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Abstract: Microgripper is an important tool in high precision micromanipulation task,

which directly affects the quality and efficiency of micromanipulation. This paper

presents the design and control of a novel asymmetrical microgripper driven by a

piezoelectric (PZT) actuator. The developed microgripper is designed as an asymmetrical

structure with just one movable jaw, so it has the advantages of no dense mode and fixed

locating datum compared with the symmetrical microgripper with two movable jaws. The

main body of microgripper is a compact flexure-based mechanical structure with a

three-stage amplification mechanism. Based on the designed structure, large-range,

robust and parallel grasping operation can be realized. The characteristics analyses of the

developed microgripper are carried out by finite element analysis (FEA). A position-force

switching control strategy is utilized to regulate the position and grasping force of

movable jaw. Discrete-time sliding model controller (DSMC) is designed to control the

position and grasping force of grasping jaw. Experimental studies are conducted and the

results show that the microgripper exhibits good performance and high precision grasping

operations can be realized through the developed control strategy.
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1. INTRODUCTION

Recently, the demands of micromanipulation in terms of precision and efficiency

have been growing with the development of biological engineering, microelectronics

industry et.al [1-3]. As the operated objects in micromanipulation are developing toward

ultra-micronization, the difficulty of micromanipulation is increasing continuously.

Microgripper, as a key component of precision micromanipulation systems, plays an

important role during the operation process [4, 5]. The microgripper contacts the operated

objects directly in the automated grasp-hold-release operations, so the performance of

microgripper will directly affect the quality, efficiency and accuracy of

micromanipulation [6-7].

Nowadays various types of microgrippers have been developed according to

different actuations, such as electrothermal, coil voice actuated, shape memory alloy

(SMA) actuated and piezoelectric (PZT) microgrippers [8-11]. Particularly PZT actuator

has the advantages of small volume, large output force, fast response and zero backlash,

so it has been widely used in microgripper [12-14]. Since the output displacement of PZT

actuator is quite small which is usually several tens micrometers, displacement

amplification mechanism (DAM) has an important effect on the PZT-actuated

microgripper which is utilized to amplify the output displacement of actuator and

transmit the displacement from the actuator to the jaws. Based on different types of

DAMs several PZT-actuated microgrippers have been developed. Sun et al. designed a

PZT driven compliant-based microgripper for micromanipulation which consists of

Scott-Russell mechanism and leverage mechanism [15]. Xu designed a PZT-actuated

microgripper with a two-stage flexure-based DAM [16]. Wang et al. designed a
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monolithic compliant PZT driven microgripper with a larger displacement amplification

ratio [17]. Zubir et al. designed an asymmetrical PZT driven microgripper with two

grasping jaws movable to obtain large range of grasping operation [18]. Most present

PZT actuated microgrippers are designed with two movable grasping jaws. The

advantage of this kind microgripper is that large displacement amplification ratio can be

realized which can meet the requirement of grasping large scale objects. However, the

inevitable error during fabrication and assembly may lead to asymmetric motion of

movable jaws, which will make the grasping objects not in the center line of the jaws.

Therefore the operation precision will be reduced inevitably. In addition the first two

mode shapes of the microgripper with two jaws movable are usually too close to each

other. The dense modes will lead bad dynamic characteristics and bring troubles to the

control of microgripper. The microgripper with one movable jaw has a specific and fixed

locating datum which can improve the operation accuracy. Moreover, since just one

grasping jaw is movable, only one side of the microgrippers is flexible. Therefore there is

no dense modes problem in the asymmetrical microgrippers with one movable jaw.

For the reason that the micro-objects are usually small and easily broken, both

precise position and stable grasping force are required to be guaranteed during

micromanipulation process. Therefore high performance position-force controller is

needed during working process. Unfortunately, most of the present microgrippers focus

on position control and the researches dedicate to both position and grasping force control

are relatively rare to find. There are several effective and practical control methodologies

in terms of position and force control, including hybrid control [19, 20], impedance

control [21, 22] and switching control [23, 24]. Hybrid control and impedance control are
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applicable to the system that the force and the position are coupled, while the switching

control is suitable to the force and position decoupled control system. Compared with the

other control methodologies the switching control has a concise structure and is easy to

implement, especially in force and position decoupled control system. As the most

common controller, proportional-integral-derivative (PID) controllers are the most

dominating form of feedback in use today [25]. But due to the high-frequency dynamic

vibrations during the fast grasping and releasing operations, traditional PID control can

not satisfy the requirement of precision position-force regulation. To overcome this

problem, several advanced controllers including the adaptive robust control [26], iterative

learning control [27] and neural networks control [28] et.al, are proposed to control

precision positioning systems. However expensive algorithms and calculations, together

with complex parameters tuning process make the applications of these controllers

limited. Since the discrete-time sliding mode controller (DSMC) has the advantages of

fast response and strong robustness, DSMC becomes one of the most promising

candidates for the control of microgrippers.

This paper is motivated to design a novel high performance microgripper, which is

designed asymmetrically with one movable jaw. Through the flexure-based mechanical

structure with a three-stage amplification mechanism, the input displacement can be

amplified and parallel jaw grasping can be realized. The characteristic analyses of the

developed microgripper are carried out based on finite element analysis (FEA). A

position-force switching control strategy composed of position and force DSMCs is

utilized to realize the position and force control of the developed microgripper. Finally
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the microgripper is fabricated and corresponding experimental tests are carried out to

investigate its performance.

2. STRUCTURE DESIGN

Figure 1 illustrates the mechanism of the designed microgripper, which consists of a

PZT actuator, a fixed jaw, a moveable jaw, a flexible beam, a preload bolt, a base and a

flexible DAM. The flexible DAM is designed as a three-stage amplification mechanism

which consists of a leverage mechanism, a bridge-type mechanism and a parallelogram

leverage mechanism. The PZT actuator is installed between the base and the leverage

mechanism by the preload bolt at one end of the PZT actuator; the preload force applied

on the PZT actuator can be adjusted by the bolt. The microgripper is designed

asymmetrically with just one side of the microgripper flexible. The fixed jaw is fixed to

the base while the moveable jaw is connected with the DAM through a flexible beam. A

stain gage is glued on the base end of the flexible beam to measure the grasping force

applied on the manipulated micro-object. The geometry and parameters of the developed

microgripper is shown in Fig. 2. The main parameters are determined by several

iterations of design and simulation, which is shown in Tab. 1.

Due to the output displacement of the PZT actuator is very small, the microgripper

should have enough large displacement range to grasp different sizes of micro-objects;

thus a flexure-based DAM with large amplification ratio is designed. The motion

transmission from the PZT actuator to the moveable jaw is realized through the DAM,

while the output displacement of the PZT actuator is magnified. As the first-stage

amplification the leverage mechanism can amplify the output displacement of the PZT
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actuator based on the deformation of flexure hinge as shown in Fig. 3(a). The bridge-type

mechanism is designed as the second-stage amplification which consists of a connecting

rod mechanism connected by four elliptical flexure hinges. The working principle of the

bridge-type mechanism is that once driven by an input displacement, the device produces

a vertical output displacement as shown in Fig. 3(b). The parallelogram mechanism

shown in Fig. 3(c) can work like a leverage mechanism which is the third-stage

amplification. Moreover pure jaw translations of moveable jaw can be realized based on

the parallelogram mechanism, which can guarantee stable and robust grasping

manipulations.

Fig. 1 Mechanism of the developed microgripper.
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Fig. 2 Geometry and parameters of the developed microgripper.

Tab. 1 Dominant parameters of the microgripper.

Symbol Value Symbol Value Symbol Value

l1 5.2 mm b1 0.4 mm t3 0.2 mm

l2 9.4 mm t1 0.4 mm l 4.6 mm

l3 6.1 mm a2 0.6 mm t 0.5 mm

l4 18.7 mm b2 0.4 mm r 1 mm

θ 7° t2 0.2 mm  0.5 mm

a1 0.6 mm r3 0.9 mm h 6 mm

During the working process, the PZT actuator will expand and push the leverage

mechanism; then the leverage mechanism will swing upward and pull the bridge-type

mechanism; finally the parallelogram mechanism pulled by the bridge-type mechanism

will swing and cause the moveable gripping jaw to close to grasp the manipulated
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micro-object. After power is switched off, the PZT actuator will retract to its original

length and the flexible motion transmission mechanism will return to its initial position,

which causes the moveable grasping jaws to release the micro-object.

(a) (b) (c)

Fig. 3. Working principle of amplifications: (a) leverage mechanism, (b) bridge-type

mechanism and (c) parallelogram mechanism.

Fig. 4. Grasping mode: (a) one movable jaw and (b) two movable jaws.

One advantage of the designed asymmetrical microgripper with just one movable

jaw is that it has a specific and fixed locating datum as shown in Fig. 4(a). The locating
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datum of the symmetrical microgripper with two jaws movable may not be fixed and has

a drift due to the inevitable error during microgripper fabrication and assembly as shown

in Fig. 4(b). Therefore the asymmetrical microgripper with one movable jaw is more

suitable for application of high precision micromanipulation, such as high precision

micro assembly.

(a)

(b)

Fig. 5. Dynamic performances of two type microgrippers: (a) asymmetrical microgripper

and (b) symmetrical microgripper.

Another advantage of the designed asymmetrical microgripper with one movable

jaw is that it has no dense modes and better dynamic performance. Figure 5 shows the
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comparison of the two type microgrippers in term of the natural frequency and mode

shape where the microgrippers are the simplified models with jaws, flexible beam and

base. The flexible beam presents the flexible mechanism which transfers the motion from

the actuator to the jaws. The dynamic performances of two type microgrippers are

investigated by finite element analysis (FEA) with the material properties and boundary

conditions. The first three mode shapes and corresponding natural frequencies of each

type microgripper are obtained and shown in Fig. 5. The first mode shape of symmetrical

microgripper is that the jaws vibrate in the opposite directions and the second mode shape

is that the jaws vibrate in the same direction. However the frequencies of first two modes

are too close to each other, which will increase the difficulty of the control of

microgripper. The frequencies of first two modes of microgripper designed

asymmetrically with one jaw movable are no longer close to each other. From the result

we can find that the dynamic characteristics of microgripper designed asymmetrically

with one movable jaw are better than those of the symmetrical microgripper. Therefore

the asymmetrical microgripper is more suitable for application in high frequency

micromanipulation, such as wire grasping in wire bonder.

3. CHARACTERISTIC ANALYSIS

In order to investigate the characteristics of the designed microgripper, FEA is

carried out with the aid of ANSYS software. The finite element model is established with

20-node element SOLID186. Zero displacements are assigned on the surfaces of the two

fixing holes during simulation. Input displacement of 10 μm is applied on the input

terminal of the microgripper for the static analysis, since the maximum output
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displacement of the PZT actuator is assumed as 10 μm in working condition. The

deformation behavior and stress distribution of the microgripper is shown in Fig. 6. The

maximum displacement of the moveable jaw can reach 149.4 μm, so the displacement

amplification ratio of the microgripper can be calculated as 14.94. The evaluation of

parallel movement is obtained; the x-axis displacements of the movable jaw, flexible

beam and output terminal of the parallelogram mechanism are almost the same, which are

between 146.9 μm and 149.4 μm while the relative error is 1.67%. It should be pointed

out that the displacement of output terminal of the parallelogram mechanism is larger

than that of the movable jaw. The reason is that the force applied on the input terminal of

parallelogram mechanism is not just in x-axis direction which is also has a component in

y-axis direction. The parasitic displacements in y-axis of the movable jaw, flexible beam

and output terminal of parallelogram mechanism are also obtained which is shown in Fig.

6(a). The maximum parasitic error is located in the movable jaw which is 1.47μm and the

maximum relative parasitic error is 0.98%. Moreover the results also show that the

maximum stress occurs at the flexure hinge which connects the bridge-type mechanism

and the parallelogram mechanism. The maximum stress is 198.9MPa, which is far less

than the yield strength (503 MPa) of the material of the microgripper, AL7075-T651.
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(a) (b)

Fig. 6. Static analysis results by FEA: (a) deformation behavior; (b) stress distribution.

(a) (b) (c)

Fig. 7. First three mode shapes of the microgripper: (a) 575 Hz, (b) 1560 Hz

and (c) 2360 Hz.

Besides, the modal analysis is performed to investigate the dynamic performance of

the microgripper. Based on the modal analysis the first three natural frequencies and

corresponding mode shapes are obtained and shown in Fig. 7. The first mode shape of the

microgripper is that the moveable jaw and the parallelogram mechanism vibrate in x-axis

direction which is consistent with the working state, and the corresponding natural

frequency is 575 Hz. The second mode shape shows the moveable jaw vibrates in x-axis
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direction around the flexible beam and the corresponding natural frequency is 1560 Hz.

In the third mode shape the flexible beam and the movable jaw swing up and down; the

corresponding natural frequency is 2360 Hz. From the results of model analysis it can be

found that there is no dense mode between the first two modes. Therefore the

microgripper exhibits good dynamic performance.

4. CONTROLLER DESIGN

4.1 PID-type DSMC

Considering that there may be hysteresis in the control of piezoelectric actuated

system, discrete-time sliding mode control (DSMC) which has strong robustness has been

adopted for the position and force control. The DSMC with PID-type sliding surface

offers a faster transient response and less steady-state error compared with the traditional

DSMC featured with PD-type sliding surface. Hence, DSMC with PID-type sliding

surface is utilized for the control of the designed microgripper.

It is known that the transfer functions of position response can be represented as:
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Then the dynamic model of Eq. (1) can be expressed as
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where )()()( * kpkpkpe  represents the error between the estimated perturbation and

real perturbation.

It can be deduced that pe(k) is also bounded
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where  is a positive constant and Ts is the sampling time.

In this paper, the output tracking error is defined as follows:

)()()( kxkxke r (5)

where xr(k) is the desired output.

Based on the error in Eq (5), the PID-type sliding function is defined as follows:
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Designing the sliding control law as
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Substituting Eq. (8) into Eq. (3), the following equation can be obtained:
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Substituting Eq. (9) into the equation of PID-type sliding function (6) yields
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To evaluate the stability of the control system, a Lyapunov function is defined as
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The following conditions should be satisfied:
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Since the sampling time is short, Eq. (12) can be written as
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For the DSMC with the exponential reaching law, the following relationship can be

deduced:
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If the gain λ2 is designed to meet the condition  2 , where  is an arbitrary

positive constant, the following relationship can be obtained:
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When the sampling time Ts is short, the following relationship can be obtained:
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Based on Eq. (15) and (16), the system can be verified to be stable.

4.2 Position-force switching control strategy

The grasping task of microgripper can be classified into three phases, namely the

closing phase, contact phase and opening phase. In closing and opening phases position

control is essential to ensure high position precision of moveable jaw, while in contact

phase force control is required to make the grasping force controllable. Therefore a

position-force control strategy is utilized in which the final voltage in previous phase

should be the base value for the next phase to guarantee a stable and smooth transition.

Once the moveable jaw contacts the object and the grasping force exceeds the threshold

value, the control system switches to the force control from the position control. When it

is time to release the object, the control system will switch to the position control again.

The flow chart of the position-force switching control strategy is shown in Fig. 8. In the

flow chart Fr is the desired grasping force of force control in contact phase, while dr1 and

dr2 are the desired displacements of position control in closing phase and opening phase,

respectively. Fs is the threshold force, tg is the time to release the object and Tg is overall

time of grasping operation. usp is the switching voltage from position control to force

control and usf is the switching voltage from force control to position control.
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Fig. 8. Flow chart of the position-force switching control strategy.

5. EXPERIMENTS

5.1 Prototype development and experimental setup

In order to guarantee the geometrical accuracy wire electro-discharge machining

(WEDM) technique is utilized to manufacture the flexure-based mechanism. Figure 9

shows the prototype of microgripper made by AL7075-T651. AL7075-T651 has the

property of high elasticity, yield strength, and light mass for the excellent physical and

thermal properties. The initial gap between the grasping jaws can be adjustable by the

preload bolt to grasping different sizes of objects.
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Fig. 9. Prototype of the microgripper.

A number of tests have been conducted on the designed microgripper which is

mounted on a vibration-isolated Newport RS-4000 optical table to reduce the external

vibration disturbance. Two laser displacement sensors, which provide a 50 nm resolution

within a 20 mm measuring range, are employed to measure the input displacement and

output displacement of the microgripper, respectively. As shown in Fig. 10 (a) the input

displacement is measured at the point where the PZT actuator pushes the leverage

mechanism and the output displacement is measured at the point on the output terminal of

the parallelogram leverage mechanism. For the purpose to measure the grasping force a

strain gage is glued on the on the base end of the flexible beam, which is adopted form a

quarter Wheatstone bridge for the grasping force measurement. A dynamic strain gauge

system is adopted to measure the signal of Wheatstone bridge. The strain gage is

calibrated by hanging several objects on the movable jaw, whose weights are measured

by electronic balance. At the same time the output voltage of the sensor are acquired by

NI data acquisition card. The gain is then calculated as 0.559 mN/mV, which is used to
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convert the voltage into force value. A dSPACE DS1103 controller is adopted to

implement the control algorithm, which picks up the displacement and force signals to

determine the current state of the microgripper. In addition, a voltage amplifier (E505.00

from PI, Inc) is utilized to amplify the output voltage of controller for the PZT actuator

drive and the gain factor is 10. All the devices are also placed on the vibration-isolated

table and experimental setup is displayed in Fig. 10 (b).

(a) (b)

Fig. 10. Experimental setup: (a) schematic diagram and (b) photograph.

5.2 Characteristics test

In order to measure the displacement amplification ratio, a sinusoidal signal with the

amplitude of 60 V and frequency of 1 Hz is applied on the PZT actuator. The input and

output displacements can be measured by two laser displacement sensors at the same time;

therefore the relationship between the input and output displacements can be obtained.

Figure 11 shows that the experimental measured displacement amplification ratio is 13.94,
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while the displacement amplification ratio of simulation is 14.94. It is can be seen that the

result of experiment is in good agreement with the result of simulation.

The dynamic characteristics of the microgripper are examined by means of

frequency response. In order to obtain the experimental data swept sine waves with the

amplitude of 0.6 V and frequency range of 0.1 - 1200 Hz are applied on the PZT actuator

through the voltage amplifier, which are produced by dSPACE DS1103 controller. The

position response is measured by the laser displacement sensor while the microgrpper is

operated freely, and the force response is measured by the strain gage while a 25.4-µm

gold wire is selected as a grasped object to identify force model. The output signals of

position and force responses are acquired within 10 kHz and then the Matlab System

Identification Toolbox is used to process the data. The results are summarized in Fig. 12.

In Fig. 12(a) a resonant peak in position response at the frequency of 531 Hz is observed,

which is 8.3% lower than the value (575 Hz) predicted by FEA simulation. Based on the

experimental data the transfer functions of position and force are achieved from the

input-output sequences, which are given as

83.0567.2719.2
275.634.1511.13911.3)( 23

23


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zzGF (18)



21

Fig. 11. Relationship between the input and output displacements.

(a)
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(b)

Fig. 12. Results of system identification: (a) position response and (b) force response.

5.3 Control experiment

Several control experiments are carried out to examine the performance of the

designed controller. During the experiments, gold wires with a diameter of 25.4 µm are

employed to verify the effectiveness of the switching control strategy.

Step response is investigated and the desired displacement trajectory is defined as a

step signal with a final value as 20 µm. The result of step response by position control is

shown in Fig. 13. From the result it can be seen that the settling time is 12 ms, the

overshoot is 2.5%, and the steady-state error is ±0.2 µm. The sinusoidal response is

investigated using a sinusoidal reference input with the amplitude of 10 μm, frequency of

20 Hz and bias of 10 μm, which is shown in Fig. 14(a). The corresponding position

tracking errors are illustrated in Fig. 14(b). It is found that the tracking errors are within

±1.3 μm.
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Fig. 13. Displacement step response of the microgripper.

(a)

(b)

Fig. 14. Displacement sinusoidal response of the microgripper: (a) displacement and

(b) displacement error.
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In order to verify the performance of the force controller, step response with a final

value as 50 mN is investigated while the threshold force is set as 5 mN. The results are

shown in Fig.15. From the results it can be seen that the settling time is 30 ms, the

overshoot is 1.3%, and the steady-state error is ±0.4 mN.

Fig. 15. Force step response of the microgripper.

For the purpose to achieve a complete and efficient grasp-hold-release operation, the

position and force trajectories are planned as shown in Fig.16. In order to ensure smooth

switching, fast close and slow contact is essential in closing phase, a homothetic

trapezoidal velocity planning is employed to control the jaw displacement which leads to

the contact of the jaws and grasped wire with a constant velocity. In the contact phase a

step force signal is utilized as the reference signal of the grasping force. In order to make

the jaw return to its initial position, the trapezoidal velocity planning is used based on the

final position in the contact phase.

Figure 17 shows the results of position-force switching control in the

grasp-hold-release operation. The results show that the steady-state error of grasping

force is ±0.4 mN, the settling time is 20 ms and the overall time of the operation is
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within 180 ms. The comparison with other similar works is conducted and shown in Tab.

2. We can find that the developed microgripper outperforms the others in terms of no

dense mode, and faster overall operation time.

Fig. 16. Trajectory planning of position and force control.

(a)
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(b)

Fig. 17. Results of position-force switching control in the grasp-hold-release operation: (a)

displacement response, and (b) force response.

Tab. 2 Comparison with other microgrippers.

Actuation
First vibration

frequency

Second vibration

frequency

Overall

operation time

Position/force

control
Reference

Thermo-

Piezoelectric
667 Hz - 120s Yes [6]

Voice coil

motor
- - >1s No [9]

PZT 842 Hz 986 Hz - No [11]

PZT 359.56 Hz - >12s No [17]

PZT 141.67 Hz 150.44 Hz 20s No [29]

PZT 244 Hz - >5s Yes [24]

PZT 1062 Hz 1344 Hz - No [30]

PZT 575 Hz 1560 Hz 0.18s Yes
This

works



27

6. CONCLUSION

A novel piezoelectric actuated microgripper has been reported in this paper, which is

designed asymmetrically with just one jaw movable. Through a three-stage flexure-based

mechanical structure a large displacement amplification ratio has been achieved. The

designed microgripper has the advantages of no dense mode and fixed locating datum

compared with the symmetrical microgripper with two movable jaws. The characteristics

analyses of the developed microgripper are carried out based on FEA. A position-force

switching controller has been designed, which is composed of position and force

controllers and DSMC is utilized in the position and force controller. The designed

microgripper has been manufactured through WEDM technique. Experimental tests have

been implemented to examine the performance of the microgripper. The results show that

the amplification ratio of the designed microgripper is 13.94 and the mode frequency is

531 Hz, which are in good agreement with the results by simulation. The performance of

microgripper by executing grasping operations of gold wire has been tested with the

position-force switching controller. The position step response show that the settling time

is 12 ms, the overshoot is 2.5%, and the steady-state error is ±0.2 µm. For the force step

response, the settling time is 30 ms, the overshoot is 1.3%, and the steady-state error is

±0.4 mN. With position-force trajectory plan, fast and robust grasping operations have

been achieved, and the results show that the steady-state error of grasping force is ±0.4

mN, the settling time is 20 ms and the overall time of the operation is within 180 ms. The

experimental results indicate that microgripper exhibits good performance and high

precision grasping operations can be realized through the developed control strategy.
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