing the air-hole diameter, however, the suppression of bending loss usually 
brings about small mode field diameter (MFD) of the fundamental mode and long cutoff 
wavelength of the higher-order modes. The former results in optical loss at a splice with a 
standard SMF, and the latter results in multi-mode operation. 

In this paper, we propose and demonstrate a novel type of bending-insensitive single-
mode HF which has a raised-index core surrounded by two layers of holes with two different 
air-hole diameters. We show that it is possible to design a single-mode HF with a MFD 
matching to a standard SMF and a small allowable bending radius by appropriately choosing 
the core radius, the hole pitch, and the air-hole diameters. The fabricated HF has a MFD of 9.3 
µm at 1.55 µm and a cutoff wavelength below 1.1 µm, and shows a bending loss of 0.011 
dB/turn at 1.55 µm for bending radius of 5 mm and a low splice loss of 0.08 dB per fusion-
splicing to a conventional SMF. 
 

2. Holey fiber design 

For optical wiring application, the fiber should have low bending loss, short cutoff wavelength 
of the higher-order mode, and a MFD matched with that of the standard SMF. Although these 
requirements are usually conflicting, they can be realized by HFs. Nakajima et al. have 
investigated the hole-assisted fiber structure with one layer of air-holes in Fig. 1(a) for low 
bending and splice losses [4]. The HFs with one layer of air-holes have a simple structure, 
however, they have a problem that suppressing bending loss strengthens also the confinement 
of higher-order modes and results in long cutoff wavelength of the higher-order modes. In this 
paper, we consider a HF structure having a Germanium-doped core surrounded by two layers 
of air holes running along fiber axis, as shown in Fig. 1(b), where a is the radius of the core, 
d1 and d2 are the diameters in the inner and the outer layers, respectively, and Λ is the hole 
pitch. We should notice that the hole diameters d1 and d2 are not necessarily equal, while the 
hole pitch Λ is uniform in the cross section. This HF structure can be fabricated by using 
stack-and-draw fabrication process [6]. 
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Fig. 1.  Schematic representations of HFs with (a) one layer of air-holes and (b) two layers of air-holes. 



An optical window between 1.25 µm to 1.625 µm is used in optical transmission systems, 
so the HF should have a cutoff wavelength lower than 1.25 µm. It is worth to notice that it is 
difficult to determine an exact cutoff wavelength in hole-assisted HF, because the higher-
order mode exists in HF as a leaky mode when the effective refractive index of the higher-
order mode becomes lower than the outer cladding (silica) index. In this paper the cutoff 
wavelength is defined numerically such as the corresponding leakage loss being 22 dB/m. In 
addition, for HF, the bending loss is higher at longer wavelengths. So, here we consider an 
operating wavelength of 1.65 µm in order to properly define the allowable bending radius. If 
the total bending loss for 10 turns is less than 0.5 dB at 1.65 µm, then the radius of each turn 
is defined as the allowable bending radius. Moreover, in order to succeed in a low-loss 
splicing between the proposed HF and the standard SMF, the MFD of the HF has to be 
matched with that of the SMF. To compute the minimum required MFD of the HF, in purpose 
to have total splice losses Ls less than 0.3 dB at 1.55-µm operating wavelength, we employ the 
well-known formula [7]: 

2210

2
log20

HFSMF

HFSMF
s

ww

ww
L

+
−=     (1) 

in decibels, where wSMF and wHF are the MFDs of the SMF and the HF, respectively. Figure 2 
shows the MFD dependence of splice loss between the HF and the SMF, where the MFD of 
the SMF is assumed to be 11.4 µm. We can determine that the minimum value of the MFD of 
the HF is 8.8 µm. We have investigated the optimum structural parameters of the HF in Fig. 
1(b). Here, we develop a full vectorial modal solver based on the finite element method 
(FEM) with anisotropic perfectly matched layer for the calculations of the cutoff wavelength, 
the bending loss, and the MFD. 
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Fig. 2.  MFD dependence of splice loss, Ls, between the HF and the SMF, where the MFD of 
the SMF, wSMF, is assumed to be 11.4 µm. 

 

3. Finite element method for bending loss evaluation 

We consider a curved HF as shown in Fig. 3. We assume a circular bend structure, and 
perfectly matched layer (PML) is used along the radiation direction (+x direction) for 
suppressing spurious reflection, where R is the curvature radius, dPML is the PML thickness, 
and xPML is the x coordinate of the PML surface. In the present analysis, we replace the curved 
HF by a straight fiber with equivalent refractive index as [8] 
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where n(x, y) is the original refractive index profile of the HF. We should notice that the 
equivalent refractive index neq(x, y) in the PML region is no longer homogeneous along the x-



direction. Here, we apply the anisotropic PML [9],[10] to this problem. In the anisotropic 
PML region, the original position vector r = [x, y, z]T is converted by [9] 
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where r~  is the coordinate converted position vector, S(x) is the complex stretching variable 
[9], and T denotes a transpose. 
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Fig. 3.  Curved holey fiber with perfectly patched layer. 

 
Assuming the parabolic profile of the complex stretching variable S(x) as [10] 
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the coordinate conversion is expressed as follows: 
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where α is the attenuation parameter in the PML region. Introducing a new electric field 

vector, E , defined as [9] 
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we have the following basic equation for the vector FEM: 
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where )~(rE  is the coordinate converted electric field vector, k0 is the free-space 

wavenumber, and )~(reqn  is the coordinate converted equivalent refractive index. 

In the present formulation curvilinear hybrid edge/nodal elements [11] have been used for 
accurately modeling curved boundaries. Dividing the fiber cross section into curvilinear 
hybrid edge/nodal elements and applying the variational finite element procedure, we can 
obtain the following eigenvalue equation: 

}]{[}]{[ 2 EMEK β= ,    (11) 

where {E} is the discretized electric field vector, β is the complex propagation constant, and 
the finite element matrices [K] and [M] are given in Ref. [10]. The bending loss, LB, is defined 
as 

]Im[ 686.8 β=BL     (12) 

in decibels per meter, where Im stands for the imaginary part. 
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(a) Λ = 8.0 µm (b) Λ = 9.0 µm 
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(c) Λ = 10.0 µm 

Fig. 4.  Relation between the MFD and the cutoff wavelength. 

 

4. The impact of the design parameters to the bending loss and cutoff wavelength 
characteristics 

We consider a hole-assisted fiber structure with two air-hole rings in Fig. 1(b). The centers of 
all air-holes are arrayed in a regular triangular lattice with the hole pitch Λ. We assume that 
the Germanium concentration of the core is set up to the level of 0.37 %. This fiber has a step 



core similar to the conventional SMFs so that the HF can be spliced to SMFs with low loss 
even if the holes are filled with silica in fiber splices. As expected, the bending loss as well as 
the MFD decreases as the value of d1 increases, while the cutoff wavelength increases. By 
keeping the parameters d1 and Λ constant and varying only the value of d2, we can control the 
cutoff wavelength and bending loss, without changing the size of the MFD. We perform 
numerical simulation to obtain the optimum structural parameters, such as the core radius, the 
hole pitch, and the hole diameters through the vector FEM, where the material dispersion 
given by a Sellmeier formula is included directly in the calculation. 

Figure 4 shows the dependence of the cutoff wavelength on the MFD for various values 
of parameters Λ, d1, d2, and a. We found that the cutoff wavelength is strongly depending on 
the core radius a, where the MFD of the fundamental mode is evaluated at 1.55-µm 
wavelength. When the hole pitch Λ is smaller than 8 µm, the MFD takes undesirable small 
value, resulting in the large splice losses. We can see that, to achieve the desired MFD 
(wHF ≥ 8.8 µm) and the desired cutoff wavelength (λc ≤ 1.25 µm), we should choose the values 
of Λ ≅ 9.0 µm, d1/Λ=0.38, and a=3 µm. The value of Λ ≅ 9.0 µm is the optimum, in the sense 
that when increases (e.g. Λ=10 µm), the MFD takes undesirable large values, resulting in the 
large bending losses. Figure 5 shows the impact of the pitch parameter Λ on the allowable 
bending radius, and we can deduce further optimum values such as d1/Λ=0.38 and a=3.0 µm, 
where the bending loss of the fundamental mode is evaluated at 1.65-µm wavelength. Notice 
that, for the previous parameters, the allowable bending radius is always less than 7 mm. In 
Fig. 6 we investigate the dependence of the cutoff wavelength on the allowable bending 
radius, by varying the parameter d2. We found that by increasing the value of d2, we can 
reduce further the allowable bending radius, which results in more compact applications. 
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(a) Λ = 8.8 µm (b) Λ = 9.0 µm 
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(c) Λ = 9.2 µm 

Fig. 5.  Dependence of the cutoff wavelength on the allowable bending radius. 

 



Finally, for example, we consider a HF with a=3.0 µm, Λ=9.0 µm, d1/Λ=0.38, and 
d2/Λ=0.40. The MFD is 8.8 µm at 1.55-µm wavelength. The allowable bending radius and the 
cutoff wavelength for this HF are 5.9 mm and 1.28 µm, respectively. In Fig. 7 we plot the 
optical field distribution in the curved HF, where the operating wavelength is 1.55 µm and the 
bending radius is 6.0 mm. As we can see, there is a strong confinement of the light in the core 
and the radiation into the cladding region is minimized, showing the usefulness of the 
proposed hole-assisted HF and design procedure. 
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Fig. 6.  Dependence of the cutoff wavelength and the allowable bending radius on air-hole 
diameter of the second ring. 

 

 
Fig. 7.  Optical field distribution in curved HF with bending radius of 6 mm at 1.55-µm 
wavelength, where a=3.0 µm, Λ=9.0 µm, d1/Λ=0.38, and d2/Λ=0.40. 

 

 
Fig. 8.  Cross sectional view of fabricated HF. 

 



Table 1.  Characteristics of the fabricated HF at 1.55 µm. 

Attenuation [dB/km] 2.3 

Mode field diameter [µm] 9.3 

Fiber cutoff wavelength [µm] 1.1 

Dispersion [ps/(km·nm)] 21.8 

Bending diameter 10 mm 0.011 Bending loss 
[dB/turn] Bending diameter 20 mm 0.002 

 

5. Experimental results and discussions 

Based on the above design, we have fabricated the bending-insensitive HF shown in Fig. 8, 
where the core radius a=2.95 µm, the hole pitch Λ=8.98 µm, and the hole diameters are 
d1=3.51 µm (d1/Λ=0.39) and d2=3.71 µm (d2/Λ=0.41), respectively. The structural parameters 
of the fabricated fiber are almost the same as those of the designed fiber. The characteristics 
of the fiber are summarized in Table 1. Even though this fiber has relatively high transmission 
loss of 2.3 dB/km at 1.55-µm wavelength, this attenuation can be reduced by careful 
optimization of the fabrication process. The chromatic dispersion is 21.8 ps/(km·nm) at 1.55 
µm. We measured the cutoff wavelength of the fiber using multimode excitation method 
recommended by ITU-T G.650 with a fiber of 2 m in length and bending radius of 140 mm. 
The cutoff wavelength of the higher-order mode is 1.1 µm. Figure 9 shows the numerically 
evaluated wavelength dependence of the effective indices of the fundamental and higher-order 
modes of the fabricated HF, where the pure silica index is shown as a dotted curve. The 
effective index of the fundamental mode is higher than the pure silica index, on the other 
hand, the effective index of the higher-order mode becomes equal to the silica index at ~0.92-
µm wavelength. It is noteworthy that the measured cutoff wavelength is longer than the 
wavelength of intersection between the effective index of the higher-order mode and the pure 
silica index in Fig. 9, because the higher-order mode exists in HF as a leaky mode when the 
effective index of the higher-order mode becomes lower than the silica index. Figure 10 
shows the wavelength dependence of the leakage loss of the higher-order mode for this fiber. 
The leakage loss becomes 13 dB/m at 1.25 µm. Figure 11 shows the optical field distributions 
of the fundamental and higher-order modes at 0.92-µm wavelength, where the contours are 
spaced by 3 dB. As we can see, the fundamental mode is strongly confined to the core region, 
while the higher-order mode penetrates more deeply into the cladding region. 
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Fig. 9.  Wavelength dependence of effective indices of the fundamental and higher-order modes. 
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Fig. 10.  Dependence of leakage loss of the higher-order mode on the operating wavelength. 
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Fig. 11.  Optical field distributions of (a) the fundamental and (b) higher-order modes at 
0.92-µm wavelength with a=2.95 µm, Λ=8.98 µm, d1/Λ=0.39, and d2/Λ=0.41. 

 

 
Figure 12 shows the experimental and numerical bending loss properties of the HF as a 

function of bending radius at 1.55-µm wavelength. For comparison, the experimental bending 
loss of standard SMF is also plotted. We can see that the bending loss of the HF is much 
lower than that of the SMF especially for small bending radius and 0.011 dB/turn for bending 
radius of 5 mm at 1.55 µm. The calculated results are in good agreement with the 
experimental ones, showing the validity of our numerical design procedure. The MFD of the 
HF is 9.3 µm at 1.55-µm wavelength. Although this MFD is smaller than that of a typical 
SMF, it would be possible to splice the SMF with low loss because the HF with collapsed air 
holes has almost same MFD with that of the SMF. Figure 13 shows the histogram of the 
splicing loss for HF and SMF at 1.55 µm using a commercial arc fusion splicer. We measured 
the splice loss to be 0.08 dB per fusion-splice on average, which would be allowable in 
practical use. It is worth noting that Hasegawa et al. [5] have formed a taper region for 
gradual MFD transition to splice a HF with an SMF, on the other hand, the proposed HF can 
be spliced to an SMF by only arc fusion splicing with low loss. If we keep the hole diameter 
d1 in the inner layer and the hole pitch Λ constant and increase the hole diameter d2 in the 
outer layer, we can further reduce the bending loss without changing the MFD. 
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Fig. 13.  Splice loss histogram for fusion splicing between HF and SMF at 1.55 µm. 

 

6. Conclusions 

We have proposed and demonstrated a novel type of bending-insensitive single-mode hole-
assisted holey fibers for optical interconnection applications. The holey fibers with a doped 
core and two layers of holes with different air-hole diameters have been designed. It has been 
shown through numerical and experimental results that it is possible to design a holey fiber 
with a MFD of 9.3 µm at 1.55-µm wavelength, a small bending loss of 0.011 dB/turn at 1.55 
µm for bending radius of 5 mm, and a cutoff wavelength below 1.1 µm, by appropriately 
choosing the core radius, the hole pitch, and the air-hole diameters. 


