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ABSTRACT

DESIGN AND CONSTRUCTION OF 9-DOF HYPER-REDUNDANT ROBOTIC
ARM

Name: Xingsheng, Xu
University of Dayton

Advisor: Dr. Raul Ordéniez

Hyper-redundant robotics is a branch of advanced robotic technology recognized
as a method to improve manipulator performance in complex and unstructured
environments. Research in both kinematic and dynamic control of hyper-redundant
manipulator plays an import role in high-tech field like modern industry, military
and space applications. The kinematic redundancy considered in this thesis means
the total degrees of freedom (DOF) of robot is more than the degrees of freedom
required for the task to be executed. The redundancy provides infinite solutions to
achieve the same position and orientation of the end-effector. Therefore, the efficacy
of kinematic algorithm affects the accuracy and stability of both motion control and
path tracking. In this thesis, we mainly focus on constructing an application robotic

platform based on kinematic modeling of a 9-DOF hyper-redundant manipulator.

We firstly take a brief introduction of the background, related work, significance

and objective of this thesis. Then the kinematic model of 9-DOF manipulator is

il



established along with its home position configuration. The next work is divided
into two parts: first is the construction of hardware platform, and the second one is
to design an application software with user interface (UI). In addition, the result of
proposed thesis design is demonstrated in a number of experiments. In the end,

conclusion and future work are presented.
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CHAPTER 1

INTRODUCTION

With the development of science and technology, robots have increasingly pene-
trated into military, aerospace, medical science and other fields, mostly performing
the risky or precise work for human beings. According to [4], if the total degrees of
freedom (DOF) of a robot is more than the degrees of freedom required for the task

7

to be executed, the robot is termed as “kinematically redundant” or simply “redun-
dant”. Hyper-redundant robots (HRR) are a kind of robots that have a very large
degree of kinematic redundancy. Redundancy in robotic design has been used to
improve robotic performance in complex and multiple barrier environments. HRR,
analogous in morphology and operation to snakes [5], elephant trunks [6], or tenta-
cles 7], are used to deal with a number of important applications where such robots
would be advantageous. Once the number of DOF of the robot exceeds the number
of task coordinates, it becomes a great challenge to solve the inverse kinematics and
generate a path to make its motion robust and dexterous. Therefore, the research on
HRR, has become one of the hot topics of robotic research for its practical signifi-
cance and theoretical value. In modern days, robot manufacturers provide variety of
industrial robots with their own forward and inverse kinematics and control methods
(e.g.,PID control). However, these kinematics and control approaches are regarded as

black boxes to the researchers who are using them. In order to further independently

research and study HRR, building an open HRR is imperatively the main task of this



thesis.

The objective of this thesis is to build a hyper-redundant 9-DOF robotic arm with
its forward kinematic model and control software with user interface (UI), also im-
plement trajectory tracking of the end-effector. The open robotic arm is constructed
using nine orthogonal DC servo motor joints with detachable physical links. The
RS-485 protocol is used for communicating from PC direct to the arm. In addition,
we develop our own library of Visual C++ functions to control the manipulator’s
motion and path operation. Its main job is to satisfy different control and motion re-
quests and experiments, e.g., teaching positions, tracking trajectory or testing inverse

kinematics in the future.
The thesis is organized as follows:
Chapter [2| discusses the background of thesis and related work.

Chapter [3] introduces the forward kinematic modeling and operation of 9-DOF

robotic arm.

The construction of 9-DOF hardware platform with its mechanical analysis and
the development of control software with Ul are explained in Chapter 4| and Chapter

respectively.
Chapter [6] shows all the experiment results and demonstrations of 9-DOF arm.

Finally, the thesis experience, difficulties, deficiencies and future improvement are

summarized in Chapter [7] as a conclusion.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, all the fundamental background, relevant knowledge and previous
work corresponding to this thesis are discussed. The 9-DOF manipulator in this thesis
is constituted of orthogonal DC servo motors which will be introduced in Section [2.1]
Section describes a typical protocol that allows the PC to communicate with
the servo motors directly. Fundamental background theory on robot kinematics and
control that is used throughout the thesis termed forward kinematics will be explained
in Section [2.3] As explained in Chapter[I, HRR are used in wide range of applications
and experiments. Section presents a brief literature review on previous work on

HRR.

2.1 DC SERVO MOTOR

A DC servo motor is a rotary actuator, powered from direct current, that converts
the received electrical signal into angular displacement or velocity of motor output. It
contains a suitable motor embedded with sensors for position and velocity feedback,
which allows for accurate closed-loop control of angular position. Nowadays, servo
motors are generally used as a high performance alternative to the stepper motor
both in industrial manufacturing and institutional research. As there are abundant

choices of servo motors in the market, motor selection becomes significant for building



Figure 2.1: DC servo motor products called “Dynamixels” of ROBOTIS (source: [1]).

specific robotic arm. The foremost step is to check the required specifications such as
positioning accuracy, torque requirements, speed range, operating voltage and other
environmental resistances for the manipulator. The final determination of motors
should also meet required specifications of different arm parts (i.e., wrist, elbow and
shoulder). Figure presents a series of DC servo motors (called Dynamiexls) from

ROBOTIS, which will be used to construct the arm in this thesis.

2.2 RS-485 PROTOCOL

RS-485 described in is a standard electrical characteristic protocol used for
computers and devices. RS-485 is widely used for the configuration of inexpensive lo-
cal networks and multidrop communications links as it is fast, efficient and robust ﬂg[]
In this thesis, the signal of main controller universal asynchronous receiver/trans-
mitter (UART) should be converted into RS-485 type signal to control “MX series”
servo motors [1] with a personally made main controller. According to [3], RS-485
instruction packet used here is command data that is sent from the PC to the servo
motors. The structure of instruction packet is as in Figure 2.2] where the first two
addresses (i.e., “OXFF OXFF”) notify the beginning of the packet. The instruction

packet contains ID of motor which will be commanded, length of the packetﬂ different

Tt equals the number of parameters plus two.



OXFF| |0XFF IO LENGTH INSTRUCTION| PARAMETER1] ---PARAMETER N [CHECK SUM|

Figure 2.2: Structure of instruction packet by RS-485 protocol.

types of instructions and parameters that are used when instruction requires ancil-
lary data. At last, the function of “CHECK SUM” address is to check if packet is
damaged during communication. In addition, servo motor receives instruction packet

to perform a command and returns the result as status packet to the PC.

2.3 FORWARD KINEMATICS

Forward kinematics introduced in [2,[10,(11] is an arithmetic operation, which
determines the position and orientation of the end-effector given the values of each
joint parameter of the robot using the kinematic equations. A robot manipulator is
composed of a set of links connected together by joints. Also, a manipulator with n

joints will have n + 1 links, since each joint connects two links.

With the " joint, we define a joint variable, denoted by ¢;. In the case of a
revolute joint, #; is the angle of rotation, and as to a prismatic joint, d; is the joint
displacement:

(

0; if joint ¢ is revolute,

(2.1)

q;

d; if joint ¢ is prismatic.
(

To proceed with the kinematic analysis, we associate a corresponding coordinate
frame rigidly to each link. Furthermore, when joint i is actuated, link ¢ and its

attached frame, o;x;y;2;, experiences the resulting motion. The frame oyx¢yozo, which



is attached to the robot base, is labeled as the base frame. Figure illustrates an
example of attaching frames rigidly to links in the case of an elbow manipulator. We
suppose that A; is the Homogeneous Transformation Matrix (HTM) that represents
the position and orientation of 0;x;y;2; with respect to 0;_1x;_1y;_12;_1. Now it can be
inferred the HTM that expresses the position and orientation of 0;x;y,z; with respect
to 0;x;1;2; is termed, by convention, a Transformation Matrix, and is denoted by Tj’

Moreover, T]Z is the product of each HTM post multiplied together as

(

AipiAige - Aj Ay it < g,

Tj=91 ifi = j, (2.2)

(TH)~ ifj > .

Figure 2.3: Coordinate frames attached to elbow manipulator (source: [2]).



Denoting the position and orientation of the end-effector with respect to the base
frame by a three-vector o2 which gives the spatial coordinates of the position and a 3 x
3 rotation matrix R?, and define the homogeneous transformation matrix respectively

as

(2.3)

Based on (2.1, (2.2) and (2.3)), the position and orientation of the end-effector

with respect to the base frame can be given as
H = Tv? = Ai(q1) -+ An(gn)-

Hence, we rewrite ([2.3)) as

Tiz= Ay A= 7 7. (2.4)

A widely used conventional method [12] for attaching reference frames to the links



of a spatial kinematic chain is the Denavit-Hartenberg (DH), or DH convention:

A; = Rot, g, Trans, g, Trans, ., Rot, o,

-091. —sp, 0 O- -1 00 0 ] -1 0 0 al- -1 0 0 al-
S0 <o 0 0|01 0 O 01 0 O0f]0 coy =54, O
- 0 0 1 0[]0 0 1 4 " 0 01 0[]0 54, ¢€o O

K 0 0 1] (000 1] 000 1]1]0 0 0 1

-091. —50,Ca; 50,50, aic@-
_ |6 cocar —CoiSa, iy, | 2.5)

0 Sa; Cay d;
| 0 0 0 1]

where ¢; means cos(6;) and s; means sin(6;). Equation ({2.5)) indicates that each homo-
geneous transformation A; is characterized as a product of four basic transformations.
The four parameters a;, «;, d;, and 6; in (2.5)) are generally called link length, link

twist, link offset and joint angle.

Finally, the combination of and gives us the position and orientation
of the tool frame expressed in base coordinates. The last column of resultant matrix
T (i.e., 02) describes the Cartesian coordinates of the origin of the tool frame. The
upper left 3 x 3 matrix of matrix T (i.e., R?) presents the orientation of the tool
frame with respect to the base frame. Those nine elements can in turn be represented
using only three independent quantities: Euler-angles, Roll-Pitch-Yaw (RPY) angles
or angle representation yielding a total end result of six quantities (i.e., three for

positioning and three for orientation description).



2.4 LITERATURE REVIEW

As explained in the previous chapter, redundant robot manipulators are widely
used in various applications. Redundancy introduced to robot manipulators gives
high kinematic flexibility which enables the manipulator to achieve the same attitude
though infinite number of configurations, and this preponderant property is the main
motivation behind this thesis. Although, HRR have been investigated for more than
25 years, they have still remained a laboratory curiousity. Previous kinematic model-
ing techniques have not been particularly efficient or robust to the needs of HRR task.
Also, the mechanical design and implementation of HRR has been considered as un-
necessarily complex. This section will briefly review the previous work on kinematic

modeling and control of redundant robot manipulators.

Several recent techniques |[13-16] of redundant robot are reported in the literature.
These techniques can be sorted into two main categories. The first one contains dif-
ferent methods that solve and optimize the forward or inverse kinematic modeling for
HRR. In the early stages, |13] researchers figured out a complete and general solution
dealing with the forward kinematics problem of platform-type robotic manipulators.
It showed that the equations for the forward kinematics of redundant robot were
highly nonlinear, however, closed-form solutions to the forward rate and acceleration
kinematics could be obtained by solving a system of linear equations based on the

data of three spatial positions, velocities and accelerations of the end-effector.

After solving forward kinematics, inverse kinematics, which solves each joint vari-
able by given position and orientation of end-effector, became a point of hot debate
in the robotic field. Recently, a valid analytical inverse kinematics computation for

redundant manipulators was proposed by [14]. The method used a virtual joint in-



stead of the joint offset from the wrist, and attached the virtual manipulator with a
spherical wrist which means the inverse kinematics solution of real manipulator could
be obtained by solving the inverse kinematics problems of virtual manipulator with

less complexity and nonlinearity.

The second category consists of techniques that deal with the motion and path
control of hype-redundant robot with different dynamic control approaches. Typi-
cally, |15] developed a dynamic control procedure based on analysis in the defined
posture space where three parameters were used to determine the manipulator pos-
ture. The manipulator dynamics was modeled by the parameters of the space path
and the path-tracking feedforward controller was formulated on the basis of the spa-
tial dynamic equations. As a result, it was proven that the workspace path of hyper-

redundant manipulator could be tracked precisely.

Other emerging technology on dynamic control laws for redundant manipulators
includes the work of [16], a wheelchair-mounted robotic arm (WMRA) system, based
on the dynamic model of a manipulator in Cartesian space, was designed and built
to meet the needs of disabled person. An optimized control method that guarantees

asymptotic tracking of a desired end-effector trajectory was adopted.

10



CHAPTER 3

9-DOF ROBOTIC ARM MODELING AND OPERATION

A kinematic model of 9-DOF manipulator is designed in this chapter that explains
the geometric motions without considering forces and torques. The main part of kine-
matic modeling is dealing with the assignment of coordinate frames to represent the
position and orientation of the end-effector with respect to the base, and with trans-
formations among the coordinate systems. Also, forward kinematic analysis is carried
out in Section according to DH convention to get both position and orientation of
the end-effector. Section states the configuration of the home position of 9-DOF

manipulator defined for kinematic control.

3.1 KINEMATIC MODEL OF 9-DOF ARM

The proposed 9-DOF manipulator is composed of a set of revolute joints which are
arranged orthogonal to each other while making the shoulder and wrist joint spherical.
Thus, this kinematic model can be easily decoupled into inverse kinematics problem
into two simpler problems, i.e., inverse position kinematics, and inverse orientation

kinematics for future research.
3.1.1 Labeling of Links and Joints

In order to establish the kinematic model, all the links and joints of the manip-

ulator are labeled starting from the bottom as shown in Figure where 6; is joint

11



variable of each motor and h; is the length of each link. This particular configuration
is based on the home position defined in Section [3.3] The arm with nine joints (from
label 1 to 9) has ten links (from label 0 to 9) since one joint connects two links.
Therefore, frame (OXY Z); can be attached to link 4, i.e., each point on link i is

constant when expressed in the i** coordinate frame.

Tool

Wrist

(=13
Elbow 2 (:6} ........ <€ __________ .

a4
Elbow 1 (_4_9 --------- G __________ .

a2
7 Shoulder {_27\} -------- G __________ s

Figure 3.1: Joint schematic of 9-DOF manipulator.

3.1.2 Assignment of Coordinate Frames

Figure presents frame assignment of 9-DOF manipulator where 6; is joint

variable of each motor and h; measures the physical lenth of each links. First, we

12



assign each Z; axis along the motor shaft of joint i + 1 (i.e., Zy, Zs, -+, Zg). Next
we establish the base frame (OXY Z)y. Technically, the origin O; of each joint can
be chose as any point along Z;. In this thesis, we make the origin Oy and O, to
coincide at center of the motor shaft of joint 2 (i.e., Op) to form a spherical shoulder
as hg stays constant while the joints are actuating which makes DH parameter much
simpler. Therefore, the origin O4, Og, Og also can be fixed using this method to
form elbows and wrist. Then we choose X, and Yj to establish a right-handed frame.
Since the axes Z; and Z; intersect which means they are co-planar, we choose X; be
vertical axis of the (Z; ,Z5) plane. Thus, in the same way, other X; can be assigned.

Meanwhile, Y; is established to complete a right-handed frame.

13
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Tool
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¥o, ¥z r\'_“
71 | Og, Oz, Oz k, a2
vy

Figure 3.2: Frame assignment of 9-DOF manipulator.

3.1.3 Establishment of the End-Effector Frame

Finally, the tool frame (OXY Z)y is established to represent the end-effector. The
unit vectors along the Xy, Yy and Zy are labeled as nﬂ 5E| and aﬁ This frame is

usually fixed at the end of the last joint.

'The direction normal to the plane formed by @ and s.
2The sliding direction.
3The approach direction.

14



3.2 FORWARD KINEMATIC ANALYSIS

The objective of forward kinematic analysis is to measure the cumulative effect of
the entire set of joint variables on the end-effector, that is, to calculate the position

and orientation of the end-effector for a given set of joint angles.
3.2.1 Table of Denavit-Hartenberg (DH) Parameters

According to Section [2.3] DH parameters are assigned in Table based on
proposed manipulator where a; is the length of common normal between Z; ; and
Z; along X;, a; represents the angle from Z; ; and Z; measured about X;, d; is the
distance between O;_; and O; along Z;_; axis, and 6; (i.e., the joint variable) is the
angle from X, _; and X; measured about Z;_;. The HTM A; between each frame can

be determined by substituting the parameters of Table into Equation (2.5)).

Table 3.1: Denavit-Hartenberg parameters for 9-DOF manipulator where 6* is joint
angle

Frame i @i di 0i
(mm) | (rad) | (mm) | (degree)
1 0 |-n/2] 0 07
2 0 | 7/2| 0 0;
3 0 —m/2 | 156.55 05
1 0 | 72| 0 0
5 0 | —r/2|15215| @
6 0 | 72| 0 0
7 0 —7/2 | 119.85 0z
8 0 | #/2 ] 0 0;
9 0 0 | 739 0;
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3.2.2 Formation of Transfer Matrix

as

It is straightforward to compute the individual matrices A; from Equation ({2.5))

Al_

A5_

C1

S1

C3

53

Cs

S5

Cr

S7

Cy

S9

Cy

1

C3

Cs

Cr

16

AQ_

A6_

52

Sq

S6

S8

(3.1)



where ¢; means cos(f;) and s; means sin(6;). According to Equation (2.4) and Equa-

tion (3.1]), 79 is then given as

which gives the position and orientation of the end-effector with respect to the base
coordinate frame. The last column of matrix Ty (i.e., 0z, 0y,0,) gives the Cartesian
coordinates of the origin of the end-effector Og. The upper left 3 x 3 matrix of
matrix Ty presents the orientation of the end-effector with respect to the base frame.
This 3 x 3 Euler-angles matrix can be algorithmically transferred into Roll-Pitch-Yaw

angles as
)

n
R, = tan™'(—*
an” ()

B = tan” (ngccosER % + nysm(( >)> ’ (3:3)
4, azs1tn(R;) — aycos(R
\Rz = fan <0ycos(R ) — oxsin(R )>

where R,, R, and R, denote the parameters of RPY angles.

3.3 HOME POSITION CONFIGURATION

In order to determine the motion of the end-effector, home position of the ma-
nipulator must be defined. In this thesis, the proposed home position is to make
the whole arm straight up at a singularity position (i.e., there will be infinity many

solutions to inverse kinematics for this end-effector position and orientation) as Fig-
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ure [3.1 Moreover, all the joint variables are made zero at home position. Thus, we

substitute 6; = 0 (i = 1,2,--- ,9) into Equation (2.4) and get the transfer matrix 7y

1 00 0
010 0
at home position as where 502.79mm is exactly the entire length
0 0 1 50279
000 1

of the manipulator.
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CHAPTER 4

THE CONSTRUCTION OF HARDWARE PLATFORM

We build an open prototype of the 9-DOF kinematic model developed in Chapter [3]
to study its robotic redundancy and kinematic control. This hyper-redundant robotic
arm constructed with nine DC servo motors is attached to a fixed base frame. The
motors, are designed orthogonal to each other based on the model in Chapter [3] The
arm consists of four main joints, one shoulder, two elbows and one wrist. Each motor
carries a micro-controller with a RS-485 interface. Thus, the RS-485 protocol is used
for communication from PC direct to the arm. Also, a specific AC-DC power adapter
is chosen to satisfy the maximum recommended working voltage and current for servo
motors. Section will first detail the configuration of hardware platform. Section
represents the structure of servo motor connection with PC using RS-485 protocol.

Finally, Section will provide a mechanical analysis of the 9-DOF manipulator.

4.1 FUNDAMENTAL STRUCTURE OF HARDWARE PLATFORM

Based on the kinematic model of the robotic arm, a series of high-performance
servo motors corresponding to different needs of joints in this thesis. Figure
demonstrates the fundamental configuration of the arm at its home position intro-
duced in Section The first motor (i.e., motor 1) is fixed as the base with its axes

along the straight-up Z; axis in such a way that the axis of rotation is orthogonal to
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previous. Other motors are assembled successively upon the base along the Z; axis.

The kinematic motion is transmitted within the physical links between these motors.

Figure 4.1: Structure of 9-DOF redundant manipulator at its home position.

4.1.1 Motor Features

In this thesis, the proposed motors we have chosen so as to satisfy both kinematic

and dynamic control requirement, e.g., torque specification, speed range, etc. As
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mentioned in Section a “MX series” high-performing “Dynamixels” motors as
shown in Figure2.1] from ROBOTIS are adopted. These servo motors embedded with
sensors can feedback position, speed, load, temperature, etc, in real time. Meanwhile,
the micro-controller inside each motor allows user to achieve PID control, upgrade
its firmware version and update the goal position, speed, torque and acceleration.
Table gives the specification of different type of “MX series” motors. From the
specification, we learn that “MX series” motor provides strong dynamic power with
light weight which meets the requirements of the arm design. According to the stall
Torque, we assign M X — 28R, M X —64R and M X — 106 R to form the wrist, elbow

and shoulder respectively. Moreover, these motors have very small holding current.

Table 4.1: Specification of “MX series” servo motors

Model Weight Dimension Stall Torque | Noload speed | Voltage
(9) (mm x mm X mm) (N -m) (rpm) (V)
MX — 28R 72 35.6 x 50.6 x 35.5 3.1 67 14.8
MX — 64R 126 40.2 x 61.1 x 41 7.3 78 14.8
MX —106R 153 40.2 x 65.1 x 46 10.0 55 14.8

4.1.2 Home Position Calibration

As illustrated in Section[3.3] we require to achieve a perfect physical home position
for the manipulator platform as the initial position. Therefore, a specific calibration
tool as shown in Figure is used to make the arm close to its theoretical home
position which means all the angles of motors are set close to their center position.
This is in order to provide maximum range of motion on either side of the home

position.
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Calibration

Tool

Figure 4.2: 9-DOF redundant manipulator installed with the calibration tool as shown
in white box.

4.2 BASIC STRUCTURE OF MOTOR CONNECTION ON A BUS

According to [3], all the “MX series” motors we used are connected though RS-485
communication BUS. Figure shows the pin assignment of a connector. The “MX

series” motor has two 4 pin connectors on it and those two connectors have the same
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function. As shown in Figure [£.4] all the servo motors constructed the arm can be

controlled on a BUS.

FIN1: GMND
FIMZ: YDD
Pik3: D+
FINg: -

Figure 4.3: Pin assignment of “MX series” servo motors with RS-485 protocol (source:

[3])-

O0p0 Oad
el |Ya @ @1 ol VA @
— 2| | [_1/||[3e- o2 | [ ]| |[3eR
—-.i 29 @3 20+
—® \D O/ 1.’ "'.‘ \O D/ 1.—-""

Figure 4.4: Pin-to-pin writing method of “MX series” servo motors with RS-485
protocol (source: [3]).
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Figure 4.5: Connection of “MX series” servo motors on BUS with power source using
“USB2Dynamixel” (source: [3]).

The objective of this thesis is using PC to command the manipulator composed of

“MX series” motors directly on the RS-485 BUS. Therefore, “USB2Dynamixel”, as

shown in Figure [4.6| is used to operate motors directly from PC. Table [4.2] introduces

the function of each part of “USB2Dynamixel”. The 4 pin connector is used for this

thesis particularly to link “MX series” motors though RS-485. Figure[4.5]describes the

structure of a series of servo motors connected with PC though “USB2Dynamixel”.

Status Display LED

Serial Connecior

4P Connector

Function Selection Switch

3P Connector

Figure 4.6: Instruction of the device used to operate “MX series” servo motors directly

from PC, i.e., “USB2Dynamixel” (source: [3]).
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Table 4.2: Instruction of “USB2Dynamixel” for the usage of each part

Name Description

Status Display LED Display power supply and data writing status.

Function Selection Switch | Communication method Selection.

3P Connector Connect “AX Series” through TTL communication.

4P Connector Connect “ MX, DX, RX Series” through RS-485 protocol.
Serial Connector Change from USB port to Serial port.

4.3 MECHANICAL ANALYSIS

The 9-DOF manipulator constructed by “MX series” servo motors provides high-
performance in dynamic motion and mechanical strength as shown in Table [£.3] It

also has capability to afford a high torque requirement with payload.

Table 4.3: Mechanical specification of 9-DOF manipulator

Mechanical Table
Configuration 9DOF
Total weight 1.2kg
Payload at full reach 7929
Payload at mid reach 924¢g
Arm length 64.6cm
Arm reach 50.2cm
Maximum joint speed 5hrpm
Repeatability +0.5mm
Input voltage 14.8VDC
Ambient temperature | from 20°C' to 35°C'

Table refers to the limitation of each joint angle to avoid the motor to hit each
other or the link. All the range of roll-axis angles stay the same (i.e., —180° «~ +180°),
and all the range of pitch-axis are the same (i.e., —110° «~ +110°). However, since
all the angles of motors are set close to their center position during calibration, there
will be a few sliding difference from designed starting and terminal position while all

the range stay the same.
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Table 4.4: Axis range of each joint variable of 9-DOF manipulator

Axis Range
Shoulder Roll (01, 63) || —180° «~ +180°
Shoulder Pitch (65) —110° v~ +110°
Elbow Roll (05, 6;) —180° «~ +180°
Elbow Pitch (04,6s) | —110° «~ 4+110°
Wrist Roll (6) —180° «~ +180°
Wrist Pitch (6g) —110° «~ +110°
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CHAPTER 5

9-DOF ROBOTIC ARM CONTROL UI

An application software platform is designed in this thesis to provide motion
control for the 9-DOF manipulator. We develop a function library which can be used
for constructing various applications based on the different requirements. In addition,

an user interface is designed for convenient and intuitive control of manipulator.

5.1 FUNCTION LIBRARY FOR APPLICATION

An original static function library, named “DynamixelFuncsLib”, is developed
based on a standard programming library, called “Dynamixel SDK”, provided by
ROBOTIS. The “MX series” motor obeys and returns the instructions by pulse
signal. [3] claims that “Dynamixel SDK” is explained based on C language calling
method. It offers five groups of calling methods, i.e., Device Control Method, Set/Get
Packet Method, Packet Communication Method, High Communication Method and
Utility Method, to send or receive pulses to or from the motor. Our function li-
brary is designed upon this specific architecture. Table includes all the original
library functions within their respective classes. It is noteworthy that since all the
angles of motors are set close to their center position during calibration, the posi-
tion pulse may increase beyond the maximum pulse (i.e, 4095). Thus, the function

PositionToPulses( ) automatically subtract 4095 pulses when it reaches beyond the
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maximum pulse to fix this problem. Users should use the “DynamixelFuncsLib” as

C++ reference library to create their application projects by calling functions from

library.
Table 5.1: Function list of original class library
Class Function Description
CommStatus || PrintCommStatus( ) | print communication result
ErrorCode PrintErrorCode( ) print error bit of status packet
SetSpeed( ) set speed to motor
GetSpeed( ) get speed from motor
. SetGoalPosition set goal position to motor
MotorMotion GetPresPositz’on?i get present position from motor
SyncWrite( ) send syncwrite packets
GetPresLoad( ) get present load from motor
PulsesToSpeed( ) transform pulses to speed
SpeedToPulses( ) transform speed to pulses
PulsesToPosition( ) | transform pulses to position
Transform PositionToPulses( ) | transform position to pulses
CalculateSpeed( ) calculate speed
DegreeToRadian( ) | transform degree to radian
RadianToDegree( ) | transform radian to degree
ForwardKinematics( ) | use forward kinematics to find the end effector

5.2 APPLICATION SOFTWARE PLATFORM

This section focuses on the main functions and structure of application software
platform with its UI. The objective is to achieve initialization of packet communica-
tion between PC and manipulator, monitoring motor status, configuration of home
position and sleep position, manual and sync control, motion teach and play, etc.
This interactive software allows communication between PC and each servo motors
go through in real time. It is capable to send instruction signal packet to command
motors and receive status signal packet from them to get feedback. Also, all the kine-

matic and dynamic algorithm of this thesis design can be calculated and achieved by
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this software.
5.2.1 Function and Structure of Application Software

All the functional modules of software platform are built upon the original static
library as shown in Table [5.1] Table [5.2] lists the main functional classes developed

for the application software.

Table 5.2: Instruction of main classes in application software system

Class Description

CAoutdlg create a software statement diagram.
CUINineDOFArmDlg || create windows of user interface.
Cmonitor monitor motor status.

Cmanual include manual control functions.
Csync include sync control functions.
Cforwardkinematics include forward kinematics functions.

5.2.2 UI Design Using C++ Microsoft Foundation Classes (MFC)

The UI developed for this software platform is based on the C++ MFC. It is
divided into three parts in general, that are, operation monitor, manual control and
sync control as shown in Figure [5.15.3] These three interfaces can be switched as
bookmarks using the “Tab Control” of C++ MFC which allows user to set parameters
and observe motor status simultaneously. This subsection will introduce the function

and application method of Ul in detail for each part.

Operation Monitor Interface

The operation monitor interface, included major status of motors, is shown as
Figure where label 1 is a motor selection drop-down list, label 2 is a monitor
window of motor status, label 3 is a PID tuning interface and label 4 is a display of

selected motor appearance.
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Manitor Window
Motor Selection.  TRIRTE] - @

Status Walis
jin] 1
Torgue Enable 1
D Gain i a
I Gain 0 1]
P Gain 32 1]
Present Position (%) -0.18
Present Load (%) 1.6
Present Yoltage (V) 14,2
Present Temperature (%) 25

Figure 5.1: Operation monitor interface diagram.

Manual Control Interface

The manual control interface, which controls the torque switch and manual motion
of motors, is shown as Figure [5.2] where label 1 is a tab control for switching between
interfaces, label 2 is torque switches for each motor, label 3 is manual motion control
for two actuation directions (i.e., clockwise and counterclockwise), label 4 is a monitor
window of present position, label 5 is for calling the monitor interface (i.e., , label
6 is for recording calibration data of manipulator, label 7 is a home position motion

activated button, and label § is a sleep position motionﬂ activated button.

LA position which makes the manipulator to get close to the ground of platform and then lose
all the torque of motors to shut down safely.
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Manually Control | Syne Control I WK | @

Manually Control

Motors Motion @ Prezent Position (%)
Torgue OnfOff @ cW Motion Boundary

oW C
Motor 1 D 018 | -179°~+174°
E Mator 2 [:] 0.8 | -90°~+4850°
[l Motor 3 D 0.00 -180°~+175°
=] Motor 4 D 0.18 -90°~-+80°
&l Motor 5 [:] 0.44 -179°~+178"°
] Motor & D 0.09  |-90°~480°
E Mator 7 [:] 0.00 -176°~+180°
= Motor 8 [:] 018 | -90°~+80°
&l Motor 9 D 0.09 -179%~+179°

@ © ©

Monitor Window ‘ Calibration ‘ Home Position ‘ Shut Down ‘

Figure 5.2: Manual control interface diagram.

Sync Control Interface

The sync control interface, which allows all the motors to run synchronically, is
shown as Figure [5.3| where label 1 is a monitor window of present position and speed,
label 2 is for setting the positions for all the motors, label 3 is for setting sync motion
time for all the motors, label 4 is a monitor window of position and orientation of
the end-effector, label 5 is for resetting all the input data, label 6 is a sync motion

activated button.
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Manually Control | Sync Contral | xxx

Sync Control

Motors @Present Position(~) & Speed(rpm) : Set Position (%) End Effector Position @

Mator 1 0,18 0 x -2.83
-180%~+180%

Motor 2 0.18 0 ¥ 0.00
90°~+80°

Mator 3 0.09 0 z 502.78
-180°~+130"

Motor 4 0.18 0 Rx .35
90°~+80°

Motor 5 0.44 0 Ry 0.00
-180°%~+180°

Motor & 0.00 ] Rz 0.00
-90°~+80°

Motor 7 0.00 i

i -150°~+180" Set Motion Time (sec)

2 0.18 o Usrtills

0% 80"

Motor 9 0.00 v} 0
-180°~+130"

Shut Down ‘ Reset Run

Figure 5.3: Sync control interface diagram.

Monitor Window

‘ Home Pasition

Safety Measures Used in Ul

Safety incident of manipulator may be caused by misoperation of UI. There are
several safety measures designed to avoid accidents. First, all the activated buttons
and input windows (except monitor interface are disable before the manipulator
gets to its home position as initialization. Second, the manual control button is
disable before the torque of corresponding motor is on. Third, all the input windows
are disable during the sync motion of manipulator. Fourth, the sync motion activated
button is available unless the motion time is set. Finally, UI closure leads to the sleep

position motion to shut down the manipulator safely.
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CHAPTER 6

RESULTS OF THESIS

In this chapter, we present the result of tracking different paths using the 9-
DOF arm described earlier and report error analysis. Three sample paths as shown
respectively in Section [6.1] and are designed to test accuracy and stability of
the 9-DOF arm. We input all the sample joint variables and make the arm go though
the path. During the real time tracking, We record the angles of each joint and
calculate corresponding coordinates of the end-effector though forward kinematics
then provide spacial plot of trajectory, coordinates error analysis and velocity
error analysis for each tracking experiment. However, the process of creating these

proposed paths using inverse kinematics, will not be discussed in this thesis.

6.1 TRAJECTORY TRACKING OF A LINE ALONG THE X-AXIS

In this section, a line along the X-axis, which starts from coordinate (200, -236.9,
-50) to (-200, -236.9, -50), is tracked by 9-DOF arm. The corresponding tracking-
trajectory of the end-effector and reference path are shown in Figure[6.1} Also, Figure
shows different angles of view on X-Y and X-Z planes.
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Figure 6.1: Tracking-trajectory of a line along X-axis is compared with designed
reference path in space coordinates.
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Figure 6.2: Tracking-trajectory of a line along X-axis is compared with designed
reference path on X-Y and X-Z planes.

The total motion time is 59.7 seconds. Figure[6.3| presents that the end-effector of

9-DOF arm tracks the line path accurately within its space distance error. The mean
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space distance error is 1.5295 mm and the maximum space distance error is 4.1948

mm.

distance error {unit: mm)
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Figure 6.3: Space distance error of tracking-trajectory of a line along X-axis.

Figure [6.4] plots the tracking-trajectory and reference path in real time along

X-axis, Y-axis and Z-axis. During the tracking, the mean position error and the

maximum position error respectively along X-axis, Y-axis and Z-axis are as shown

in Table [6.1]

Table 6.1: Position error analysis of tracking a line along X-axis

Axis || Mean Position Error (mm) | Maximum Position Error (mm)
X 1.0763 2.0473
Y 0.5337 2.3427
A 0.7345 3.6320
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Figure 6.4: Tracking-trajectory of a line along X-axis versus motion time is compared

with designed reference path versus motion time respectively along X-axis, Y-axis
and Z-axis.

In order to get real-time velocity plot as shown in Figure[6.5] we take the derivative
of tracking-position with respect to motion time as shown in Figure[6.4 The designed
velocity respectively along X-axis, Y-axis and Z-axis are constantly -2 mm/second,
0 mm/second, 0 mm/second. The end-effector tracks the line path smoothly within
the velocity error as shown in Figure The mean velocity error and the maximum

velocity error respectively along X-axis, Y-axis and Z-axis are as shown in Table [6.2]

Table 6.2: Velocity error analysis of tracking a line along X-axis

Axis Mean Velocity Error | Maximum Velocity Error
(mm/second) (mm/second)
X 0.3762 1.3935
Y 0.4020 1.5224
Z 0.4547 2.6138
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Figure 6.5: Velocity of tracking-trajectory of a line along X-axis is compared with
velocity of designed reference path respectively along X-axis, Y-axis and Z-axis.

6.2 TRAJECTORY TRACKING OF A RECTANGLE ON X-Y PLANE

In this section, a path of a rectangle on X-Y plane with four endpoints (100,
-400, -50), (-100, -400, -50), (-100, -200, -50), (100, -200, -50) is tracked by 9-DOF
arm. The corresponding tracking-trajectory of the end-effector and reference path
are shown in Figure [6.6] Also, Figure illustrates different angles of view on X-Y
and X-Z planes.
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Figure 6.6: Tracking-trajectory of a rectangle on X-Y plane is compared with de-
signed reference path in space coordinates.
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Figure 6.7: Tracking-trajectory of a rectangle on X-Y plane is compared with de-
signed reference path on X-Y and X-Z planes.

The total motion time is 199.5 seconds. In Figure[6.8] we observe the end-effector

of 9-DOF arm tracks the rectangle path accurately within its space distance error.
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The mean space distance error is 1.9704 mm and the maximum space distance error

is 5.8564 mm.
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Figure 6.8: Space distance error of tracking-trajectory of a rectangle on X-Y plane.

In Figure[6.9, we plot the tracking-trajectory and reference path in real time along

X-axis, Y-axis and Z-axis. During the tracking, the mean position error and the

maximum position error respectively along X-axis, Y-axis and Z-axis are as shown

in Table [6.3]

Table 6.3: Position error analysis of tracking a rectangle on X-Y plane

Axis || Mean Position Error (mm) | Maximum Position Error (mm)
X 1.0010 2.7734
Y 0.9316 5.7913
A 1.0648 3.5614
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Figure 6.9: Tracking-trajectory of a rectangle on X-Y plane versus motion time is

compared with designed reference path versus motion time respectively along X-axis,
Y-axis and Z-axis.

In order to get real-time velocity plot as shown in Figure [6.10] we take the deriva-
tive of tracking-position with respect to motion time as shown in Figure [6.9] The
designed velocity respectively along X-axis, Y-axis and Z-axis are range from -2
mm/second to +2 mm/second, range from +2 mm/second to -2 mm/second and
constantly 0 mm/second. The end-effector tracks the rectangle path smoothly within
the velocity error as shown in Figure[6.10] The mean velocity error and the maximum

velocity error respectively along X-axis, Y-axis and Z-axis are as shown in Table [6.4]

Table 6.4: Velocity error analysis of tracking a rectangle on X-Y plane

Axis Mean Velocity Error | Maximum Velocity Error
(mm/second) (mm/second)
X 0.3885 2.0000
Y 0.3411 2.3485
Z 0.5026 2.6881
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Figure 6.10: Velocity of tracking-trajectory of a rectangle on X-Y plane is compared
with velocity of designed reference path respectively along X-axis, Y-axis and Z-axis.

6.3 TRAJECTORY TRACKING OF AN INCLINED CIRCLE

In this section, a path of an inclined circle with its center coordinate (-315, 0,
10) and radius of 100 mm is tracked by 9-DOF arm. The corresponding tracking-
trajectory of the end-effector and reference path are shown in Figure Also,

Figure [6.12 shows different angles of view on X-Y and X-Z planes.
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Figure 6.12: Tracking-trajectory of an inclined circle is compared with designed ref-
erence path on X-Y and X-Z planes.

The total motion time is 49.5 seconds. Figure presents the end-effector of

9-DOF arm tracks the circle path accurately within its space distance error. The
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mean space distance error is 1.5007 mm and the maximum space distance error is

4.2913 mm.
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Figure 6.13: Space distance error of tracking-trajectory of an inclined circle.

Figure [6.14] shows the tracking-trajectory and reference path in real time along
X-axis, Y-axis and Z-axis. During the tracking, the mean position error and the

maximum position error respectively along X-axis, Y-axis and Z-axis are as shown

in Table [6.5]

Table 6.5: Position error analysis of tracking an inclined circle

Axis || Mean Position Error (mm) | Maximum Position Error (mm)
X 0.4017 1.0141
Y 0.7819 2.5465
A 1.0889 4.0433
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Figure 6.14: Tracking-trajectory of an inclined circle versus motion time is compared
with designed reference path versus motion time respectively along X-axis, Y-axis
and Z-axis.

In order to get real-time velocity plot as shown in Figure [6.15] we take the deriva-
tive of tracking-position with respect to motion time as shown in Figure [6.14 The
designed velocity respectively along X-axis, Y-axis and Z-axis are —5.3sin(27t/49.5)
mm/second, —6.4cos(2mt/49.5) mm/second and 3.5sin(27t/49.5) mm/second where
t is motion time. The end-effector tracks the circle path smoothly within the velocity
error as shown in Figure [6.15] The mean velocity error and the maximum velocity

error respectively along X-axis, Y-axis and Z-axis are as shown in Table [6.6]

Table 6.6: Velocity error analysis of tracking an inclined circle

Axis Mean Velocity Error | Maximum Velocity Error
(mm/second) (mm/second)
X 0.2492 1.0220
Y 0.5322 1.7197
Z 0.6133 2.2843
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Figure 6.15: Velocity of tracking-trajectory of an inclined circle is compared with
velocity of designed reference path respectively along X-axis, Y-axis and Z-axis.

6.4 CONCLUSION OF THESIS RESULTS

In general, the 9-DOF arm tracks the three designed path smoothly with certain
accuracy. However, the performance can be significantly improved by proper tuning
of the control parameters and reducing the delay in communication. The results
shows that the 9-DOF manipulator works functionally and satisfies the requirement

of this thesis design.
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CHAPTER 7

CONCLUSION

Along this thesis, we have constructed our own 9-DOF hyper-redundant manipu-
lator with open architecture control based on kinematic modeling and dynamic anal-
ysis. Also, we have developed corresponding original function library and application
software with UI. Meanwhile, we have obtained a lot of research experience and exper-
imental ability during this thesis. First of all, we acquire knowledge of robotics and
related work, e.g., forward and inverse kinematics, servo motor, C++ programming,
etc. Second, we get familiar with the design and construction of hardware platform.
Third, we succeed to develop our own software to achieve manually control, sync
control, tracking the trajectory using forward kinematics, etc. Chapter [6] validates
the performance of designed manipulator platform and testifies that the 9-DOF ma-
nipulator satisfies the requirement of this thesis design and establish a foundation for

future research.

7.1 DIFFICULTIES AND SOLUTIONS

A few difficulties appear along with this thesis design. First is the safety problem
of the hardware platform. The “MX series” servo motors used in this thesis only
have basic safety precautions, like overload warning, communication error warning,

etc. These precautions are not sufficient to ensure the experimental safety. Thus, we

46



embed a few actuation limitation of each motor into the software function library. It
means that the motors are unavailable to reach the position or to achieve the speed
beyond the safety boundary. In addition, we set a series of safety measures

inside UI to avoid artificial mistake.

Another one is that the motors actuate in the horizontal plane are physically
swapped during the installation to match co-ordinate system of kinematic model.
As a result, the positive direction of motor rotation is opposite from which in the
kinematic model. We need either change the direction and make a special notation

in the function code or change the DH table to fix this problem.

In practical use, Equation stands unstable when calculating orientation of the
end-effector due to the round off error and truncation error of computer. Orientation
of the end-effector(i.e., R, R,, R.) changes discontinuously when approach to the
critical point. Therefore, we rewrite the function code of Equation to set up
some transitional domain eliminating the computer error to make the orientation to

change smoothly.

The servo motors without dynamic control are incapable to move synchronously
while executing sync write. This problem will affect the smoothness and synchronism
of robotic motion. As a solution, we put different scaler to the transition between
speed and signal pulse for different type of motor in the function code to coordinate
their speed under different situations. In the future, we can develop PID control or

achieve torque control to avoid this problem.
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7.2 FUTURE WORK

The 9-DOF manipulator designed in this thesis is an open-oriented platform to
continuous robotic and control research. It can be extended to test and verify the
inverse kinematic algorithm. We can experiment and observe the motion trajectory of
the end-effector calculated though inverse kinematics. The path planning of the end-
effector can also be proposed based on the velocity kinematics. We get dynamic profile
of each joint from the Manipulator Jacobian [2,/10,/11] to optimize and control the
path. In addition, we can implement independent joint control by control the torque
of each motor. The adaptive control [17] can optimize and control the multiple inputs

and outputs of a non-linear system.
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APPENDIX A

Visual C++ Function Library Based on Dynamixel SDK

PrintCommStatus.cpp

void PrintCommStatus(int CommStatus)

{

switch (CommStatus)

{

case COMM.TXFAIL:

printf (?COMM.TXFAIL: _Failed transmit._instruction.
packet!\n”);

break ;

case (COMMTXERROR:

printf (?COMMTXERROR: Incorrect _instruction._packet!\n
77);

break;

case COMM RXFAIL:
printf (”COMMRXFAIL: .Failed _get _status._packet _from.
device!\n”);

break;
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case COMMRXWAITING:
printf ("COMMRXWAITING: .Now_recieving._status._packet!\

case COMMRXTIMEOUT:
printf ("COMMRXTIMEOUT: .There._is.no.status._.packet!\n”

)
break;

case COMMRXCORRUPT:
printf ("COMMRXCORRUPT: _Incorrect .status.packet!\n”);
break;

default:

printf(” This_is _unknown_error._code!\n");

break;

PrintErrorCode.cpp

void PrintErrorCode ()

{
if (dxl_get_rxpacket_error (ERRBIT_-VOLTAGE) = 1)

printf(”Input.voltage_error!\n”);
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if (dxl_get_rxpacket_error (ERRBIT_ ANGLE) = 1)

printf(”Angle_limit_error!\n”);

if (dxl_get_rxpacket_error (ERRBIT.OVERHEAT) = 1)

printf(”Overheat_error!\n”);

if(dxl_get_rxpacket_error (ERRBIT RANGE) = 1)

printf(”Out_of_range_error!\n”);

if (dxl_get_rxpacket_error (ERRBIT.CHECKSUM) = 1)

printf(”Checksum_error!\n”);

if (dxl_get_rxpacket_error (ERRBIT.OVERLOAD) = 1)

printf(”Overload.error!\n”);

if (dxl_get_rxpacket_error (ERRBITINSTRUCTION) = 1)

printf(” Instruction.code_error!\n”);

SetSpeed.cpp

void SetSpeed(int id, float speedset)

{

dxl_write_word (id, 32,MotorData:: Transform ::
SpeedToPulses (id, speedset));
J/#define P.GOAL.SPEED_L 32
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}s

GetSpeed.cpp

float GetSpeed(int id)

{

return MotorData:: Transform :: PulsesToSpeed (
dxl_read _word (id, 38));
//#define P_PRESENT_ SPEED_L 38

b
SetGoalPosition.cpp

void SetGoalPosition(int id, float positionsetl)

{

dxl_write_word (id, 30, MotorData:: Transform ::
PositionToPulses (id, positionsetl));
//#define P.GOAL_POSITION_L 30

b
GetPresPosition.cpp

float GetPresPosition (int id)

{

return float (MotorData:: Transform :: PulsesToPosition (
id , dxl.read_word(id, 36)));
//#define P_.PRESENT_POSITION_L 36

b
GetPresLoad.cpp
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float GetPresLoad(int id)
{

float presload;
int load = dxl.read_word( id, 40);
if (load>=0 && load <=1023)

{
presload = 100.0xload /1023.0;

presload = 100.0%(load —1024)/1023.0;
}

return presload;

}s

SyncWrite.cpp

// Control table address
#define P_GOAL_POSITION_L 30
#define P_GOAL _POSITION_H 31

// Defulat setting
#define DEFAULT PORTNUM 4 /) COMY
#define DEFAULT BAUDNUM 1 // 1Mbps

void SyncWrite (int number, float xpos, float xspeed)

{
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int id [9];
int GoalPos [9];
int i;
// Initialize id
for ( i=0; i<number; i++ )
{
id[i] = i+1;
}
// Make syncwrite packet
dxl_set_txpacket_id (BROADCASTID) ;
dxl_set_txpacket_length ((441)*number+4);
dxl_set_txpacket_instruction (INST.SYNC_WRITE) ;
dxl_set_txpacket_parameter (0, P.GOAL_POSITION_L) ;

dxl_set_txpacket_parameter (1, 4);

for ( i=0; i<number; i++ )
{
dxl_set_txpacket_parameter (2+5%i, id[i]);
GoalPos[i] = MotorData:: Transform ::
PositionToPulses (id[i], pos[i]);
dxl_set_txpacket_parameter (24+5%i+1,
dxl_get_lowbyte (GoalPos[i]));
dxl_set_txpacket_parameter (24+5%i+2,
dxl_get_highbyte (GoalPos[i]));

o4



dxl_set_txpacket_parameter (24+5%i+3,
dxl_get_lowbyte (MotorData :: Transform ::
SpeedToPulses (id [i], speed[i])));
dxl_set_txpacket_parameter (2+5%i+4,
dxl_get_highbyte (MotorData:: Transform ::
SpeedToPulses(id[i], speed[i])));
}

dxl_txrx_packet ();

PulsesToSpeed.cpp

float PulsesToSpeed(int pulsestransl)

{
if (pulsestransl==0)
{
return 0.0;
}
else if (pulsestransl==1023)
{
return —117.07;
}
else if ((pulsestransl >0)&&(pulsestransl <1023))
{
return (117.07/1023)*pulsestransl ;
}
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else

return (—117.07/1023)«(pulsestransl —1024);

}s

SpeedToPulses.cpp

float thresl = 109.5, thres2 = 117.07;

int SpeedToPulses(int id, float speedtrans)

{
if ((1d==7)[[(id==8)[[(id==9))
{
if ((speedtrans >0.0) && (speedtrans<=thresl))
{
return (max(1l,speedtrans/(thresl
/1023.0)));
}
else if (speedtrans>thresl)
{
return 1023;
}
else return 1;
}
else
{

if ((speedtrans >0.0) && (speedtrans<=thres2))

{
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return (max(1,speedtrans/(thres2

/1023.0)));
¥
else if (speedtrans>thres2)
{
return 1023;
}
else return 1;
}
}

PulsesToPosition.cpp

float PulsesToPosition (int id, int pulsestrans2)

{
float HomePosition[9]={2074.0, 2040.0, 2001.0,

2038.0, 2028.0, 1987.0, 2226.0, 2028.0, 2051.0};

if(id==2 || id==4 || id==6 || id==8 )
{

return (pulsestrans2—HomePosition[(id—1)])

«(180.0/2048.0) ;

else

return (pulsestrans2—HomePosition[(id—1)])

«(180.0/2048.0) ;
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PositionToPulses.cpp

int PositionToPulses(int id, float positiontrans)
{
float HomePosition[9]={2074.0, 2040.0, 2001.0,
2038.0, 2028.0, 1987.0, 2226.0, 2028.0, 2051.0};

if (id==2 || id==4 || id==6 || id==8 )
{
if (positiontrans >=0.0)
{
return HomePosition [id —1]—(max
(=110.0,—positiontrans)
/(180.0/2048.0) ) ;
}
else
{
return HomePosition [id —1]—(min
(110.0,— positiontrans)
/(180.0/2048.0));
}
}
else if(id==1 || id==3 || id==5 || id==7 || id==9)
{
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if (positiontrans >=0.0 )

{
return HomePosition [id —1]—(max
(—180.0,—positiontrans)
/(180.0/2048.0) ) ;
}
else
{
return HomePosition [id —1]—(min
(180.0,— positiontrans)
/(180.0/2048.0));
}

if (pulse >= 4096)

{
return (pulse —4096);
}
else
{
return pulse;
¥

CalculateSpeed.cpp
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float CalculateSpeed (int number, float time, float x*pos,
float xspeed)
{
float position [9];
int id [9];
int i;

// Initialize id

for ( 1=0; i<number; i++ )
{
id[i] = i+1;
}
for ( 1=0; i<number; i++ )

{

position [i] = MotorStatus:: MotorMotion ::
GetPresPosition (id [i]) ;
if ((pos|[i]—position[i]) >=0.0)

{
speed[i] = ((pos|[i]—position[i])
/360.0%60.0) /time;

else

speed[i] = ((position[i]—pos[i])
/360.0%60.0) /time;
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}

return xspeed;

}

DegreeToRadian.cpp

float DegreeToRadian(float degree)

{

return degreexpi/180.0;

};
RadianToDegree.cpp

float RadianToDegree(float radian)

{

return radian*180.0/pi;

b
ForwardKinematics.cpp

float ForwardKinematics(float xendeffector, float xpos)

{

float posl= MotorData:: Transform :: DegreeToRadian ( pos
[0])

float pos2= MotorData:: Transform :: DegreeToRadian ( pos
[1])

float pos3= MotorData:: Transform :: DegreeToRadian ( pos

[2]);
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float posd= MotorData:: Transform :: DegreeToRadian ( pos
[31)

float pos5= MotorData:: Transform :: DegreeToRadian ( pos
[4]) 5

float pos6= MotorData:: Transform :: DegreeToRadian ( pos
[5])

float pos7= MotorData:: Transform :: DegreeToRadian ( pos
[6]) ;

float pos8= MotorData:: Transform :: DegreeToRadian ( pos
[71)

float pos9= MotorData:: Transform :: DegreeToRadian ( pos
[81)

endeffector [4] = atan2(—nz, sqrt(nxxnx+nysny));

endeffector [4] = (float) ((int)(endeffector [4] x

100.0)) / 100.0;

if ((endeffector[4] <= 3.14/2.0 + 0.10) && (

endeffector [4] >= 3.14/2.0 — 0.10))

endeffector [3]

endeffector [5]

}

= atan2 (ox

, oY) ;

else if ((endeffector[4] >= —3.14/2.0 — 0.10) && (

endeffector [4] <= —3.14/2.0 + 0.10))
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endeffector [3] = 0;

endeffector [b] = —atan2(ox, oy);
}
else
{
endeffector [3] = atan2(ny/cos(endeffector [4])

, nx/cos(endeffector [4]));
endeffector [5] = atan2(oz/cos(endeffector [4])

, az/cos(endeffector [4]));

//Rotation radian to degree

endeffector [3] = MotorData:: Transform :: RadianToDegree
(endeffector [3]);

endeffector [4] = MotorData:: Transform :: RadianToDegree
(endeffector [4]) ;

endeffector [5] = MotorData:: Transform :: RadianToDegree
(endeffector [5]) ;

return xendeffector;

}
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APPENDIX B

Dynamixel Servo Motor Control Address Table

Table B.1: Dynamixel servo motor control command address (source: [3])

Address ot Initial Value
Area (Hexadecimal) Narmne Description Access (Hexadecimal)
0 {0300} Model Mumber{L) Lowest byte of model number 5 29 (0x10)
1 (0010 tModel Mumber(H) Highest byte of model number R [ {000
2 (0020 Wersion of Firmware Information on the wversion of firmware A =
3 0x03 D 1D of Dynamixel B 1 (001}
4 (0X04) Baud Rate Baud Rate of Dynamixel R 34 (0x22)
b (005) Return Delay Time Return Delay Time R 200 (OXF&)
B (0306} CW Angle Limit{L) Lowest byte of clockwise Angle Limit R [ {000)
7007 CW Angle LimitiH) Highest byte of clockwise &ngle Limit R [ (=00
EEPROM  (008) CCW Angle Limit(L) Lowest byte of counterclockwise Angle Limit R 205 (OXFF)
9 {0X09) CCW Angle LimittH) Highest byvte of counterclockwise Angle Limit R 15 (0x0F)
11 (0=0B) the Highest Limit Temperature Internal Limit Temperature R B0 (0x50;
12 (0x0C) the Lowest Limit Voltage Lowest Limit Yoltage R G0 (0X3C)
13 (00D} the Highest Limit Yoltage Highest Limit Yoltage R 160 {0XA0)
14 (0:0E) tax Torquetl) Lowrest byte of Max, Torgue R 265 (0XFF)
15 (0:=0F) Iax TorguetH) Highest byte of Max, Torgue B 3 (0=03)
16 (o103 Status Return Level Status Return Level R 2 (002
17 ¢0%113 &larm LED LED for &larm R 36 {0x24)
18 (0123 Alarmn Shutdown Shutdown for Alarm R 36 (024
24 (0183 Torgue Enable Tarque On/0ff R [ (000
25 (0x19) LED LED On/Off kil 0 {0X00)
26 (0=14) D Gain Derivative Gain R 0 (O=00
27 (0R1B) | Gain Integral Gain R [ {000}
28 (0x1C) P Gain Propaortional Gain R 32 (0x20)
30 (0=1E) Goal PositioniL) Lowest byte of Goal Position R —
31 (0=1F) Goal Position{H}) Highest byte of Goal Position R -
32 (0x20) Moving Speedil) Lowest byte of Moving Speed B -
33 (0210 Moving SpeediH) Highest byte of Moving Speed B -
34 (0x22) Torgue LimitiL} Lowest byte of Torque Limnit B A0014
35 (0x23) Torgue LimitiH) Highest byte of Torque Limit B ADD15
36 (=243 Present Position(L} Lowest byte of Current Position R -
RAM 37 (0x25) Present PositiontH) Highest byte of Current Position ad =
38 (0X26) Present Speed(L) Lowest bute of Current Speed B -
39 (0x2T) Present Speed(H) Highest byte of Current Speed & -
40 (0x28) Present Load(L) Lowest byte of Current Load & -
41 (0290 Present LoadiH} Highest byte of Current Load R &
42 (0X24) Fresent Yoltage Current Woltage B -
43 (0=2B) Present Temperature Current Termnperature R -
44 (0x2C) Registered Means if Instruction is registered i [ {000}
46 (0=2E) hoving Means if there is any movermnent R [ {000)
47 (0X2F) Lock Locking EEPRCM AW 0 {0=00)
48 (0x30) Punchil) Lowest byte of Funch R [ ¢ 0x00)
49 (0x31) PunchiH} Highest byte of Punch R 0 {000
73 (043 Goal Acceleration Goal Acceleration R 0 (O=00
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APPENDIX C

Mechanical Drawings
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Figure C.1: MX-28R servo motor mechanical drawing (source: [1]).
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Figure C.2: MX-64R servo motor mechanical drawing (source: [1]).
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Figure C.3: MX-106R servo motor mechanical drawing (source: [1]).
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