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Abstract

This paper analyzes a call center model with m customer classes and r agent pools. The
model is one with doubly stochastic arrivals, which means that the m-vector λ of instantaneous
arrival rates is allowed to vary both temporally and stochastically. Two levels of call center
management are considered: staffing the r pools of agents, and dynamically routing calls to
agents. The system manager’s objective is to minimize the sum of personnel costs and aban-
donment penalties. We consider a limiting parameter regime that is natural for call centers and
relatively easy to analyze, but apparently novel in the literature of applied probability. For that
parameter regime we prove an asymptotic lower bound on expected total cost, which uses a
strikingly simple distillation of the original system data. We then propose a method for staffing
and routing based on linear programming (LP), and show that it achieves the asymptotic lower
bound on expected total cost; in that sense the proposed method is asymptotically optimal.

1 Introduction

This paper is concerned with two central problems in the management of a telephone call center.

The first is a static design problem that determines staffing levels according to which agents will

later be assigned to work schedules. The second is a dynamic control problem whose solution

determines the real-time assignment of incoming calls to agents. While these two goals are clearly

interrelated, their complexity has led most researchers to treat them separately, in a hierarchical

manner. The method we propose in this paper simultaneously addresses both problems.

We consider a call center model with m customer classes and r agent pools. As usual in operations

research studies, we view a call center as a queueing system, frequently referring to callers as

“customers” and to call center agents as “servers.” Each of the pools consists of interchangeable

servers whose common skills dictate the possible customer classes that these agents can serve,

and the speed at which such service is delivered. There can be more than one pool that serves a
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particular customer class, and conversely, there can be more than one customer class that is served

by a particular agent pool.

Customers of the various classes arrive randomly over time, and those who cannot be served

immediately wait in a (possibly virtual) infinite-capacity buffer. Two important assumptions are

made in this regard to capture recognized “real world” phenomena. First, we assume that customers

of any given class will abandon their calls if forced to wait too long before commencement of service

[see Gans, Koole and Mandelbaum (2003) for further discussion]. Second, we allow the arrival rates

for the various customer classes (expressed in units like calls per minute) to be both temporally

and stochastically variable, i.e., the m-vector of instantaneous arrival rates is itself a stochastic

process. As Gans et al. (2003) acknowledge in section 4.4 of their survey paper, such a view is

realistic, although most published papers on both call center staffing and dynamic routing treat

average arrival rates as known and constant over the relevant planning period.

We assume there are two types of costs: the direct and indirect variable costs associated with

agents staffing the various pools, which we call “personnel costs”; and abandonment costs that

capture the penalty associated with “lost business.” The objective of the system manager is to

minimize the sum of these two operating costs in selecting a staffing level for each pool and then

a routing rule by which calls will be assigned to servers. (A precise description of this call center

model and details of the various probabilistic assumptions are deferred to section 2.)

For any given staffing decision, the dynamic routing problem faced by the system manager is

the following. First, whenever a customer arrives and there exist one or more idle servers who

can handle that customer’s class, the system manager must choose between routing the customer

immediately to one of them versus having the customer wait for later disposition. If the customer

is to be routed immediately, there may be a further choice regarding the server pool to which it

will be routed. Second, each time a server completes the processing of a customer and there exist

waiting customers of one or more classes that the server can handle, the system manager must

choose between routing one of those customers to the server immediately versus idling the server in

anticipation of future arrivals. These resource allocation decisions are conditioned on system status

information at the time of the choice, including the number of customers waiting in the various

buffers and the number of idle servers in the various pools.

In the context of a multi-class/multi-pool call center, the problem laid out in the previous para-

graph is often referred to as skills-based routing [see Gans et al. (2003, §5.1) for further discussion].

This dynamic routing problem is quite difficult to address by means of exact analysis, even un-

der simplifying Markovian assumptions. In fact, even in the case where average arrival rates are

constant and known, Gans et al. (2003, §5.1) describe the dynamic routing problem as extremely

challenging, with most work to date done on specific problem instances, using various approxima-

tions, and often resulting only in implicit characterization of routing rules. In light of this, it is
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not surprising that staffing decisions and routing objectives are most often treated in a hierarchical

manner as essentially separate problems.

The approach we propose in this paper does not attempt to disentangle design (staffing) and

control (routing) decisions. In particular, it jointly optimizes over both objectives in a manner

that gives rise to a simple staffing algorithm and an explicit characterization of dynamic routing

policies. The implementation of this method is straightforward, and it will be shown to be optimal

in a precise mathematical sense. To substantiate that last statement in a setting where demand

rates may vary both temporally and stochastically, we propose a novel asymptotic regime and an

approximation method that gives rise to several important insights.

Throughout the remainder of this paper, when we speak of the system manager’s dynamic control

problem, that is understood to mean the skills-based routing problem described above. This more

abstract terminology makes for economy of expression, and also promotes a symmetric view of the

system manager’s problem, which can be viewed either as one of routing customers or as one of

allocating servers. The main contributions of our paper can then be summarized as follows.

i) We propose a new asymptotic parameter regime for studying call centers. In this regime

service rates and abandonment rates are accelerated in a linear manner, while the arrival

rates grow super-linearly. The key feature of this two-scale parameter regime is that the

limiting system “equilibrates instantly” and the dynamic control problem becomes tractable.

(See Proposition 1.)

ii) We develop an asymptotic lower bound on achievable expected cost, referred to hereafter as

an asymptotic performance bound, that uses a strikingly simple distillation of the original

system data. (See Theorem 1.)

iii) We establish asymptotic optimality of a simple staffing and dynamic control policy based

on linear programming (LP). That is, we prove that our LP-based method achieves the

asymptotic performance bound referred to above when the arrival rate process is directly

observable. (See Theorem 2.)

iv) In the case where the arrival rate process is not observable, we describe a policy that estimates

arrival rates “on the fly” and uses these values as “plug in” estimates in the previous dynamic

control policy. For a suitable class of estimators (see Proposition 3), this approach is shown

to be asymptotically optimal (see Theorem 3.) Based on these ideas, we develop a discrete-

review non-preemptive policy that is more suitable for implementation purposes, and prove it

is asymptotically optimal. (See Theorem 4.)

Numerical examples will be advanced to validate the accuracy of the approximations discussed

above.
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Existing analytical approaches and related work. As indicated by Gans et al. (2003, §5.1),

both staffing and dynamic routing problems in multi-class/multi-pool call centers are essentially

outside the reach of exact analytical methods [for exceptions, see, e.g., Gans and Zhou (2003) and

Yahalom and Mandelbaum (2005)]. Thus most research on these problems has focused on various

forms of approximations, a particularly prominent role being played by two asymptotic regimes.

The first is the so-called “conventional” heavy traffic regime. Here the number of servers is held

fixed while service and arrival rates are accelerated linearly in such a way that system utilization

approaches one. In this manner, and under appropriate regularity conditions, one can derive so-

called heavy-traffic limit theorems which provide rigorous approximations to the original system

dynamics [cf. Whitt (2001)]. Harrison and Lopez (1999) is essentially the first study in which a

dynamic control problem is explicitly solved in the multi-pool multi-class setting using conventional

heavy-traffic limit theory [see also Gans and van Ryzin (1997), Harrison (1998), Bell and Williams

(2001), and Mandelbaum and Stolyar (2004)].

The second regime considered in the literature to date is the so-called many-server heavy-traffic

regime, which was first made rigorous by Halfin and Whitt (1981). In this regime, the arrival

rate and the number of servers are increased in a fixed proportion to each other while the system

utilization approaches one. There is general accord that this regime is more appropriate for de-

scribing the dynamics of a call center than the conventional heavy traffic regime; see, e.g., Whitt

(1992), Garnett, Mandelbaum and Reiman (2002) and the recent survey by Gans et al. (2003). In

terms of dynamic control, Harrison and Zeevi (2004) and Atar, Mandelbaum and Reiman (2004)

are the first to analyze a multi-class single-pool system in the Halfin-Whitt regime and to char-

acterize the optimal control policy. Unfortunately, this requires one to solve a non-linear partial

differential equation whose dimension is equal to the number of customer classes, and is therefore

not a practical means of deriving implementable control policies. Armony (2005), and Armony and

Mandelbaum (2005) analyze staffing and routing decisions in a single-class/multi-pool system oper-

ating in the Halfin-Whitt regime [see also Armony and Maglaras (2004)]. Finally, Armony, Gurvich

and Mandelbaum (2005) studies staffing and server allocation decisions in a multi-class/single-pool

system under the assumption that service rates for all classes are identical.

The two strands of research summarized above assume that the arrival rates do not exhibit any

stochastic or temporal variation. However, statistical evidence suggests that demand patterns ob-

served in real call centers exhibit such properties; see Brown, Gans, Mandelbaum, Sakov, Shen,

Zeltyn and Zhao (2005, §1.1). When arrival rates are allowed to vary with time, simplified system

dynamics in the form of fluid-limit differential equations can often be derived, yet are difficult to

solve [see, e.g., Mandelbaum, Massey and Reiman (1998) and Whitt (2005) as well as references

therein]. Jennings, Mandelbaum, Massey and Whitt (1996) analyze a particular case of a staffing

problem in a single-class single-pool setting with time-varying demand. Some implications of de-
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mand uncertainty are discussed in Chen and Henderson (2001). A recent paper by Wallace and

Whitt (2005) investigates with the aid of simulation several ideas for staffing and routing decisions

in a multi-class/multi-pool system.

The asymptotic regime described in the current paper is closely related to the concept of pointwise

stationary approximations which was first described in the context of a simple Markovian queueing

model with non-stationary arrivals by Green and Kolesar (1991) and subsequently made rigorous

by Whitt (1991); for further refinements see Massey and Whitt (1998). The asymptotic regime that

is used in these papers involves uniform acceleration of transition rates in the underlying Markov

chain, i.e., accelerating arrival rates and service rates by the same factor.

The point of departure for our current work is the recent paper by Harrison and Zeevi (2005)

which describes a staffing method for a call center with multiple customer classes and multiple agent

pools under arrival rates that vary temporally and stochastically. That method reduces the staffing

problem, whose objective is to minimize the sum of personnel costs and expected abandonment

costs, to a static stochastic program which takes the form of a linear program (LP) with recourse.

Numerical experiments in Harrison and Zeevi (2005) indicate that this optimization problem results

in “near optimal” staffing vectors. Moreover, it is informally argued that the minimum value of the

objective function yields a lower bound on system performance. This paper is largely concerned

with a rigorous derivation of this bound, and an articulation of staffing and control policies that

achieve it.

The remainder of the paper. Section 2 provides a precise description of the call center model

and economic objective. Section 3 describes the asymptotic parameter regime used in later analysis.

Section 4 gives the main results, and section 5 presents “picture proofs” of these results by means of

simulation experiments. Section 6 concludes with some remarks and directions for future research.

Proofs of the main results are given in Appendix A, while Appendix B contains proofs of auxiliary

results.

2 Problem Formulation

In our general call center model, there are m customer classes and r server pools. Server pool

k consists of bk interchangeable servers (k = 1, . . . , r), and servers in a given pool may be cross-

trained to handle customers of several different classes. By the same token, there may be several

pools that are able to handle a given customer class. Customers of the various classes arrive

randomly over time according to a doubly stochastic Poisson process with instantaneous arrival

rates given by Λ1(t), . . . ,Λm(t); a more precise definition will be given later. Those customers who

cannot be served immediately wait in a (possibly virtual) infinite-capacity buffer that is dedicated

to their specific class. An example with m = 3 customer classes and r = 2 server pools is shown

schematically in Figure 1.
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Figure 1: A call center with three customer classes, two agent pools and four activities.

To describe server capabilities we shall use the notion of processing “activities,” following Harri-

son and Lopez (1999). There are a total of n processing activities available to the system manager

in our call center model, each of which corresponds to agents from one particular pool serving cus-

tomers of one particular class (activities are denoted by solid arrows leading from buffers to server

pools in Figure 1). For each activity j = 1, . . . , n we denote by i(j) the customer class being served,

by k(j) the server pool involved, and by µj the associated mean service rate (that is, the reciprocal

of the mean of the associated service time distribution). The actual service times are taken to be

exponentially distributed random variables with the above rates, these being independent of one

another and also of the arrival processes. Note that we allow the service time distribution of a

customer to depend on both the customer’s class and on the pool to which the server belongs.

An important assumption of our model is that customers of any given class will abandon their

calls if forced to wait too long for the commencement of service; abandoned calls are represented by

the horizontal dotted arrows emanating from the storage buffers in Figure 1. Specifically, there is

associated with each class i customer an exponentially distributed “impatience” random variable τ

that has mean 1/γi, independent of the impatience random variables characterizing other customers,

and of service times and arrival processes. The customer will abandon the call when his or her

waiting time in queue (exclusive of service time) reaches a total of τ time units. This assumption

is quite standard in call center modelling, cf. Garnett et al. (2002), Harrison and Zeevi (2004), and
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Gans et al. (2003).

As stated in the introduction, our problem formulation and analysis emphasize an operating

environment in which the instantaneous arrival rates are random and time-varying, consistent with

the observations made in Brown et al. (2005, §1.1). In addition, service times and the impatience

random variables associated with individual customers are exponentially distributed, are indepen-

dent of one another, and are independent of the arrival processes. To spell out this structure

more precisely, we take as given a complete probability space (Ω,H, P ) on which are defined m

continuous, non-negative, integrable arrival rate processes Λi = (Λi(t) : 0 ≤ t ≤ T ) satisfying

E

[∫ T

0 Λi(s)ds
]

< ∞ for i = 1, . . . , m, plus 3m mutually independent Poisson processes, each with

unit intensity parameter, which are denoted N
(ℓ)
i = (N

(ℓ)
i (t) : 0 ≤ t < ∞) for i = 1, . . . , m and

ℓ = 1, 2, 3. The Poisson processes N
(ℓ)
i are further taken to be independent of the arrival rate

processes Λi. We use the processes N
(1)
i to construct arrivals in our model, defining

Fi(t) := N
(1)
i

(∫ t

0
Λi(s)ds

)
for i = 1, . . . , m and 0 ≤ t ≤ T. (1)

This is a standard construction of a doubly stochastic Poisson process, cf. Bremaud (1981); we

interpret Fi(t) as the cumulative number of class i arrivals up to time t. The unit-rate Poisson pro-

cesses N
(2)
i and N

(3)
i will be used to construct service completions and abandonments, respectively,

under a given dynamic control policy, via relationships analogous to (1).

For future purpose, it will be useful to introduce the following matrices. Let R and A be an m×n

matrix and an r × n matrix, respectively, defined as follows: for each j = 1, . . . , n set Rij = µj

if i = i(j) and Rij = 0 otherwise, and set Akj = 1 if k = k(j) and Akj = 0 otherwise. Thus

one interprets R as an input-output matrix, precisely as in Harrison and Lopez (1999): its (i, j)th

element specifies the average rate at which activity j removes class i customers from the system.

Also, A is a capacity consumption matrix as in Harrison and Lopez (1999): its (k,j)th element is

1 if activity j draws on the capacity of server pool k and is zero otherwise. We define an m × n

matrix B by setting Bij = 1 if i(j) = i and Bij = 0 otherwise; elements of this matrix show which

server pools conduct which activities. Finally, let Γ = diag(γ1, . . . , γm) denote the abandonment

rate matrix.

Control formulation and objective. The system manager confronts a two-stage decision

problem. First, the system manager chooses a staffing vector b = (b1, . . . , br) in R
r
+ , whose kth

component is the number of servers to be employed during the specified planning period for server

pool k; by assumption this decision cannot be revised as actual demand is observed during the

period.

Second, the system manager chooses a dynamic control policy that determines how the calls

of various customer classes are routed to server pools. The mathematical approach that we shall

adopt in formulating the dynamic control problem may appear both clumsy and erroneous at first
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glance. The apparent error is that certain physically important constraints are deleted in our

formulation, or to put it another way, our definition of an admissible control is overly generous.

The seemingly clumsy aspect of our formulation is that we speak in terms of control processes, as

opposed to specifying the controls as functions of observed states. However, the approach we adopt

is an efficient one mathematically, given the specific objectives of this paper, and we shall discuss

the “correctness” of our formulation after the formal mathematical definitions have been laid out.

A dynamic control is defined as a stochastic process X = (X(t) : 0 ≤ t ≤ T ) taking values in

R
n
+, whose sample paths are right continuous with left limits and Lebesgue integrable. Writing

X(t) = (X1(t), . . . , Xn(t)), we interpret Xj(t) as the number of servers engaged in activity j at

time t. A dynamic control X is said to be admissible with respect to a staffing vector b if there

exist processes Z and Q, both having time domain [0, T ], both taking values in R
m
+ , and both

necessarily unique (see below), that jointly satisfy conditions (2)-(4) below for all t ∈ [0, T ]. As an

aid to intuition, it is useful to have the following interpretations from the outset: Zi(t) represents

the number of class i customers in the system at time t (we call Z the headcount process, and Zi is

its ith component); Qi(t) represents the number of class i customers in the buffer that are waiting

for service at time t (we call Q the queue length process, and Qi is its ith component). The essential

relationships among these processes are the following:

AX(t) ≤ b, (2)

Q(t) = Z(t) − BX(t) ≥ 0, (3)

Zi(t) = Fi(t) − N
(2)
i

(∫ t

0
(RX)i(s)ds

)
− N

(3)
i

(∫ t

0
γiQi(s)

)
≥ 0 for all i = 1, . . . , m. (4)

The second term on the right-hand-side of (4) is interpreted as the cumulative number of class i

service completions up to time t, while the third term represents cumulative class i abandonments;

according to (4), the instantaneous departure rate for class i customers due to abandonments is

γiQi, and the instantaneous departure rate for class i due to service completions is
∑

µjXj where

the sum is taken over activities j that serve class i. This is consistent with the verbal model

description provided earlier.

Our first constraint (2) simply requires that the number of servers in various pools that are

engaged in some activity (as opposed to idle) at time t cannot exceed the total number of servers

in each pool. In the second constraint (3), BX(t) is a vector whose components represent the

numbers of servers allocated to various customer classes at time t. The constraint therefore prohibits

allocating to a given class a number of servers which exceeds the headcount in that class. The final

admissibility condition (4) is the system dynamics equation.

Given a dynamic control X, the headcount process Z and the queue length process Q can

be viewed as the unique solution of (3) and (4): one simply constructs the paths of Z and Q

from jump to jump in accordance with those relationships, starting from time zero. Because the
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primitive processes N
(ℓ)
i are independent Poisson processes, the probability of simultaneous jumps

(for example, a service completion and an abandonment occurring simultaneously) is zero, and

hence there almost surely exists at most one pair (Z, Q) satisfying (3) and (4).

Of course, the usual way to describe a dynamic control policy is in state feedback form. Having

done so, one could then define the associated stochastic processes Z and Q as the solution of a

system of stochastic equations, and finally our process X could be defined by applying the state-

feedback rule to the trajectory of (Z, Q). By taking X as the primitive specification of a control

policy we are able to eliminate a whole level of mathematical description in developing our theory

of asymptotic optimality.

Next, we describe the economic objective of the system manager. Let p = (p1, . . . , pm) be the

penalty cost vector, where pi is the cost associated with abandonment of a class i customer, and let

c = (c1, . . . , cr) be the personnel cost vector, where ck is the cost of employing a server in pool k

for the entire planning horizon [0, T ]. The objective of the system manager is to choose a staffing

vector b and an admissible dynamic control X that jointly minimize the sum of personnel costs and

expected abandonment penalties for the various customer classes, which is given by

c · b + E

[
m∑

i=1

piN
(3)
i

(∫ T

0
γiQi(s)ds

)]
, (5)

where c · b represents the inner product between the vectors c and b.

Discussion. A reader may reasonably object that our problem formulation suffers from the

following errors of omission. First, we allow non-integer values for the staffing levels bk and the

server allocation Xj(t). This is obviously unrealistic, although the key relationships (2)-(4) make

mathematical sense even without the integrality restriction. (The stochastic process Z is automati-

cally integer-valued, but Q may take non-integer values if X does.) Second, we implicitly allow the

system manager to interrupt services at will, without any associated penalty. Finally, our defini-

tion of an admissible control does not rule out clairvoyance on the part of the system manager. A

realistic formulation would require that the control X be non-anticipating in an appropriate sense,

but we do not do so for the following reason.

The asymptotic lower bound derived later in this paper applies to any family of staffing vectors

and admissible controls, regardless of whether they have the defects enumerated above. We will

eventually construct a family of LP-based policies (that is, staffing vectors and dynamic controls)

that are integer valued, non-preemptive, and suitably non-anticipating, and show that these poli-

cies achieve the asymptotic performance bound. Thus, in the limiting parameter regime that we

consider, the errors of omission enumerated above do not allow the system manager to significantly

reduce cost. The fact that we grant the system manager excessive power in our formulation simply

strengthens our results.
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3 An Asymptotic Parameter Regime

A parametric family of system models. Let f : R+ → R+ be a super-linear function, meaning

that x−1f(x) → ∞ as x → ∞. Let us define a sequence of system models indexed by κ ∈ N. In the

κth system, the arrival process is doubly stochastic with rate Λκ(·) = f(κ)Λ(·), the input-output

matrix is Rκ = κR, and the abandonment matrix is Γκ = κΓ. Thus, the arrival rates into all classes

scale up super-linearly, while all service and abandonment rates scale up linearly. Since the servers

work κ times faster, we also scale up personnel costs by a factor of κ, meaning that the personnel

cost vector for the κth system is cκ = κc. One can express this assumption verbally by saying

that the effective cost of capacity (that is, the expected cost of process any given set of customers

using any given set of activities) remains constant as κ varies. Since the arrivals are scaled up

by a super-linear function f(·) while the service rates are only scaled up linearly, the number of

servers required for nominal operation should increase without bound. Thus, this parameter regime

is characterized by large arrival rates, a large number of servers, short service requirements and

impatient customers.

For each system in the sequence indexed by κ, the system manager must choose a staffing vector

bκ and a dynamic control Xκ. The dynamic control is a right continuous with left limits process

Xκ = (Xκ(t) : 0 ≤ t ≤ T ) taking values in R
n
+. Here Xκ(t) = (Xκ

1 (t), . . . , Xκ
n(t)) where Xκ

j (t) is

interpreted as the number of servers engaged in activity j in the κth system at time t ∈ [0, T ]. We

denote the sequence of staffing vectors and dynamic control policies by {bκ} and {Xκ}, respectively.

We next define the class of admissible policies.

Definition 1 A sequence of dynamic controls {Xκ} is said to be admissible with respect to a given

sequence of staffing vectors {bκ}, if for each κ, the dynamic control Xκ is admissible with respect

to the staffing vector bκ, i.e., there exist processes Zκ and Qκ, both having time domain [0, T ], both

necessarily unique, both taking values in R
m
+ , that jointly satisfy:

AXκ(t) ≤ bκ, (6)

Qκ(t) = Zκ(t) − BXκ(t) ≥ 0, (7)

Zκ
i (t) = F κ

i (t) − N
(2)
i

(∫ t

0
(RκXκ)i(s)ds

)
− N

(3)
i

(∫ t

0
γκ

i Qκ
i (s)

)
≥ 0, (8)

where F κ
i (t) = N

(1)
i

(∫ t

0
Λκ

i (s)ds

)

for all i = 1, . . . , m and all t ∈ [0, T ].

We define the total cost for the κth system under the dynamic control Xκ and staffing level bκ to

be

J κ(Xκ, bκ) = cκ · bκ +
m∑

i=1

piN
(3)
i

(∫ T

0
γκ

i Qκ
i ds

)
.
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Definition 2 A sequence of staffing vectors {bκ
∗} along with a corresponding sequence of admissible

dynamic controls {Xκ
∗ } is said to be asymptotically optimal if, for any other admissible sequence of

staffing vectors {bκ} and corresponding dynamic controls {Xκ},

lim sup
κ→∞

E [J κ(bκ
∗ , X

κ
∗ )]

E [J κ(bκ, Xκ)]
≤ 1. (9)

It will be shown later that a pair {bκ
∗}, {X

κ
∗ } is asymptotically optimal if and only if E [J κ(Xκ

∗ , bκ
∗)] ∼

αf(κ), as κ → ∞, where the constant α is minimal.

Limiting dynamics. For the purpose of the next proposition, which characterizes the limiting

behavior of the sequence of admissible controls and headcount processes, we make the following

technical assumption

κ log κ

f(κ)
→ 0 as κ → ∞. (10)

Proposition 1 Assuming that (10) holds, consider any sequence of staffing vectors {bκ} and cor-

responding admissible dynamic controls {Xκ} such that

∫ t

0

κXκ(s)ds

f(κ)
→

∫ t

0
X(s)ds a.s. as κ → ∞ (11)

for all t ∈ [0, T ], where X(·) is a (random) non-negative Lebesgue integrable function on [0, T ].

Then for all t ∈ [0, T ]

∫ t

0

κZκ(s)ds

f(κ)
→

∫ t

0
Z(s)ds a.s. as κ → ∞, (12)

where

Z(t) = Γ−1[Λ(t) − RX(t)] + BX(t). (13)

Remark. Under the conditions of Proposition 1, using the definition of the queue length process

given in (7) and the above result, we also have for all t ∈ [0, T ]

∫ t

0

κQκ(s)ds

f(κ)
→

∫ t

0
Q(s)ds a.s. as κ → ∞,

where

Q(t) = Γ−1[Λ(t) − RX(t)].

For any sequence of dynamic controls, the condition in (11) holds for a subsequence. Thus the

condition is not restrictive and is not needed for the results stated in next section.

Qualitative insights and comparison to standard fluid limits. Proposition 1 asserts that, in

the limit, the headcount process “equilibrates instantly” in the sense that its dynamics degenerate
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to those given in (13). This behavior is a consequence of the two-scale asymptotic in which the

abandonments and service completions occur so rapidly that the system instantly “forgets” its

recent state. It is illuminating to contrast the results of Proposition 1 with those derived through

“standard” fluid scaling where arrival rates are scaled up linearly, specifically Λ̄κ(·) = κΛ(·), and

service rates and abandonment rates are kept constant. Under this scaling, the number of servers

should also scale up linearly in order to “match” demand. We use an overbar to denote this

standard fluid scaling. The admissibility conditions are kept the same as in Definition 1. If we

consider any admissible sequence of staffing vectors and dynamic controls {X̄κ} under this scaling

such that κ−1X̄κ(t) → X̄(t), almost surely, as κ → ∞ for all t ∈ [0, T ], then there exist R
m
+−valued

processes Z̄ = (Z̄(t) : 0 ≤ t ≤ T ) and Q̄ = (Q̄(t) : 0 ≤ t ≤ T ) such that

κ−1(Z̄κ(·), Q̄κ(·)) → (Z̄(·), Q̄(·)) a.s. as κ → ∞,

where Z̄ solves

Z̄(t) =

∫ t

0
Λ(s)ds −

∫ t

0
RX̄(s)ds −

∫ t

0
ΓQ̄(s)ds,

Z̄(0) = 0 and Q̄(0) = 0

for all t ∈ [0, T ]. The limiting system dynamics are therefore given by the solution to an ordinary

differential equation (with a random “driver” Λ), which can be shown to have a unique solution.

Unfortunately, the above limiting system dynamics typically lead to an intractable control problem.

In contrast, the scaling we propose in this section gives rise to the tractable limiting dynamics given

in Proposition 1. This will be the key to the asymptotic optimality results proved in Section 4.

4 Main Results

4.1 An asymptotic lower bound on achievable performance

In this section we develop an asymptotic lower bound on the expected cost under any sequence of

staffing vectors and admissible controls. This bound states that the expected total cost must grow

at least at rate f(κ), where f(κ) is the superlinear function that scales the arrival rates for the κth

system. To this end, we define a mapping π : R
m
+ × R

r
+ 7→ R as follows. For λ ∈ R

m
+ and b ∈ R

r
+,

we denote by π(λ, b) the optimal value of the following linear program (LP): choose x in R
n
+

min p · (λ − Rx) (14)

s.t. Rx ≤ λ, Ax ≤ b, x ≥ 0,

where R is the unscaled input-output matrix, A is the capacity consumption matrix and p is the

penalty-rate vector. Let Φ(λ, b) denote the optimal solution set of the LP (14); that is, if x∗ ∈ R
n
+

12



is an optimal solution of the LP, then x∗ ∈ Φ(λ, b). (Formally, Φ is a point-to-set correspondence

from (λ, b) to the solution set.) Let b∗ ∈ R
r
+ be a minimizer of

ϕ(b) := c · b + E

[∫ T

0
π(Λ(t), b)dt

]
, (15)

where c and Λ are the unscaled personnel costs and arrival rate, respectively. The function ϕ(·) is

convex [cf. Harrison and Zeevi (2005, Proposition 1)], and ϕ(0) is finite since E

[∫ T

0 Λi(s)ds
]

< ∞

for all i = 1, . . . , m. Thus, the minimization in (15) can be taken over the compact convex set

{b ∈ R
r
+ : c · b ≤ ϕ(0)}. Since we are minimizing a convex function over this set, the minimum in

(15) is achieved by a finite-valued minimizer b∗. The vector b∗ is the staffing level recommended

by Harrison and Zeevi (2005).

Theorem 1 For any sequence of staffing vectors {bκ} and corresponding admissible dynamic con-

trols {Xκ},

lim inf
κ→∞

f(κ)−1
E[J κ(Xκ, bκ)] ≥ c · b∗ + E

[∫ T

0
π(Λ(t), b∗)dt

]
, (16)

where π(·, ·) is the optimal value function of the LP (14), and b∗ is the vector that minimizes (15).

Theorem 1 asserts that the expected total cost grows at least at rate f(κ) as the scale factor κ

grows large. The asymptotic lower bound on the scaled expected cost is given by the value of a

simple stochastic program, the computation of which does not involve any control considerations.

4.2 An asymptotically optimal policy when Λ is observable

In this section we assume that the system manager can observe the arrival rate process, that is,

Λ(t) is known at each time t ∈ [0, T ]. In addition, we assume that services are interruptible. Both

assumptions will be relaxed in the following section. Let the staffing vector bκ
∗ for the κth system

be chosen as follows:

bκ
∗ =

f(κ)b∗
κ

, (17)

where b∗ is defined as in Theorem 1. Fix t ∈ [0, T ] and consider the LP

min p · (Λκ(t) − Rκx) (18)

s.t. Rκx ≤ Λκ(t), Ax ≤ bκ
∗ , x ≥ 0.

Let Φκ(Λκ(t), bκ
∗) denote the optimal solution set of the LP (18) as a function of (Λκ(t), bκ

∗); that is,

if xκ
∗ ∈ R

n
+ solves the above LP then xκ

∗ ∈ Φκ. We note that LP (18) is identical to (14), with Λκ(t)

and bκ
∗ substituted for Λ and b in the right-hand-side of the constraints, and Rκ replacing R in the

left-hand-side of constraints. Thus, Φκ can be defined via Φ, the solution set of the “unscaled” LP

(14) given in Section 4.1. The following “selection theorem” establishes the existence of a Lipschitz

continuous mapping from (λ, b) to the solution set of the LP (14).
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Proposition 2 There exists a Lipschitz continuous mapping φ : R
m
+ ×R

r
+ 7→ R

n such that φ(λ, b) ∈

Φ(λ, b) for all λ ∈ R
m
+ and b ∈ R

r
+.

Given the “selected” function φ, we now define the function φκ as follows: for each t ∈ [0, T ], let

φκ(Λκ(t), bκ
∗) :=

f(κ)

κ
φ

(
Λκ(t)

f(κ)
,

κbκ
∗

f(κ)

)
.

Using the relationship between LP (14) and LP (18) we have that φκ(Λκ(t), bκ
∗) ∈ Φκ(Λκ(t), bκ

∗) for

each t ∈ [0, T ], each scaled arrival rate vector Λκ(t), and each staffing vector bκ
∗ .

For any t ∈ [0, T ], let Xκ
∗ (t) = φκ(Λκ(t), bκ

∗), so that Xκ
∗ (t) is a pointwise solution to LP (18). The

solution Xκ
∗ prescribes a control which may not meet the admissibility condition (7). To remedy

this, we truncate it appropriately.

Definition 3 (minimal truncation) Let {bκ} be a sequence of staffing vectors and {Xκ} a se-

quence of dynamic controls such that AXκ(t) ≤ bκ for all κ and t ∈ [0, T ]. (Note that Xκ need not

be admissible with respect to bκ.) Let {X̃κ} be a sequence of dynamic control which is admissible

with respect to {bκ}, and let {Z̃κ} denote the corresponding sequence of headcount processes. We

say that {X̃κ} is a minimal truncation of {Xκ}, if for each time t ∈ [0, T ] and i ∈ {1, . . . , m},

X̃κ(t) ≤ Xκ(t), and

(BX̃κ)i(t) < Z̃κ
i (t) implies X̃κ

j (t) = Xκ
j (t) for all j such that i(j) = i.

The above definition ensures that the truncated control meets the admissibility condition (7), i.e.,

the number of servers assigned to each activity is such that the total number of servers allocated to

each customer class does not exceed the total headcount in that class. Further, it ensures that the

truncation is in some sense the “minimal” one that meets the admissibility condition. Definition 5

in Appendix B.2 describes an example of minimal truncation. From the definition, it is clear that

a minimal truncation is not in general unique.

Theorem 2 If the technical assumption (10) holds, then any sequence of dynamic controls ob-

tained by minimal truncation of {Xκ
∗ }, together with the staffing vectors {bκ

∗} defined in (17), is

asymptotically optimal.

The above theorem asserts that the properly scaled solution to LP (14) essentially prescribes the

optimal server allocation, i.e., it generates controls that achieve the asymptotic lower bound.

4.3 An asymptotically optimal tracking policy when Λ is not observable

In an actual system the true arrival rates are unknown and unobservable, and the system manager

is only able to observe the arrival epochs. In light of the results established in Section 4.2, in
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particular Theorem 2, it stands to reason that by suitably estimating the arrival rates one might

still be able to establish the desired asymptotic optimality. We assume that the true arrival rate

vector is unknown at any instant of time, but the distribution of the process Λ is available (e.g.,

derived from historical data) prior to the planning horizon [0, T ], so that the optimization problem

in (15) can be solved. In particular, throughout this section we assume that the staffing vector

used for the κth system is given in (17). In contrast, the dynamic control at time t ∈ [0, T ] may

depend on all the events (including arrivals, service completions and abandonments) up until that

time.

Let us denote the estimator of the arrival rate by Λ̂κ(t) = (Λ̂κ
1(t), . . . , Λ̂κ

m(t)). We restrict

attention to estimators that are non-anticipating with respect to the information set generated by

arrivals. That is, these estimators are constructed based on past arrival observations, ruling out

clairvoyance on the part of the system manager.

We now construct a dynamic control policy which hinges on an arrival rate estimator Λ̂κ(·); this

class of controls will be referred to as Λ-tracking controls. The main idea is to use Λ̂κ(·) to derive

a “plug-in” estimate of the LP-based policy discussed in the previous section. Specifically, for any

t ∈ [0, T ] let X̂κ
∗ (t) = φκ(Λ̂κ(t), bκ

∗), where φκ is the Lipschitz continuous mapping defined in Section

4.2. Thus, X̂κ
∗ denotes the pointwise solution of LP (18) with Λ̂κ(t) substituted for Λ(t) in the

right-hand-side of constraints. The key property that the arrival rate estimator should satisfy for

our proposed “plug in” approach to work is the following.

Definition 4 (uniform consistency) An estimator Λ̂κ is said to be uniformly consistent if it

satisfies

Λ̂κ(t)

f(κ)
→ Λ(t) a.s. as κ → ∞, (19)

where the convergence is uniform on compact subsets of (0, T ].

This notion of consistency ensures that the estimator Λ̂κ(t) is uniformly “close” to the actual arrival

rate Λ(t) for large enough κ, supporting the following result.

Theorem 3 If the technical assumption (10) holds and the estimator used in the Λ-tracking policy

is uniformly consistent, then any sequence of dynamic controls obtained by minimal truncation of

{X̂κ
∗ }, together with the staffing vectors {bκ

∗} defined in (17), is asymptotically optimal.

A simple estimator of the arrival rate at time t is one that counts the number of arrivals in a short

time window ending at time t, and normalizes this count by the length of the window. Specifically,

let g(·) be a non-negative increasing function, and put

Λ̂κ(t) = g(κ)[F κ(t) − F κ(t − g(κ)−1)] (20)
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for t ∈ [g(κ)−1, T ], where F κ(t) = (F κ
1 (t), . . . , F κ

m(t)) is the vector of cumulative number of arrivals

up until time t in each customer class, and g(κ)−1 represents the length of the sliding window in

which arrivals are counted. The next result establishes the uniform consistency of this estimator.

Proposition 3 If g(κ) → ∞ and f(κ)−1g(κ)2 log κ → 0 as κ → ∞, then the estimator defined in

(20) is uniformly consistent.

In the above proposition, 1/g(κ) represents the length of a sliding window that is used to estimate

the arrival rates. The above growth condition ensures that the window length decreases to zero at

a slow enough rate so as to ensure consistent estimation of the arrival rate, while still shrinking

fast enough so that the arrival rate itself does not change within the window. Assuming that (10)

holds, the hypothesis of this proposition can be satisfied, for example, by taking g(κ) = κα for some

α ∈ (0, 0.5].

4.4 A discrete-review Λ-tracking policy

The Λ-tracking policy described in the previous section suffers from two shortcomings:

• The arrival rate estimator (20) and the LP (18) need to be calculated and re-solved, respec-

tively, at each instant in time. This is clearly not feasible for purposes of implementation.

• The server allocation is given by a solution to an LP and therefore may change frequently and

in an abrupt manner, resulting in a significant amount of “chatter” in the controls. This may

lead to excessive service interruptions which are not desirable in a call center environment.

To alleviate the deficiencies stated above, we now propose a discrete-review implementation of

Λ-tracking policies. These controls are also based on the estimation of arrival rates, for which

the same window size of g(κ)−1 is used. However, instead of a sliding window, non-overlapping

windows are used, and the LP is solved only at discrete points in time that mark the ends of these

estimation windows. Specifically, we partition the time interval [0, T ] into g(κ)T review periods of

equal length. In the ℓth review period, ℓ = 1, . . . , ⌊g(κ)T ⌋, the following estimate of Λ is used:

Λ̂ℓ,κ = g(κ)

[
F κ

(
ℓ − 1

g(κ)

)
− F κ

(
ℓ − 2

g(κ)

)]
,

where F κ(t) is the vector of cumulative arrivals up until time t in each customer class. Here ⌊x⌋ is

the maximum integer less than x.

The dynamic control uses the estimator Λ̂ℓ,κ in the same manner as in the general class of Λ-

tracking policies, i.e., LP (18) is solved with Λ̂ℓ,κ as the right-hand-side of the constraints, and the

optimal solution is minimally truncated to make it admissible. We note that the estimate of the
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arrival rate is constant over a review period, and LP (18) is solved only at the beginning of each

review period. What we have just described is a Λ-tracking control with estimator explicitly given

by

Λ̂κ(t) = g(κ)

[
F κ

(
⌊tg(κ)⌋

g(κ)

)
− F κ

(
⌊tg(κ)⌋ − 1

g(κ)

)]
. (21)

Since the server allocation is constant within each review period, no services are interrupted during

this time interval. The only times where any services might be interrupted occur at the beginning

of the review periods.

We now modify the discrete review policy to avoid service interruptions altogether. In the

beginning of each review period, we let every customer who is being served, referred to as customer-

in-service, complete her/his service. When all customers-in-service have completed service, server

allocation is done based on the solution obtained from the LP (18) with the estimator (21). Since

no service is ever interrupted, this is a non-preemptive policy. Let X̂κ
∗ (t) be the optimal solution

of LP (18) with the estimator (21) in its right-hand-side, i.e., X̂κ
∗ (t) = φκ(Λ̂κ(t), bκ

∗). Let τκ
ℓ

denote the time elapsed from the beginning of the ℓth review period in the κth system until all

customers-in-service have completed their services.

To summarize, the non-preemptive discrete review policy is obtained by first dividing the period

[0, T ] into g(κ)T review periods. At the beginning of the ℓth review period the arrival rate vector

is estimated using Λ̂ℓ,κ, and LP (18) is solved with this estimator to obtain X̂ℓ,κ = φκ(Λ̂ℓ,κ
∗ , bκ).

Then, for a period of length τκ
ℓ time units from the commencement of the review period, servers

complete the processing of all customers-in-service. From this point in time until the end of the

review period, servers are allocated based on the minimal truncation of the dynamic control X̂ℓ,κ
∗ .

For implementation, we round off the staffing vectors and the controls obtained above to the nearest

integer. (We omit this distinction for the purpose of exposition but clearly this modification has

no effect on our asymptotic analysis.) The next result establishes that it is possible to choose the

number of review period such that the estimator is uniformly consistent, and cumulative time spent

on completing work of customers-in-service at the beginning of review periods is negligible.

Theorem 4 Suppose that the technical assumption (10) holds, that κ−1 log f(κ) → 0 as κ → ∞,

and that g(κ) = κα for some α ∈ (0, 0.5]. Then the sequence of discrete review dynamic controls

obtained by minimal truncation of {X̂κ
∗ }, together with the staffing vectors {bκ

∗} as defined in (17),

is asymptotically optimal.

5 Numerical Examples

The key to all our main results is Proposition 1, which was stated in Section 3 and says essentially

the following: if the scale of the system is large, then the headcount process Z, the dynamic control
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X, and the instantaneous arrival rate vector Λ are approximately linked by the simple relationship

(13), that is, one has approximately Z(t) = Γ−1[Λ(t) − RX(t)] + BX(t) for all t ∈ [0, T ].

To provide a “picture proof” of Proposition 1, we consider a simple system with a single customer

class and a single server pool (i.e., m = 1 and r = 1), and take the planning horizon to be one day

comprised of T = 480 minutes. To illustrate the manner in which the system “equilibrates” and is

then governed by the trajectory given by (13), let us focus on the following system parameters. We

take the service rates to be µ = 1 customers-per-minute, and the abandonment rate to be γ = 0.5

customers-per-minute. The arrival rate may be either “High” or “Low” with equal probability

assigned to the two paths given in Figure 2.
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Figure 2: Arrival rate pattern for a single-class/single-pool example.

The cost of employing a server for one day is c = $240, and the abandonment penalty is p = $2 per

customer. Solving the staffing problem given in (15), we find that b∗ = 115 servers. Figure 3(a)

depicts a sample path of the headcount process for the given system using the obvious dynamic

control policy X(t) = min(b∗, Z(t)), t ≥ 0, superimposed on the asymptotic path (13) described in

Proposition 1 (these results correspond to a “High” realization of the arrival rate). The headcount

process in Figure 3(a) does indeed fluctuate around the asymptotic path given in (13).

To illustrate the time it takes an empty system to reach this “equilibrium” behavior, Figure

3(b) “zooms in” on the system dynamics around t = 0. The system equilibrates to the limiting

path (13) within 1 to 2 minutes, after which it follows this path, in spite of the temporal changes

in the arrival rate. To summarize, one can say that the limiting system state has essentially no

dynamics, it instantly “forgets” its past and its evolution at any time instant only depends on the

instantaneous arrival rate and the control policy (which is itself a function of the instantaneous

arrival rate).

Next we illustrate the lower bound on system performance and its achievability (Theorems 1

and 4), by considering an example in which the dynamic routing policy is not trivial or obvious.

Specifically, we consider a system with two customer classes (m = 2) which is served by two server

pools (r = 2). There are three processing activities (n = 3). Servers in pool 1 can serve only class 1

customers (activity 1), while servers in pool 2 are cross-trained and can serve both class 1 and class
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Figure 3: (a) Simulation of the headcount process and the asymptotic analogue given in Proposition

1. (b)“Relaxation time” to equilibrium: the graph depicts the simulated system dynamic over the

first six minutes in Figure (a), and the corresponding asymptotic path given in Proposition 1.

2 customers (activities 2 and 3, respectively). Callers of class 1 and 2 arrive according to a doubly-

stochastic Poisson process whose rates are displayed in Figure 4. We take the scaling function to be

f(κ) = κ2. All the services are exponentially distributed with unit rate, that is, µj = 1 customers-

per-minute for j = 1, 2, 3. Customers of class 1 abandon at rate γ1 = 0.2 customers-per-minute,

whereas customers of class 2 abandon at rate γ2 = 1 customers-per-minute. The abandonment

penalties for class 1 and class 2 are p1 = $4 per customer and p2 = $1 per customer, respectively.

The cost of a server in pool 1 is $600 per day and $720 per day in pool 2 (where the servers are

cross-trained).

Solving the staffing problem in (15) we get b∗ = (50, 50). We now simulate the system to

obtain estimates of the total expected cost under two policies. The first is the discrete review

non-preemptive policy derived in Section 4.3. We divide the time horizon into review periods of

equal length, and at the beginning of each such review period the arrival rate is estimated based on

the number of arrivals in the last review period using (21). With this estimate, we then solve LP

(18) to obtain a routing of customers to servers. As soon as a server finishes the tasks to which s/he

was assigned, s/he is allocated a customer based on the new routing decision. In addition, if the

solution of the LP does not allocate all the servers in some pools, we allocate them whenever there

are customers waiting for service based on the priority rule given by the objective function of this

LP. The performance of this policy is evaluated for system scales κ = 10, 20, .., 200 (with κ = 50

being the “reference system”), and the number of review periods for the κth system is chosen to be

8κ0.45. The second policy, which serves for comparison purposes, seeks to minimize the value of the

objective function in (5) at each time instant (specifically, at each arrival or departure epoch, since
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Figure 4: Arrival rates for the two-class/two-pool example.

we focus on a non-preemptive service discipline). In particular, this is a “greedy” policy which

gives priority to the class i customer for which the penalty rate γipi is largest. In our example,

this simply means that servers in pool 2 give priority to class 2, because γ2p2 > γ1p1. (Recall that

servers in pool 1 can only serve class 1.) For our simulation study, we consider two staffing levels

for the greedy policy: in the first case we set the staffing level b to be (50, 50), the optimal value

given by our LP-based method; in the second case we optimize b given that the greedy policy is to

be used for control.

Figure 5 depicts the simulation results for the above policies at various system scales, with the

total expected cost scaled by f(κ)−1. The simulation results use stratified sampling based on the

arrival rate processes to reduce variance. This results in a tight confidence interval, because the

variance of the estimator from stratified sampling depends on the conditional variance, and the

variance of the scaled expected cost conditioned on the arrival rate processes approaches to zero as

κ → ∞. The number of simulation runs for both arrival processes depicted in Figure 4 is either 200

(if the system scale κ is less than 160) or else 50 (if system scale κ exceeds 170). As is evident, the

Λ-tracking discrete review policy outperforms the greedy policy with optimized staffing, which in

turn outperforms the greedy policy with staffing level b = (50, 50). Moreover, as κ grows large the

cost of the system under the discrete review policy is close to the asymptotic lower bound, differing

by about 4% when κ = 50, as predicted by Theorem 4.
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example; dotted lines correspond to 95% confidence interval for the simulated results.

6 Concluding Remarks

The notion of a planning horizon plays an important part in our problem formulation. The interval

[0, T ] represents the smallest block of time over which the staffing level must be kept constant.

Our model assumes that the following holds: staffing decisions are made before the beginning of

the planning horizon; and temporal and stochastic variation within the planning horizon are not

negligible (or the interval is not short enough to reasonably support such an assumption).

Our model assumes that both service times and “impatience” random variables are exponential.

The memoryless property of the exponential distribution allows us to express various system quan-

tities (e.g., cumulative number of abandonments) using a simple time change of a Poisson process

that in turn supports a simple state descriptor. In addition, we assume that the arrival process is

described as a time change of a Poisson process. While it is important to investigate the robustness

of our method relative to these distributional assumptions, we do not attempt such analysis in the

current paper, leaving this for future work. What we believe to be true is that the exponential

assumptions for arrival processes and service times can be relaxed, but the exponential assumption

with respect to the “impatience” random variables is crucial to obtain the limiting dynamics given

in (13).

The dynamic routing control proposed in this paper is given by a minimal truncation of the

solution to an LP. (The minimal truncation effectively projects the solution onto the space of

admissible controls.) As such, this control does not explicitly use system state information and
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hence runs “open loop,” except for the tracking of arrival rate. However, the asymptotic regime

described in this paper is such that (in the limit) arrival rates translate instantaneously to system

state. Hence the proposed “open loop” control implicitly uses state information encoded in arrival

rates. Of course one can argue that a more refined notion of asymptotic optimality than the one

advocated in this paper would require a bona fide closed loop control rule.

Finally, the model presented in this paper can be extended to include linear holding costs and to

allow admission control decisions along with dynamic routing control and staffing. That extension

is under-taken in Bassamboo, Harrison and Zeevi (2005).

A Proofs of the Main Results

Let (Ω,H, P) be the probability space on which all processes described in Section 3 are defined.

Let Ft = σ(Λ(s) : 0 ≤ s ≤ t) represent the information set generated by the arrival rate process

up until time t. In the similar vein, let the information set generated by arrivals, departures and

abandonment up until time t in the κth system be represented by Hκ
t for all t ∈ [0, T ]. Let D[0, T ]

denote the space of functions defined over [0, T ] which are right-continuous with left limits. In much

of what follows, as well as in Appendix B, statements are said to hold almost surely for almost all

time t ∈ [0, T ]. Note that the above is weaker than the assertion that a statement holds for almost

all time t ∈ [0, T ], almost surely. This distinction is a consequence of pointwise limits as opposed

to functional limits. Finally, proofs of all lemmas cited in this appendix can be found in Appendix

B.

Proof of Proposition 1. Consider any sequence of staffing vectors {bκ} and corresponding

admissible dynamic control policies {Xκ}. For each κ, the dynamics of the headcount process are

given by [see (6)-(8)]

Zκ
i (t) = F κ

i (t) − N
(2)
i

(∫ t

0
(RκXκ)i(s)ds

)
− N

(3)
i

(∫ t

0
γκ

i (Zκ(s) − BXκ(s))ids

)
, (22)

for all i = 1, . . . , m and t ∈ [0, T ]. Dividing both sides of the equation by f(κ), we now appeal to

following two lemmas that establish the convergence of the rescaled processes in (22) as κ → ∞.

Lemma 1 For any t ∈ [0, T ],

F κ
i (t)

f(κ)
→

∫ t

0
Λi(s)ds a.s. as κ → ∞

for all i = 1, . . . , m. Further, consider any admissible sequence of dynamic controls {Xκ} that

satisfies condition (11), then for any t ∈ [0, T ]

N
(2)
i (

∫ t

0 (RκXκ)i(s)ds)

f(κ)
→

∫ t

0
(RX)i(s)ds a.s. as κ → ∞

for all i = 1, . . . , m.
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Lemma 2 Consider any admissible sequence of dynamic controls {Xκ} which satisfies condition

(11). Then

(i)
Zκ

i (t)

f(κ)
→ 0, (ii)

∫ t

0

κZκ
i (s)

f(κ)
ds → Mi(t),

(iii)
N

(3)
i (

∫ t

0 γκ
i (Zκ(s) − BXκ(s))ids)

f(κ)
→ γi

(
Mi(t) −

∫ t

0
(BX(s))ids

)

almost surely as κ → ∞, for all i = 1, . . . , m and for almost all t ∈ [0, T ].

Also, we have that {Xκ} satisfies (11) by assumption. Applying Lemma 1 to the first and

second terms on the right-hand-side of (22) and Lemma 2 for the left-hand-side and third term on

the right-hand-side of (22) gives

0 =

∫ t

0
(Λ(s) − RX(s))ds − Γ

(
M(t) −

∫ t

0
BX(s)ds

)
(23)

almost surely, for almost all t ∈ [0, T ] where Γ = diag(γ1, . . . , γm), and M(t) = (M1(t), . . . , Mm(t)).

Thus, we have
∫ t

0

κZκ(s)

f(κ)
ds →

∫ t

0
(Γ−1[Λ(s) − RX(s)] + BX(s))ds a.s. as κ → ∞

for all t ∈ [0, T ]. This completes the proof.

Proof of Theorem 1. Consider any sequence of staffing vectors {bκ} and corresponding admissible

controls {Xκ}. We shall first prove the result under the assumption that

κbκ

f(κ)
→ b as κ → ∞, (24)

where b ≥ 0. All subsequent probabilistic statements are to be interpreted in the almost sure

sense and the term is omitted for brevity. Since {f(κ)−1J (Xκ, bκ)}, κ = 1, 2, . . . is a sequence in

R+, it has a subsequence {κn : n = 1, 2, . . .} which converges to the lim infκ→∞ f(κ)−1J (Xκ, bκ).

Further, since Xκn is admissible, by (6) and assumption (24) we have that κnXκn/f(κn) is uniformly

bounded. Next, we state a general result for uniformly bounded non-negative functions.

Lemma 3 Given a sequence of uniformly bounded non-negative functions Y κ in D[0, T ], then

for every subsequence there exists a further subsequence Y κn and integrable function Y , such that
∫
B

Y κn(t)dt →
∫
B

Y (t)dt as n → ∞ for any Borel set B of [0, T ], where Y is nonnegative for almost

all t ∈ [0, T ].

Appealing to the above lemma there exists a function X : Ω × [0, T ] 7→ R+ defined for almost all

ω ∈ Ω and (Lebesgue) almost all t ∈ [0, T ] and a further subsequence {κn′ : n′ = 1, 2, . . .} such that

κn′

f(κn′)

∫ t

0
Xκn′ (s)ds →

∫ t

0
X(s)ds as n′ → ∞
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for all t ∈ [0, T ]. To simplify notation we shall drop the further subsequence index and assume that

the above holds on the initial subsequence. Since Proposition 1 applies to this subsequence, from

(23) it follows that

Γ

(
M(T ) −

∫ T

0
BX(s)ds

)
=

∫ T

0
(Λ(s) − RX(s))ds (25)

where

M(T ) = lim
n→∞

∫ T

0

κnZκn(s)

f(κn)
ds.

We then have,

f(κ)−1J κn(Xκn , bκn) → c · b + p · Γ

(
M(T ) −

∫ T

0
BX(s)ds

)
, as n → ∞ (26)

= c · b +

∫ T

0
p · [Λ(t) − RX(t)]dt,

where the limit follows from Lemma 2 (iii) (in the proof of Proposition 1), and (24) which implies

that f(κ)−1cκ · bκ → c · b, as κ → ∞ [the last equality follows from (25)]. Next, we show that

p · [Λ(t) − RX(t)] ≥ π(Λ(t), b) for almost all t ∈ [0, T ]. Note that X(t) satisfies the constraints of

LP (14). To this end, we have that for almost all t ∈ [0, T ] (relative to Lebesgue measure)

Λ(t) − RX(t) ≥ 0,

AX(t) ≤ b, and

Xκn(t) ≥ 0 implies X(t) ≥ 0,

where the first inequality follows from the fact that

∫ t

0 γi(Z
κn(s) − BXκn(s))ids

f(κn)
→

∫ t

0
(Λi(s) − (RX)i(s)) ds as n → ∞

for all i = 1, . . . , m, and
∫ t

0 γi(Z
κn(s) − BXκn(s))ids is non-decreasing in t for each κn. Thus, we

have
∫ t

0 (Λ(s) − RX(s))i ds is non-decreasing in t. Consequently, Λ(t) − RX(t) ≥ 0 for almost all

t ∈ [0, T ]. The second inequality follows using a similar argument and the fact AXκn ≤ bκn implies
∫ t

0 (bκn − AXκn

i (s)) ds is non-decreasing in t for each κn. The optimality of π(Λ(t), b), together with

the above result and Fatou’s lemma yields that for any admissible sequence of dynamic controls

{Xκ} and staffing vectors {bκ},

lim inf
κ→∞

f(κ)−1
E[J κ(Xκ, bκ)] ≥ c · b + E[

∫ T

0
π(Λ(t), b)dt] (27)

Using the fact that b∗ is the minimizer of the right-hand-side we get the desired result under

assumption (24).

Now, suppose the limit of the sequence {κbκ/f(κ)} as κ → ∞ does not exists. Since {f(κ)−1
E[J κ

(Xκ, bκ)]} is a sequence in R+, it has a subsequence which converges to its lim inf. Also, there exists
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a further subsequence to this subsequence on which the limit limn′→∞ κn′bκn′/f(κn′) = b exists.

Note, if b is infinite there is nothing to prove. If b is finite then for this subsequence the above

analysis shows that (27) holds. Further, using the fact that b∗ is the minimizer of the right-hand-side

of (27) we have that

lim inf
κ→∞

f(κ)−1
E[J κ(Xκ, bκ)] ≥ c · b∗ + E

[∫ T

0
π(Λ(t), b∗)dt

]
.

This completes the proof.

Proof of Proposition 2. Using the Lipschitz selection theorem [see Aubin and Frankowska (1990,

Theorem 9.4.3)], it suffices to show that the correspondence Φ defined in Section 4.1 is Lipschitz

and Φ(λ, b) is nonempty closed convex set for all λ ∈ R
m
+ and b ∈ R

r
+. For the latter, first observe

that x = 0 is feasible for LP (14), secondly nonnegativity of matrices A and R and the fact that

each row of A and R has at least one positive entry implies that the feasible region is compact.

Thus, the solution set of LP (14) is nonempty, closed and convex. Thus, to complete the proof we

need only prove that the correspondence Φ is Lipschitz, i.e., there exist constants C1 and C2 such

that for any λ1, λ2 ∈ R
m
+ and b1, b2 ∈ R

r
+ the following holds

H(Φ(λ1, b1), Φ(λ2, b2)) ≤ C1‖λ1 − λ2‖ + C2‖b1 − b2‖

where H(A, B) is the Hausdroff distance between the sets A and B, and ‖ ·‖ is the Euclidean norm.

Fix λ1, λ2 ∈ R
m
+ and b1, b2 ∈ R

r
+. Consider any x∗

1 ∈ Φ(λ1, b1), using Schrijver (1986, Theorem

10.5), there exists x∗
2 ∈ Φ(λ2, b2) such that ‖x∗

1 − x∗
2‖ ≤ C1‖λ1 − λ2‖ + C2‖b1 − b2‖ where C1 and

C2 are constants that depend only on the matrices R and A. Thus, we have

d(x∗
1, Φ(λ2, b2)) ≤ ‖x∗

1 − x∗
2‖ ≤ C1‖λ1 − λ2‖ + C2‖b1 − b2‖,

where d(y, B) denotes the distance between the point y and set B. Taking supremum over all points

in Φ(λ1, b1), we have

sup
x∈Φ(λ1,b1)

d(x,Φ(λ2, b2)) ≤ C1‖λ1 − λ2‖ + C2‖b1 − b2‖.

Using a similar argument we get a bound for supx∈Φ(λ2,b2) d(x,Φ(λ1, b1)), and consequently, by

definition of the Hausdroff distance, we have that the correspondence Φ is Lipschitz. This completes

the proof.

Proof of Theorem 2. The proof is divided into 4 steps which will be referenced in the subsequent

proofs as well: Step 1 establishes the convergence of appropriately scaled processes to their respec-

tive limits; Step 2 establishes that the effects of minimal truncation are asymptotically negligible in

a suitable sense; Step 3 derives the pathwise convergence of the scaled cost; and Step 4 concludes

by showing that the latter convergence holds in expectation.
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Let Xκ
∗ (t) = φκ(Λκ(t), b∗) for all t ∈ [0, T ], where φκ is the Lipschitz selection mapping defined

in Section 4.2. Let X̃κ
∗ denote the minimal truncation of Xκ

∗ , and Z̃κ
∗ be the headcount process

associated with the admissible dynamic control X̃κ
∗ .

Step 1: By Theorem 1 and the definition of asymptotic optimality, it suffices to show that

lim sup
κ→∞

f(κ)−1
E[J κ(X̃κ

∗ , bκ
∗)] ≤ c · b∗ + E

[∫ T

0
π(Λ(t), b∗), dt

]
. (28)

Using the definition of {bκ
∗} in (17) we have

lim
n→∞

1

f(κn)
cκn · bκn

∗ = c · b∗ .

All subsequent probabilistic statements are to be interpreted in the almost sure sense and the term

is omitted for brevity. Next, we state the following result for { κ
f(κ)Z

κ}.

Lemma 4 If assumption (10) holds, then for any admissible sequence of controls {Xκ}

lim sup
κ→∞

sup
0≤t≤T

κZκ(t)

f(κ)
< ∞ a.s.

Consider the subsequence over which the lim sup is achieved for f(κ)−1J κ(X̃κ
∗ , bκ

∗). Consider a

further subsequence {κn : n > 0} of this subsequence over which
∫

κn

f(κn)X̃
κn
∗ and

∫
κn

f(κn) Z̃
κn
∗

converge to a limit [the existence of such a subsequence follows from Lemma 3 in the proof of

Theorem 1 and Lemma 4]. Let

Mi(T ) = lim
n→∞

∫ T

0

κn(Z̃κn
∗ (s))i

f(κn)
ds for all i = 1, . . . , m,

∫ t

0
(X̃∗(s))jds = lim

n→∞

∫ t

0

κn(X̃κn
∗ (s))j

f(κn)
ds for all j = 1, . . . , n,

and for all t ∈ [0, T ]. Since over this subsequence condition (11) holds, we can appeal to Lemma 2

(iii) (in the proof of Proposition 1) and (23) to get that for all i = 1, . . . , m

lim
n→∞

N
(3)
i (

∫ T

0 γκn

i (Z̃κn
∗ (s) − BX̃κn

∗ (s))ids)

f(κn))
= γi

(
Mi(T ) −

∫ T

0
(BX̃∗(s))ids

)

=

∫ T

0
(Λ(s) − RX̃∗(s))ids.

Step 2: We now show that the truncation effects are negligible in an appropriate limiting sense.

Lemma 5 Let Xκ(t) be an untruncated control satisfying the admissibility condition (6) such that

κ

f(κ)
Xκ(t) → X(t) a.s. as κ → ∞,

where the convergence is uniform over compact sets of (0, T ], and X is a continuous process such

that RX(t) ≤ Λ(t) for all t ∈ [0, T ]. If X̃κ(t) is a minimal truncation of Xκ(t) and assumption

(10) holds, then for all i = 1, . . . , m

lim
κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκX̃κ(s))ids = lim

κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκXκ(s))ids a.s.
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Let X∗(t) = φ(Λ(t), b∗) for all t ∈ [0, T ]. Then, by definition of φκ we have Xκ
∗ (t) = f(κ)X∗(t)/κ

for all t ∈ [0, T ]. Also, since φ is a Lipschitz continuous mapping and Λ is a continuous process, it

follows that X∗ is also a continuous process. Thus, appealing to the above lemma we have

∫ T

0
(Λ(s) − RX̃∗(s))ids =

∫ T

0
(Λ(s) − RX∗(s))ids, for all i = 1, . . . , m.

Step 3: Combining the analysis in Step 1 and 2 we have

lim
n→∞

m∑

i=1

pi

κnN
(3)
i (

∫ T

0 γκn

i (Z̃κn
∗ (s) − BX̃κn

∗ (s))ids)

f(κn)
=

m∑

i=1

pi

∫ T

0
(Λ(s) − RX∗(s))ids

=

∫ T

0
π(Λ(s), b∗)ds,

where π is the mapping defined for LP (14). Consequently, we have

lim sup
κ→∞

f(κ)−1J κ(X̃κ
∗ , bκ

∗) = c · b∗ +

∫ T

0
π(Λ(s), b∗)ds.

Step 4: Since J κ(X̃κ
∗ , bκ

∗) is non-negative and bounded, using the reverse Fatou lemma we have

(28). This completes the proof.

Proof of the Theorem 3. Recall that

Λ̂κ
i (t) = g(κ)[F κ

i (t) − F κ
i (t − g(κ)−1)] for all i = 1, . . . , m,

and for all time t ∈ [0, T ]. Let X̂κ
∗ (t) be the optimal solution to the LP (18) with the estimator

(20), i.e., X̂κ
∗ (t) = φκ(Λ̂κ(t), bκ

∗) and let X̃κ
∗ denote a minimal truncation of X̂κ

∗ . Let Z̃κ
∗ denote the

headcount process associated with the admissible control X̂κ
∗ .

Before, proving the theorem we sketch an outline of the proof. First we express the limiting scaled

cost in terms of the scaled processes. Next, we show that truncation effects are asymptotically

negligible. Then, using the consistency of the estimator we establish that the scaled solution of the

LP (18) with Λ̂ in the right-hand-side converges to the solution of the LP (14). Last, we use the

reverse Fatou lemma to get the result in expectation.

Step 1: Convergence of the re-scaled processes to their limiting counterparts follows exactly as in

Step 1 of the proof of Theorem 2.

Step 2: Let X∗(t) = φ(Λ(t), b∗) for all t ∈ [0, T ]. Since Λ(t) is continuous and φ is Lipschitz, X∗(t)

is also continuous. Consider any compact set B ⊂ (0, T ]. Using the definition of the mapping φκ

we have
κ

f(κ)
X̂κ

∗ (t) − X∗(t) = φ

(
Λ̂κ(t)

f(κ)
, b∗

)
− φ(Λ(t), b∗).

Since the mapping φ is Lipschitz continuous, we have

∥∥∥∥
κ

f(κ)
X̂κ

∗ (t) − X∗(t)

∥∥∥∥ ≤ C

∥∥∥∥∥
Λ̂κ(t)

f(κ)
− Λ(t)

∥∥∥∥∥ ,
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for all t ∈ B, where ‖ · ‖ is the Euclidean norm. Taking supremum over t ∈ B and the limit as

κ → ∞, using the fact that the estimator is uniformly consistent, we get

sup
t∈B

∥∥∥∥
κ

f(κ)
X̂κ

∗ (t) − X∗(t)

∥∥∥∥ → 0 a.s. as κ → ∞.

Thus, X̂κ
∗ satisfies the conditions of Lemma 5 (in the proof of Theorem 2). Hence for i = 1, . . . , m

∫ T

0
(Λ(s) − RX̃∗(s))ids =

∫ T

0
(Λ(t) − RX∗(s))ids,

where X̃κ
∗ is the minimal truncation of X̂κ

∗ . Repeating Step 3 and 4 in the proof of Theorem 2

completes the proof.

Proof of Proposition 3. Fix i ∈ {1, . . . , m}. For the remainder of the proof we shall focus our

attention on the set of ω’s for which
∫ T

0 Λi(s)ds > 0 (the result is trivially true on the complement

set). Using the definition of the estimator, we have

Λ̂κ
i (t) − Λκ

i (t) = g(κ)

[
F κ

i (t) −

∫ t

0
Λκ

i (s)ds

]
− g(κ)

[
F κ

i (t − g(κ)−1) −

∫ t−g(κ)−1

0
Λκ

i (s)ds

]

+g(κ)

∫ t

t−g(κ)−1

Λκ
i (s)ds − Λκ

i (t)

for all t ∈ [g(κ)−1, T ]. Fix a compact set B ⊂ (0, T ] and fix κ large enough so that g(κ)−1 ≤ inf{s :

s ∈ B}. Then,

sup
t∈B

|Λ̂κ
i (t) − Λκ

i (t)|

f(κ)
≤ 2 sup

0≤t≤T

g(κ)

f(κ)

∣∣∣∣F
κ
i (t) −

∫ t

0
Λκ

i (s)ds

∣∣∣∣ + sup
t∈B

∣∣∣∣∣g(κ)

∫ t

t−g(κ)−1

Λi(s)ds − Λi(t)

∣∣∣∣∣ (29)

We shall now show that both terms on the right-hand-side go to zero as κ → ∞.

Step 1: For each κ, fix θκ > 0, and let Mκ = (Mκ(t) : 0 ≤ t ≤ T ) be defined as

Mκ(t) := exp

(
θκF κ

i (t) − (eθκ − 1)

∫ t

0
f(κ)Λi(s)ds

)
. (30)

Then, Mκ is a martingale adapted to the filtration σ(Hκ
t

∨
FT ). Using Doob’s submartingale

inequality [cf. Ethier and Kurtz (1986)] we have for any ǫ > 0

P

(
sup

0≤t≤T

g(κ)

f(κ)

[
F κ

i (t) −

∫ t

0
Λκ

i (s)ds

]
> ǫ

∫ T

0
Λi(s)ds

∣∣∣∣∣FT

)

= P

(
sup

0≤t≤T

Mκ(t) > exp

(
−f(κ)

∫ T

0
Λi(s)ds

(
eθκ − 1 − θκ

(
1 +

ǫ

g(κ)

))) ∣∣∣∣∣FT

)

≤ exp

(
f(κ)

∫ T

0
Λi(s)ds

(
eθκ − 1 − θκ

(
1 +

ǫ

g(κ)

)))
a.s.
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By choosing, θκ = log
(
1 + ǫ

g(κ)

)
, we have that the right-hand-side of the above equation is bounded

by exp
(
− f(κ)

g(κ)2
ǫ
∫ T

0 Λ(s)ds
)

. Further, for any positive integer ℓ

P

(
sup

0≤t≤T

g(κ)

f(κ)

[
F κ

i (t) −

∫ t

0
Λκ

i (s)ds

]
> ǫ

∫ T

0
Λi(s)ds, i.o.

∣∣∣∣∣FT

)
≤

∞∑

κ=ℓ

exp

(
−

f(κ)

g(κ)2
ǫ

∫ T

0
Λi(s)ds

)
,

almost surely and since the growth condition implies that the summation on the right-hand-side is

finite, we get

P

(
sup

0≤t≤T

g(κ)

f(κ)

[
F κ

i (t) −

∫ t

0
Λκ

i (s)ds

]
> ǫ

∫ T

0
Λi(s)ds, i.o.

∣∣∣∣∣FT

)
= 0 a.s.

Hence for any ǫ > 0,

P

(
sup

0≤t≤T

g(κ)

f(κ)

[
F κ

i (t) −

∫ t

0
Λκ

i (s)ds

]
> ǫ

∫ T

0
Λi(s)ds, i.o.

)
= 0,

and thus

sup
0≤t≤T

g(κ)

f(κ)

∣∣∣∣F
κ
i (t) −

∫ t

0
Λκ

i (s)ds

∣∣∣∣ → 0 a.s. as κ → ∞. (31)

Step 2: We now consider the second term on the right-hand-side of (29). Since the set B is closed

and 0 /∈ B, we have 0 < β := inf{s : s ∈ B}. Further, continuity of Λi over [0, T ] implies uniform

continuity, thus for any ǫ > 0 there exists a δ > 0 such that for all t, s ∈ [0, T ] with |t − s| < δ we

have |Λ(s)−Λ(t)| < ǫ. Choose κ1 such that g(κ)−1 < min(β, δ) for all κ > κ1. Then for all κ > κ1

and for all t ∈ B we have
∣∣∣∣∣g(κ)

∫ t

t−g(κ)−1

Λi(s) − Λi(t)

∣∣∣∣∣ ≤ g(κ)

∫ t

t−g(κ)−1

|Λi(s) − Λi(t)| ds ≤ ǫ,

hence

sup
t∈B

∣∣∣∣∣g(κ)

∫ t

t−g(κ)−1

Λi(s)ds − Λi(t)

∣∣∣∣∣ → 0 a.s. as κ → ∞ .

This completes the proof.

Proof of Theorem 4. Recall that

Λ̂κ(t) = g(κ)

[
F κ

(
⌊tg(κ)⌋

g(κ)

)
− F κ

(
⌊tg(κ)⌋ − 1

g(κ)

)]
,

where ⌊x⌋ is the maximum integer less than or equal to x, and X̂κ
∗ (t) is the optimal solution

to LP (18) with the estimator (21), i.e., X̂κ
∗ (t) = φκ(Λ̂κ(t), bκ

∗). Let X̃κ
∗ denote the admissible

dynamic routing policy obtained from Xκ
∗ as described in Section 4.4 and Z̃κ

∗ the headcount process

associated with the admissible control X̃κ
∗ . Let Iκ denote the cumulative time spent on completing

the previous period’s assigned task in the κth system. By definition,

Iκ =

g(κ)T⋃

i=1

[
i − 1

g(κ)
,
i − 1

g(κ)
+ τκ

i

]
(32)
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where τκ
i is the time required to complete the services of customers-in-service at the beginning of

ith review period in the κth system. Then, for all t ∈ [0, T ] \ Iκ, X̃κ
∗ is a minimal truncation of Xκ

∗ .

The key steps in the proof are similar to that of Theorem 3 with the addition that we now

need to establish that the time required for customers-in-service to complete their services at the

beginning of each review period is asymptotically negligible in a suitable sense.

Step 1: Convergence of the re-scaled processes to their limiting counterparts follows exactly as in

Step 1 of the proof of Theorem 2.

Step 2: To establish that the estimator is consistent based on the growth conditions on f(κ) and

g(κ), we use the following result.

Lemma 6 If g(κ) → ∞ and f(κ)−1(g(κ)2 log κ) → 0 as κ → ∞, then the estimator defined in (21)

is uniformly consistent.

Using the same argument as in Step 2 of Theorem 3, we have that κXκ(t)/f(κ) → X(t) as κ → ∞

where the convergence is uniform over compact sets of (0, T ]. We now give an analogue of Lemma 5

(in the proof of Theorem 2), which establishes that the minimal truncation effects are asymptotically

negligible in a suitable sense.

Lemma 7 Let Xκ(s) be an untruncated control satisfying the admissibility condition (6), such that

κ

f(κ)
Xκ(s) → X(s) a.s. as κ → ∞,

where the convergence is uniform over compact sets of (0, T ], and X is a continuous process with

RX(t) ≤ Λ(t) for all t ∈ [0, T ]. Let X̃κ(s) be a minimal truncation of Xκ(s) over the set Iκ defined

in (32) and suppose assumption (10) holds, then for all i = 1, . . . , m

lim
κ→∞

1

f(κ)

∫ T

0
(Λκ

i (s) − (RκX̃κ(s))iI{s∈[0,T ]\Iκ})ds ≤ lim
κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκXκ(s))ids a.s.

Now, by definition of κn

f(κn)X̃
κn
∗ ,

∫ T

0
(Λ(s) − RX̃∗(s))ids = lim

n→∞

∫ T

0

(
Λ(s) −

κn

f(κn)
RX̃κn

∗ (s)

)

i

ds a.s.

for i = 1, . . . , m. Further, we have

lim
n→∞

∫ T

0
(Λ(s) −

κn

f(κn)
RX̃κn

∗ (s))ids
(a)

≤ lim
n→∞

∫ T

0

(
Λi(t) −

κn

f(κn)
(RX̃κn

∗ (s))iI{s∈[0,T ]\Iκn}

)
ds

(b)
=

∫ T

0
(Λ(s) − RX∗(s))ids a.s.

for i = 1, . . . , m, where X∗(t) = φ(Λ(t), b∗) for all t ∈ [0, T ]. The inequality (a) follows from non-

negativity of the process X̃κ
∗ , and the equality (b) follows from the Lemma 7 since X̂κ

∗ satisfies the

conditions of the Lemma. Finally, repeating Steps 3 and 4 in the proof of Theorem 2 completes

the proof.
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B Auxiliary Results

B.1 Proofs of lemmas from Appendix A

Proof of Lemma 1. Since N
(1)
i (t) is a Poisson process with unit rate, it follows that N

(1)
i (t)/t → 1

almost surely as t → ∞ for all i = 1, . . . , m. Now, for a given t ∈ [0, 1] define ∆i(t) :=
∫ t

0 Λi(s)ds ≥

0. We assume ∆i(t) > 0 as the case ∆i(t) = 0 is trivial. Using the fact that limκ→∞ f(κ) = ∞, we

get

lim
κ→∞

N
(1)
i (f(κ)∆i(t))

f(κ)
= ∆i(t) a.s. (33)

hence the result follows from the scaling of Λκ(·).

For the second result, we use the following fact which we state without proof. Consider a function

d(k) with d(k) → ∞ as k → ∞. If S(t) and c(k) satisfy S(t)/t → 1 as t → ∞ and c(k)/d(k) → γ > 0

as k → ∞, then

S(c(k))

c(k)
→ 1 as k → ∞.

Note that for admissible Xκ satisfying (11),

∫ t

0 RκXκ(s)ds

f(κ)
→

∫ t

0
RX(s)ds a.s. as κ → ∞.

Thus, the convergence of the scaled and time changed Poisson process follows from (33). This

completes the proof.

Proof of Lemma 2. (i) Fix a i ∈ {1, . . . , m}. Suppose there exists a t ∈ [0, T ] such that

lim sup
κ→∞

∫ t

0

Zκ
i (s)

f(κ)
ds > 0 (34)

on a set of ω’s with positive probability. Dividing both sides of (22) by f(κ) and taking the lim sup

as κ → ∞ we have

lim sup
κ→∞

{
Zκ

i (s)

f(κ)
+

N
(3)
i (

∫ t

0 γκ
i (Zκ(s) − BXκ(s))ids)

f(κ)

}

= lim sup
κ→∞

{
N

(1)
i (

∫ t

0 Λκ(s)ds)

f(κ)
−

N
(2)
i (

∫ t

0 (RκXκ)i(s)ds)

f(κ)

}

=

∫ t

0
(Λ(s) − RX(s))ds < ∞ (35)

where the second equality follows from Lemma 1. Now, since {Xκ} satisfies (11) we have

lim
κ→∞

∫ t

0 γκ
i (BXκ)i(s)ds

f(κ)
=

∫ t

0
γi(BX)i(s)ds < ∞. (36)
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This together with the assumption (34) and the scaling of γκ gives

lim sup
κ→∞

∫ t

0 γκ
i (Zκ(s) − BXκ(s))ids

f(κ)
= ∞.

Using the same reasoning as in the second part of the proof of Lemma 1, we conclude that the

left-hand-side of (35) is infinite on a set of ω’s with positive probability, in contradiction. Hence

for all t ∈ [0, T ]

lim sup
κ→∞

∫ t

0

Zκ
i (s)

f(κ)
ds = 0 a.s.,

and hence for all t ∈ [0, T ],
∫ t

0 Zκ
i (s)/f(κ)ds → 0 a.s. as κ → ∞. Since the integrand is nonnegative,

the assertion in the lemma follows.

(ii) Fix an i ∈ {1, . . . , m}. Suppose there exist a set C ⊆ [0, T ] with positive Lebesgue measure

such that for all t ∈ C

M(t) := lim inf
κ→∞

∫ t

0

κZκ
i (s)

f(κ)
ds < lim sup

κ→∞

∫ t

0

κZκ
i (s)

f(κ)
ds =: M(t),

on a set of ω’s with positive probability. Then, there exist two subsequences {κn : n = 1, 2, . . .} and

{κn′ : n′ = 1, 2, . . .} on which M and M are achieved, respectively. Appealing to the strong law of

large numbers for N
(3)
i (t), and the proof of Lemma 1, (36) implies that on these subsequences

lim
n→∞

N
(3)
i (

∫ t

0 γκn

i (Zκn(s) − BXκn(s))ids)

f(κn)
= γi

(
M(t) −

∫ t

0
(BX(s))ids

)

lim
n′→∞

N
(3)
i (

∫ t

0 γ
κn′

i (Zκn′ (s) − BXκn′ (s))ids)

f(κn′)
= γi

(
M(t) −

∫ t

0
(BX(s))ids

)

Now, by (22) and Lemma 1, we have that

lim
κ→∞

N
(3)
i (

∫ t

0 γκ
i (Zκ(s) − BXκ(s))ids)

f(κ))

exists almost surely for almost all t ∈ [0, T ], in contradiction. Thus, we conclude that

lim inf
κ→∞

∫ t

0

κZκ
i (s)

f(κ)
ds = lim sup

κ→∞

∫ t

0

κZκ
i (s)

f(κ)
ds =: Mi(t)

almost surely, for almost all t ∈ [0, T ].

(iii) Combining (36), the definition of Mi(t) and the scaling of γκ we have

∫ t

0 γκ
i (Zκ(s) − BXκ(s)ids)

f(κ))
→ γi

(
Mi(t) −

∫ t

0
(BX(s))ids

)
a.s. as κ → ∞ (37)

for all i = 1, . . . , m and almost all t ∈ [0, T ]. The result then follows directly from the strong law

of large numbers for N
(3)
i (t), (37) and the proof of Lemma 1.
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Proof of Lemma 3. It suffices to prove that there exists a subsequence for which the desired

result holds. Consider the sequence Y κ = (Y κ(t) : t ∈ [0, T ]) of uniformly bounded nonnegative

functions in D[0, T ]. In particular, suppose that Y κ(t) ≤ M for all t ∈ [0, T ] and for all κ > 0.

Consider an extension of these functions to D[0, 2T ] such that

Y κ(t) =

{
Y κ(t) if t ∈ [0, T ]

2M − 1
T

∫ T

0 Y κ(s)ds if t ∈ (T, 2T ]

Since Y κ is a nonnegative function which is right-continuous with left-limits, we can view it as the

density of a measure µκ on [0, 2T ], where

µκ(A) :=
1

2MT

∫

A

Y κ(t)dt

for all measurable sets A in [0, 2T ]. Since the sequence of measures {µκ : κ > 0} is tight, Prohorov’s

theorem [cf. Billingsley (1999)] states that these measures are relatively compact. Thus, there

exists a subsequence {µκℓ
} which converges weakly to a measure µ. Then, there exists a Lebesgue

decomposition of this measure given by

µ(A) =

∫

A

Y (s)ds + µs(A)

for all measurable sets A in [0, 2T ], where µs is singular with respect to Lebesgue measure on

[0, 2T ], and Y (·) is the Radon-Nikodym derivative of the measure µ with respect to Lebesgue

measure. Since µs is singular with respect to Lebesgue measure, there exists a set A with Lebesgue

measure zero such that µs(A
c) = 0. We shall next show that µ is absolutely continuous with respect

to Lebesgue measure, i.e., the singular part is zero. Given any ǫ > 0, there exists an open set Aǫ

such that A ⊆ Aǫ and Lebesgue measure of Aǫ is less than ǫ. Since

µκ(Aǫ) =

∫

Aǫ

Y κ(s)ds ≤ 2Mǫ,

and Aǫ is open, we have µs(A) ≤ µ(Aǫ) ≤ lim infn→∞ µκn(Aǫ), by the Portmanteau Theorem. Since

ǫ can be made arbitrarily small, we have µs = 0. This completes the proof.

Proof of Lemma 4. Consider the following system, constructed on the same probability space as

the original one. All nominal service rates, for each activity in the original system, are now taken to

be α, and all nominal abandonment rates are set to be α. The system is driven is driven by the same

unit rate Poisson processes as the original one. Put α := min{{µj : 1 ≤ j ≤ n}∪{γi : 1 ≤ i ≤ m}}.

Fix a κ and consider the κth system in which all customer classes get served and abandon at the rate

κα, in particular the time-in-system of any customer has the distribution of an exponential random

variable with rate κα. Consider another queuing system constructed in the same manner, with

infinite servers and service times being exponentially distributed with rate κα. Let the number-in-

system process at time t in this system be denoted by Y κ(t). Clearly, the headcount process Zκ

in the original system under any admissible control Xκ is (pointwise) dominated by Y κ. Fix an
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i ∈ {1, . . . , m}. It is clear that Y κ
i conditioned on FT is simply the headcount of an Mκ

t /Mκ/∞

queue (a queue whose arrival stream is given by a nonhomogeneous Poisson process with rate

Λκ
i (t), the service times are exponential with rate κα, and the number of servers is infinite). This,

in turn, can be expressed as the number of points in a certain region generated by an associated

nonhomogeneous Poisson process [see Taylor and Karlin (1998, Theorem 6.1)]. In particular, the

intensity of this nonhomogeneous Poisson process for the ith customer class in our case would be

Λκ
i (t)καe−καydydt, for all (y, t) ∈ [0,∞) × [0, T ].

To prove the assertion of the lemma, it suffices to establish that

lim sup
κ→∞

sup
0≤t≤T

κY κ
i (t)

f(κ)
< ∞ a.s.

Divide the time [0, T ] into κT intervals of length κ−1 and consider the nth interval [κ−1(n −

1), κ−1nT ]. Let Y κ
i,n denotes the maximum number-in-system in this interval. Thus Y κ

i,n is bounded

by the number of points in the region, [0,∞] × [0, nT/κ] \ Bκ
n, generated by the two dimensional

Poisson process where Bκ
n = {(y, t) : t + y ≤ κ−1(n − 1), t ∈ [0, T ], y ∈ [0,∞]}. Since Λi(t)

is continuous, it is uniformly bounded (let the uniform bound be M ′ which is FT -measurable).

Further, since E[
∫ T

0 Λi(t)dt] < ∞, we have M ′ < ∞ almost surely. The number of points in the

aforementioned region is given by a Poisson r.v. whose mean is bounded above by Mf(κ)/κ where

M = M ′(1 + α−1). Using the Chernoff bound we get that

P

(
Y κ

n ≥ 2M
f(κ)

κ

∣∣∣∣FT

)
≤ exp

(
−2(1 − log 2)M

f(κ)

κ
− 1

)
a.s.

Summing the inequality over all n and κ, we get

∞∑

κ=1

κT∑

n=1

P

(
Y κ

n ≥ 2M
f(κ)

κ

∣∣∣∣FT

)
< ∞ (38)

by the growth condition on f(κ). Then, by (38) we have P

(
sup0≤t≤T Y κ(t) ≥ 2M f(κ)

κ
, i.o.

∣∣∣FT

)
=

0 a.s. which further implies that P

(
sup0≤t≤T Y κ(t) ≥ 2M f(κ)

κ
, i.o.

)
= 0. Thus,

lim sup
κ→∞

sup
0≤t≤T

κZκ(t)

f(κ)
≤ 2M := 2M ′(1 + α) < ∞ a.s. (39)

This completes the proof.

Proof of Lemma 5. The proof is given in several steps to ease referencing in other results that

follow a similar proof pattern.

Step 1: Fix an i ∈ {1, . . . , m}. Using the definition of minimal truncation we have

lim inf
κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκX̃κ(s))ids ≥ lim

κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκXκ(s))ids, a.s.
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All subsequent probabilistic statements are to be interpreted in the almost sure sense and the

term is omitted for brevity. Since any continuous function on a compact set can be approximated

from above or below by piecewise constant function with finite number of discontinuities, we can

approximate X and Λ as follows. Given an ǫ > 0, there exists N < ∞, 0 = t0 < t1 < . . . . < tN = T

and constants X1, . . . , XN , Λ1, . . . ,ΛN such that

ǫ < X(t) − Xℓ < 2ǫe, ǫ < Λℓ − Λ(t) < 2ǫe for all t ∈ (tℓ−1, tℓ) (40)

for all ℓ = 1, . . . , N , where e is a vector of all ones in R
n. Let Y (t) and Λ̄(t) be defined as follows

Y (t) = Xℓ for all t ∈ (tℓ−1, tℓ),

Λ̄(t) = Λℓ for all t ∈ (tℓ−1, tℓ).

Put Λ̄ = (Λ̄(t) : 0 ≤ t ≤ T ) and Y = (Y (t) : 0 ≤ t ≤ T ), and consider a sequence of systems

with (untruncated) control Y κ = f(κ)Y/κ and arrival rate Λ̄. Let Ỹ κ(t) be a minimal trunca-

tion of Y κ(t) with priority given to the slower servers (see Definition 5 in Appendix B.2). By

(39) in Lemma 4, there exists a finite M which is measurable with respect to FT and such that

lim supκ→∞ sup0≤s≤T {f(κ)−1κZκ
i (s)} < M . For each time tℓ, ℓ = 1, . . . , N, we increase the head-

count in buffer i to Mκ = Mf(κ)/κ. Let Zκ be the headcount process in the original system and

Z
κ

be the headcount process in the modified system. Using the uniform convergence of Xκ to X

and (40), there exists κ1 < ∞ such that

Y κ(t) ≤ Xκ(t) for all t ∈ [0, 1], κ > κ1.

Consider a subsequence over which the lim sup of 1
f(κ)

∫ T

0 (Λκ(s) − RκX̃κ(s))ids is achieved. Since

{f(κ)−1κZκ}, {f(κ)−1κX̃κ}, {f(κ)−1κZ
κ
} and {f(κ)−1κỸ κ} are bounded, using Lemma 3 there

exists a subsequence {κn : n > 0} over which their integrals over time converge pointwise.

Step 2: First observe that 0 ≤ Xκ(t)−Y κ(t) ≤ 3κ−1f(κ)ǫe for κ large enough, and also the arrival

rate Λ̄ is larger than Λ(t). Using Lemma 9 (Appendix B.2) we can construct sequence of systems

on the same probability space such that

γκn

i

(
Zκn

i (t) − BX̃κn(t)
)

i
≤ γκn

i

(
Z

κn

i (t) − BỸ κn(t)
)

i
+ 3κ−1f(κ)ǫ(Be)i

for all t ∈ [0, T ] and n large enough. The second term on the right-hand-side appears since the

controls can change over time which can cause an increase in queuelength not due to arrivals.

Integrating over [0, T ], dividing both sides of the above inequality by f(κn) and appealing to

Proposition 1 we get

lim
n→∞

1

f(κn)

∫ T

0
(Λκn(s) − RκX̃κn(s))ids ≤ lim

n→∞

1

f(κn)

∫ T

0
(Λ̄κn(s) − RκỸ κn(s))ids.
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Step 3: Now using Lemma 10 (Appendix B.2) and the fact that |M | < ∞, we have

lim
n→∞

1

f(κ)

∫ T

0
(Λκn(s) − Rκn Ỹ κn(s))ids =

N∑

ℓ=1

(tℓ+1 − tℓ)(Λℓ+1 − RYℓ+1)
+
i ds

= lim
n→∞

1

f(κn)

∫ T

0
(Λ

κn
(s) − RκnY κn(s))+i ds

≤ lim
n→∞

1

f(κn)

∫ T

0
(Λκn(s) − RκnXκn(s))ids + M2ǫT,

where (x)+ := max{x, 0}, M2 = C‖R‖ for some constant C, and ‖ · ‖ denotes sup norm, and the

last inequality follows from (40).

Step 4: Combining Steps 2 and 3 we have that for any ǫ > 0,

lim sup
κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκX̃κ(s))ids ≤ lim

κ→∞

1

f(κ)

∫ T

0
(Λκ(s) − RκXκ(s))ids + M2ǫT,

hence taking ǫ → 0, we get the desired result. This completes the proof.

Proof of Lemma 6. Fix a t ∈ [0, T ] and an i ∈ {1, . . . , m}. For the remainder of the proof we

shall focus our attention on the set of ω’s for which
∫ T

0 Λi(s)ds > 0 (the result is trivially true on

the complement set). Put

Aκ
i (t) :=

[
F κ

i

(
⌊tg(κ)⌋

g(κ)

)
− F κ

i

(
⌊tg(κ)⌋ − 1

g(κ)

)]
.

Then,

Λ̂κ
i (t) − Λκ

i (t)

= g(κ)

[
F κ

i

(
⌊tg(κ)⌋

g(κ)

)
−

∫ ⌊tg(κ)⌋
g(κ)

0
Λκ

i (s)ds

]
− g(κ)

[
F κ

i (

(
⌊tg(κ)⌋ − 1

g(κ)

)
−

∫ ⌊tg(κ)⌋−1
g(κ)

0
Λκ

i (s)ds

]

+ g(κ)

∫ ⌊tg(κ)⌋
g(κ)

⌊tg(κ)⌋−1
g(κ)

Λκ
i (s)ds − Λκ

i (t).

Fix a compact set B ⊂ (0, T ], and κ such that g(κ)−1 ≤ inf{s : s ∈ B}. Then, we have

sup
t∈B

|Λ̂κ
i (t) − Λκ

i (t)|

f(κ)
≤ 2 sup

0≤t≤T

g(κ)

f(κ)

∣∣∣∣F
κ
i (t) −

∫ t

0
Λκ

i (s)ds

∣∣∣∣ + sup
t∈B

∣∣∣∣∣g(κ)

∫ ⌊tg(κ)⌋
g(κ)

⌊tg(κ)⌋−1
g(κ)

Λi(s)ds − Λi(t)

∣∣∣∣∣ ,(41)

since Λκ
i = f(κ)Λi. Now, the first term on the right-hand-side goes to zero almost surely as κ → ∞

by (31) in the proof of Proposition 3. Let us now consider the second term on the right-hand-side

of (41). First note that since the set B is closed and 0 /∈ B, we have 0 < β := {s : s ∈ B}.

Further, Λi(s) is uniformly continuous on [0, T ], thus for any ǫ > 0 there exists a δ > 0 such

that for all t, s ∈ [0, T ] such that |t − s| < δ we have |Λ(s) − Λ(t)| < ǫ. Choose κ1 such that

g(κ)−1 < min{β, δ/2} for all κ > κ1. Then, for all κ > κ1 and for all t ∈ B, we have
∣∣∣∣∣g(κ)

∫ ⌊tg(κ)⌋
g(κ)

⌊tg(κ)⌋−1
g(κ)

Λi(s)ds − Λi(t)

∣∣∣∣∣ ≤ g(κ)

∫ ⌊tg(κ)⌋
g(κ)

⌊tg(κ)⌋−1
g(κ)

|Λi(s) − Λi(t)| ds ≤ ǫ.
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Thus,

sup
t∈B

∣∣∣∣∣g(κ)

∫ ⌊tg(κ)⌋
g(κ)

⌊tg(κ)⌋−1
g(κ)

Λi(s)ds − Λi(t)

∣∣∣∣∣ → 0 a.s. as κ → ∞ .

This completes the proof.

Proof of Lemma 7. The proof mimics that of Lemma 5 and follows in a similar stepwise fashion;

below we indicate the necessary changes. Fix an i ∈ {1, . . . , m}.

Step 1: We construct approximating processes to the original system as in Step 1 of the proof of

Lemma 5 with the following modifications. Ỹ κ(t) is the minimal truncation giving priority to slower

servers of Y κ(t)I{t∈[0,T ]\Iκ} (see Definition 5 in Appendix B.2). Zκ(t) is the headcount associated

with the dynamic control X̃κ(t)I{t∈[0,T ]\Iκ}.

Step 2: Since 0 ≤ (Xκ(t) − Y κ(t))I{t∈[0,T ]\Iκ} ≤ 3κ−1f(κ)ǫe for κ large, and the arrival rate Λ̄(t)

is larger than the Λ(t), using Lemma 9 we have (almost surely)

γκn

i

(
Zκn

i (t) − BX̃κn(t)I{t∈[0,T ]\Iκ}

)

i
≤ γκn

i

(
Z

κn

i (t) − BỸ κn(t)
)

i
+ 3κ−1f(κ)ǫe,

for all t ∈ [0, T ] and n large enough (the subsequence is the one over the which the integral of the

scaled processes converge). Divide the above equation by f(κn) and take a limit as n → ∞. Using

Proposition 1 we have that (almost surely)

lim
n→∞

1

f(κn)

∫ T

0
(Λκn(s) − RκX̃κn(s)I{t∈[0,T ]\Iκ})ids ≤ lim

n→∞

1

f(κn)

∫ T

0
(Λ̄κn(s) − RκỸ κn(s))ids.

Step 3: Using Lemma 12 (Appendix B.2) and the fact that
∫ T

0 I{s∈Iκ}ds → 0 a.s. as κ → ∞ which

follows from Lemma 13 (Appendix B.2), we get a similar upper bound as in Step 3 of the proof of

Lemma 5.

Finally repeating Step 4 as in the proof of Lemma 5 completes the proof.

B.2 Side Lemmas

The following “comparison lemma” is similar in flavor to the results in Whitt (1981).

Lemma 8 Consider two systems each with m customer classes and arrival rates Λ1 and Λ2 satisfy-

ing Λ1(·) ≤ Λ2(·); input-output matrices R1 and R2; routing matrices B1 and B2; and abandonment

rate matrices Γ1 and Γ2. Suppose for the system with arrival rate Λℓ, the admissible dynamic control

Xℓ is used, and let Zℓ be the associated headcount process for ℓ = 1, 2. Assume that

R1X1(t) + Γ1[Z1(t) − B1X1(t)] ≥ R2X2(t) + Γ2[Z2(t) − B1X2(t)], (42)

whenever Z1(t) = Z2(t). Then, there exists a common probability space on which both systems can

be constructed, and if Z1(0) ≤ Z2(0) then Z1(t) ≤ Z2(t) for all time t with probability 1.

37



Proof. Fix an i ∈ {1, . . . , m}. We now illustrate the construction for the ith customer class. The

system headcount process for the ith customer class is given by

Zℓ
i (t) = Zℓ

i (0) + N
(1)
ℓ

(∫ t

0
Λℓ

i(u)du

)
− N

(2)
ℓ

(∫ t

0

(
(RℓXℓ(u))i + γℓ

i (Z
ℓ(u) − BℓXℓ(u))i

)
du

)
.

for ℓ = 1, 2 and all t ∈ [0, T ]. Now consider the difference process

Z1
i (t) − Z2

i (t) = Z1
i (s) − Z2

i (s) − N
(1)
2,s

(∫ t

s

Λ2
i (u)du

)
(43)

+N
(2)
2,s

(∫ t

s

(
(R2X2(u))i + γ2

i (Z2(u) − B2X2(u))i

)
du

)

+N
(1)
1,s

(∫ t

s

Λ1
i (u)du

)
− N

(2)
1,s

(∫ t

s

(
(R1X1(u))i + γ1

i (Z1(u) − B1X1(u))i

)
du

)

where

N
(1)
ℓ,s (t) := N

(1)
ℓ

(
t +

∫ s

0
Λℓ

i(u)du

)
− N

(1)
ℓ

(∫ s

0
Λℓ

i(u)du

)

N
(2)
ℓ,s (t) := N

(2)
ℓ

(
t +

∫ t

0
(RℓXℓ(u))i +

∫ t

0
γℓ

i (Z
ℓ(u) − BℓXℓ(u))idu

)

− N
(2)
ℓ

(∫ t

0

(
RℓXℓ(u))i + γℓ

i (Z
ℓ(u) − BℓXℓ(u))i

)
du

)

Note that N
(i)
ℓ,s(·) is a unit rate Poisson process which drives the arrival process (i = 1), or the

departure process (i = 2) due to a service completion or abandonment. To describe the dependence

between the two systems we shall now explain the dependence between these Poisson processes. If

Z1
i (s) = Z2

i (s) then N
(r)
1,s (t) = N

(r)
2,s (t) = N

(r)
s (t) for r = 1, 2 and t ∈ [0, τ∗], where τ∗ is defined as

follows. Let

τa = inf

{
t ≥ s : N (1)

s

(∫ t

s

Λ2
i (u)du

)
≥ 1

}
,

τs = inf

{
t ≥ s : N (2)

s

(∫ t

s

(R1X1(u))i + γ1
i (Z1

i (u) − B1X1(u))du

)
≥ 1

}
.

Let τ1 = min(τa, τb), then define

τ∗ =

{ ∫ t1
s

Λ2
i (u)du if τ1 = τa∫ t1

s

(
R1X1(u))i + γ1

i (Z1(u) − B1X1(u)
)
i
du otherwise.

Let τ2 = inf{t > τ1 : Z1
i (t) = Z2

i (t)}, then N1
ℓ,t1

(t) for t ∈ [0,
∫ t2
t1

Λℓ
i(s)ds] and ℓ = 1, 2, and N2

ℓ,t1
(t)

for t ∈ [0,
∫ t

0

(
(RℓXℓ(u))i + γℓ

i (Z
ℓ(u) − BℓXℓ(u))i

)
du] and ℓ = 1, 2 are four mutually independent

Poisson processes. From τ2, onwards we repeat the above the construction. This completes the

construction of the two systems.

We now verify that the above construction has the desired property. Let us define τ̃ = inf{t :

Z2
i (t) < Z1

i (t)}, and assume P(τ̃ < ∞) > 0. Fix an ω ∈ {ω : τ̃(ω) < ∞}. Since Z2
i (t) and Z1

i (t) are
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discrete and with probability one jump up or down by at most one unit at any time, we have, with

probability one, that Z1
i (τ̃) − Z2

i (τ̃) = 1. Further, there exists δ > 0 such that

Z2
i (t) = Z1

i (t) = Zi(t) for all t ∈ [τ̃ − δ, τ̃ ]

N
(1)
ℓ,τ̃−δ

(∫ τ̃−ǫ

τ̃−δ

Λℓ
i(u)du

)
= 0,

N
(2)
1,τ̃−δ

(∫ τ̃−ǫ

τ̃−δ

(
(RℓXℓ(u))i + γℓ

i (Z
ℓ(u) − BℓXℓ(u))i

))
= 0,

for all 0 < ǫ < δ and ℓ = 1, 2. Using (43), with s = τ̃ − δ and t = τ̃ we also have

N
(1)
1,τ̃−δ

(∫ τ̃

τ̃−δ

Λ1
i (u)du

)
− N

(2)
1,τ̃−δ

(∫ τ̃

τ̃−δ

(
R1X1(u))i + γ1

i (Z1(u) − B1X1(u)
)
i
du

)

−N
(2)
1,τ̃−δ

(∫ τ̃

τ̃−δ

Λ2
i (u)du

)
+ N

(2)
2,τ̃−δ

(∫ τ̃

τ̃−δ

(
R2X2(u))i + γ2

i (Z2(u) − B2X2(u)
)
i
du

)
= 1

Thus, we get the contradiction as either the first term or the last term on the left-hand-side is 1

and all other terms are zero. This follows since the construction of these processes along with (42)

and the assumption Λ1
i (·) ≤ Λ2

i (·) implies that if the first (fourth) term is positive, then the third

(second) term must be negative. This completes the proof.

Definition 5 (minimal truncation with priority to the slower servers) Assume without loss

of generality that µj ≤ µj+1 for all j = 1, . . . , n− 1. We say that a sequence of admissible controls

{X̃κ} is a minimal truncation of the sequence of controls {Xκ} with priority given to the slower

servers if

X̃κ
j (t) = min



Xκ

j (t), Zκ
i(j)(t) −

∑

j′∈Sj

X̃κ
j′(t)





for all j = 1, . . . , n and all t ∈ [0, T ], where {Zκ} is the sequence of the headcount processes

associated with the sequence of admissible controls {X̃κ}, and Sj = {j′ : j′ < j, i(j′) = i(j)}.

Lemma 9 Consider two systems, labelled System 1 and System 2, which are identical except they

have different arrival rates Λ1 and Λ2, respectively, which satisfy Λ1(·) ≤ Λ2(·). Consider two

controls X1 and X2 such that 0 ≤ X1(t) − X2(t) ≤ δe, where δ > 0 and e is vector of ones in

R
n. For the system with arrival rate Λ1(t), the dynamic control X̃1 which is a minimal truncation

of X1(t) is used, and let Z1 be the associated headcount process. For the system with arrival rate

Λ2(t), the dynamic control X̃2 which is a minimal truncation of X2 with priority given to the

slower servers is used, and let Z2 be the associated headcount process. Then there exists a common

probability space on which both systems can be constructed, and if Z1(0) ≤ Z2(0) then

Z1(t) − BX̃1(t) ≤ Z2(t) − BX̃2(t) + δBe a.s.
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for all t ∈ [0, T ].

Proof. Consider another system referred to henceforth as System 3, which is identical to the

system with arrival rate Λ2 except it has one additional server pool which serves all the classes at

rate zero and has nδ servers. Let Z3 be the headcount of this system and Z3(0) = Z2(0) + δBe.

Let the dynamic control used for this system be X3(t) = (X̃2(t), nδ) where (x, y) represents a

vector in R
n+1 whose first n coordinates are the vector x ∈ R

n, and the (n + 1)th coordinate is

y ∈ R. Consider any probability space on which System 3 and an independent Poisson process

are constructed. It is easy to verify that we can add System 2 to this probability space such that

Z3(t) = Z2(t) + δBe for all t ∈ [0, T ]. Using Definitions 3 and 5 of minimal truncation, and

minimal truncation with priority given to the slower servers, we have that if Z1(t) = Z3(t) then

RX̃1(t) ≤ RX̃2(t). Further, using the assumption X1(t) − X2(t) ≤ δe, we have that the condition

(42) is satisfied for System 1 and System 3. Appealing to Lemma 8, we can construct Systems 1,

2 and 3 on a a common probability space such that Z1(t) ≤ Z3(t) = Z2(t) + δBe for all t ∈ [0, T ].

Fix an i ∈ {1, . . . , m} and t ∈ [0, T ]. Suppose (Z1)i(t) − (BX̃1)i(t) > 0. Then, using the definition

of minimal truncation we have (BX̃1)i(t) = (BX1)i(t); if Z1
i (t) − (BX̃1)i(t) = 0 the result holds

trivially. Now, to complete the proof we consider two cases:

Case I: If Z2
i (t)−(BX̃2)i(t) > 0, then using the definition of minimal truncation we have (BX̃2)i(t) =

(BX2)i(t). Using the fact that 0 ≤ X1(t) − X2(t) we have the claimed result.

Case II: If Z2(t)i − (BX̃2)i(t) = 0, then using the definition of minimal truncation, we have

Z1(t)i ≤ (BX2(t) + δBe)i ≤ (BX1(t) + δBe)i a.s.

This completes the proof.

Lemma 10 Let Λκ and Xκ, the arrival rate and (untruncated) control for the κth system, satisfy

Xκ(t) =
f(κ)

κ
x, Λκ(t) =

f(κ)

κ
λ

for all t ∈ [0, T ] and all κ, where x ∈ R
m
+ and λ ∈ R

m
+ . Let Zκ(0) := κ−1f(κ)Me where M ∈ R+,

and e is vector of ones in R
m. If assumption (10) holds and X̃κ(s) is the minimal truncation of

Xκ with priority to the slower servers then

1

f(κ)

∫ T

0
(Λκ(t) − RκX̃κ(t))idt → T (λ − Rx)+i a.s. as κ → ∞

for all i = 1, . . . , m.

Proof. Fix an i ∈ {1, . . . , m}. All subsequent probabilistic statements are to be interpreted in the

almost sure sense and the term is omitted for brevity.

40



Step 1: By the properties of minimal truncation and the definition of the arrival rate and control

∫ T

0
(Λκ(t) − RκX̃κ(t))idt ≥ T (λκ − Rκxκ)i a.s

where xκ = xf(κ)/κ and λκ = f(κ)λ. Dividing by f(κ) and taking lim inf as κ → ∞ we get

lim inf
κ→∞

1

f(κ)

∫ T

0
(Λκ(t) − RκX̃κ(t))idt ≥ T (λ − Rx)i a.s.

Step 2: Let activities 1, . . . , ℓ serve customer class i such that µ1 ≤ . . . ≤ µℓ, ( relabelling activities

if necessary). Thus, the minimal truncation for the κth system is given by

X̃κ
1 (t) = min{Xκ

1 (t), Zκ
i (t)}

X̃κ
j (t) = min



Xκ

j (t), Zκ
i (t) −

j−1∑

j′=1

X̃κ
j′(t)





for all j = 1, . . . , ℓ and t ∈ [0, T ], where Zκ
i is the headcount process of customer class i associated

with the admissible control X̃κ. Put V κ
i =

∑ℓ
j=1 xκ

j .

Step 3: Since f(κ) grows superlinearly there exists κ1 such that for all κ > κ1, (Rκxκ)i > γκ
i .

Fix a κ > κ1. Consider a system with V κ
i servers such that all servers except one process work at

rate zero, and one server has service rate (Rκxκ)i. The arrival rate and abandonment rate for the

system is that corresponding to customer class i. Suppose the system gives priority to the servers

with zero service rate and let the headcount in this system be denoted by Z
κ
i (t). If the original

headcount in this system is max{Mf(κ)/κ, V κ
i }, then using Lemma 8 we have Zκ

i (t) ≤ Z
κ
i (t) for all

t ∈ [0, T ]. Note that the dynamics of Zi are closely related to an M/M/1 queue with abandonments.

Specifically, consider an M/M/1 queue with arrival rate λκ
i , service rate (Rκxκ)i, abandonment rate

γκ
i , and let the headcount at time t be denoted by Y κ

i (t). Then, if Y κ
i (0) = Z

κ
(0) − V κ

i + 1 and

Z
κ
(0) ≥ V κ

i − 1, it follows that Y κ
i (t) = Z

κ
(t) − V κ

i + 1 for all t ∈ [0, T ]. Thus, we have

Zκ
i (t) − V κ

i ≤ Y κ
i (t) a.s.

where Y κ
i (t) is the headcount at time t ∈ [0, T ] of the M/M/1 queue defined above with the initial

state Y κ
i (0) = max{Mf(κ)/κ, V κ

i } − V κ
i + 1.

Step 4: Fix an ǫ > 0. Consider another system (referred to henceforth as “System 2”) consisting

of two buffers labelled Buffer I and II. Buffer I has an arrival rate equal to min{λκ
i , (Rκxκ)i(1− ǫ)}

and has one server working at rate (Rκxκ)i. There are no abandonments from this buffer. Let the

traffic intensity be denoted by η = min{λi/(Rx)i, 1− ǫ} < 1, and note η is independent of κ. Buffer

II is a “no server” system with arrival rate (λκ −Rκxκ(1− ǫ))+i , no servers, and abandonment rate

γκ
i . Let the headcount of this system at time t be represented by the vector (Y κ,I

i (t), Y κ,II
i (t)) where

Y κ,I
i (t) and Y κ,II

i (t)) is to be interpreted as the headcount (including the customers in service) in
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Buffer I and Buffer II respectively. Using an argument similar to that used in the proof of Lemma

8 together with the condition (Rκxκ)i > γκ
i , we have that if Y κ,I

i (0) + Y κ,II
i (0) ≥ Y κ

i (0), then

Y κ,I
i (t) + Y κ,II

i (t) ≥ Y κ
i (t) a.s., where Y κ

i (t) is the headcount of the M/M/1 system defined in Step

3. Let (Y κ,I
i (0), Y κ,II

i (0)) = (Y κ,I
i,π , (Mf(κ)/κ − V κ

i − Y κ,I
i,π )+ + 1), where Y κ,I

i,π is a random variable

drawn from the stationary distribution of the headcount in Buffer I. So, for all κ > κ1, we have

(Zκ
i (t) − V κ

i )+ ≤ Y κ,I
i (t) + Y κ,II

i (t) a.s.,

for all t ∈ [0, T ]. Consequently,

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )dt ≤ lim sup
κ→∞

[
1

f(κ)

∫ T

0
γκ

i Y κ,I
i (t)dt +

1

f(κ)

∫ T

0
γκ

i Y κ,II
i (t)dt

]
. (44)

We shall now bound both terms on right-hand-side of (44).

Step 5: First note that the headcount Y κ,I
i (t) for any t ∈ [0, T ] has the stationary distribution of

an M/M/1 queue with traffic intensity η. Choose any θ ∈ (0, − log η
T

), then we have

E

[
exp

(
θ

∫ T

0
Y κ,I

i (t)dt

)]
(a)

≤ E




∫ T

0

exp
(
θTY κ,I

i (t)
)

dt

T




(b)
=

∫ T

0

E

[
exp

(
θTY κ,I

i (0)
)]

T
dt

(c)
=

eθT (1 − η)

T (1 − ηeθT )
=: L.

The inequality (a) follows from Jensen’s inequality on Lebesgue measure; the equality (b) follows

from Fubini’s theorem and stationarity; and equality (c) follows from the stationary distribution of

the headcount process. Given any ǫ > 0, using a Chernoff bound we get that

P

(∫ T

0 γκ
i Y κ,I

i (t)

f(κ)
> ǫ

)
≤ Le

−ǫ
f(κ)
κγi

Under assumption (10), we have that the right-hand-side of the above is summable. Thus, by

Borel-Cantelli we have that the first term on right-hand-side of (44) is zero.

Step 6: The dynamics at Buffer II at System 2 are given by

Y κ,II
i (t) = Y κ,II

i (0) + Ñ
(1),κ
i

(
(λκ − Rκxκ(1 − ǫ)i)

+t
)
− Ñ

(3),κ
i

(∫ t

0
γκ

i Y κ,II
i (s)ds

)
(45)

for all time t ∈ [0, T ], where Ñ
(1),κ
i and Ñ

(3),κ
i are independent unit rate Poisson processes associated

with arrivals and abandonments at Buffer II. (Note these Poisson processes are indexed by κ as

we use Lemma 8 to construct System 2 for each κ separately.) To prove the result we need the

following side lemma whose proof is deferred to the end of the current proof.
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Lemma 11 Consider Buffer II described above. If assumption (10) holds, then for all 0 ≤ ǫ ≤ 1

(i)
1

f(κ)

∣∣∣∣Ñ
(3),κ
i

(∫ T

0
γκ

i Y κ,II
i (t)dt

)
−

∫ T

0
γκ

i Y κ,II
i (t)dt

∣∣∣∣ → 0 a.s. as κ → ∞,

(ii)
Ñ

(1),κ
i (λκ

i − (Rκxκ)i(1 − ǫ))+T )

f(κ)
→ (λi − (Rx)i(1 − ǫ))+T a.s.as κ → ∞,

for all i = 1, . . . , m.

Appealing to part (i) of the lemma above, we have

lim sup
κ→∞

1

f(κ)
Ñ (3),κ

(∫ T

0
γκ

i Y κ,II
i (t)dt

)
= lim sup

κ→∞

1

f(κ)

∫ T

0
γκ

i Y κ,II
i (t)dt.

Using (45) we further have that

lim sup
κ→∞

1

f(κ)
Ñ (3),κ

(∫ T

0
γκ

i Y κ,II
i (t)dt

)
≤ lim sup

κ→∞

1

f(κ)

(
Y κ,II

i (0) + Ñ (1),κ
(
(λκ − Rκxκ(1 − ǫ))+i T

))

= (λ − Rx(1 − ǫ))+i T,

where the last equality follows from Lemma 11(ii). Plugging back in to (44) we have

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )+dt ≤ (λ − Rx(1 − ǫ))+i T.

Since the above holds for all ǫ > 0, we get

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )+dt ≤ (λ − Rx)+i T.

The desired result now follows from a result similar to Proposition 1 which can proved in an analogus

manner as Lemma 11. This completes the proof.

Proof of Lemma 11. Proof of (i): Fix i ∈ {1, . . . , m}, and let υκ
i =

∫ T

0 γκ
i Y κ,II

i (t)dt and ψi =

(λ − Rx(1 − ǫ))+i for all κ. Using the system dynamics in (45) we have

υκ
i ≤ γκ

i T
(
Y κ,II

i (0) + Ñ (1),κ(f(κ)ψiT )
)

≤ γκ
i T

(
Mf(κ)

κ
+ Ñ (1),κ(f(κ)ψiT )

)
=: υκ

i ,

where M is the scaled headcount of class i customers at time 0. Note that the bound υκ is

independent of the poisson process Ñ (3),κ (this is crucial in what follows). We now use the following

strong approximation result from Kurtz (1978) which follows directly from Komlós, Major and

Tusnady (1975).

Proposition 4 (Kurtz (1978), Lemma 3.1) A standard (rate one) Poisson process (N(t) : t ≥

0) can be realized on the same probability space as a standard Brownian motion (W (t) : t ≥ 0) in

such a way that the positive random variable ξ given by

ξ := sup
t>0

|N(t) − t − W (t)|

log(2 ∨ t)
< ∞

has a finite moment generating function in a neighborhood of the origin, where a ∨ b := max(a, b).
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Using the above proposition, there exist Brownian motions W κ
i and random variables ξκ

i such that

|Ñ
(3),κ
i (υκ

i ) − υκ
i | ≤ ξκ

i log(2 ∨ υκ
i ) + |W κ

i (υκ)|

≤ ξκ
i log(2 ∨ υκ

i ) + sup
0≤s≤υκ

i

|W κ
i (s)|. (46)

To complete the proof, we shall show that as κ → ∞, the right-hand-side scaled by f(κ) goes to

zero. We define

Uκ
i := E[υκ

i ] = f(κ)MTγi + κγiT
2f(κ)ψi (47)

V κ
i := V ar[υκ

i ] = κ2γ2
i T 3f(κ)ψi. (48)

Now, to bound the first term note that

log(2 ∨ υκ
i ) ≤ log(2 + υκ

i ) = log Uκ
i + log(1 +

2 + υκ
i − Uκ

i

Uκ
i

) ≤ log Uκ
i +

2 + υκ
i − Uκ

i

Uκ
i

.

Squaring both sides and taking expectations we have

E[log2(2 ∨ υκ
i )] ≤ (log Uκ

i )2 +
4

(Uκ
i )2

+
V κ

i

(Uκ
i )2

+
4 log Uκ

i

Uκ
i

.

Now using the assumption (10) and the bound stated above we have

∞∑

κ=1

E[log2(2 ∨ υκ
i )]

f(κ)2
< ∞.

For any δ > 0, using a Chebechev bound we have

P(ξκ
i log(2 ∨ υκ

i ) ≥ f(κ)δ) ≤
E[(ξκ

i )2 log2(2 ∨ υκ
i )]

δ2f(κ)2
= E[ξκ

i ]2
E[log2(2 ∨ υκ

i )]

δ2f(κ)2
.

The above equality follows from the independence of υκ
i and ξκ

i which in turn follows from inde-

pendence of υκ
i and Ñ (3),κ and the fact that ξκ

i depends only on the process Ñ (3),κ. Since the

random variables {ξκ
i } are identically distributed, and their moment generating function exists in

the neighborhood of origin (by Proposition 4), we have supκ E[(ξκ
i )2] < ∞. Thus, we have

∞∑

κ=1

P(ξκ
i log(2 ∨ υκ

i ) ≥ f(κ)δ) < ∞ a.s.,

and using Borel-Cantelli we get

ξκ
i log(2 ∨ υκ

i )

f(κ)
→ 0 a.s. as κ → ∞.

For the second term on the right-hand-side of (46), fix a δ > 0, and consider the following sequence

of inequalities

P

(
sup

0≤s≤υκ
i

|W κ
i (s)| ≥ f(κ)δ

)
≤ 2P

(
sup

0≤s≤υκ
i

W κ
i (s) ≥ f(κ)δ

)

= 4P(W κ
i (υκ

i ≥ f(κ)δ)

≤ 4 exp(−θκ
i f(κ)δ)E[exp(θκ

i W κ
i (υκ

i ))],
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where the last inequality follows from a Chernoff bound for any θκ
i > 0. Next, using the moment

generating function of a Gaussian and Poisson r.v. we have that

4 exp(−θκ
i f(κ)δ)E[exp(θκ

i W κ
i (υκ

i ))] = 4 exp

(
f(κ)

[
−θκ

i δ + (θκ
i )2γiMT + (e

γiκT (θκ
i )2

2 − 1)ψiT

])
.

Define C1 := (θκ
i )2γiMT and C2 = 0.9γiκT 2ψi. Choosing θκ

i = δ
2(C1+κC2) and using the fact

ex ≤ 1 + 1.8x for x ∈ (0, 1) we have

4 exp

(
f(κ)

[
−θκ

i δ + (θκ
i )2γiMT + (e

γiκT (θκ
i )2

2 − 1)ψiT

])
≤ 4 exp

(
−C3f(κ)δ2

κ

)
,

for κ large, where C3 is a constant. Using the assumption (10) we have

∞∑

κ=1

P

(
sup

0≤s≤υκ
i

|W κ
i (s)| ≥ f(κ)δ

)
< ∞.

Hence, using Borel-Cantelli lemma we have

sup
0≤s≤υκ

i

|W κ
i (s)|

f(κ)
→ 0 a.s. as κ → ∞

This completes the proof of (i).

Proof of (ii): Using an argument similar to that used in part (i), we have

lim sup
κ→∞

1

f(κ)

∣∣∣Ñ (1),κ
(
(λκ

i − (Rκxκ)i(1 − ǫ))+T
)
− (λκ

i − (Rκxκ)i(1 − ǫ))+T
∣∣∣ = 0 a.s.

from which the result follows immediately using the scaling of λκ, Rκ and xκ. This completes the

proof.

Lemma 12 Let Λκ and Xκ, the arrival rate and (untruncated) control for the κth system, satisfy

Xκ(t) =
f(κ)

κ
x, Λκ(t) =

f(κ)

κ
λ

for all t ∈ [0, T ] and all κ, where x ∈ R
m
+ and λ ∈ R

m
+ . Let Zκ(0) := κ−1f(κ)Me where M ∈ R+,

and e is vector of ones in R
m. Let X̃κ(t) be the minimal truncation with priority to the slower

servers, of Xκ(t)I{t∈[0,T ]\Iκ}. If assumption (10) holds and
∫ T

0 I{s∈Iκ}ds → 0 almost surely as

κ → ∞, then

1

f(κ)

∫ T

0
(Λκ(s) − RκX̃κ(s))ids → T (λ − Rx)+i a.s. as κ → ∞

for all i = 1, . . . , m.

Proof. The proof mimics that of Lemma 10 and follow in a similar stepwise fashion; below we

indicate the necessary modifications. Fix an i ∈ {1, . . . , m}.

Step 1: Using same argument as in Step 1 of the proof of Lemma 10 the inequality for lim inf is
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established.

Step 2: We construct the dynamic control as in Step 2 of the proof of Lemma 10 with the modi-

fication that Xκ(t) is a minimal truncation with priority to the slower servers of Xκ(t)I{t∈[0,T ]\Iκ}.

Step 3: We reduce the system to an M/M/1 queuing system as in Step 3 of the proof of Lemma 10

with the following modification: the server at the M/M/1 queue can only serve at times t ∈ [0, T ]\Iκ.

Step 4: Fix an ǫ > 0. Consider another system (referred to henceforth as “System 2”) consisting

of two buffers labelled Buffer I and II. Buffer I has an arrival process which is a doubly stochastic

Poisson process with rate given by

Λκ,I
i (t) =

{
min{λκ

i , (Rκxκ)i(1 − ǫ)} if t ∈ [0, T ] \ Iκ

0 if t ∈ Iκ,
(49)

It has one server that servers only at t ∈ [0, T ] \ Iκ with service rate (Rκxκ)i, and there are no

abandonments from this buffer. Note that for all t ∈ Iκ dynamics at Buffer I “freezes” and the

headcount stays the same. For further use, let the traffic intensity for this buffer when the server

is working be η = min{λi/(Rx)i, 1− ǫ} < 1, and note that η is independent of κ. As in Lemma 10,

Buffer II is a “no service” system with arrival rate given by

Λκ,II
i (t) =

{
(λκ − Rκxκ(1 − ǫ))+i if t ∈ [0, T ] \ Iκ

λκ
i if t ∈ Iκ.

(50)

and abandonment rate γκ
i . Let the headcount of this system at time t be (Y κ,I

i (t), Y κ,II
i (t)) where

Y κ,I
i (t) and Y κ,II

i (t) represent the headcount (including the customer-in-service) in Buffer I and

Buffer II respectively. Using a similar argument to that used in the proof of Lemma 8 together with

the condition (Rκxκ)i > γκ
i , we have that if Y κ,I

i (0)+Y κ,II
i (0) ≥ Y κ

i (0) then Y κ,I
i (t)+Y κ,II

i (t) ≥ Y κ
i (t)

a.s., where Y κ
i (t) is the headcount of the M/M/1 system defined in Step 3. Let (Y κ,I

i (0), Y κ,II
i (0)) =

(Y κ,I
i,π , (Mf(κ)/κ−V κ

i −Y κ,I
i,π )++1), where Y κ,I

i,π is random variable drawn from stationary distribution

of the headcount in an M/M/1 queue with traffic intensity η. So, we have

(Zκ
i (t) − V κ

i )+ ≤ Y κ,I
i (t) + Y κ,II

i (t) a.s.

for all t ∈ [0, T ]. Since above holds for all κ > κ1 we have that (almost surely)

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )+I{t∈[0,T ]\Iκ}dt ≤ lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Y κ,I
i (t) + Y κ,II

i (t))dt (51)

Step 5: We use the fact that the headcount process at Buffer I, Y κ,I
i (t) has stationary distribution

of an M/M/1 queue with traffic intensity given by η, and then follow exactly Step 5 in the proof

of Lemma 10.

Step 6: The dynamics at Buffer II at System 2 are given by

Y κ,II
i (t) = Y κ,II

i (0) + Ñ
(1),κ
i

(∫ t

0
Λκ,II

i (s)ds

)
− Ñ

(3),κ
i

(∫ t

0
γκ

i Y κ,II
i (s)ds

)
(52)
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for all time t ∈ [0, T ], where Ñ
(1),κ
i and Ñ

(3),κ
i are independent unit Poisson process associated with

arrivals and abandonments at Buffer II. Essentially repeating the proof of Lemma 11(i), we have

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i Y κ,II
i (t)dt = lim sup

κ→∞

1

f(κ)
Ñ

(3),κ
i

(∫ T

0
γκ

i Y κ,II
i (t)dt

)
.

Further, using the dynamics (52) at Buffer II we have

lim sup
κ→∞

Ñ
(3),κ
i

(∫ T

0 γκ
i Y κ,II

i (t)dt
)

f(κ)
≤ lim sup

κ→∞

(
Y κ,II

i (0) + Ñ
(1),κ
i

(∫ T

0 Λκ,II
i (t)dt

))

f(κ)

(a)

≤ lim sup
κ→∞

(
Y κ,II

i (0) + Ñ
(1),κ
i

(
(λκ

i − Rκxκ(1 − ǫ))+i (1 − ǫ)T + λκ
i ǫT

))

f(κ)

(b)
= (λ − Rx(1 − ǫ))+i (1 − ǫ)T + λiǫT a.s.

Here we have used the assumption that
∫ T

0 I{s∈Iκ}ds → 0 almost surely as κ → ∞, and for each

ǫ > 0 there exist κ2 such that ∫ T

0
Λκ,II

i (t)I{t∈Iκ}dt ≤ λκ
i ǫ,

for all κ > κ2. Thus inequality (a) follows. The equality (b) in a similar manner to that of to

Lemma 11(ii). Thus, we have

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )+I{t∈[0,T ]\Iκ}dt ≤ (λ − Rx(1 − ǫ))+i (1 − ǫ)T + λiǫT a.s.

Since the above holds for all ǫ > 0, we get

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )+I{t∈[0,T ]\Iκ}dt ≤ (λ − Rx)+i T a.s.

Using Lemma 4 and the assumption that
∫ T

0 I{s∈Iκ}ds → 0 a.s. as κ → ∞ we also have (almost

surely)

lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i )+I{t∈[0,T ]\Iκ}dt = lim sup
κ→∞

1

f(κ)

∫ T

0
γκ

i (Zκ
i (t) − V κ

i I{t∈[0,T ]\Iκ})
+dt.

The desired result now follows as in the proof of Lemma 10. This completes the proof.

Lemma 13 If f(κ) and g(κ) satisfy

∞∑

κ=1

g(κ)f(κ)

κ
exp

(
−

ǫκ

g(κ)

)
< ∞ (53)

for all ǫ > 0, then
∑g(κ)T

ℓ=1 τκ
ℓ → 0 almost surely, as κ → ∞.

Proof. Let µ be defined as µ = min1≤j≤n{µj}. Let the total servers in the unscaled system be b,

i.e., b =
∑r

k=1 bk. Note that τκ
ℓ is the maximum residual service time among all non-idle servers at
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the start of the ℓth review period. As the service time is assumed to be exponential, the residual

service times are also exponential. Since τκ
ℓ > 0 it is clear that

lim inf
κ→∞

g(κ)T∑

ℓ=1

τκ
ℓ ≥ 0 a.s.

Let τ̃κ
ℓ be the maximum of the service times assuming all the servers are working at the minimum

service rate µ. We construct τ̃κ
ℓ on the same probability space in the following manner, for all

the non-idle servers we scale the service time by µj/µ ≥ 1 and for all idle servers we generate

exponential service times with rate µ. Thus, it follows that τ̃κ
ℓ ≥ τκ

ℓ a.s. Now, fix ǫ > 0 and note

that

P




g(κ)T∑

ℓ=1

τ̃κ
ℓ > ǫ


 ≤ g(κ)TP

(
τ̃κ
ℓ >

ǫ

g(κ)

)

(a)

≤ g(κ)T
f(κ)b

κ
P

(
EXP (µκ) >

ǫ

g(κ)

)

=
g(κ)f(κ)bT

κ
exp

(
−

ǫµκ

g(κ)

)
, (54)

where EXP (µκ) represents a r.v. with exponential distribution and rate µκ and the inequality in

(a) follows from the union bound. Since the right-hand-side of (54) is summable by the growth

condition (53), using the Borel-Cantelli lemma we have

P




g(κ)T∑

ℓ=1

τ̃κ
ℓ > ǫ, i.o.


 = 0.

Since, the above equation holds for any ǫ > 0, it follows that

lim sup
κ→∞

g(κ)T∑

ℓ=1

τκ
ℓ ≤ lim

κ→∞

g(κ)T∑

l=1

τ̃κ
ℓ = 0 a.s.

This completes the proof.
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