
DESIGN AND CONSTRUCTION OF 9-DOF

HYPER-REDUNDANT ROBOTIC ARM

Thesis

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Master of Science in Electrical Engineering

By

Xingsheng Xu

Dayton, Ohio

December 2013

DESIGN AND CONSTRUCTION OF 9-DOF

HYPER-REDUNDANT ROBOTIC ARM

Name: Xingsheng, Xu

APPROVED BY:

Raúl Ordóñez, Ph.D. Vijayan K. Asari, Ph.D.
Advisory Committee Chairman Committee Member
Associate Professor, Electrical Professor, Electrical
and Computer Engineering and Computer Engineering

Malcolm Daniels, Ph.D.
Committee Member
Associate Professor, Electrical
and Computer Engineering

John G. Weber, Ph.D. Tony E. Saliba, Ph.D.
Associate Dean Dean, School of Engineering
School of Engineering &Wilke Distinguished Professor

ii

c©Copyright by

Xingsheng Xu

All rights reserved

2013

ABSTRACT

DESIGN AND CONSTRUCTION OF 9-DOF HYPER-REDUNDANT ROBOTIC

ARM

Name: Xingsheng, Xu
University of Dayton

Advisor: Dr. Raúl Ordóñez

Hyper-redundant robotics is a branch of advanced robotic technology recognized

as a method to improve manipulator performance in complex and unstructured

environments. Research in both kinematic and dynamic control of hyper-redundant

manipulator plays an import role in high-tech field like modern industry, military

and space applications. The kinematic redundancy considered in this thesis means

the total degrees of freedom (DOF) of robot is more than the degrees of freedom

required for the task to be executed. The redundancy provides infinite solutions to

achieve the same position and orientation of the end-effector. Therefore, the efficacy

of kinematic algorithm affects the accuracy and stability of both motion control and

path tracking. In this thesis, we mainly focus on constructing an application robotic

platform based on kinematic modeling of a 9-DOF hyper-redundant manipulator.

We firstly take a brief introduction of the background, related work, significance

and objective of this thesis. Then the kinematic model of 9-DOF manipulator is

iii

established along with its home position configuration. The next work is divided

into two parts: first is the construction of hardware platform, and the second one is

to design an application software with user interface (UI). In addition, the result of

proposed thesis design is demonstrated in a number of experiments. In the end,

conclusion and future work are presented.

iv

To my beloved parents, professors and friends,

Live long and prosper!

v

ACKNOWLEDGEMENTS

Time passes quickly like a white pony’s shadow across a crevice. The closer winter

approaches, the more sunshine I miss. Thankfully, Lady Luck always shines upon me.

Through the ages, I always feel like living in my own colourful and fantastic dream.

When I was a kid, I enjoyed painting imaginary robots or aircrafts with cannons

on canvas while other children were drawing beautiful flowers and cute animals. After

studying in school, I was addicted to reading science fiction secretly during homework

time, lunch time ,even bed time under my mothor’s keen “sense of smell”. All the

way to my college life, things got worse. Sometimes, I liked to peek into the small

window of our robotic lab hoping someday I was the one, who was lucky enough, to

be chosen to live inside this holy palace.

I do not know what I may appear to the world during my whole life. But to

myself, I seem to be like a boy who enjoys playing on the seashore and entertaining

himself. In now and then I may lose myself seeking a smoother pebble or a prettier

starfish than ordinary until someone shows me the great ocean of truth laying all

undiscovered before me. This wizard of my life is Dr. Raúl Ordóñez. Because of him,

I never stop chasing my dream; because of him, my dream finally comes true.

There are certainly pains for chasing my dreams as well as balms for all my pain.

Thanks my friends and workfellows in University of Dayton, Hariharan Anantha-

narayanan, Temesgen Kebede, Abdelbaset Elhangari and Bo Li, to make me feel I

vi

am not fighting alone. Also, a special thanks to a girl who brought inner peace to me

with all her support and prayer during the time I myself was immersed in darkness.

Hence, I give my robotic arm her name “Teresa” to thank this angel. It seems that

all these joyfulness in the past were part of our dreams while the prime youth seemed

to leave us only fragments of memories.

Words cannot describe my gratitude to my beloved parents for giving me all this

colourful and fantastic dream.

vii

TABLE OF CONTENTS

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGEMENTS . vi

LIST OF FIGURES . xi

LIST OF TABLES . xiv

SYMBOLS AND ABBREVIATIONS xv

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 3

2.1 DC Servo Motor . 3

2.2 RS-485 Protocol . 4

2.3 Forward Kinematics . 5

2.4 Literature Review . 9

3 9-DOF ROBOTIC ARM MODELING AND OPERATION 11

3.1 Kinematic Model of 9-DOF Arm . 11

3.1.1 Labeling of Links and Joints 11

3.1.2 Assignment of Coordinate Frames 12

viii

3.1.3 Establishment of the End-Effector Frame 14

3.2 Forward Kinematic Analysis . 15

3.2.1 Table of Denavit-Hartenberg (DH) Parameters 15

3.2.2 Formation of Transfer Matrix 16

3.3 Home Position Configuration . 17

4 THE CONSTRUCTION OF HARDWARE PLATFORM 19

4.1 Fundamental Structure of Hardware Platform 19

4.1.1 Motor Features . 20

4.1.2 Home Position Calibration . 21

4.2 Basic Structure of Motor Connection on a BUS 22

4.3 Mechanical Analysis . 25

5 9-DOF ROBOTIC ARM CONTROL UI 27

5.1 Function Library for Application . 27

5.2 Application Software Platform . 28

5.2.1 Function and Structure of Application Software 29

5.2.2 UI Design Using C++ Microsoft Foundation Classes (MFC) . 29

6 RESULTS OF THESIS . 33

6.1 Trajectory Tracking of A Line along the X-axis 33

6.2 Trajectory Tracking of A Rectangle on X-Y Plane 37

6.3 Trajectory Tracking of An Inclined Circle 41

6.4 Conclusion of Thesis Results . 45

7 CONCLUSION . 46

7.1 Difficulties and Solutions . 46

7.2 Future Work . 48

ix

APPENDICES . 48

A Visual C++ Function Library Based on Dynamixel SDK 49

B Dynamixel Servo Motor Control Address Table 64

C Mechanical Drawings . 65

BIBLIOGRAPHY . 68

x

LIST OF FIGURES

2.1 DC servo motor products called “Dynamixels” of ROBOTIS (source: [1]). 4

2.2 Structure of instruction packet by RS-485 protocol. 5

2.3 Coordinate frames attached to elbow manipulator (source: [2]). 6

3.1 Joint schematic of 9-DOF manipulator. 12

3.2 Frame assignment of 9-DOF manipulator. 14

4.1 Structure of 9-DOF redundant manipulator at its home position. . . . 20

4.2 9-DOF redundant manipulator installed with the calibration tool as

shown in white box. 22

4.3 Pin assignment of “MX series” servo motors with RS-485 protocol

(source: [3]). 23

4.4 Pin-to-pin writing method of “MX series” servo motors with RS-485

protocol (source: [3]). 23

4.5 Connection of “MX series” servo motors on BUS with power source

using “USB2Dynamixel” (source: [3]). 24

4.6 Instruction of the device used to operate “MX series” servo motors

directly from PC, i.e., “USB2Dynamixel” (source: [3]). 24

5.1 Operation monitor interface diagram. 30

5.2 Manual control interface diagram. 31

5.3 Sync control interface diagram. 32

xi

6.1 Tracking-trajectory of a line along X-axis is compared with designed

reference path in space coordinates. 34

6.2 Tracking-trajectory of a line along X-axis is compared with designed

reference path on X-Y and X-Z planes. 34

6.3 Space distance error of tracking-trajectory of a line along X-axis. . . 35

6.4 Tracking-trajectory of a line along X-axis versus motion time is com-

pared with designed reference path versus motion time respectively

along X-axis, Y -axis and Z-axis. 36

6.5 Velocity of tracking-trajectory of a line along X-axis is compared with

velocity of designed reference path respectively along X-axis, Y -axis

and Z-axis. 37

6.6 Tracking-trajectory of a rectangle on X-Y plane is compared with de-

signed reference path in space coordinates. 38

6.7 Tracking-trajectory of a rectangle on X-Y plane is compared with de-

signed reference path on X-Y and X-Z planes. 38

6.8 Space distance error of tracking-trajectory of a rectangle on X-Y plane. 39

6.9 Tracking-trajectory of a rectangle on X-Y plane versus motion time is

compared with designed reference path versus motion time respectively

along X-axis, Y -axis and Z-axis. 40

6.10 Velocity of tracking-trajectory of a rectangle onX-Y plane is compared

with velocity of designed reference path respectively along X-axis, Y -

axis and Z-axis. 41

6.11 Tracking-trajectory of an inclined circle is compared with designed

reference path in space coordinates. 42

6.12 Tracking-trajectory of an inclined circle is compared with designed

reference path on X-Y and X-Z planes. 42

xii

6.13 Space distance error of tracking-trajectory of an inclined circle. 43

6.14 Tracking-trajectory of an inclined circle versus motion time is com-

pared with designed reference path versus motion time respectively

along X-axis, Y -axis and Z-axis. 44

6.15 Velocity of tracking-trajectory of an inclined circle is compared with

velocity of designed reference path respectively along X-axis, Y -axis

and Z-axis. 45

C.1 MX-28R servo motor mechanical drawing (source: [1]). 65

C.2 MX-64R servo motor mechanical drawing (source: [1]). 66

C.3 MX-106R servo motor mechanical drawing (source: [1]). 67

xiii

LIST OF TABLES

3.1 Denavit-Hartenberg parameters for 9-DOF manipulator where θ∗ is

joint angle . 15

4.1 Specification of “MX series” servo motors 21

4.2 Instruction of “USB2Dynamixel” for the usage of each part 25

4.3 Mechanical specification of 9-DOF manipulator 25

4.4 Axis range of each joint variable of 9-DOF manipulator 26

5.1 Function list of original class library 28

5.2 Instruction of main classes in application software system 29

6.1 Position error analysis of tracking a line along X-axis 35

6.2 Velocity error analysis of tracking a line along X-axis 36

6.3 Position error analysis of tracking a rectangle on X-Y plane 39

6.4 Velocity error analysis of tracking a rectangle on X-Y plane 40

6.5 Position error analysis of tracking an inclined circle 43

6.6 Velocity error analysis of tracking an inclined circle 44

B.1 Dynamixel servo motor control command address (source: [3]) 64

xiv

SYMBOLS AND ABBREVIATIONS

Ai HTM of frame oixiyizi with respect to frame oi−1xi−1yi−1zi−1

AC alternating current

ai link length

αi link twist

DC direct current

DH Denavit-Hartenberg

DOF degrees of freedom

di link offset

H HTM of the end-effector with respect to base frame

HRR hyper-redundant robots

HTM homogeneous transformation matrix

hi physical link length of 9-DOF arm

MFC microsoft foundation classes

o0n position matrix of the end-effector with respect to base frame

Oi origin of joint i+1

PC personal computer

θi joint variable

RPY roll-pitch-yaw

R0
n rotation matrix of the end-effector with respect to base frame

SDK software development kit

xv

T i
j HTM of frame ojxjyjzj with respect to oixiyizi frame

UART universal asynchronous receiver/transmitter

UI user interface

WMRA wheelchair-mounted robotic arm

Zi actuating shaft of joint i+1

xvi

CHAPTER 1

INTRODUCTION

With the development of science and technology, robots have increasingly pene-

trated into military, aerospace, medical science and other fields, mostly performing

the risky or precise work for human beings. According to [4], if the total degrees of

freedom (DOF) of a robot is more than the degrees of freedom required for the task

to be executed, the robot is termed as “kinematically redundant” or simply “redun-

dant”. Hyper-redundant robots (HRR) are a kind of robots that have a very large

degree of kinematic redundancy. Redundancy in robotic design has been used to

improve robotic performance in complex and multiple barrier environments. HRR,

analogous in morphology and operation to snakes [5], elephant trunks [6], or tenta-

cles [7], are used to deal with a number of important applications where such robots

would be advantageous. Once the number of DOF of the robot exceeds the number

of task coordinates, it becomes a great challenge to solve the inverse kinematics and

generate a path to make its motion robust and dexterous. Therefore, the research on

HRR, has become one of the hot topics of robotic research for its practical signifi-

cance and theoretical value. In modern days, robot manufacturers provide variety of

industrial robots with their own forward and inverse kinematics and control methods

(e.g.,PID control). However, these kinematics and control approaches are regarded as

black boxes to the researchers who are using them. In order to further independently

research and study HRR, building an open HRR is imperatively the main task of this

1

thesis.

The objective of this thesis is to build a hyper-redundant 9-DOF robotic arm with

its forward kinematic model and control software with user interface (UI), also im-

plement trajectory tracking of the end-effector. The open robotic arm is constructed

using nine orthogonal DC servo motor joints with detachable physical links. The

RS-485 protocol is used for communicating from PC direct to the arm. In addition,

we develop our own library of Visual C++ functions to control the manipulator’s

motion and path operation. Its main job is to satisfy different control and motion re-

quests and experiments, e.g., teaching positions, tracking trajectory or testing inverse

kinematics in the future.

The thesis is organized as follows:

Chapter 2 discusses the background of thesis and related work.

Chapter 3 introduces the forward kinematic modeling and operation of 9-DOF

robotic arm.

The construction of 9-DOF hardware platform with its mechanical analysis and

the development of control software with UI are explained in Chapter 4 and Chapter

5 respectively.

Chapter 6 shows all the experiment results and demonstrations of 9-DOF arm.

Finally, the thesis experience, difficulties, deficiencies and future improvement are

summarized in Chapter 7 as a conclusion.

2

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, all the fundamental background, relevant knowledge and previous

work corresponding to this thesis are discussed. The 9-DOF manipulator in this thesis

is constituted of orthogonal DC servo motors which will be introduced in Section 2.1.

Section 2.2 describes a typical protocol that allows the PC to communicate with

the servo motors directly. Fundamental background theory on robot kinematics and

control that is used throughout the thesis termed forward kinematics will be explained

in Section 2.3. As explained in Chapter 1, HRR are used in wide range of applications

and experiments. Section 2.4 presents a brief literature review on previous work on

HRR.

2.1 DC SERVO MOTOR

A DC servo motor is a rotary actuator, powered from direct current, that converts

the received electrical signal into angular displacement or velocity of motor output. It

contains a suitable motor embedded with sensors for position and velocity feedback,

which allows for accurate closed-loop control of angular position. Nowadays, servo

motors are generally used as a high performance alternative to the stepper motor

both in industrial manufacturing and institutional research. As there are abundant

choices of servo motors in the market, motor selection becomes significant for building

3

Figure 2.1: DC servo motor products called “Dynamixels” of ROBOTIS (source: [1]).

specific robotic arm. The foremost step is to check the required specifications such as

positioning accuracy, torque requirements, speed range, operating voltage and other

environmental resistances for the manipulator. The final determination of motors

should also meet required specifications of different arm parts (i.e., wrist, elbow and

shoulder). Figure 2.1 presents a series of DC servo motors (called Dynamiexls) from

ROBOTIS, which will be used to construct the arm in this thesis.

2.2 RS-485 PROTOCOL

RS-485 described in [8] is a standard electrical characteristic protocol used for

computers and devices. RS-485 is widely used for the configuration of inexpensive lo-

cal networks and multidrop communications links as it is fast, efficient and robust [9].

In this thesis, the signal of main controller universal asynchronous receiver/trans-

mitter (UART) should be converted into RS-485 type signal to control “MX series”

servo motors [1] with a personally made main controller. According to [3], RS-485

instruction packet used here is command data that is sent from the PC to the servo

motors. The structure of instruction packet is as in Figure 2.2, where the first two

addresses (i.e., “OXFF OXFF”) notify the beginning of the packet. The instruction

packet contains ID of motor which will be commanded, length of the packet1, different

1It equals the number of parameters plus two.

4

Figure 2.2: Structure of instruction packet by RS-485 protocol.

types of instructions and parameters that are used when instruction requires ancil-

lary data. At last, the function of “CHECK SUM ” address is to check if packet is

damaged during communication. In addition, servo motor receives instruction packet

to perform a command and returns the result as status packet to the PC.

2.3 FORWARD KINEMATICS

Forward kinematics introduced in [2, 10, 11] is an arithmetic operation, which

determines the position and orientation of the end-effector given the values of each

joint parameter of the robot using the kinematic equations. A robot manipulator is

composed of a set of links connected together by joints. Also, a manipulator with n

joints will have n+ 1 links, since each joint connects two links.

With the ith joint, we define a joint variable, denoted by qi. In the case of a

revolute joint, θi is the angle of rotation, and as to a prismatic joint, di is the joint

displacement:

qi =

θi if joint i is revolute,

di if joint i is prismatic.

(2.1)

To proceed with the kinematic analysis, we associate a corresponding coordinate

frame rigidly to each link. Furthermore, when joint i is actuated, link i and its

attached frame, oixiyizi, experiences the resulting motion. The frame o0x0y0z0, which

5

is attached to the robot base, is labeled as the base frame. Figure 2.3 illustrates an

example of attaching frames rigidly to links in the case of an elbow manipulator. We

suppose that Ai is the Homogeneous Transformation Matrix (HTM) that represents

the position and orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1. Now it can be

inferred the HTM that expresses the position and orientation of ojxjyjzj with respect

to oixiyizi is termed, by convention, a Transformation Matrix, and is denoted by T i
j .

Moreover, T i
j is the product of each HTM post multiplied together as

T i
j =

Ai+1Ai+2 · · ·Aj−1Aj if i < j,

I if i = j,

(T i
j)

−1 if j > i.

(2.2)

Figure 2.3: Coordinate frames attached to elbow manipulator (source: [2]).

6

Denoting the position and orientation of the end-effector with respect to the base

frame by a three-vector o0n which gives the spatial coordinates of the position and a 3×

3 rotation matrix R0
n, and define the homogeneous transformation matrix respectively

as

H =

R0
n o0n

0 1

. (2.3)

Based on (2.1), (2.2) and (2.3), the position and orientation of the end-effector

with respect to the base frame can be given as

H = T 0

n = A1(q1) · · ·An(qn).

Hence, we rewrite (2.3) as

T i
j = Ai+1 · · ·Aj =

Ri
j oij

0 1

. (2.4)

A widely used conventional method [12] for attaching reference frames to the links

7

of a spatial kinematic chain is the Denavit-Hartenberg (DH), or DH convention:

Ai = Rotz,θiTransz,diTransx,aiRotx,αi

=

cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

×

1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 ai

0 cαi
−sαi

0

0 sαi
cαi

0

0 0 0 1

=

cθi −sθicαi
sθisαi

aicθi

sθi cθicαi
−cθisαi

aisθi

0 sαi
cαi

di

0 0 0 1

, (2.5)

where ci means cos(θi) and si means sin(θi). Equation (2.5) indicates that each homo-

geneous transformation Ai is characterized as a product of four basic transformations.

The four parameters ai, αi, di, and θi in (2.5) are generally called link length, link

twist, link offset and joint angle.

Finally, the combination of (2.4) and (2.5) gives us the position and orientation

of the tool frame expressed in base coordinates. The last column of resultant matrix

T (i.e., o0n) describes the Cartesian coordinates of the origin of the tool frame. The

upper left 3 × 3 matrix of matrix T (i.e., R0
n) presents the orientation of the tool

frame with respect to the base frame. Those nine elements can in turn be represented

using only three independent quantities: Euler-angles, Roll-Pitch-Yaw (RPY) angles

or angle representation yielding a total end result of six quantities (i.e., three for

positioning and three for orientation description).

8

2.4 LITERATURE REVIEW

As explained in the previous chapter, redundant robot manipulators are widely

used in various applications. Redundancy introduced to robot manipulators gives

high kinematic flexibility which enables the manipulator to achieve the same attitude

though infinite number of configurations, and this preponderant property is the main

motivation behind this thesis. Although, HRR have been investigated for more than

25 years, they have still remained a laboratory curiousity. Previous kinematic model-

ing techniques have not been particularly efficient or robust to the needs of HRR task.

Also, the mechanical design and implementation of HRR has been considered as un-

necessarily complex. This section will briefly review the previous work on kinematic

modeling and control of redundant robot manipulators.

Several recent techniques [13–16] of redundant robot are reported in the literature.

These techniques can be sorted into two main categories. The first one contains dif-

ferent methods that solve and optimize the forward or inverse kinematic modeling for

HRR. In the early stages, [13] researchers figured out a complete and general solution

dealing with the forward kinematics problem of platform-type robotic manipulators.

It showed that the equations for the forward kinematics of redundant robot were

highly nonlinear, however, closed-form solutions to the forward rate and acceleration

kinematics could be obtained by solving a system of linear equations based on the

data of three spatial positions, velocities and accelerations of the end-effector.

After solving forward kinematics, inverse kinematics, which solves each joint vari-

able by given position and orientation of end-effector, became a point of hot debate

in the robotic field. Recently, a valid analytical inverse kinematics computation for

redundant manipulators was proposed by [14]. The method used a virtual joint in-

9

stead of the joint offset from the wrist, and attached the virtual manipulator with a

spherical wrist which means the inverse kinematics solution of real manipulator could

be obtained by solving the inverse kinematics problems of virtual manipulator with

less complexity and nonlinearity.

The second category consists of techniques that deal with the motion and path

control of hype-redundant robot with different dynamic control approaches. Typi-

cally, [15] developed a dynamic control procedure based on analysis in the defined

posture space where three parameters were used to determine the manipulator pos-

ture. The manipulator dynamics was modeled by the parameters of the space path

and the path-tracking feedforward controller was formulated on the basis of the spa-

tial dynamic equations. As a result, it was proven that the workspace path of hyper-

redundant manipulator could be tracked precisely.

Other emerging technology on dynamic control laws for redundant manipulators

includes the work of [16], a wheelchair-mounted robotic arm (WMRA) system, based

on the dynamic model of a manipulator in Cartesian space, was designed and built

to meet the needs of disabled person. An optimized control method that guarantees

asymptotic tracking of a desired end-effector trajectory was adopted.

10

CHAPTER 3

9-DOF ROBOTIC ARM MODELING AND OPERATION

A kinematic model of 9-DOF manipulator is designed in this chapter that explains

the geometric motions without considering forces and torques. The main part of kine-

matic modeling is dealing with the assignment of coordinate frames to represent the

position and orientation of the end-effector with respect to the base, and with trans-

formations among the coordinate systems. Also, forward kinematic analysis is carried

out in Section 3.2 according to DH convention to get both position and orientation of

the end-effector. Section 3.3 states the configuration of the home position of 9-DOF

manipulator defined for kinematic control.

3.1 KINEMATIC MODEL OF 9-DOF ARM

The proposed 9-DOF manipulator is composed of a set of revolute joints which are

arranged orthogonal to each other while making the shoulder and wrist joint spherical.

Thus, this kinematic model can be easily decoupled into inverse kinematics problem

into two simpler problems, i.e., inverse position kinematics, and inverse orientation

kinematics for future research.

3.1.1 Labeling of Links and Joints

In order to establish the kinematic model, all the links and joints of the manip-

ulator are labeled starting from the bottom as shown in Figure 3.1 where θi is joint

11

variable of each motor and hi is the length of each link. This particular configuration

is based on the home position defined in Section 3.3. The arm with nine joints (from

label 1 to 9) has ten links (from label 0 to 9) since one joint connects two links.

Therefore, frame (OXY Z)i can be attached to link i, i.e., each point on link i is

constant when expressed in the ith coordinate frame.

Figure 3.1: Joint schematic of 9-DOF manipulator.

3.1.2 Assignment of Coordinate Frames

Figure 3.2 presents frame assignment of 9-DOF manipulator where θi is joint

variable of each motor and hi measures the physical lenth of each links. First, we

12

assign each Zi axis along the motor shaft of joint i + 1 (i.e., Z1, Z2, · · · , Z9). Next

we establish the base frame (OXY Z)0. Technically, the origin Oi of each joint can

be chose as any point along Zi. In this thesis, we make the origin O0 and O2 to

coincide at center of the motor shaft of joint 2 (i.e., O1) to form a spherical shoulder

as h0 stays constant while the joints are actuating which makes DH parameter much

simpler. Therefore, the origin O4, O6, O8 also can be fixed using this method to

form elbows and wrist. Then we choose X0 and Y0 to establish a right-handed frame.

Since the axes Z1 and Z2 intersect which means they are co-planar, we choose X1 be

vertical axis of the (Z1 ,Z2) plane. Thus, in the same way, other Xi can be assigned.

Meanwhile, Yi is established to complete a right-handed frame.

13

Figure 3.2: Frame assignment of 9-DOF manipulator.

3.1.3 Establishment of the End-Effector Frame

Finally, the tool frame (OXY Z)9 is established to represent the end-effector. The

unit vectors along the X9, Y9 and Z9 are labeled as n1, s2 and a3. This frame is

usually fixed at the end of the last joint.

1The direction normal to the plane formed by a and s.
2The sliding direction.
3The approach direction.

14

3.2 FORWARD KINEMATIC ANALYSIS

The objective of forward kinematic analysis is to measure the cumulative effect of

the entire set of joint variables on the end-effector, that is, to calculate the position

and orientation of the end-effector for a given set of joint angles.

3.2.1 Table of Denavit-Hartenberg (DH) Parameters

According to Section 2.3, DH parameters are assigned in Table 3.1 based on

proposed manipulator where ai is the length of common normal between Zi−1 and

Zi along Xi, αi represents the angle from Zi−1 and Zi measured about Xi, di is the

distance between Oi−1 and Oi along Zi−1 axis, and θi (i.e., the joint variable) is the

angle from Xi−1 and Xi measured about Zi−1. The HTM Ai between each frame can

be determined by substituting the parameters of Table 3.1 into Equation (2.5).

Table 3.1: Denavit-Hartenberg parameters for 9-DOF manipulator where θ∗ is joint
angle

Frame
ai αi di θi

(mm) (rad) (mm) (degree)
1 0 −π/2 0 θ∗1
2 0 π/2 0 θ∗2
3 0 −π/2 156.55 θ∗3
4 0 π/2 0 θ∗4
5 0 −π/2 152.15 θ∗5
6 0 π/2 0 θ∗6
7 0 −π/2 119.85 θ∗7
8 0 π/2 0 θ∗8
9 0 0 73.9 θ∗9

15

3.2.2 Formation of Transfer Matrix

It is straightforward to compute the individual matrices Ai from Equation (2.5)

as

A1 =

c1 0 −s1 0

s1 0 c1 0

0 −1 0 0

0 0 0 1

, A2 =

c2 0 s2 0

s2 0 −c2 0

0 1 0 0

0 0 0 1

,

A3 =

c3 0 −s3 0

s3 0 c3 0

0 −1 0 h1

0 0 0 1

, A4 =

c4 0 s4 0

s4 0 −c4 0

0 1 0 0

0 0 0 1

,

A5 =

c5 0 −s5 0

s5 0 c5 0

0 −1 0 h2

0 0 0 1

, A6 =

c6 0 s6 0

s6 0 −c6 0

0 1 0 0

0 0 0 1

,

A7 =

c7 0 −s7 0

s7 0 c7 0

0 −1 0 h3

0 0 0 1

, A8 =

c8 0 s8 0

s8 0 −c8 0

0 1 0 0

0 0 0 1

,

A9 =

c9 −s9 0 0

s9 c9 0 0

0 0 1 h4

0 0 0 1

, (3.1)

16

where ci means cos(θi) and si means sin(θi). According to Equation (2.4) and Equa-

tion (3.1), T 0
9 is then given as

T 0

9 = A1 · · ·A9

=

nx sx ax ox

ny sy ay oy

nz sz az oz

0 0 0 1

, (3.2)

which gives the position and orientation of the end-effector with respect to the base

coordinate frame. The last column of matrix T 0
9 (i.e., ox, oy, oz) gives the Cartesian

coordinates of the origin of the end-effector O9. The upper left 3 × 3 matrix of

matrix T 0
9 presents the orientation of the end-effector with respect to the base frame.

This 3×3 Euler-angles matrix can be algorithmically transferred into Roll-Pitch-Yaw

angles as

Rz = tan−1(
ny

nx

)

Ry = tan−1(
−nz

nxcos(Rz) + nysin(Rz)
) ,

Rx = tan−1(
axsin(Rz)− aycos(Rz)

oycos(Rz)− oxsin(Rz)
)

(3.3)

where Rx, Ry and Rz denote the parameters of RPY angles.

3.3 HOME POSITION CONFIGURATION

In order to determine the motion of the end-effector, home position of the ma-

nipulator must be defined. In this thesis, the proposed home position is to make

the whole arm straight up at a singularity position (i.e., there will be infinity many

solutions to inverse kinematics for this end-effector position and orientation) as Fig-

17

ure 3.1. Moreover, all the joint variables are made zero at home position. Thus, we

substitute θi = 0 (i = 1, 2, · · · , 9) into Equation (2.4) and get the transfer matrix T 0
9

at home position as

1 0 0 0

0 1 0 0

0 0 1 502.79

0 0 0 1

where 502.79mm is exactly the entire length

of the manipulator.

18

CHAPTER 4

THE CONSTRUCTION OF HARDWARE PLATFORM

We build an open prototype of the 9-DOF kinematic model developed in Chapter 3

to study its robotic redundancy and kinematic control. This hyper-redundant robotic

arm constructed with nine DC servo motors is attached to a fixed base frame. The

motors, are designed orthogonal to each other based on the model in Chapter 3. The

arm consists of four main joints, one shoulder, two elbows and one wrist. Each motor

carries a micro-controller with a RS-485 interface. Thus, the RS-485 protocol is used

for communication from PC direct to the arm. Also, a specific AC-DC power adapter

is chosen to satisfy the maximum recommended working voltage and current for servo

motors. Section 4.1 will first detail the configuration of hardware platform. Section

4.2 represents the structure of servo motor connection with PC using RS-485 protocol.

Finally, Section 4.3 will provide a mechanical analysis of the 9-DOF manipulator.

4.1 FUNDAMENTAL STRUCTURE OF HARDWARE PLATFORM

Based on the kinematic model of the robotic arm, a series of high-performance

servo motors corresponding to different needs of joints in this thesis. Figure 4.1

demonstrates the fundamental configuration of the arm at its home position intro-

duced in Section 3.3. The first motor (i.e., motor 1) is fixed as the base with its axes

along the straight-up Z0 axis in such a way that the axis of rotation is orthogonal to

19

previous. Other motors are assembled successively upon the base along the Z0 axis.

The kinematic motion is transmitted within the physical links between these motors.

Figure 4.1: Structure of 9-DOF redundant manipulator at its home position.

4.1.1 Motor Features

In this thesis, the proposed motors we have chosen so as to satisfy both kinematic

and dynamic control requirement, e.g., torque specification, speed range, etc. As

20

mentioned in Section 2.1, a “MX series” high-performing “Dynamixels” motors as

shown in Figure 2.1 from ROBOTIS are adopted. These servo motors embedded with

sensors can feedback position, speed, load, temperature, etc, in real time. Meanwhile,

the micro-controller inside each motor allows user to achieve PID control, upgrade

its firmware version and update the goal position, speed, torque and acceleration.

Table 4.1 gives the specification of different type of “MX series” motors. From the

specification, we learn that “MX series” motor provides strong dynamic power with

light weight which meets the requirements of the arm design. According to the stall

Torque, we assign MX − 28R, MX − 64R and MX − 106R to form the wrist, elbow

and shoulder respectively. Moreover, these motors have very small holding current.

Table 4.1: Specification of “MX series” servo motors

Model
Weight Dimension Stall Torque No load speed V oltage

(g) (mm×mm×mm) (N ·m) (rpm) (V)
MX − 28R 72 35.6× 50.6× 35.5 3.1 67 14.8
MX − 64R 126 40.2× 61.1× 41 7.3 78 14.8
MX − 106R 153 40.2× 65.1× 46 10.0 55 14.8

4.1.2 Home Position Calibration

As illustrated in Section 3.3, we require to achieve a perfect physical home position

for the manipulator platform as the initial position. Therefore, a specific calibration

tool as shown in Figure 4.2 is used to make the arm close to its theoretical home

position which means all the angles of motors are set close to their center position.

This is in order to provide maximum range of motion on either side of the home

position.

21

Figure 4.2: 9-DOF redundant manipulator installed with the calibration tool as shown
in white box.

4.2 BASIC STRUCTURE OF MOTOR CONNECTION ON A BUS

According to [3], all the “MX series” motors we used are connected though RS-485

communication BUS. Figure 4.3 shows the pin assignment of a connector. The “MX

series” motor has two 4 pin connectors on it and those two connectors have the same

22

function. As shown in Figure 4.4, all the servo motors constructed the arm can be

controlled on a BUS.

Figure 4.3: Pin assignment of “MX series” servo motors with RS-485 protocol (source:
[3]).

Figure 4.4: Pin-to-pin writing method of “MX series” servo motors with RS-485
protocol (source: [3]).

23

Figure 4.5: Connection of “MX series” servo motors on BUS with power source using
“USB2Dynamixel” (source: [3]).

The objective of this thesis is using PC to command the manipulator composed of

“MX series” motors directly on the RS-485 BUS. Therefore, “USB2Dynamixel”, as

shown in Figure 4.6, is used to operate motors directly from PC. Table 4.2 introduces

the function of each part of “USB2Dynamixel”. The 4 pin connector is used for this

thesis particularly to link “MX series” motors though RS-485. Figure 4.5 describes the

structure of a series of servo motors connected with PC though “USB2Dynamixel”.

Figure 4.6: Instruction of the device used to operate “MX series” servo motors directly
from PC, i.e., “USB2Dynamixel” (source: [3]).

24

Table 4.2: Instruction of “USB2Dynamixel” for the usage of each part

Name Description
Status Display LED Display power supply and data writing status.
Function Selection Switch Communication method Selection.
3P Connector Connect “AX Series” through TTL communication.
4P Connector Connect “ MX, DX, RX Series” through RS-485 protocol.
Serial Connector Change from USB port to Serial port.

4.3 MECHANICAL ANALYSIS

The 9-DOF manipulator constructed by “MX series” servo motors provides high-

performance in dynamic motion and mechanical strength as shown in Table 4.3. It

also has capability to afford a high torque requirement with payload.

Table 4.3: Mechanical specification of 9-DOF manipulator
Mechanical Table

Configuration 9DOF
Total weight 1.2kg
Payload at full reach 792g
Payload at mid reach 924g
Arm length 64.6cm
Arm reach 50.2cm
Maximum joint speed 55rpm
Repeatability ±0.5mm
Input voltage 14.8V DC
Ambient temperature from 20oC to 35oC

Table 4.4 refers to the limitation of each joint angle to avoid the motor to hit each

other or the link. All the range of roll-axis angles stay the same (i.e., −180o ∽ +180o),

and all the range of pitch-axis are the same (i.e., −110o ∽ +110o). However, since

all the angles of motors are set close to their center position during calibration, there

will be a few sliding difference from designed starting and terminal position while all

the range stay the same.

25

Table 4.4: Axis range of each joint variable of 9-DOF manipulator
Axis Range

Shoulder Roll (θ1, θ3) −180o ∽ +180o

Shoulder Pitch (θ2) −110o ∽ +110o

Elbow Roll (θ5, θ7) −180o ∽ +180o

Elbow Pitch (θ4, θ6) −110o ∽ +110o

Wrist Roll (θ9) −180o ∽ +180o

Wrist Pitch (θ8) −110o ∽ +110o

26

CHAPTER 5

9-DOF ROBOTIC ARM CONTROL UI

An application software platform is designed in this thesis to provide motion

control for the 9-DOF manipulator. We develop a function library which can be used

for constructing various applications based on the different requirements. In addition,

an user interface is designed for convenient and intuitive control of manipulator.

5.1 FUNCTION LIBRARY FOR APPLICATION

An original static function library, named “DynamixelFuncsLib”, is developed

based on a standard programming library, called “Dynamixel SDK”, provided by

ROBOTIS. The “MX series” motor obeys and returns the instructions by pulse

signal. [3] claims that “Dynamixel SDK” is explained based on C language calling

method. It offers five groups of calling methods, i.e., Device Control Method, Set/Get

Packet Method, Packet Communication Method, High Communication Method and

Utility Method, to send or receive pulses to or from the motor. Our function li-

brary is designed upon this specific architecture. Table 5.1 includes all the original

library functions within their respective classes. It is noteworthy that since all the

angles of motors are set close to their center position during calibration, the posi-

tion pulse may increase beyond the maximum pulse (i.e, 4095). Thus, the function

PositionToPulses() automatically subtract 4095 pulses when it reaches beyond the

27

maximum pulse to fix this problem. Users should use the “DynamixelFuncsLib” as

C++ reference library to create their application projects by calling functions from

library.

Table 5.1: Function list of original class library

Class Function Description
CommStatus PrintCommStatus() print communication result
ErrorCode PrintErrorCode() print error bit of status packet

MotorMotion

SetSpeed() set speed to motor
GetSpeed() get speed from motor

SetGoalPosition() set goal position to motor
GetPresPosition() get present position from motor

SyncWrite() send syncwrite packets
GetPresLoad() get present load from motor

Transform

PulsesToSpeed() transform pulses to speed
SpeedToPulses() transform speed to pulses

PulsesToPosition() transform pulses to position
PositionToPulses() transform position to pulses
CalculateSpeed() calculate speed
DegreeToRadian() transform degree to radian
RadianToDegree() transform radian to degree

ForwardKinematics() use forward kinematics to find the end effector

5.2 APPLICATION SOFTWARE PLATFORM

This section focuses on the main functions and structure of application software

platform with its UI. The objective is to achieve initialization of packet communica-

tion between PC and manipulator, monitoring motor status, configuration of home

position and sleep position, manual and sync control, motion teach and play, etc.

This interactive software allows communication between PC and each servo motors

go through in real time. It is capable to send instruction signal packet to command

motors and receive status signal packet from them to get feedback. Also, all the kine-

matic and dynamic algorithm of this thesis design can be calculated and achieved by

28

this software.

5.2.1 Function and Structure of Application Software

All the functional modules of software platform are built upon the original static

library as shown in Table 5.1. Table 5.2 lists the main functional classes developed

for the application software.

Table 5.2: Instruction of main classes in application software system
Class Description
CAoutdlg create a software statement diagram.
CUINineDOFArmDlg create windows of user interface.
Cmonitor monitor motor status.
Cmanual include manual control functions.
Csync include sync control functions.
Cforwardkinematics include forward kinematics functions.

5.2.2 UI Design Using C++ Microsoft Foundation Classes (MFC)

The UI developed for this software platform is based on the C++ MFC. It is

divided into three parts in general, that are, operation monitor, manual control and

sync control as shown in Figure 5.1-5.3. These three interfaces can be switched as

bookmarks using the “Tab Control” of C++ MFC which allows user to set parameters

and observe motor status simultaneously. This subsection will introduce the function

and application method of UI in detail for each part.

Operation Monitor Interface

The operation monitor interface, included major status of motors, is shown as

Figure 5.1 where label 1 is a motor selection drop-down list, label 2 is a monitor

window of motor status, label 3 is a PID tuning interface and label 4 is a display of

selected motor appearance.

29

Figure 5.1: Operation monitor interface diagram.

Manual Control Interface

The manual control interface, which controls the torque switch and manual motion

of motors, is shown as Figure 5.2 where label 1 is a tab control for switching between

interfaces, label 2 is torque switches for each motor, label 3 is manual motion control

for two actuation directions (i.e., clockwise and counterclockwise), label 4 is a monitor

window of present position, label 5 is for calling the monitor interface (i.e., 5.1), label

6 is for recording calibration data of manipulator, label 7 is a home position motion

activated button, and label 8 is a sleep position motion1 activated button.

1A position which makes the manipulator to get close to the ground of platform and then lose

all the torque of motors to shut down safely.

30

Figure 5.2: Manual control interface diagram.

Sync Control Interface

The sync control interface, which allows all the motors to run synchronically, is

shown as Figure 5.3 where label 1 is a monitor window of present position and speed,

label 2 is for setting the positions for all the motors, label 3 is for setting sync motion

time for all the motors, label 4 is a monitor window of position and orientation of

the end-effector, label 5 is for resetting all the input data, label 6 is a sync motion

activated button.

31

Figure 5.3: Sync control interface diagram.

Safety Measures Used in UI

Safety incident of manipulator may be caused by misoperation of UI. There are

several safety measures designed to avoid accidents. First, all the activated buttons

and input windows (except monitor interface 5.1) are disable before the manipulator

gets to its home position as initialization. Second, the manual control button is

disable before the torque of corresponding motor is on. Third, all the input windows

are disable during the sync motion of manipulator. Fourth, the sync motion activated

button is available unless the motion time is set. Finally, UI closure leads to the sleep

position motion to shut down the manipulator safely.

32

CHAPTER 6

RESULTS OF THESIS

In this chapter, we present the result of tracking different paths using the 9-

DOF arm described earlier and report error analysis. Three sample paths as shown

respectively in Section 6.1, 6.2 and 6.3 are designed to test accuracy and stability of

the 9-DOF arm. We input all the sample joint variables and make the arm go though

the path. During the real time tracking, We record the angles of each joint and

calculate corresponding coordinates of the end-effector though forward kinematics

(3.2) then provide spacial plot of trajectory, coordinates error analysis and velocity

error analysis for each tracking experiment. However, the process of creating these

proposed paths using inverse kinematics, will not be discussed in this thesis.

6.1 TRAJECTORY TRACKING OF A LINE ALONG THE X-AXIS

In this section, a line along the X-axis, which starts from coordinate (200, -236.9,

-50) to (-200, -236.9, -50), is tracked by 9-DOF arm. The corresponding tracking-

trajectory of the end-effector and reference path are shown in Figure 6.1. Also, Figure

6.2 shows different angles of view on X-Y and X-Z planes.

33

Figure 6.1: Tracking-trajectory of a line along X-axis is compared with designed
reference path in space coordinates.

(a) X-Y Plane (b) X-Z Plane

Figure 6.2: Tracking-trajectory of a line along X-axis is compared with designed
reference path on X-Y and X-Z planes.

The total motion time is 59.7 seconds. Figure 6.3 presents that the end-effector of

9-DOF arm tracks the line path accurately within its space distance error. The mean

34

space distance error is 1.5295 mm and the maximum space distance error is 4.1948

mm.

Figure 6.3: Space distance error of tracking-trajectory of a line along X-axis.

Figure 6.4 plots the tracking-trajectory and reference path in real time along

X-axis, Y -axis and Z-axis. During the tracking, the mean position error and the

maximum position error respectively along X-axis, Y -axis and Z-axis are as shown

in Table 6.1.

Table 6.1: Position error analysis of tracking a line along X-axis
Axis Mean Position Error (mm) Maximum Position Error (mm)
X 1.0763 2.0473
Y 0.5337 2.3427
Z 0.7345 3.6320

35

Figure 6.4: Tracking-trajectory of a line along X-axis versus motion time is compared
with designed reference path versus motion time respectively along X-axis, Y -axis
and Z-axis.

In order to get real-time velocity plot as shown in Figure 6.5, we take the derivative

of tracking-position with respect to motion time as shown in Figure 6.4. The designed

velocity respectively along X-axis, Y-axis and Z-axis are constantly -2 mm/second,

0 mm/second, 0 mm/second. The end-effector tracks the line path smoothly within

the velocity error as shown in Figure 6.5. The mean velocity error and the maximum

velocity error respectively along X-axis, Y -axis and Z-axis are as shown in Table 6.2.

Table 6.2: Velocity error analysis of tracking a line along X-axis

Axis
Mean Velocity Error Maximum Velocity Error

(mm/second) (mm/second)
X 0.3762 1.3935
Y 0.4020 1.5224
Z 0.4547 2.6138

36

Figure 6.5: Velocity of tracking-trajectory of a line along X-axis is compared with
velocity of designed reference path respectively along X-axis, Y -axis and Z-axis.

6.2 TRAJECTORY TRACKING OF A RECTANGLE ON X-Y PLANE

In this section, a path of a rectangle on X-Y plane with four endpoints (100,

-400, -50), (-100, -400, -50), (-100, -200, -50), (100, -200, -50) is tracked by 9-DOF

arm. The corresponding tracking-trajectory of the end-effector and reference path

are shown in Figure 6.6. Also, Figure 6.7 illustrates different angles of view on X-Y

and X-Z planes.

37

Figure 6.6: Tracking-trajectory of a rectangle on X-Y plane is compared with de-
signed reference path in space coordinates.

(a) X-Y Plane (b) X-Z Plane

Figure 6.7: Tracking-trajectory of a rectangle on X-Y plane is compared with de-
signed reference path on X-Y and X-Z planes.

The total motion time is 199.5 seconds. In Figure 6.8, we observe the end-effector

of 9-DOF arm tracks the rectangle path accurately within its space distance error.

38

The mean space distance error is 1.9704 mm and the maximum space distance error

is 5.8564 mm.

Figure 6.8: Space distance error of tracking-trajectory of a rectangle on X-Y plane.

In Figure 6.9, we plot the tracking-trajectory and reference path in real time along

X-axis, Y -axis and Z-axis. During the tracking, the mean position error and the

maximum position error respectively along X-axis, Y -axis and Z-axis are as shown

in Table 6.3.

Table 6.3: Position error analysis of tracking a rectangle on X-Y plane
Axis Mean Position Error (mm) Maximum Position Error (mm)
X 1.0010 2.7734
Y 0.9316 5.7913
Z 1.0648 3.5614

39

Figure 6.9: Tracking-trajectory of a rectangle on X-Y plane versus motion time is
compared with designed reference path versus motion time respectively along X-axis,
Y -axis and Z-axis.

In order to get real-time velocity plot as shown in Figure 6.10, we take the deriva-

tive of tracking-position with respect to motion time as shown in Figure 6.9. The

designed velocity respectively along X-axis, Y -axis and Z-axis are range from -2

mm/second to +2 mm/second, range from +2 mm/second to -2 mm/second and

constantly 0 mm/second. The end-effector tracks the rectangle path smoothly within

the velocity error as shown in Figure 6.10. The mean velocity error and the maximum

velocity error respectively along X-axis, Y -axis and Z-axis are as shown in Table 6.4.

Table 6.4: Velocity error analysis of tracking a rectangle on X-Y plane

Axis
Mean Velocity Error Maximum Velocity Error

(mm/second) (mm/second)
X 0.3885 2.0000
Y 0.3411 2.3485
Z 0.5026 2.6881

40

Figure 6.10: Velocity of tracking-trajectory of a rectangle on X-Y plane is compared
with velocity of designed reference path respectively along X-axis, Y -axis and Z-axis.

6.3 TRAJECTORY TRACKING OF AN INCLINED CIRCLE

In this section, a path of an inclined circle with its center coordinate (-315, 0,

10) and radius of 100 mm is tracked by 9-DOF arm. The corresponding tracking-

trajectory of the end-effector and reference path are shown in Figure 6.11. Also,

Figure 6.12 shows different angles of view on X-Y and X-Z planes.

41

Figure 6.11: Tracking-trajectory of an inclined circle is compared with designed ref-
erence path in space coordinates.

(a) X-Y Plane (b) X-Z Plane

Figure 6.12: Tracking-trajectory of an inclined circle is compared with designed ref-
erence path on X-Y and X-Z planes.

The total motion time is 49.5 seconds. Figure 6.13 presents the end-effector of

9-DOF arm tracks the circle path accurately within its space distance error. The

42

mean space distance error is 1.5007 mm and the maximum space distance error is

4.2913 mm.

Figure 6.13: Space distance error of tracking-trajectory of an inclined circle.

Figure 6.14 shows the tracking-trajectory and reference path in real time along

X-axis, Y -axis and Z-axis. During the tracking, the mean position error and the

maximum position error respectively along X-axis, Y -axis and Z-axis are as shown

in Table 6.5.

Table 6.5: Position error analysis of tracking an inclined circle
Axis Mean Position Error (mm) Maximum Position Error (mm)
X 0.4017 1.0141
Y 0.7819 2.5465
Z 1.0889 4.0433

43

Figure 6.14: Tracking-trajectory of an inclined circle versus motion time is compared
with designed reference path versus motion time respectively along X-axis, Y -axis
and Z-axis.

In order to get real-time velocity plot as shown in Figure 6.15, we take the deriva-

tive of tracking-position with respect to motion time as shown in Figure 6.14. The

designed velocity respectively along X-axis, Y -axis and Z-axis are −5.3sin(2πt/49.5)

mm/second, −6.4cos(2πt/49.5) mm/second and 3.5sin(2πt/49.5) mm/second where

t is motion time. The end-effector tracks the circle path smoothly within the velocity

error as shown in Figure 6.15. The mean velocity error and the maximum velocity

error respectively along X-axis, Y -axis and Z-axis are as shown in Table 6.6.

Table 6.6: Velocity error analysis of tracking an inclined circle

Axis
Mean Velocity Error Maximum Velocity Error

(mm/second) (mm/second)
X 0.2492 1.0220
Y 0.5322 1.7197
Z 0.6133 2.2843

44

Figure 6.15: Velocity of tracking-trajectory of an inclined circle is compared with
velocity of designed reference path respectively along X-axis, Y -axis and Z-axis.

6.4 CONCLUSION OF THESIS RESULTS

In general, the 9-DOF arm tracks the three designed path smoothly with certain

accuracy. However, the performance can be significantly improved by proper tuning

of the control parameters and reducing the delay in communication. The results

shows that the 9-DOF manipulator works functionally and satisfies the requirement

of this thesis design.

45

CHAPTER 7

CONCLUSION

Along this thesis, we have constructed our own 9-DOF hyper-redundant manipu-

lator with open architecture control based on kinematic modeling and dynamic anal-

ysis. Also, we have developed corresponding original function library and application

software with UI. Meanwhile, we have obtained a lot of research experience and exper-

imental ability during this thesis. First of all, we acquire knowledge of robotics and

related work, e.g., forward and inverse kinematics, servo motor, C++ programming,

etc. Second, we get familiar with the design and construction of hardware platform.

Third, we succeed to develop our own software to achieve manually control, sync

control, tracking the trajectory using forward kinematics, etc. Chapter 6 validates

the performance of designed manipulator platform and testifies that the 9-DOF ma-

nipulator satisfies the requirement of this thesis design and establish a foundation for

future research.

7.1 DIFFICULTIES AND SOLUTIONS

A few difficulties appear along with this thesis design. First is the safety problem

of the hardware platform. The “MX series” servo motors used in this thesis only

have basic safety precautions, like overload warning, communication error warning,

etc. These precautions are not sufficient to ensure the experimental safety. Thus, we

46

embed a few actuation limitation of each motor into the software function library. It

means that the motors are unavailable to reach the position or to achieve the speed

beyond the safety boundary. In addition, we set a series of safety measures 5.2.2

inside UI to avoid artificial mistake.

Another one is that the motors actuate in the horizontal plane are physically

swapped during the installation to match co-ordinate system of kinematic model.

As a result, the positive direction of motor rotation is opposite from which in the

kinematic model. We need either change the direction and make a special notation

in the function code or change the DH table to fix this problem.

In practical use, Equation (3.3) stands unstable when calculating orientation of the

end-effector due to the round off error and truncation error of computer. Orientation

of the end-effector(i.e., Rx, Ry, Rz) changes discontinuously when approach to the

critical point. Therefore, we rewrite the function code of Equation (3.3) to set up

some transitional domain eliminating the computer error to make the orientation to

change smoothly.

The servo motors without dynamic control are incapable to move synchronously

while executing sync write. This problem will affect the smoothness and synchronism

of robotic motion. As a solution, we put different scaler to the transition between

speed and signal pulse for different type of motor in the function code to coordinate

their speed under different situations. In the future, we can develop PID control or

achieve torque control to avoid this problem.

47

7.2 FUTURE WORK

The 9-DOF manipulator designed in this thesis is an open-oriented platform to

continuous robotic and control research. It can be extended to test and verify the

inverse kinematic algorithm. We can experiment and observe the motion trajectory of

the end-effector calculated though inverse kinematics. The path planning of the end-

effector can also be proposed based on the velocity kinematics. We get dynamic profile

of each joint from the Manipulator Jacobian [2, 10, 11] to optimize and control the

path. In addition, we can implement independent joint control by control the torque

of each motor. The adaptive control [17] can optimize and control the multiple inputs

and outputs of a non-linear system.

48

APPENDIX A

Visual C++ Function Library Based on Dynamixel SDK

PrintCommStatus.cpp

void PrintCommStatus (int CommStatus)

{

switch (CommStatus)

{

case COMMTXFAIL:

p r i n t f (”COMMTXFAIL: Fa i l ed transmit i n s t r u c t i o n

packet !\n”) ;

break ;

case COMMTXERROR:

p r i n t f (”COMMTXERROR: In c o r r e c t i n s t r u c t i o n packet !\n

”) ;

break ;

case COMMRXFAIL:

p r i n t f (”COMMRXFAIL: Fa i l ed get s t a tu s packet from

dev i ce !\n”) ;

break ;

49

case COMMRXWAITING:

p r i n t f (”COMMRXWAITING: Now r e c i e v i n g s t a tu s packet !\

n”) ;

break ;

case COMMRXTIMEOUT:

p r i n t f (”COMMRXTIMEOUT: There i s no s t a tu s packet !\n”

) ;

break ;

case COMMRXCORRUPT:

p r i n t f (”COMMRXCORRUPT: I n c o r r e c t s t a tu s packet !\n”) ;

break ;

default :

p r i n t f (”This i s unknown e r r o r code !\n”) ;

break ;

}

}

PrintErrorCode.cpp

void PrintErrorCode ()

{

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT VOLTAGE) == 1)

p r i n t f (” Input vo l tage e r r o r !\n”) ;

50

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT ANGLE) == 1)

p r i n t f (”Angle l im i t e r r o r !\n”) ;

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT OVERHEAT) == 1)

p r i n t f (”Overheat e r r o r !\n”) ;

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT RANGE) == 1)

p r i n t f (”Out o f range e r r o r !\n”) ;

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT CHECKSUM) == 1)

p r i n t f (”Checksum e r r o r !\n”) ;

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT OVERLOAD) == 1)

p r i n t f (”Overload e r r o r !\n”) ;

i f (d x l g e t r x p a c k e t e r r o r (ERRBIT INSTRUCTION) == 1)

p r i n t f (” I n s t r u c t i o n code e r r o r !\n”) ;

}

SetSpeed.cpp

void SetSpeed (int id , f loat speedse t)

{

dx l wr i t e word (id , 32 ,MotorData : : Transform : :

SpeedToPulses (id , speedse t)) ;

//#de f i n e P GOAL SPEED L 32

51

} ;

GetSpeed.cpp

f loat GetSpeed (int id)

{

return MotorData : : Transform : : PulsesToSpeed (

dx l read word (id , 38)) ;

//#de f i n e P PRESENT SPEED L 38

} ;

SetGoalPosition.cpp

void SetGoa lPos i t i on (int id , f loat po s i t i o n s e t 1)

{

dx l wr i t e word (id , 30 , MotorData : : Transform : :

Pos i t ionToPulses (id , p o s i t i o n s e t 1)) ;

//#de f i n e P GOAL POSITION L 30

} ;

GetPresPosition.cpp

f loat GetPresPos i t ion (int id)

{

return f loat (MotorData : : Transform : : Pul sesToPos i t ion (

id , dx l read word (id , 36))) ;

//#de f i n e P PRESENT POSITION L 36

} ;

GetPresLoad.cpp

52

f loat GetPresLoad (int id)

{

f loat pre s l oad ;

int load = dxl read word (id , 40) ;

i f (load>=0 && load<=1023)

{

pre s l oad = 100.0∗ load /1023 . 0 ;

}

else

{

pre s l oad = 100 .0∗ (load −1024) /1023 . 0 ;

}

return pre s l oad ;

} ;

SyncWrite.cpp

// Contro l t a b l e address

#define P GOAL POSITION L 30

#define P GOAL POSITION H 31

// De fu la t s e t t i n g

#define DEFAULTPORTNUM 4 // COM4

#define DEFAULTBAUDNUM 1 // 1Mbps

void SyncWrite (int number , f loat ∗pos , f loat ∗ speed)

{

53

int id [9] ;

int GoalPos [9] ;

int i ;

// I n i t i a l i z e id

for (i =0; i<number ; i++)

{

id [i] = i +1;

}

// Make syncwr i t e packe t

dx l s e t t x p a c k e t i d (BROADCAST ID) ;

d x l s e t t xp a c k e t l e n g t h ((4+1)∗number+4) ;

d x l s e t t x p a c k e t i n s t r u c t i o n (INST SYNC WRITE) ;

dx l s e t txpacke t pa ramet e r (0 , P GOAL POSITION L) ;

dx l s e t txpacke t pa ramet e r (1 , 4) ;

for (i =0; i<number ; i++)

{

dx l s e t txpacke t pa ramet e r (2+5∗ i , id [i]) ;

GoalPos [i] = MotorData : : Transform : :

Pos i t ionToPulses (id [i] , pos [i]) ;

dx l s e t txpacke t pa ramet e r (2+5∗ i +1,

dx l g e t l owbyte (GoalPos [i])) ;

dx l s e t txpacke t pa ramet e r (2+5∗ i +2,

dx l g e t h i ghby t e (GoalPos [i])) ;

54

dx l s e t txpacke t pa ramet e r (2+5∗ i +3,

dx l g e t l owbyte (MotorData : : Transform : :

SpeedToPulses (id [i] , speed [i]))) ;

dx l s e t txpacke t pa ramet e r (2+5∗ i +4,

dx l g e t h i ghby t e (MotorData : : Transform : :

SpeedToPulses (id [i] , speed [i]))) ;

}

dx l t x rx packe t () ;

}

}

PulsesToSpeed.cpp

f loat PulsesToSpeed (int pu l s e s t r an s 1)

{

i f (pu l s e s t r an s 1==0)

{

return 0 . 0 ;

}

else i f (pu l s e s t r an s 1==1023)

{

return −117.07;

}

else i f ((pu l s e s t rans1 >0)&&(pu l s e s t rans1 <1023))

{

return (117 .07/1023) ∗ pu l s e s t r an s 1 ;

}

55

else

return (−117.07/1023) ∗(pu l s e s t rans1 −1024) ;

} ;

SpeedToPulses.cpp

f loat th r e s1 = 109 .5 , th r e s2 = 117 . 0 7 ;

int SpeedToPulses (int id , f loat speedt rans)

{

i f ((id==7) | | (id==8) | | (id==9))

{

i f ((speedtrans >0.0) && (speedtrans<=thre s1))

{

return (max(1 , speedt rans /(th r e s1

/1023 .0))) ;

}

else i f (speedtrans>th r e s1)

{

return 1023 ;

}

else return 1 ;

}

else

{

i f ((speedtrans >0.0) && (speedtrans<=thre s2))

{

56

return (max(1 , speedt rans /(th r e s2

/1023 .0))) ;

}

else i f (speedtrans>th r e s2)

{

return 1023 ;

}

else return 1 ;

}

}

PulsesToPosition.cpp

f loat PulsesToPos i t ion (int id , int pu l s e s t r an s 2)

{

f loat HomePosition [9]={2074 .0 , 2040 .0 , 2001 .0 ,

2038 .0 , 2028 .0 , 1987 .0 , 2226 .0 , 2028 .0 , 2051 . 0} ;

i f (id==2 | | id==4 | | id==6 | | id==8)

{

return (pu l s e s t rans2−HomePosition [(id−1)])

∗ (180 . 0/2048 . 0) ;

}

else

{

return (pu l s e s t rans2−HomePosition [(id−1)])

∗ (180 . 0/2048 . 0) ;

57

}

}

PositionToPulses.cpp

int Pos i t ionToPulses (int id , f loat po s i t i o n t r a n s)

{

f loat HomePosition [9]={2074 .0 , 2040 .0 , 2001 .0 ,

2038 .0 , 2028 .0 , 1987 .0 , 2226 .0 , 2028 .0 , 2051 . 0} ;

i f (id==2 | | id==4 | | id==6 | | id==8)

{

i f (po s i t i on t r an s >=0.0)

{

return HomePosition [id−1]−(max

(−110.0 ,− po s i t i o n t r a n s)

/ (180 . 0/2048 . 0)) ;

}

else

{

return HomePosition [id−1]−(min

(110.0 ,− po s i t i o n t r a n s)

/ (180 . 0/2048 . 0)) ;

}

}

else i f (id==1 | | id==3 | | id==5 | | id==7 | | id==9)

{

58

i f (po s i t i on t r an s >=0.0)

{

return HomePosition [id−1]−(max

(−180.0 ,− po s i t i o n t r a n s)

/ (180 . 0/2048 . 0)) ;

}

else

{

return HomePosition [id−1]−(min

(180.0 ,− po s i t i o n t r a n s)

/ (180 . 0/2048 . 0)) ;

}

}

i f (pu l s e >= 4096)

{

return (pulse −4096) ;

}

else

{

return pu l s e ;

}

}

CalculateSpeed.cpp

59

f loat Calcu lateSpeed (int number , f loat time , f loat ∗pos ,

f loat ∗ speed)

{

f loat po s i t i o n [9] ;

int id [9] ;

int i ;

// I n i t i a l i z e id

for (i =0; i<number ; i++)

{

id [i] = i +1;

}

for (i =0; i<number ; i++)

{

po s i t i o n [i] = MotorStatus : : MotorMotion : :

GetPresPos i t ion (id [i]) ;

i f ((pos [i]− po s i t i o n [i]) >=0.0)

{

speed [i] = ((pos [i]− po s i t i o n [i])

/360 . 0∗60 . 0) / time ;

}

else

{

speed [i] = ((p o s i t i o n [i]−pos [i])

/360 . 0∗60 . 0) / time ;

60

}

}

return ∗ speed ;

}

DegreeToRadian.cpp

f loat DegreeToRadian (f loat degree)

{

return degree ∗ pi / 180 . 0 ;

} ;

RadianToDegree.cpp

f loat RadianToDegree (f loat rad ian)

{

return rad ian ∗180.0/ p i ;

} ;

ForwardKinematics.cpp

f loat ForwardKinematics (f loat ∗ ende f f e c t o r , f loat ∗pos)

{

f loat pos1= MotorData : : Transform : : DegreeToRadian (pos

[0]) ;

f loat pos2= MotorData : : Transform : : DegreeToRadian (pos

[1]) ;

f loat pos3= MotorData : : Transform : : DegreeToRadian (pos

[2]) ;

61

f loat pos4= MotorData : : Transform : : DegreeToRadian (pos

[3]) ;

f loat pos5= MotorData : : Transform : : DegreeToRadian (pos

[4]) ;

f loat pos6= MotorData : : Transform : : DegreeToRadian (pos

[5]) ;

f loat pos7= MotorData : : Transform : : DegreeToRadian (pos

[6]) ;

f loat pos8= MotorData : : Transform : : DegreeToRadian (pos

[7]) ;

f loat pos9= MotorData : : Transform : : DegreeToRadian (pos

[8]) ;

e nd e f f e c t o r [4] = atan2(−nz , s q r t (nx∗nx+ny∗ny)) ;

e nd e f f e c t o r [4] = (f loat) ((int) (e nd e f f e c t o r [4] ∗

100 . 0)) / 1 0 0 . 0 ;

i f ((e nd e f f e c t o r [4] <= 3 .14/2 . 0 + 0 . 10) && (

end e f f e c t o r [4] >= 3 .14/2 . 0 − 0 . 10))

{

e nd e f f e c t o r [3] = 0 ;

e nd e f f e c t o r [5] = atan2 (ox , oy) ;

}

else i f ((e nd e f f e c t o r [4] >= −3.14/2.0 − 0 . 10) && (

end e f f e c t o r [4] <= −3.14/2.0 + 0 . 10))

62

{

e nd e f f e c t o r [3] = 0 ;

e nd e f f e c t o r [5] = −atan2 (ox , oy) ;

}

else

{

e nd e f f e c t o r [3] = atan2 (ny/ cos (e nd e f f e c t o r [4])

, nx/ cos (e nd e f f e c t o r [4])) ;

e nd e f f e c t o r [5] = atan2 (oz/ cos (e nd e f f e c t o r [4])

, az/ cos (e nd e f f e c t o r [4])) ;

}

//Rotat ion radian to degree

e nd e f f e c t o r [3] = MotorData : : Transform : : RadianToDegree

(e nd e f f e c t o r [3]) ;

e nd e f f e c t o r [4] = MotorData : : Transform : : RadianToDegree

(e nd e f f e c t o r [4]) ;

e nd e f f e c t o r [5] = MotorData : : Transform : : RadianToDegree

(e nd e f f e c t o r [5]) ;

return ∗ e nd e f f e c t o r ;

}

63

APPENDIX B

Dynamixel Servo Motor Control Address Table

Table B.1: Dynamixel servo motor control command address (source: [3])

64

APPENDIX C

Mechanical Drawings

A4

Figure C.1: MX-28R servo motor mechanical drawing (source: [1]).

65

A4

Figure C.2: MX-64R servo motor mechanical drawing (source: [1]).

66

A4

Figure C.3: MX-106R servo motor mechanical drawing (source: [1]).

67

BIBLIOGRAPHY

[1] R. INC, “High-performance networked actuators.” [Online]. Available: http:

//www.robotis.com/xe/dynamixel_en, 2013.

[2] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control.

NY, U.S.A.: John Wiley & Sons, Inc., first ed., 2005.

[3] R. INC, “Robotis e-manual v1.14.00.” [Online]. Available: http://support.

robotis.com/en/, 2013.

[4] E. S. Conkur and R. Buckingham, “Clarifying the definition of redundancy as

used in robotics,” Robotica, vol. 15, pp. 583–586, 9 1997.

[5] A. Transeth, N. Van deWouw, A. Pavlov, J. Hespanha, and K. Pettersen, “Track-

ing control for snake robot joints,” in Intelligent Robots and Systems, 2007. IROS

2007. IEEE/RSJ International Conference on, pp. 3539–3546, 2007.

[6] M. Hannan and I. Walker, “The ‘elephant trunk’ manipulator, design and im-

plementation,” in Advanced Intelligent Mechatronics, 2001. Proceedings. 2001

IEEE/ASME International Conference on, vol. 1, pp. 14–19 vol.1, 2001.

[7] D. Cojocaru, M. Ivanescu, R. T. Tanasie, S. Dumitru, and F. Manta, “Experi-

ments with tentacle robots,” in Robotics (ISR), 2010 41st International Sympo-

sium on and 2010 6th German Conference on Robotics (ROBOTIK), pp. 1–6,

2010.

68

http://www.robotis.com/xe/dynamixel_en
http://www.robotis.com/xe/dynamixel_en
http://support.robotis.com/en/
http://support.robotis.com/en/

[8] Advantech, “Rs-485, a proud legacy,” tech. rep., Mar. 2012.

[9] B. Lammert, “Practical information about implementing rs485.” [Online]. Avail-

able: http://www.lammertbies.nl/comm/info/RS-485.html, Aug, 2012.

[10] B. Siciliano, L. Villani, L. Sciavicco, and G. Oriolo, Robotics Modelling, Planning

and Control. MA, U.S.A.: Springer-Verlag London Limited, second ed., 2009.

[11] J. J. Craig, Introduction to Robotics, Mechanics and Control. NJ, U.S.A.: Pear-

son Education, Inc., third ed., 2005.

[12] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mecha-

nisms based on matrices,” Applied Mechanics, p. 215–221, 1955.

[13] X. Shi and N. Fenton, “A complete and general solution to the forward kinematics

problem of platform-type robotic manipulators,” in Robotics and Automation,

1994. Proceedings., 1994 IEEE International Conference on, pp. 3055–3062 vol.4,

1994.

[14] C. Yu, M. Jin, and H. Liu, “An analytical solution for inverse kinematic of 7-

dof redundant manipulators with offset-wrist,” in Mechatronics and Automation

(ICMA), 2012 International Conference on, pp. 92–97, 2012.

[15] S. Ma, M. Watanabe, and H. Kondo, “Dynamic control of curve-constrained

hyper-redundant manipulators,” in Computational Intelligence in Robotics and

Automation, 2001. Proceedings 2001 IEEE International Symposium on, pp. 83–

88, 2001.

[16] R. Alqasemi and R. Dubey, “Kinematics, control and redundancy resolution of a

9-DOF wheelchair-mounted robotic arm system for ADL tasks,” in Mechatronics

69

http://www.lammertbies.nl/comm/info/RS-485.html

and its Applications, 2009. ISMA ’09. 6th International Symposium on, pp. 1–7,

2009.

[17] R. Ordonez and K. Passino, “Stable multi-input multi-output adaptive

fuzzy/neural control,” Fuzzy Systems, IEEE Transactions on, vol. 7, no. 3,

pp. 345–353, 1999.

70

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	SYMBOLS AND ABBREVIATIONS
	introduction
	Background and related work
	DC Servo Motor
	RS-485 Protocol
	Forward Kinematics
	Literature Review

	9-DOF Robotic Arm Modeling and Operation
	Kinematic Model of 9-DOF Arm
	Labeling of Links and Joints
	Assignment of Coordinate Frames
	Establishment of the End-Effector Frame

	Forward Kinematic Analysis
	Table of Denavit-Hartenberg (DH) Parameters
	Formation of Transfer Matrix

	Home Position Configuration

	The Construction of Hardware Platform
	Fundamental Structure of Hardware Platform
	Motor Features
	Home Position Calibration

	Basic Structure of Motor Connection on a BUS
	Mechanical Analysis

	9-DOF Robotic Arm Control UI
	Function Library for Application
	Application Software Platform
	Function and Structure of Application Software
	UI Design Using C++ Microsoft Foundation Classes (MFC)

	Results of Thesis
	Trajectory Tracking of A Line along the X-axis
	Trajectory Tracking of A Rectangle on X-Y Plane
	Trajectory Tracking of An Inclined Circle
	Conclusion of Thesis Results

	conclusion
	Difficulties and Solutions
	Future Work

	APPENDICES
	Visual C++ Function Library Based on Dynamixel SDK
	Dynamixel Servo Motor Control Address Table
	Mechanical Drawings
	Bibliography

