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1 Introduction 

Within a logistics chain, products (raw material, goods-in-process, finished goods) need to 

be physically moved from one location to another (i.e. at and between point origin and 

point of consumption, from manufacturers to end users). During this process, they may be 

buffered or stored at certain places (warehouses) for a certain period of time. Many 

activities are carried out in a warehouse. Among them, order picking (or order selection) - 

the process of retrieving individual items (from storage locations) for the purpose of 

fulfilling an order for a customer1 - is the most critical one. It has long been identified as a 

very labor intensive operation in manual systems, and a very capital intensive operation in 

automated systems (Goetschalckx and Ashayeri, 1989).  It may consume as much as 60% 

of all labor activities in the warehouse (Drury, 1988). And for a typical warehouse, the cost 

of order picking is estimated to be as much as 55% of the total warehouse operating 

expense (Tompkins et al., 2003). For these reasons, warehousing professionals consider 

order picking as the highest-priority activity for warehousing productivity improvements. 

 

Since the last decade, electronic commerce, globalized economy and customers-oriented 

market have significantly changed the business environment. As a consequence, there have 

been several new trends in warehousing. Warehouses nowadays are more functional than 

before. The obvious role of warehousing is to store or buffer products, but warehouses 

nowadays provide other value-added activities or services as well. Example for these 

activities and services are product consolidating, cross-docking, quality checking, final 

assembling, packaging, refurbishing (reverse logistics), information services, etc. 

Warehouses are also becoming bigger. It is because of the fact that users are consolidating 

                                                           
1 According to the Material Handling Institute of America 
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their distribution networks to reduce safety stock, to gain economics of scales, and to make 

the network easier to manage. It is also due to many manufacturers and whole sellers want 

to focus on their core business, and thus outsource entirely their warehousing activities. 

Consequently, products are often stored in central (often very large) warehouses of third-

party logistics providers. Furthermore, with the growing success of e-commerce, 

warehouses nowadays often receive a large amount of small (i.e. few items) orders which 

have to be picked within tight time windows. Additionally, there are also other trends like 

small production lot-sizes, product customization, point-of-use delivery, revered logistics, 

and environmental protection. All in all, these new developments make warehouse 

operations in general and order picking in particular more complex and the study of 

warehousing becomes more vital for many companies nowadays. 

 

As a united part of the logistics chain, order picking operations have an important impact 

on the chain performance. Any inefficiency in order picking can lead to unsatisfactory 

service and high operational cost for its warehouse, and consequently for the whole supply 

chain. In order to operate efficiently, the order process needs to be robustly designed and 

optimally controlled. The overall aim of the thesis is therefore to provide analytical models 

to support the design and control of efficient order picking processes. In particularly, the 

thesis addresses issues such as travel distance estimation, optimal layout design, order 

batching and zoning.  

 

In this introductory chapter, we briefly highlight warehouse missions and functions in 

Section 1.1. We focus on order picking activities in Section 1.2, and review recent 

literature concerning the major issues in design and control of order picking processes in 

Section 1.3. Consequently, we introduce the research problems in Section 1.4. Finally, we 

give an outline of the thesis in Section 1.5.    

1.1 Warehouse as an integral part of every logistics system  

1.1.1 Missions of warehouses 

Lambert et al. (1998) state that there are more than 750,000 warehouse facilities 

worldwide, including state-of-art, professionally managed warehouses, as well as company 

stockrooms and self-store facilities. Warehouses often involve large investments and 

operating costs (e.g. cost of land, facility equipment, labor).  So, why do warehouses exist? 

They do exist to carry on one or more of the following missions (Lambert et al., 1998): 

1. Achieve transportation economies (e.g. combine shipment, full-container load). 

2. Achieve production economies (e.g. make-to-stock production policy). 
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3. Take advantage of quantity purchase discounts and forward buys. 

4. Maintain a source of supply. 

5. Support the firm’s customer service policies. 

6. Meet changing market conditions and again uncertainties (e.g. seasonality, 
demand fluctuations, competition). 

7. Overcome the time and space differences that exist between producers and 
customers. 

8. Accomplish least total cost logistics commensurate with a desired level of 
customer service. 

9. Support the just-in-time programs of suppliers and customers. 

10. Provide customers with a mix of products instead of a single product on each 
order (i.e. consolidation). 

11. Provide temporary storage of material to be disposed or recycled (i.e. reverse 
logistics). 

12. Provide a buffer location for trans-shipments (i.e. direct delivery, cross-docking). 
 

Indeed, in some special situations (e.g. lean manufacturing, ‘virtual’ inventory), storage 

functions in a supply chain can be reduced. But, in almost all supply chains, raw materials, 

parts, and product inventories still need to be stored or buffered, implying that warehouses 

are needed and play a critical role in the companies’ logistics success.  

1.1.2 Warehouse operations 

Figure 1.1 shows the typical functional areas and flows within warehouses. Three main 

functions are movement, storage, and information transfer. 

• The movement function can be further divided into several activities: receiving, 

transfer and put away, order picking/selection, accumulation/sortation, cross-docking, 

shipping. The receiving activity includes the unloading of products from the transport 

carrier, updating the inventory record, inspection to find if there is any quantity or 

quality inconsistency. The transfer and put away involves the transfer of incoming 

products to storage locations. It may also include repackaging (e.g. full pallets to 

cases, standardized containers), and physical movements (from the receiving docks to 

different functional areas, between these areas, from these areas to the shipping 

docks). The order picking/selection involves the process of obtaining a right amount 

of the right products for a set of customer orders. It is the major activity in most 

warehouses. The accumulation/sortation of picked orders into individual (customer) 

orders is a necessary activity if the orders have been picked in batches. The cross-

docking activity is performed when the received products are transferred directly to 
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the shipping docks (short stays or services may be required but no order picking is 

needed).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1   Typical warehouse functions and flows (Tompkins et al., 2003) 

 
• The storage function is the physical containment of products while they are awaiting 

customer demands. The form of storage will depend on the size, quantity of the 

products stored, and the handling characteristic of products or their product carriers 

(Tompkins et al., 2003).  

• The information transfer is the third function of warehousing; it occurs simultaneously 

with the movement and storage functions. Warehousing information (inventory level, 

stock-keeping locations, customer data, inbound, outbound shipments, etc.) is not only 

important for administering the warehouse operations itself but also for the efficiency 

of the whole supply chain.  

1.2  Order picking 

1.2.1 Order picking systems 

As previously mentioned, order picking involves the process of clustering and scheduling 

the customer orders, releasing them to the floor, the picking of the items from storage 

locations and the disposal of the picked items. Many different order picking (OP) system 

types can be found in warehouses (often multiple OP systems are employed within one 

warehouse). Figure 1.2 distinguishes OP systems according to whether humans or 

automated machines are used. The majority of warehouses employ humans for order 
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picking. Among these, the picker-to-parts system, where the order picker walks or drives 

along the aisles to pick items, is most common.  

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.2   Classification of order picking systems (based on De Koster, 2004) 

 

We can distinguish two types of picker-to-parts systems: low-level picking and high-level 

picking. In low-level OP systems, the order picker picks requested items from storage 

racks or bins (bin-shelving storage). It is similar to a shopper traveling up and down in a 

grocery store to fill a cart with one or several products. Because of the labor intensity, low-

level OP systems sometimes are called manual-pick OP systems. Some other OP systems 

have high storage racks; order pickers travel to the pick locations on board of a lifting 

order-pick truck or crane. The crane automatically stops in front of the appropriate pick 

location and waits for the order picker to perform the pick. This type of system is called a 

high-level or a man-aboard OP system. Parts-to-picker systems include automated storage 
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another load is retrieved from the rack. In multiple command cycles, the S/R machines 

have more than one shuttle and can pick up several loads in one cycle, at the I/O point or 

retrieve them from rack locations. For example, in a four-command cycle (described in 

Sarker et al., 1994), the S/R machine leaves the I/O point with two storage loads, travels to 
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unload the remains storage load. And then it proceeds to a pick location to retrieve the 

second load. Finally it returns to the I/O point, after two storages and two retrievals. Other 

systems use modular vertical lift modules (VLM), or carousels that also offer unit loads to 

the order picker, who is responsible for taking the right quantity. There exist systems 

which combine the principles of parts-to-picker and picker-to-parts OP systems (referred 

as put systems in Figure 1.2). First, items have to be retrieved, which can be done in a 

parts-to-picker or picker-to-parts manner. Second, the carrier (usually a bin) with these 

‘parts’ is offered to an order picker who distributes the parts over customer orders. Put 

systems are particularly popular in case a large number of customer order lines have to be 

picked in a short time window (for example at the Amazon Germany warehouse) and can 

result in about 500 picks on average per order picker hour (for small items) in well-

managed systems (De Koster, 2004).  

 

Manual-pick picker-to-parts systems are the most common (De Koster, 2004). The basic 

variants include picking by article (batch picking) or pick by order (discrete picking). In 

the case of picking by article, multiple customer orders (the batch) are picked 

simultaneously by an order picker. Many in-between variants exist, such as picking 

multiple orders followed by immediate sorting (on the pick cart) by the order picker (sort-

while-pick), or the sorting takes place after the pick process has finished (pick-and-sort). 

Another basic variant is zoning, which means that a logical storage area (this might be a 

pallet storage area, but also the entire warehouse) is split in multiple parts, each with 

different order pickers. Depending on the picking strategy, zoning may be further 

classified into two types: progressive zoning and synchronized zoning. Under the 

progressive (or sequential) zoning strategy, each batch (possibly of one order) is processed 

only in one zone at a time; at any particular point in time each zone processes a batch that 

is different from the others. Hence, the batch is finished only after it sequentially visits all 

the zones containing its line items. Under the synchronized zoning strategy, all zone 

pickers can work on the same batch at the same time. There may be some idle time of zone 

pickers waiting until all other zone pickers finish the current batch. This synchronization of 

pickers intends to keep the batches from being mixed, and so to lessen the complexity of 

the following stages such as the accumulation and sortation. The term wave picking is used 

if orders for a common destination (for example, departure at a fixed time with a certain 

carrier) are released simultaneously for picking in multiple warehouse areas. Usually (but 

not necessarily) it is combined with batch picking. The batch size is determined based on 

the required time to pick the whole batch completely, often between 30 minutes to 2 hours 

(see Petersen, 2000). Order pickers pick continuously the requested items in their zones, 

and a next picking-wave can only start when the previous one is completed.  
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The design of real OP systems is often complicated, due a wide spectrum of external and 

internal factors which impact design choices. According to Goetschalckx and Ashayeri 

(1989) external factors that influence the OP choices include marketing channels, customer 

demand pattern, supplier replenishment pattern and inventory levels, the overall demand 

for a product, and the state of economy. Internal factors include system characteristics, 

organization and operational policies of OP systems. System characteristics consist of 

mechanization level, information availability and warehouse dimensionality (see Figure 

1.3). Decision problems related to these factors are often concerned at the design stage. 

The organization and operational policies include mainly five factors: routing, storage, 

batching, zoning and order release mode. Figure 1.3 also shows the level of difficulty of 

OP systems; it is proportional to the distance of the representation of this problem in the 

axis system to the origin. In other words, the farther a system is located from the origin, the 

harder the system is to design and control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1.3 Complexity of order picking systems (based on Goetschalckx and 

Ashayeri, 1989) 
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4. Manual-pick systems and AS/RS are present in most warehouses. Automated and 

robotized picking is only used in special cases (e.g. valuable, small and delicate items).  

1.2.2 Order picking planning goals 

The most common objective of OP systems is to maximize the service level subject to 

resource constraints such as labor, machines, and capital (Goetschalckx and Ashayeri, 

1989). The service level is composed of a variety of factors such as average and variation 

of order delivery time, order integrity, and accuracy. A crucial link between order picking 

and service level is that the faster an order can be retrieved, the sooner it is available for 

shipping to the customer. If an order misses its shipping due time, it may have to wait until 

the next shipping period or is subject to expedition cost. Minimizing the order retrieval 

time (or picking time) is, therefore, a need for any OP system. Figure 1.4 shows the OP 

time components in a typical distribution centre: about 50% of the OP time is the travel 

time. The travel time to retrieve an order is a direct expense, but does not add value 

(Bartholdi and Hackman, 2003). For these reasons, in many OP situations, minimizing 

travel time is chosen as an objective for the improvement. 

 

For manual-pick OP systems it is usually realistic to assume that the travel time is an 

increasing function of the travel distance (see for example: Jarvis and McDowell, 1991, 

Hall, 1993, Petersen, 1999, Roodbergen and De Koster, 2001b, and Petersen and Aase, 

2003). Consequently, the travel distance is often considered as a primary objective in 

warehouse (layout) design and optimization. Two types of travel distance are widely used 

in the OP literature: the average travel distance of a picking tour (or average tour length) 

and the total travel distance. However, it should be noted that, for a given pick load (a set 

of orders), minimizing the average tour length is equivalent to minimizing the total travel 

distance. 

 

 

 

 

 

 

 

 

 

 

Figure 1.4   Typical distribution of an order picker’s time  

(Tompkins et al., 2003)  
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Clearly, minimizing the average travel distance (or, equivalently, total travel distance) is 

only one of many possibilities. Another important objective would be minimizing the total 

cost (that may include both investment and operational costs). Other considerations which 

are often taken into consideration in warehouse design and optimization are:  

• minimizing the throughput time of an order 

• minimizing the overall throughput time (e.g. to complete a batch of orders) 

• maximize the use of space 

• maximize the use of equipment 

• maximize the use of labor 

• maximize the accessibility to all items 

These objectives should be chosen according to their relevance to a certain situation. As 

we consider different planning and control problems, different objectives are concerned in 

this thesis. However, they are all closely related to the order throughput time. In Chapter 3, 

we consider minimizing the average pick tour length as the objective function for the 

problem of determining the optimal layout of the picking area (i.e. number of aisles, aisle’s 

length). In Chapter 4, we use minimizing the average cycle time (of the S/R machine) by 

optimizing the rack’s dimensions. In Chapter 5, we select minimizing the average 

throughput time of an order as the objective in order to determine the optimal picking 

batch size where orders arrive online and need to be picked in a short time. Finally in 

Chapter 6, we choose minimizing the overall system throughput time in order to determine 

the optimal number of zones in a pick-and-sort OP system. 

1.3 Issues in planning and control of order picking processes 

As shown in Rouwenhorst et al. (2000), issues in planning and control of OP processes can 

be on either tactical or operational level. From the organization perspective, common 

decisions at these levels are: 

• layout design and dimensioning of storage system 

• storage assignment  

• batching and zoning 

• routing 

• order accumulation/sorting 

 

In this section, we first give an introduction to the above decision issues and then mention 

briefly the related literature concerning these decisions. Issues in design and planning of 
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warehousing systems have been reviewed and discussed in Ashayeri and Gelders (1985), 

Cormier and Gunn (1992), Cormier (1997), Van den Berg (1999), Van den Berg and Zijm 

(1999), and Rouwenhorst et al. (2000). Issues in design and control of OP processes in 

particularly are mentioned in Goetschalckx and Ashayeri (1989), Choe and Sharp (1991), 

Roodbergen (2001), and Wäscher (2004). An extensive bibliography on OP systems is 

gathered in Goetschalckx and Wei (1994), Roodbergen (1999, 2001) and Le-Duc and De 

Koster (2005d). Bellow we call for these publications and update them whenever 

applicable. 

1.3.1 Layout design problem 

In the context of OP, the layout design concerns two sub-problems: the layout of the 

facility containing the OP system and the layout within the OP system. The first problem is 

usually called the facility layout problem; it concerns the decision of where to locate 

various departments (receiving, picking, sorting, and shipping, etc.). It is often carried out 

by taking into account the activity relationship between the departments. The common 

objective is minimizing the handling cost, which in many cases is represented by a linear 

function of the travel distance. We refer to Tompkins et al. (2003) for a description of 

several efficient layout design procedures and to Meller and Gau (1996) for an overview 

on this subject. In this thesis, we focus on the second sub-problem, which can also be 

called the internal layout design or aisle configuration problem. It concerns the 

determination of the number of blocks, and the number, length and width of aisles in each 

block of a picking area (or department). The common goal is to find a ‘best’ warehouse 

layout with respect to a certain objective function among the layouts which fit a given set 

of constraints and requirements. Again, the most common objective function is the travel 

distance. For example, in Chapter 3 of this thesis, we consider the problem of determining 

the number of aisles and the aisle length such that the average tour length is minimized.   

 

An early publication concerning layout design for a manual OP system is by Bassan et al. 

(1980). They present several deterministic models for determining the warehouse’s 

dimensions such that the handling distance, handling time, space utilization, or costs are 

minimized. Rosenblatt and Roll (1984), using both analytical and simulation methods, 

study the effect of storage policy (i.e. how to assign products to storage locations) on the 

internal layout of warehouse. Rosenblatt and Roll (1988) examine the effect of stochastic 

demands and different service levels on the warehouse layout and storage capacity. 

Recently, Roodbergen (2001) proposes a non-linear objective function (i.e. average travel 

time in terms of number of picks per route and pick aisles) for determining the aisle 

configuration for random storage strategy warehouses (including single and multiple 

blocks) that minimizes the average tour length. Also considering minimization the average 

tour length as the major objective, Caron et al. (2000) consider 2-block warehouses (i.e., 
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one middle cross aisle) under the cube-order-index (COI)-based storage assignment (see 

Heskett (1963) for the definition and Section 1.3.2 for a discussion of storage assignment 

methods), while Le-Duc and De Koster (2005a,b) focus on the class-based storage 

assignment. For both random and volume-based storage assignment methods, Petersen 

(2002) shows, by using simulation, the effect of the aisle length and number of blocks on 

the total travel time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5   A size view of zone configurations in a rack with three product storage classes 
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will in general be no more than 3% above the optimum. For multi-command cycles with 

class-based storage, Guenov and Raeside (1992) compare three zone shapes (L-shape, 

Band1, and Band2, see Figure 1.5) in an AS/RS. They conclude that L-shape and Band2 

give best performance for the I/O point location located at the bottom left corner of the 

rack. Band2 appears to improve its performance when the number of picks per cycle 

increases. This means that the L-shaped zone boundaries should not be considered as the 

global optimal for multi-command cycles. Band1 may outperform the others in the case 

that the I/O point location is a half way between the two left corners of the rack. 

1.3.2 Storage assignment problem 

Items (or stock keeping units - SKUs) need to be put into storage locations before they can 

be picked to fill customer orders. A storage assignment method is a set of rules which are 

used to assign items to storage locations. The following storage assignment methods are 

mentioned in the literature. 

Random storage assignment 

This storage assignment method allocates items randomly over the available storage 

locations. This method is considered widely in the literature; in many studies, it is used as 

a benchmark for the improvement by using other storage assignment methods. 

Closest-open-location storage assignment 

In practice, incoming items (e.g. on a pallet) are often allocated to the closest empty 

location. ‘Closeness’ here is defined by the travel distance from the input/output (I/O) 

point (or depot) to the storage location. This is probably the simplest method and often 

used when order pickers have to choose storage locations themselves. As a result, items do 

not have a fixed location and, in the long run, their locations are scattered over the picking 

area. In some studies, it is showed that the random and closest-open-location method are 

converged in a long run (see, for example, Schwarz et al., 1978).   

Dedicated storage assignment 

With this storage assignment type, each item has its own storage location. To minimize the 

travel distance, the closest-to-depot storage locations are commonly reserved for items 

with a high turnover and little storage space occupation. An early type of this storage 

assignment method is the COI-based storage assignment, where the COI of an item is 

defined as the ratio of the required storage space to the order frequency of the item (see for 

example Heskett, 1963, Heskett, 1964, Kallina and Lynn, 1976, Malmborg and Bhaskaran, 

1987, 1989, 1990, and Malmborg, 1995, 1996). The COI-based method sorts items by 

increasing COI ratio and locations on increasing distance from the I/O point. Next, items 

are assigned one by one to locations in this sequence (items with the next lowest COI ratio 
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to next quickest-to-access locations). Volume-based (also: frequency-based or turnover-

based) storage assignment is a different type of dedicated storage assignment method. It is 

studied by, for example, Petersen (1997), Petersen (1999), Petersen and Schmenner (1999), 

Petersen (2000), Petersen et al. (2004), and Petersen and Aase (2003). This method assigns 

items to storage locations according to their (expected) pick volume; usually high pick 

items are located closest to the I/O point. The pick volume of an item can be expressed in 

number of units or pick lines during a certain time horizon. The difference between this 

method and COI-based storage is that the volume-based assignment only considers the 

popularity of items, not their space occupation.  

Class-based storage assignment (also: ABC-storage, group-based storage) 

This method assigns items to storage locations on a group basis. It divides both items and 

storage locations into an identical number of classes. Item classes are based on turnover 

frequency (like pick lines per time unit, or product units picked per time unit). Figure 1.6 

shows an example of a division of the items in three classes. The item classes are sorted on 

decreasing turnover frequency and the storage location classes on increasing travel 

distance from the I/O point. Next, the item classes are assigned to the storage location 

classes (which should be large enough to contain the SKUs) in this sequence. Within a 

storage class, items are randomly stored. The major difference between this method and 

the volume-based assignment method is that this method assigns items to storage locations 

based on a group basis, while the volume-based method uses an individual basis. Figure 

1.7 shows some examples of allocating items in a warehouse by using the class-based 

storage assignment method. This method can be considered as a combination of the 

volume-based and randomized storage assignment method. However, compared to random 

storage, it provides a saving on travel distance. A drawback of this method is that it 

involves several issues that are not trivial to solve. The first issue is the problem of 

drawing the borders between product classes. In inventory control, a classical way for 

dividing items into classes based on popularity is Pareto’s method. The idea is to group 

items into classes in such a way that the fastest moving class (A-class) contains only about 

15% of the items stored but contributes to about 85% of the turnover2. In the literature, 

there is no firm rule to define a class partition strategy (number of classes, percentage of 

items per class, and percentage of the total pick volume per class). Usually, the number of 

item classes is restricted to 3 and item classes are named A, B and C (for fastest, medium 

and slowest moving items), that is why this method is also called the ABC-storage 

assignment. However, more classes are also possible and may reduce the travel distance 

further. For a (low-level) manual-pick OP system, Petersen et al. (2004) recommend that 

the number of classes should be between 2 and 4. While for AS/RS, Yang (1988) and Van 
                                                           
2 It is based on an observation of the Italian sociologist and economist Vilfredo Pareto:  “85% of the wealth of the 

world is held by 15% of the people”. 
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den Berg and Gademann (2000) found that (in their studies) 6-class is the best among other 

options. After the item classes have been clearly defined, for each item class, an 

appropriate amount of storage space and storage locations have to be determined. The 

amount of storage space per item depends on the item size, quantity stored and product 

carrier on which the item is stored. ABC-storage can be applied for the total stored 

quantity of the items, or for the quantity to be stored in a forward (pick) area only 

(meaning the bulk quantity is stored in a reserve storage area). In order to decide the ABC-

location divisions, the closeness (to the I/O point) can be used. Since usually multiple 

aisles are present, the closeness depends on the routing method used. We devote Chapter 3 

of this thesis to investigate this problem in-depth.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6   An example of the class partition strategy 

 
 
 

 

 

 

 

Figure 1.7  Examples of locating item classes in a warehouse 

 

Besides the publications above-mentioned, the class-based storage assignment method is 

also considered in: Hausman et al. (1976), Graves et al. (1977), Schwarz et al. (1978), Park 

and Webster (1989), Rosenblatt and Eynan (1989), Goetschalckx and Ratliff (1990), 

Guenov and Raeside (1992), Eynan and Rosenblatt (1994), Kouvelis and Papanicolaou 

(1995), Malmborg (1996), Larson et al. (1997), Ashayeri et al. (2002, 2003), and Park et 

al. (2005) for parts-to-picker OP systems, and in Lee (1992), Jarvis and McDowell (1991), 

% number of items

%
 t

u
rn

o
v
e

r

A
-c

la
s
s

B
-c

la
s
s

C
-c

la
s
s

15% 100%

85%

I/O point

pick aisle

A B C



15 1. Introduction 

 

Tang and Chew (1997), Chew and Tang (1999), Le-Duc and De Koster (2005a, b, 2004a), 

and  Roodbergen (2005) for picker-to-parts OP systems.  

Family-grouping storage assignment 

The idea of this type of storage assignment methods is that items that are likely to appear 

together on an order, or are likely to be picked in the same tour are stored close together, 

and by doing so the travel distance will be reduced. Another reason for items to be stored 

next to each other can also be: they are from the same supplier or same owner (for 

example, in the case of a service provider’s warehouse). In order to group items the 

statistical correlation between items (e.g. frequency at which they appear together in an 

order, see Frazelle and Sharp, 1989, and Brynzér and Johansson, 1996) should be known 

or at least be predictable. This storage assignment method can also be used in combination 

with other methods. For example, we can group items into classes based on their statistical 

correlations, determine the turnover rate of each class, and then assign classes to storage 

locations based on their turnover rate. In the literature, two types of the family-grouping 

storage assignment are mentioned. The first method is called the complimentary-based 

method, which contains two major phases. In the first phase, it clusters the items into 

groups based on a measure of strength of joint demand (‘complimentary’). In the second 

phase, it locates the items within one cluster as close to each other as possible (Wäscher, 

2004). Rosenwein (1994) has shown that the clustering problem can be formulated as a p-

median problem. For finding the position of clusters, Liu (1999) suggests that the item type 

with the largest demand should be assigned to the location closest to the I/O point 

(volume-based strategy), while Lee (1992) proposes to take into account also the space 

requirement (COI-based strategy). The second type of family-grouping method is called 

the contact-based method. This method is similar to the complimentary method, except it 

uses contact frequencies to cluster items into groups. For a given (optimal) routing 

solution, a contact frequency between item type i  and item type j  is defined as the 

number of times that an order picker picks either item type i directly after item type j, or 

item type j directly after item type i. However, the routing decision is dependent on the 

location of the item types, which demonstrates the strong interrelationship between item 

location and routing. Due to the fact that finding a joint optimal solution for both problems 

is not a realistic approach, at least not for problem instances of the size encountered in 

practice, contact-based solution methods alternate between the two problem types 

(Wäscher, 2004). The contact-based method is considered in, for example, Van 

Oudheusden et al. (1988), and Van Oudheusden and Zhu (1992). We refer to Wäscher 

(2004) for a thorough discussion of the complimentary-based and contact-based methods. 
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Comparison between different storage assignment methods 

The random assignment method results in a high space utilization (or low space 

requirement) at the expense of increased travel distance (Choe and Sharp, 1991). For unit-

load AS/RS, Graves et al. (1977) observe that in order to enable an incoming load to be 

stored in its class region, the space requirements increase with the number of classes. 

Accordingly, class-based storage requires more rack space than randomized storage, and 

dedicated storage requires more rack space than class-based storage. Roll and Rosenblatt 

(1983) and Rosenblatt and Roll (1984) compare the space requirements for the random, 

volume-based and class-based storage assignment for a port warehouse by using 

simulation. Their results show that the class-based storage assignment can significantly 

reduce the space requirement compared to the volume-based assignment. 

 

Dedicated storage assignment methods (i.e. COI-based and volume-based) have several 

advantages compared to the other methods. First, they yield the largest saving in travel 

distance. Second, if each item has its own location, it is easier for the order picker to 

remember the item location (thus the searching time is substantially reduced). 

Additionally, it is possible to take into account physical item properties (like heavy items 

should be put at the low levels, while lighter ones can be put on top). The main 

disadvantage of the method is that a storage space may even be reserved for an obsolescent 

item. Therefore, the space utilization is often low in the environments where the product 

assortment frequently changes over time. Furthermore, according to Caron et al. (1998), 

the adoption of COI-based storage assignment is generally a more ‘information intensive’ 

approach than random storage, since order and storage data must be processed in order to 

rank and assign items by a increasing COI. The availability of low cost computer systems 

operating on large data-bases makes the above requirement negligible, especially if the 

dramatic improvements in picking efficiency which stem from the adoption of advanced 

stock location assignment policies are taken into account. However, COI-based storage 

really requires item locations to be constantly reviewed in order to maintain storage strictly 

based on the ratio of required space to order frequency which is always changing in a 

highly dynamic environment. Since in practice only periodic reviews are possible, this 

method usually does not perform well if demand varies from day to day. The class-based 

method is somewhere between the dedicated and random method, depending on other 

parameters like skewness of the demand, partition of classes, and routing method used. 

Schwarz et al. (1978), Kim and Seidmann (1990), Petersen et al. (2004), Le-Duc and De 

Koster (2005a,b, 2004a) and many others show that class-based storage leads to a 

reduction in travel distance (in both automated and manual-pick warehouses) compared to 

the random method. Compared to COI-based methods, it may result in a longer travel 

distance. Based on simulation experimental results, Petersen et al. (2004) show that with 

regards to the travel distance, volume-based storage outperforms class-based storage 
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assignment. The gap between two methods depends on the class partition strategy (i.e. 

number of classes, percentage of the total volume per class) and the routing method used. 

However, they suggest using the class-based method in practice as it is easier to implement 

than the volume-based method; it does not require a complete list of the items ranked by 

volume and it requires less time to administer than the other dedicated methods do. All 

above-mentioned papers treat the demand as deterministic (i.e. the probability to visit a 

storage location is known or can be determined exactly). Thonemann and Brandeu (1998) 

consider the AS/RS described by Hausman et al. (1976) with stochastic demands. They 

conclude that for a stochastic environment the volume-based and class-based storage 

assignment lead to a reduction in the expected single-command cycle time compared with 

random storage assignment, and the volume-based assignment performs best.  

 

With regard to traffic congestion in the aisles, the random storage assignment generates a 

uniformly distributed activity over the picking area, while the COI-based storage 

assignment tends to concentrate picking operations in the areas dedicated to items with low 

COI. Therefore, traffic may become congested. The class-based method leads to moderate 

traffic congestion (higher than in the case of random assignment but lower than in the case 

of COI-based assignments). 

1.3.3 Batching, zoning and bucket brigade 

When orders are large, in relation to the capacity of the transportation device, each order 

can be picked independently from other orders (i.e. one order per picking tour). This way 

of picking is often referred as the single order picking policy (or discrete or pick-by-order, 

as mentioned in Section 1.2.1). However, when orders are small, we can reduce the travel 

distance (thus increase the productivity) by picking a set of orders in a single picking tour. 

Order batching is the method of grouping a set of orders into a number of sub-sets, each of 

which can then be retrieved by a single picking tour. According to Choe and Sharp (1991), 

there are basically two criteria for batching: the proximity of pick locations and time 

window batching.  

Proximity order batching 

Proximity batching assigns each order to a batch based on proximity of its storage location 

to those of other orders. The major issue in proximity batching is how to measure the 

proximities among orders, which implicitly assumes a pick sequencing rule to visit a set of 

locations. Gademann et al. (2001) consider the proximity order-batching problem in a 

manual-pick wave-picking warehouse. The objective is to minimize the maximum lead-

time of any batch (this is known as a common objective in wave picking). They show that 

the order-batching in this case is an NP-hard problem. They propose a branch-and-bound 

algorithm to solve this problem exactly for small instances and a 2-opt heuristic procedure 
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for large instances. Furthermore, they claim that the 2-opt heuristic provides very tight 

upper bounds and would suffice in practice. Also for a manual-pick OP system, Gademann 

and Van de Velde (2005) consider the order-batching problem with a more general 

objective: minimizing the total travel time. They show that the problem is still NP-hard in 

strong sense when the number of orders per batch is greater than 2. A branch-and-price 

algorithm is designed to solve instances of modest size to optimality. For larger instances, 

it is suggested to use an iterated descent approximation algorithm. Chen and Wu (2005) 

measure the proximity of orders by taking into account the level of overlapping (or 

association) between orders (orders having more similar items have a high association and 

may form a batch). They develop a clustering model based on 0-1 integer programming to 

maximize the total association of batches.  

 

As order batching is an NP-hard problem, many studies focus on developing heuristic 

methods for solving it. For manual-pick OP systems, we can distinguish two types of 

order-batching heuristics: seed and savings algorithms. Seed algorithms construct batches 

in two phases: seed selection and order congruency. Seed selection rules define a seed 

order for each batch. Some examples of a seed selection rule are: (a) a random order; (b) 

an order with large number of positions; (c) an order with longest pick tour; (d) an order 

with most distantly-located (i.e. furthest from the I/O point); (f) an order with the largest 

difference between the aisle number of the right-most and the left-most aisle to be visited 

(see De Koster et al. 1999a for more seed selection rules). Order congruency rules 

determine which unassigned order should be added next into the current batch. Usually, an 

order is selected, to be included in a batch, based on a measure of the ‘distance’ from the 

order to the seed order of the batch. Examples are: (a) the number of additional aisles 

which have to be visited if the order is added; (b) the difference between the gravity center 

of the order and the gravity center of the seed order; (c) the sum of the travel distances 

between every location of an item in the order and the closest location of item in the seed 

order (see more in De Koster et al., 1999a). The seed algorithms are considered in Elsayed 

(1981), Elsayed and Stern (1983), Hwang et al. (1988), Hwang and Lee (1988), Gibson 

and Sharp (1992), Pan and Liu (1995), and Ruben and Jacobs (1999) for AS/SR, and 

Rosenwein (1994), and De Koster et al. (1999a) for manual-pick OP systems. Saving 

algorithms are based on the well-known Clarke-and-Wright algorithm for the vehicle 

routing problem: a saving on travel distance is obtained by combining a set of small tours 

into a smaller set of larger tours. Elsayed and Unal (1989) propose four batching heuristics 

called EQUAL, SL, MAXSAV, CWright for an AS/RS. Among them, the SL algorithm 

(combine Small with Large orders), which classifies orders as ‘large’ or ‘small’ ones 

before assigning them to different batches, generates minimal travel distances. 
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De Koster et al. (1999a) perform a comparative study for the seed and time savings 

heuristics mentioned above for multiple-aisle picker-to-parts OP systems. The performance 

of the algorithms is evaluated using two different routing heuristics: the S-shape and the 

largest gap (see Section 1.3.4 for a description of these routing methods). The batching 

heuristics are compared for travel time, number of batches formed and also for the 

applicability in practice. They conclude that: (a) even simple order batching methods lead 

to significant improvement compared to the first-come first-serve batching rule; (b) the 

seed algorithms are best in conjunction with the S-shape routing method and a large 

capacity of the pick device, while the time savings algorithms perform best in conjunction 

with the largest gap routing method and a small pick-device capacity. 

Time window order batching 

Under time window batching, the orders arriving during the same time interval (fixed or 

variable length), called a time window, are grouped as a batch. These orders are then 

processed simultaneously in the following stages. If order splitting is not allowed (thus 

each order picker picks a group of complete orders in one picking tour), it is possible to 

sort items by order during the picking process. This picking strategy is often referred as the 

sort-while-pick picking strategy (see also Section 1.2.1). If order splitting is allowed, a 

further effort is needed to sort the picked items (the pick-and-sort picking strategy). Tang 

and Chew (1997), Chew and Tang (1999), Le-Duc and De Koster (2003, 2004b) consider 

variable time window order batching (i.e. number of items per batch is ‘fixed’) with 

stochastic order arrivals for manual-pick OP systems. They model the problem as a batch 

service queue (this approach will be discussed in-depth in Chapter 5 of this thesis).  

 

All publications above-mentioned do not take into account the order due time and the 

penalty of violating the due time. Elsayed et al. (1993) and Elsayed and Lee (1996) 

consider the order-batching problem in a man-aboard OP system with minimizing of  the 

penalties and tardiness as respective objectives. They propose a heuristic which first 

establishes batches and then determines the release times for the batches. 

Zoning  

Closely relating to order batching, zoning is the problem of dividing the whole pick area 

into a number of smaller areas (or zones); each zone is then assigned to one or more order 

pickers to pick requested items stored in the zone. The major advantages of zoning are 

reduction in the travel time (because of the smaller traversed area and also the familiarity 

of the order picker with the item locations in the zone) and of the traffic congestion. 

Depending on the picking strategy, zoning may be further classified into two types: 

progressive zoning and synchronized zoning (mentioned in Section 1.2.1). Compared to 

other planning issues, the zoning problem has received little attention despite its important 
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impact on the performance of OP systems. Mellema and Smith (1988) examine the effects 

of the aisle configuration, stocking policy and batching and zoning rules by using 

simulation. They suggest that a combination of batching and zoning can significantly 

increase the productivity (pieces per man-hour). Also, using simulation, Petersen (2002) 

shows that the zone shape (number of aisles per zone, the aisle lengths), the number of 

items on the pick-list and the storage policy have a significant effect on the average travel 

distance within the zone. Choe et al. (1993) study the effects of three strategies in an aisle-

based OP system: single-order-pick, sort-while-pick, and pick-and-sort. They propose 

analytical tools for a planner to quickly evaluate various alternatives without using 

simulation. Jane (2000) proposes several heuristic algorithms to balance the workloads 

among the order picker and to adjust the zone size for order volume fluctuation in a 

progressive zoning OP system. Jane and Laih (2005) consider the problem of heuristically 

assigning products to zones in a synchronized OP system. The method is based on co-

appearance of items in the same order (i.e. items appear in the same order are stored in the 

same zone). Le-Duc and De Koster (2005c), consider the problem of determining the 

optimal number of zones (for a given picking area) in a pick-and-pack OP system. The 

objective is to minimize the throughput time of the system. 

 

Bucket brigade is a way of coordinating workers who are progressively assembling 

product along flow line. If the workers are positioned from slowest to fastest along the line 

(with respect to the direction of product flow), then a balanced allocation of work will 

spontaneously emerge (see Bartholdi and Eisenstein, 1996a, 2002, 2005 and Bartholdi et 

al., 1999, 2001, 2005). In a progressive zoning system, order pickers can also work as a 

bucket brigade (Bartholdi and Eisenstein, 1996b). Each order picker follows the rule “Pick 

forward until someone takes over your work; then go back for more". When the last order 

picker completes an order, this order picker pushes it way (e.g., onto a conveyor) and then 

walks back to take over the order of the previous order picker, who in turn takes over the 

order of the previous order picker, and so on until the first order picker begins a new order. 

It is further required that the pickers be sequenced from slowest-to-fastest, so that the 

slowest picker is starting new orders and the fastest is finishing them. Bucket brigade can 

be seen as a version of zoning where the zone sizes are variable. Bartholdi and Eisenstein 

(1996b) implemented bucket brigades in the distribution center of Revco Drug Stores in 

North America and showed that bucket brigade increases the throughput rate and reduces 

management efforts. 

1.3.4 Routing methods 

For given item storage locations, the (order picker) routing problem is to determine a visit 

sequence to pick up all the items such that the travel distance is minimized. As noted by 

Ratliff and Rosenthal (1983), this is a special case of the well-known Traveling Salesman 
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Problem, and the optimal route for a rectangular, narrow aisles, single-block warehouse 

(i.e. no middle cross aisle, see Figure 1.8 for an example of a single-block warehouse) can 

be quickly found by using dynamic programming. The algorithm has running time linear in 

the number of aisles and the number of pick locations. (An aisle is called narrow if the 

order picker can simultaneously access storage locations on both sides of the aisle, thus 

there is no additional travel time when the order picker changes picking from one aisle-

side to the other.) De Koster et al. (1998) extend the method for a warehouse where the I/O 

point location is decentralized, meaning that the order picker can deposit picked items at 

the head of every aisle (e.g. on a transportation conveyor). Roodbergen and De Koster 

(2001b) extend the method for warehouses with a middle-aisle (i.e. two 2-bock 

warehouses). For wide-aisle warehouses, the order picker needs to move (physically) from 

one side to the other in order to pick items on both sides of the aisle. Cleary, with a same 

amount of picks, the travel distance is longer in the case of wide-aisle warehouses. Hall 

(1993) addresses the problem of determining optimal route length when the aisle’s width is 

non-negligible. Goetschalckx and Ratliff (1988a,b) deal with this problem in greater detail. 

They conclude that the problem of determining the optimal route in a wide aisle (with 

random storage assignment) can be solved very efficiently in a few seconds, and the 

optimal routes can yield up to 30% saving in travel distance compared to routes obtained 

from heuristic methods. 

 

The disadvantages of the exact (optimal) method are as follows. First, it produces pick 

routes that may seem illogical or suboptimal to the order pickers who then, as a result, 

deviate from the specified routes (Gademann and Van de Velde 2005). Indeed, De Koster 

et al. (1999b) and Dekker et al. (2004) experienced this phenomenon in the warehouses of 

De Bijenkorf, a department store chain, and Ankor, a wholesaler of tools and garden 

equipment. Second, the exact method depends on the I/O location, whether the I/O point is 

fixed or not, number of blocks, and the layout shape (rectangular or not). Exact methods 

are only available for standard layouts (i.e. rectangular, single or two blocks). Third, the 

exact method has to be executed for every route. This can be a burden for the warehouse 

management information system. Fourth, the exact method does not take aisle congestion 

into account, while with heuristic methods it may be possible to avoid (or at least to 

reduce) the aisle congestion (i.e. the S-shape method has a single traffic direction if the 

pick density is sufficiently high). Finally, the exact method does not include the fact that 

aisle or direction changing may be time consuming in practice. In many such cases, order 

pickers leave their pick cart in the cross aisle. By using a heuristic method (e.g. S-shape 

method), the number of aisle changes can be reduced. Because of these reasons, usually a 

simple and standardized routing rule is preferable in practice. Furthermore, Hall (1993) 

notes that heuristic methods can develop near-optimal routes with less confusion. Petersen 
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(1997) and Roodbergen (2001) distinguish the following heuristic methods for routing 

order pickers in narrow-aisle, single-block warehouses.  

S-shape (or traversal) heuristic 

One of the simplest heuristics for routing order pickers is the S-shape method. Routing 

order pickers by using the S-shape method means that any aisle containing at least one 

pick is traversed entirely (except potentially the last visited aisle). Aisles without pick are 

not entered. From the last visited aisle, the order picker returns to the I/O point. An 

example of the S-shape route is shown in Figure 1.8. 

Return heuristic 

Another simple heuristic for routing order pickers is the return method, shown in Figure 

1.8. With the return heuristic, an order picker enters and leaves an aisle from the same end. 

Only aisles with picks are visited. 

Midpoint heuristic 

A midpoint method essentially divides the warehouse into two sections (see Figure 1.8). 

Picks in the font half are accessed from the front cross aisle and picks in the back half are 

accessed from the back cross aisle. The order picker traverses to the back half by either the 

last or the first aisle to be visited. As we can see this method is similar to the return 

method, the only difference is that the warehouse is divided in two halves. According to 

Hall (1993), this method performs better than the S-shape method when the number of 

picks per aisle is small (i.e. one pick per aisle on average). See Figure 1.8 for an example 

route. 

Largest gap heuristic 

Figure 1.8 shows a largest gap route example. As described in Petersen (1997): the largest 

gap strategy is similar to the mid-point strategy except that an order picker enters an aisle 

as far as the largest gap within an aisle, instead of the midpoint. The gap represents the 

separation between any two adjacent picks, between the first pick and the front aisle, or 

between the last pick and the back aisle. If the largest gap is between two adjacent picks, 

the order picker performs a return route from both ends of the aisle. Otherwise, a return 

route from either the front or back aisle is used. The largest gap within an aisle is therefore 

the portion of the aisle that the order picker does not traverse. The back aisle can only be 

accessed through either the first or last aisle. The largest gap method outperforms the mid-

point method (see Hall, 1993). However, from the implementation point of view, the mid-

point method is simpler. 
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Composite heuristic 

This method is proposed in Petersen (1995, 1997); it combines the best features of the 

return and traversal strategies. It minimizes the travel distance between the farthest picks in 

two adjacent aisles, and determines for each aisle whether it is shorter to travel the aisle 

entirely (S-shape strategy) or to make a turn in it (the return strategy).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8   Example of a number of routing methods for a single-block warehouse          
(Roodbergen, 2001) 
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Combined heuristic 

The idea of this method is similar to the composite method, and results in routes which are 

similar to the composite routes. For this method, aisles with picks are either entirely 

traversed or entered and left at the same end. However, for each visited aisle, the choice is 

made by using dynamic programming (see Roodbergen, 2001, and Roodbergen and De 

Koster, 2001a for a detailed description of the method). An example route is given in 

Figure 1.8. 

Comparison between routing methods 

In the literature, several studies compare these routing methods. Hall (1993) considers the 

largest gap and S-shape method for a random storage, single-block warehouse. His 

analysis shows that largest gap is better if the pick density (number of picks per aisle) is 

approximately less than 3.8, and the S-shape outperforms the largest gap method when the 

pick density is greater than 3.8. Also considering such warehouses, Petersen (1997) carries 

out a number of numerical experiments to compare six routing methods: the S-shape, 

return, largest gap, mid-point, composite and optimal. He concludes that a best heuristic 

solution is on average 5% over the optimal solution and the overall best heuristic 

procedures are the composite and largest gap methods, which were 9% to 10% over the 

optimum. De Koster and Van der Poort (1998), and De Koster et al. (1998) compare the 

optimal and S-shape method for several typical types of single-block random storage 

strategy warehouses. They find that the S-shape provides routes which are, on average, 

between 7.3% and 12.7% longer than the optimum solutions for the first warehouse, 

between 12.5% and 20.8% for the second, and between 30% and 32.4% for the third 

warehouse. The employed storage assignment may strongly influence the efficiency of the 

routing method used. For example, the S-shape method favors the storage assignment 

methods which locate the highest frequency demand items in one aisle and somewhat less 

frequently demanded items in the next aisle and so on (Roodbergen, 2001). Caron et al. 

(1998) consider the S-shape and return method in a COI-based storage assignment 

warehouse consisting of two blocks with an I/O point in between. They conclude that the 

return heuristic is only better than S-shape for a low number of average picks per aisle (i.e. 

< 1) and for skewed COI-based ABC curves (for instance 70/20, meaning that 20 percent 

of total number of items stored count for 70 percent of the total demand volume). For 

single-block and volume-based storage assignment warehouses, Petersen and Schmenner 

(1999) compare four routing methods: composite, largest gap, S-shape and optimal for a 

single-block warehouse. Their experimental results show an average solution gap of 

around 10% for the composite, largest gap, and mid-point method, and around 30% for the 

return and S-shape method. Overall, the composite method appears to perform consistently 

well. The largest gap method is better than the S-shape with low pick densities, and worse 

with high pick densities (i.e. greater than 28). For class-based storage, Le-Duc and De 
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Koster (2005a, b, 2004a) develop a travel distance model for estimating the average tour 

length in 2-block warehouse when either S-shape or return method is used. The numerical 

results show that the return method is only better than S-shape for relatively small pick-list 

size and very skewed storage assignments (ABC curves). This is similar to the finding in 

Caron et al. (1998) for the COI-based storage assignment. 

 

All above-mentioned methods were originally developed for single-block warehouses, 

however they can be used for multi-block warehouses with some modifications (see 

Roodbergen and De Koster, 2001a). Besides that, Vaughan and Petersen (1999) present a 

method called aisle-by-aisle heuristic for a warehouse with multi-block aisles. For this 

method, every pick aisle is visited exactly once. A dynamic programming method is used 

to determine the best cross aisles to go from pick aisle to pick aisle. Roodbergen and De 

Koster (2001a) adapt the combined heuristic, in a method called combined+ heuristic, for 

the case of multi-block warehouses. Roodbergen and De Koster (2001a) compare six 

routing methods (optimal, largest gap, S-shape, aisle-by-aisle, combined and combined+), 

in 80 warehouse instances, with the number of aisles varying between 7 and 15, the 

number of cross aisle between 2 and 11 and the pick-list size between 10 and 30. They 

report that the combined+ heuristic gives the best results in 74 of the 80 instances, with 

negligible computational times per route. The gaps between the results from the combined+ 

and the optimal method are large in the case of many aisles and/or large pick-list sizes; 

they vary between 1% and 25%. The aisle-by-aisle, combined and combined+ method are 

identical in the case of single-block warehouse. The combined heuristic provides results 

which are never worse than S-shape. However, the gap with S-shape reduces when the 

number of cross aisles or the pick density (i.e. average number of picks per aisle) is small. 

A clear point here is that, among the heuristic methods there is no robust heuristic that is 

good for all situations; a specific heuristic may be good for one situation but may perform 

poorly in other situations. 

 

So far we have considered methods for routing order pickers in manual-pick OP systems. 

In the literature, the problem of determining the sequence of visits for the S/R machine in 

AS/RS or man-aboard systems (often called the sequencing problem) has also received 

considerable attention. It should be noted that the routing problems for order pickers and 

for the S/R machine are different. First, within an aisle, the travel distance is measured in 

Chebychev norm for the automated OP system and in rectilinear norm for manual-pick OP 

systems. Second, the number of picks is usually large in manual-pick OP systems 

(consisting of small items, cases or boxes …) and small in automated OP systems (pallets, 

large cases…). Furthermore, S/R machines are, in most cases, aisle-bound. Aisle-changing 

S/R machines are relatively rare in practice. They often take a considerable time to change 

from one pick aisle to another. Therefore, the S/R machine often picks all requested picks 
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in an aisle before moving to the next aisle. Because of these differences, the routing 

methods developed for order pickers are, in general, not applicable for the sequencing 

problem in AS/RS systems. Studies on sequencing S/R machine’s visits have been carried 

out by Murty (1968), Hausman et al. (1976), Barrett (1977), Graves et al. (1977), Schwarz 

et al. (1978), Linn and Wysk (1987, 1990), Han et al. (1987), Seidmann (1988), Bozer et 

al. (1990), Linn and Xie (1993), Sarker et al. (1994), Keserla and Peters (1994), Lee and 

Kim (1995), Lee and Schaefer (1996, 1997), Van den Berg and Gademann (1999), and 

Kim et al. (2003). Sequencing problems in man-aboard OP systems have been studied in 

Goetschalckx and Ratliff (1988c), Van Oudheusden et al. (1988), Hwang and Song (1993), 

and Daniels et al. (1998). For a complete review, we refer to Sarker and Babu (1995), and 

Van den Berg (1999). 

1.3.5 Order accumulation/sorting 

When batching and/or zoning is applied, usually some additional effort is needed to split 

the batch and to consolidate the items per customer order or per destinations to which 

orders will be shipped. These processes are often called accumulation/sorting (A/S).  

 

Figure 1.9 shows an example of a typical A/S system (mentioned in Meller, 1997, and 

Johnson, 1998). Items of a group of orders (a pick-wave) that are to be loaded onto a 

certain number of trucks are picked from the picking area. In general, items from the same 

order are assigned to multiple order pickers (to maintain high order picker efficiency) and 

the order pickers follow pre-specified routes to pick the items assigned to them. After 

picking, order pickers place their items on the transportation conveyor and the items are 

transported to the sorter. Owing to the assignment of orders to more than one order picker, 

the items of each order arrive at the sorter in a random sequence. Items are released onto 

the circulation conveyor of the sorter and enter the assigned shipping lane if all items of 

the preceding order assigned to that lane have already entered. If not, the items re-circulate 

around the circulation conveyor. Orders are released from shipping lanes as needed by the 

trucks and the lane capacity is made available for the next sort-group. The throughput of an 

A/S system depends not only on the equipment capacity (i.e. sorter capacity and conveyor 

speed) but also on operating policies like assignment of orders to shipping lanes (see 

Figure 1.9). The order-to-lane assignment problem is critical for most A/R systems as 

usually the number of shipping lanes is less than the number of orders, which may cause a 

blocking of orders at the entrance of the lanes. 

 

The number of publications on A/S systems is limited. By simulation, Bozer and Sharp 

(1985) examine advantages of  using a recirculation loop to avoid lane blocking in an A/R 

system when a shipping lane is full, assuming that each lane is assigned to one order. 

Considering A/S systems where multiple orders can be are assigned to one lane, Bozer et 
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al. (1988) and Johnson (1998) recommend that assigning orders to shipping lanes just 

before the orders arrive at the circulation desk of the sorter is a better than any static fixed-

assignment rule. Johnson and Lofgren (1994) describe an A/R system used at Hewlett-

Packard. Meller (1997) proposes an integer formulation for the order-to-lane assignment 

problem in an A/S system. He claims that the problem can be solved efficiently for small 

instances (in terms of the number of lanes) by solving a number of minimum-cardinality 

sub-problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9   A typical accumulation/sorting (A/S) system 

1.3.6 Other issues 

We have mentioned five major issues in design and control of OP processes: layout design, 

storage assignment, batching and zoning, routing, and accumulation/sorting. There are 

several other issues that have received attention in the literature.  

Forward-reserve storage 

The forward-reserve problem considers (a) where to store items (i.e. which items are only 

stored in the forward area (the area for picking), in the reserve area (area for replenishing 

the forward area), or stored in both areas); (b) in which quantities; (c) frequency, timing 

and replenishment quantities. Literature on the forward-reserve problem can be found in 

Hackman and Rosenblatt (1990), Hackman and Platzman (1990), and Van den Berg et al. 

(1998).  
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Cross-docking 

The second problem is optimally determining positions of receiving doors, (temporary) 

storage locations and shipping doors for cross-docking operations. Literature concerning 

cross-docking can be found in Tsui and Chang (1990, 1992), Witt (1992), Harrington 

(1993), Tompkins (1994), Andel (1994), Schwind (1995, 1996), Schaffer (1997, 1998), 

Witt (1998), Gue (1999), Richardson (1999), Apte and Viswathan (2000), Bartholdi and 

Gue (2000), Terreri (2001), and Vis (2005).  

Dwell-point positioning 

The third problem is the problem of determining the optimal position for an S/R machine 

when the system is idle (called dwell-point positioning problem). The dwell-point is often 

selected such that the expected travel time to the position of the first transaction after the 

idle period is minimized. The literature on this subject can be found in: Chang and Egbelu 

(1997a,b), and Hwang and Lim (1993), Egbelu and Wu (1993), Peters et al. (1996), Van 

den Berg (2002), and Meller and Mungwattana (2005).  

Carousel 

Under parts-to-picker OP systems, we have not considered carousel systems. For the 

literature related to carousel OP systems, see: Bartholdi and Platzman (1986), Han et al. 

(1988), Wen and Chang (1988), Hwang and Ha (1991), Ghosh and Wells (1992), Ha and 

Hwang (1994), Vickson and Fujimoto (1996), Van den Berg (1996), Vickson and Lu 

(1998), Su (1998), Hwang et al. (1999), Jacobs et al. (2000), Litvak et al. (2001), Litvak 

and Adan (2001a,b), Park et al. (2003b), Hassini and Vickson (2003), Litvak and Van 

Zwet (2004), Vlasiou and Adan (2004), Vlasiou et al. (2004), Wan and Wolff (2004), and 

Meller and Klote (2004). For literature on conveyors in general, see: Pritsker (1966), 

Gregory and Litton (1975), El Sayed et al. (1976), El Sayed and Proctor (1977), Proctor 

and El Sayed (1977), Muth and White (1979), Sonderman (1982), Xue and Proth (1987), 

Schmidt and Jacman (2000), and Bozer and Hsieh (2005). 

1.3.7 Conclusions 

We can draw the following conclusions from the literature review section. First, in spite of 

their dominance in practice, pickers-to-parts OP systems have received less research 

attention compared to parts-to-picker OP systems. Among more than 200 papers that we 

considered, there are only about 40 papers concerning pickers-to-part OP systems. It is 

because of the fact that parts-to-picker OP systems are often full or partly automated, and 

automation control systems often demand/ require much attention. Furthermore, picker-to-

parts (or manual-pick) OP systems are often very complex and diverse. Second, existing 

studies in picker-to-parts OP systems mainly focus on random storage assignments. 
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Analytical models for optimizing dedicated and class-based storage assignment manual-

pick OP systems are still lacking. Furthermore, storage assignment has an impact on the 

performance of the routing method. However, this effect seems to be neglected in the 

literature. Instead, many authors focus on random storage assignment to discus about the 

performance of routing methods. Finally, almost all research in order picking treats 

demand as given (or known in advance). Certainly, this is not true, especially in fast 

picking environments (e.g. small orders arrive on line and need to be shipped within a tight 

time window). These OP situations are becoming more and more daily practice, 

particularly for mail order companies which sell products online. Optimization problems 

arising from these OP systems, therefore, should be considered as stochastic optimization 

problems, not deterministic ones.  

1.4 Research problems and contributions of the thesis 

As shown, order picking is a subject that has been studied extensively in the literature to 

some extent. However, there are still several issues that have not been addressed 

adequately. This thesis enriches the current order picking literature by providing solution 

methods and insights for several new OP situations which arise from practice. More 

specifically, the thesis offers the following contributions: 

• Develops probabilistic models for estimating average tour length in manual-pick 

class-based storage strategy warehouses. Although it focuses on specific routing 

methods (the S-shape and return routing method) and warehouse layouts (2-block 

warehouses), the models can be modified and applied to other routing methods and 

layouts. 

• Explores the problems of finding the optimal storage zones (or storage class 

boundaries) and layout optimization (the number of aisles and aisle dimensions) with 

respect to minimizing the average tour length, for warehouses using class-based 

storage assignment. As the exact approach is intractable for practical conventional 

warehouse sizes, it presents an efficient heuristic procedure for solving the problems. 

Based on the numerical results, it highlights several layout design guidelines 

regarding the characteristics of the layout, demand skewness and routing methods.  

• Extends the travel time models for 2-dimensional compact storage racks proposed in 

Bozer and White (1984) to a newly-designed 3-dimensional compact storage rack, 

using a gravity flow rack with conveyors working in pair. Based on that, the ratio 

between the rack dimensions minimizing the single-command cycle time can be 

determined.  
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• Studies the online order-batching problem in a dynamic picking environment. 

Although literature on order batching exists, it is not possible to use the existing 

methods for the new situations (e.g. many small orders need to be picked with tigh 

time windows). The thesis suggests a queuing-based approach to approximate the 

batch size which minimizes the throughput time of an order. The approach is simple 

with good quality. Therefore, it can be easily applied in practical situations. 

• Finally, the thesis introduces the problem of determining the optimal number of 

zones such that the overall time to complete the entire batch of orders (throughput 

time) is minimized in a pick-and-pack OP system using synchronized zoning 

picking. Consequently, it formulates the problem as an integer programming model. 

The formulation is tested by using data from the warehouse of a mail-order company 

in the Netherlands. It turns out that the problem can be solved efficiently. 

1.5 Outline of the thesis 

In this chapter, we have mentioned the background literature on order picking and 

consequently introduced the research problems that we are going to consider. From a broad 

view, the rest of the thesis can be divided in three parts. The first part (Chapters 2, 3 and 4) 

concerns several issues in designing efficient OP processes. This part is based on Le-Duc 

and De Koster (2005a,b,e, 2004a) and De Koster and Le-Duc (2005). The second part 

(Chapters 5 and 6) is related to control issues: order-batching and zoning. It is based on 

Le-Duc and De Koster (2005c, 2004b, 2003). The last part (Chapter 7) gives concluding 

remarks and suggests potential future research directions (see Figure 1.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10   Outline of the thesis 
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2 Travel Distance Estimation in Manual-pick Class-based 

Storage Strategy Warehouses 

2.1  Introduction and literature review 

As mentioned in the introduction chapter, the travel time is proportional to the travel 

distance and minimizing the travel distance is therefore often considered as a primary 

objective function in order picking improvement studies. In the literature, the travel 

distance estimation problem in manual-pick OP has been explored thoroughly for the case 

of random and COI-based storage assignment (see Caron et al., 1998, De Koster et al., 

1998). In this chapter, we consider the problem of estimating the travel distance in manual-

pick class-based storage strategy warehouses. The developed probabilistic travel 

estimation models will then be used as the objective function for optimizing the storage 

zone and layout, which will be presented in the next chapter.  

 

In the following, we review the most relevant publications on travel time estimation in 

manual-pick warehouses. For a general literature review, on design and control of OP 

processes, we refer to Section 1.3. 

 

The average travel distance of a picking tour (or average tour length) depends mainly on 

the following factors: the layout, the aisle’s width and length, the storage assignment and 

routing method used. Estimating the travel distance within an aisle is the basic start and is 

mentioned in all literature concerned. From the travel distance within an aisle and the 

statistical properties of the routing method used, we can estimate the travel distance in 

multiple-aisle warehouses. The travel distance in a one-block (i.e., no middle cross aisle) 

warehouse is the summation of the travel distance within (pick-) aisles for retrieving items 
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and between (cross- or rear) aisles for changing aisles. When there are multiple blocks, the 

travel distance has an additional component: the distance that an order picker needs to 

traverse from one block to another. Caron et al. (1998, 2000) and Le-Duc and De Koster 

(2005a,b, 2004a) consider a warehouse with a cross aisle in the middle (2-block 

warehouse). Roodbergen (2001) studies the problem of estimating the travel distance for 

warehouses with more than two blocks, for the case of random storage strategy and the S-

shape routing only (refer to Section 1.3.4 for a description of the routing methods). 

 

Storage assignment certainly affects the pick locations that an order picker has to visit, and 

thus may affect the length of a picking tour. In random storage strategy warehouses, where 

items are randomly located, the probability of visiting any location along any aisle is the 

same. However, it is certainly not the case for other storage assignments (for example, 

class-based, COI…). As a consequence, we cannot apply the same travel distance 

estimation model for all storage assignments. Caron et al. (1998, 2000) propose travel 

distance models for a 2-block warehouse with a COI-based storage assignment (we refer to 

Section 1.3.2 for a definition of storage assignment methods). Jarvis and McDowell 

(1991), Tang and Chew (1997) and Chew and Tang (1999) estimate the average tour 

length in a single-block warehouse using a class-based storage assignment. They assume 

that the aisles are only one-way travel (i.e. only traversal or S-shape routing strategy is 

applicable) and each storage aisle can only be used for storing a certain class. In this 

chapter, we develop more general travel distance models and can represent both single and 

2-block layouts, class-based storage assignments that allow storing different product 

classes per aisle, and two-way traffic aisles (thus both S-shape and return routing method 

are applicable).   

 

The organization of this chapter is as follows. The problem is discussed in more detail in 

the next section. Section 2.3 presents probabilistic model for estimating the average travel 

distance in a single aisle warehouse. Section 2.4 shows how to estimate the tour length in a 

warehouse with multiple aisles. Concluding remarks are followed in Section 2.5. 

2.2  Description of layouts, operating policies  and assumptions 

As noted above, the average tour length depends on the layout and the operating polices 

used (i.e. the routing and storage assignment method). Therefore, before introducing the 

probabilistic model for estimating the tour length, we clarify the layouts, operating policies 

and other assumptions employed by the model. 
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2.2.1 Layout 

Figure 2.1 shows the types of layouts considered. Layout I was firstly studied by Caron et 

al. (1998). For this type of layout (2-block warehouse with closed-end aisles), as the pick 

aisles are bounded (closed-end aisles), the order picker cannot travel to the other aisles 

without going back to the cross aisle. It means that only the return routing method is 

applicable. Layout II (2-block warehouse with open-end aisles) is an extension of Layout 

I, where two rear aisles are added to make it possible for the order picker to travel to other 

aisles without making a turn in the aisle. This layout can be considered as a basic layout 

for a 2-block order picking area. Layouts I and II can be easily transformed into the 

corresponding single-block layouts: Layouts III and IV. If we call ( )1T q  and ( )2T q  the 

average tour length resulting from a single-block and the corresponding 2-block layout, 

there exists a one-to-one mapping between ( )1T q  and ( )2T q  irregardless of the routing 

method used and the number of picks per route q. It can be easily proved that 

( ) ( )2 1 bT q T q w x= + , in which bw  is the centre-to-centre distance between 2 consecutive 

aisles and 1 2x a≤ ≤  is an integer related to the position of the last visited aisles ( a  is the 

total number of pick aisles and assumed to be even). Therefore, for the sake of simplicity, 

in this chapter and the next chapter we only focus on 2-block layout type II (it has to be 

noted that Layout I can be considered as a special case of Layout II, e.g. when the width of 

the rear aisles is zero).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.1   Possible layout configurations 
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2.2.2 Operating policy 

The routing methods dealt with in this chapter are the traversal (or S-shape) and the return 

heuristic (see Section 1.3.4 for a description of routing heuristics). These methods are the 

simplest routing methods included in nearly every warehouse management software 

system, and widely used in practice (see, for example, Roodbergen and De Koster, 2001a). 

The applicability of the routing methods may depend on the type of aisle. The return 

heuristic can be applied in both open and closed-end aisle layouts. However, the S-shape 

can only be used in the open-end aisle layouts. 

 

As mentioned in Section 1.3.2, the class-based storage strategy (i.e., the items are assigned 

to storage locations based on group basis), is widely used in practice because its 

advantages over other storage assignment methods. It is convenient to implement and 

maintain; it can easily handle assortment changes or changes in pick frequency. In 

addition, using a class-based storage strategy often leads to a substantial reduction in order 

pick travel distance as compared to random storage. Because of that, this chapter will focus 

on the class-based storage. 

2.2.3 Assumptions 

The following system and operational assumptions are made: 

1. The warehouse consists of multiple identical rectangular racks (see Figure 2.2). 

Each rack can be used to store more than one product type. 

2. The order picker can reach all items in the rack regardless of the rack's height and 

the vertical travel time within the aisle is negligible (this is typical for conventional 

shelf-storage warehouses, and pallet racks with manual picking from low levels).  

3. The order pickers can pick items from both sides of the aisle by one pass; no 

additional time is needed for changing picking from one aisle side to the other (i.e. 

narrow aisle). 

4. Aisle changes are possible in the cross and rear aisles. Picked orders have to be 

deposited at the I/O point, where the order picker also retrieves the instructions for 

the next tour. 

5. The aisle’s storage space is defined as the aisle’s length. In reality, if the order 

picker could reach four levels without vertical transport (for example), the available 

storage space would be four times the aisle’s length.  

6. Items in the same class have the same order frequency. The order frequency of each 

item-class is defined as the number of times that an item from that class is required 
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in a certain period (a planning period), it is known and constant throughout the 

planning period (see also Hausman et al., 1976). 

7. A pick list may correspond to one customer order or several customer orders (the 

latter case might be the result of a batching policy).  

8. It is also assumed that there is no demand dependent between products. It means 

that the probability of the occurrence of a product on an order is unaffected by the 

occurrence of any other product type on that order (Jarvis and McDowell, 1991). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2   Warehouse layout and notations 

2.2.4 Main notations 

The following notations are generally used in this chapter; others are defined elsewhere or 
mentioned in the list of notations at the end of the thesis: 

Data 

a  number of pick aisles (also denoted as ‘storage’ aisles). 

ijl  partial length of pick aisle j  used for storing of product class i . 

q   number of picks (or order lines) in a picking tour (the pick-list size). 

c  number of (product) classes. 

L   length of a pick aisle. 

aw   width of the cross aisle. 

bw  centre-to-centre distance between two consecutive (pick) aisles. 

cw  width of the storage rack. 

dw  width of the rear aisle, 0dw =  for closed-end aisle layouts. 

I/O point 
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if   order frequency of  product class i , ∑∑
∈∈

=
ll j

ij

j

iji fff

i

, where il  is the set of 

items belong to product class i  and llU =
=

c

i
i

1

. 

is  percentage of the total storage space used for class i . 

Intermediate (auxiliary) variables 

ijP  the probability that the farthest pick in aisle j  is in zone i  

ijp   the probability that an item of class i  located in aisle j  is ordered (we assume 

this to be proportional to the pick frequency of class i ) 

( , )jD q c the expected travel distance (in a single direction starting from the cross aisle) 

within aisle j  to pick up q  items, given that there c classes 

Decision variables 

CA

zTD   travel distance within the cross aisle (called ‘cross-aisle’ travel distance), z  

denotes the name of the routing method used. 
WA

zTD  travel distance within pick aisles (called ‘within-aisle’ travel distance). 

zTD  (expected) average tour length. 

2.3 Travel distance in a single aisle 

In this section, a single aisle (aisle j ) with a configuration given in Figure 2.3 is 

considered. Zone 1, zone 2, … and zone c  are reserved for items of class 1, 2, …and c  

respectively. It is assumed that, within each zone, items are uniformly distributed. By 

conditioning on the farthest location of the requested items, the expected time from the 

starting point (see Figure 2.3) to the farthest pick location to pick up jq  picks can be 

computed as follows:  

1 1

( , ) (travel time  farthest pick in zone ) =
c c

j j ij ij ij

i i

D q c P i P d
= =

= ∑ ∑E   (2.1) 

From (2.1), it can be seen that in order to determine ( , )j jD q c  (the expected travel 

distance from the starting point to the farthest pick location) we have to determine the 
probability that the farthest pick is in zone i  ( ijP ) and the corresponding expected one-

way travel distance ( ijd ). We consider the following situations: 
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• the farthest pick is in zone 1, 

• the farthest pick is in zone 2 and 

• the farthest pick is in zone 3( .. )i i c= . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3  An example of class-based aisle 

2.3.1 Farthest pick is in zone 1 

If the farthest pick is in the zone 1, this means that all picks are in zone 1 and no pick is in 

the zones from 2 to c :  

1 1
jq

j jP p=   (2.2) 

1
1 (  distance  all picks in zone 1)

1
j j

j

j

l q
d travel

q
= =

+
E   (2.3) 

(2.3) is based on the well-known property that the expectation of the maximum of jq  

continuous uniformly distributed [0,1] variables equals 
1

j

j

q

q +
. Recall that ijp  is the 

probability that an item of class i  located in aisle j  is ordered, given aisle j is visited: 

1

c

ij ij ij

i

p p p
=

′ = ∑ . 

2.3.2 Farthest pick is in zone 2 

The farthest pick in zone 2 is equivalent to at least one pick in zone 2 and no pick in the 

zones from 3 to c  (or all picks in zone 1 and zone 2 but not all picks in zone 1):  
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( ) ( )2 1 2 1

j jq q

j j j j
P p p p′ ′ ′= + −   (2.4) 

2
2 1 2

2 1j j j

N
d l l

N

⎛ ⎞
= + ⎜ ⎟+⎝ ⎠

E , (2.5) 

where 2N  is the number of picks in zone 2. It is rather difficult to compute 2 jd  based on 

(2.5). Therefore, we estimate 2 jd  as follows. First, we calculate ( )2NE , the expected 

number of picks in zone 2: 

( )2
1

(n picks in zone 2  all picks in zones 1&2, and not all in zone 1)
jq

n

N nP
=

= ∑E      

      
n=1

(n picks in zone 2, all picks in zones 1&2, and not all in zone 1)
      = 

(all picks in zones 1 and 2, and not all picks in zone 1)

     

jq
P

n
P

∑   

       
n=1 2

(n picks in zone 2 and ( -n) picks in zone 1)
     

jq

j

j

P q
n

P
= ∑                    

         

2 1

1 1 2 1 2

1 2 1

    =
( )

j
j

j j

n q n
q

j j j

n j j j j

q q

j j j

q p p
n

p p p pn

p p p

−

=

′ ′⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ′+ +⎝ ⎠⎝ ⎠ ⎝ ⎠

′ ′ ′+ −

∑
 

 

2

1 2

1 2 1

 
( ) j j

j j

j j

q q

j j j

q p

p p

p p p

′

′ ′+
=

′ ′ ′+ −
 

The last step is based on the property of Binomial distribution. Then, 2 jd  can be estimated 

as follows: 

( )
( )

2
2 1 2

2 1j j j

N
d l l

N
≈ +

+
E

E
  

      

2
2

1 2

1 2 1
1

2

1 2

1 2 1

( )

1
( )

j j

j j

j j

j

j j

q q

j j j

j

j j

j j

q q

j j j

q p
l

p p

p p p
l

q p

p p

p p p

′

′ ′+

′ ′ ′+ −
= + ′

′ ′+
+

′ ′ ′+ −
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2 2

1 2
1

2
1 2 1

1 2

  

( ) j j

j j j

j j

j
q qj j

j j j

j j

l q p

p p
l

q p
p p p

p p

′

′ ′+
= + ′

′ ′+ + −
′ ′+

  

      
( )

2 2
1

2 1 2 1 2 1( ) j j

j j j

j q q

j j j j j j j

l q p
l

q p p p p p p

′
= +

⎡ ⎤′ ′ ′ ′ ′ ′+ + + −⎣ ⎦
 (2.6) 

2.3.3 Farthest pick is in zone ( 3.. )i i c=  

If farthest pick is in zone ( 3.. )i i c=  then we can apply the same procedure as in two 

previous situations, we have: 

( ) ( )1 2 1 2 1,
3

... ...
j jq q

ij j j ij j j i j
i

P p p p p p p −
≥

′ ′ ′ ′ ′ ′= + + + − + + +  (2.7) 

( )

1

3 1

1

,

i
ij j ij

ij ij i
i k

j ij ij j kj

k

l q p
d l

q p p q pψ

−

≥ =

=

′
≈ +

′ ′ ′+
∑

∑
, (2.8) 

where we define ( )
1

1 1

,
i i

k k

k k

β β

ψ α β α α
−

= =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , 2i ≥ . 

 

Finally, substituting (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) into (2.1), we obtain: 

( )
( )

1
1

1
2 1

1

( , ) ,
1

,

j

c i
q j j ij j ij

j j j ij j kj i
i kj

j ij ij j kj

k

l q l q p
D q c p p q l

q
q p p q p

ψ
ψ

−

= =

=

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥′⎪ ⎪⎢ ⎥′ ′≈ + +⎨ ⎬

+ ⎢ ⎥⎪ ⎪′ ′ ′+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑
∑

  (2.9) 

2.3.4 Simulation test 

To test the quality of the probabilistic model (2.9), we built a simulation model in 

Microsoft Excel using VBA (Visual Basic for Applications). In the test, we consider the 

case that there are only three classes (namely A, B and C), which is the most popular one 

in practice.  

 

In the case of three classes, it is easy to verify that: 
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( ) ( ){ }( ,3) .
1

q qq A

A A B A

l q
D q p p p p

q
≈ + + −

+ ( ) ( )
B B

A q q

B A B A B A

l qp
l

qp p p p p p

⎧ ⎫⎪ ⎪+⎨ ⎬
⎡ ⎤+ + + −⎪ ⎪⎣ ⎦⎩ ⎭

 

( ){ }
( )

 1
1

q C C

A B A B q

C A B

l qp
p p l l

qp p p

⎧ ⎫⎪ ⎪+ − + + +⎨ ⎬
+ − +⎪ ⎪⎩ ⎭

  (2.10) 

where q  is the number of picks. , ,A B Cp p p  and , ,A B Cl l l  are the order frequencies and 

storage length of class A, B and C, respectively.  

 

Table 2.1 Storage assignment schemes (storage space/ order frequency) 

Assignment A-class B-class C-class 

Skewed 20/80 30/15 50/5 

Medium 30/50 30/30 40/20 

Random 33.33/33.33 33.33/33.33 33.33/33.33 

 

We consider three different ABC-storage assignments, namely: skewed, random and 

medium. In the skewed assignment, frequently ordered items occupy only a very small 

portion of the total storage space. Typically, items occupying 20% of the storage space are 

responsible for 80% of the picks. In the random assignment case, no distinction between 

items classes in the term of order frequency and required space can be made; items are 

randomly located within the warehouse. Finally, the medium assignment is in between the 

two above-mentioned patterns. The percentages of assigned space and order frequencies of 

classes are listed in Table 2.1. The effective pick-list size varies from 4 to 60 picks per 

picking tour. 

 

For each simulation experiment, the number of replications needs to be determined such 

that the mean (average tour length) has a relative error of less than γ , for 0 1γ< < , with a 

probability of 1 α− . An approximation procedure for estimating the necessary number of 

replications is given in Law and Kelton (2000). A the replication size of 10000 is chosen 

for all simulation experiments in this thesis,  as it is sufficient to guarantee a relative error 

of at most 2% with a probability of 98%.  
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Figure 2.4   Difference between approximation and simulation results for travel 
distance in a single aisle 

 

Figure 2.4 shows the results; the length of the pick aisle has been normalized to 1. The 

differences between approximation and simulations results are generally less than 5%. It 

confirms that the formula provides a good approximation for the travel distance in a single 

aisle. When the pick-list size is large, the difference is very small. It is because the order 

picker has to travel almost the entire pick aisle to pick up a large number of items; the 

average tour lengths found by the simulation and the estimation are close to the maximum 

travel distance (distance to travel the entire warehouse). Furthermore, the results from the 

approximation are always higher than the simulation results, since we overestimate the 

conditional expected travel distance ijd . 

 

The results show that ABC-storage can save travel distance up to 32% and 43% compared 

to the random strategy for the medium and skewed assignment, respectively. This finding 

is in line with the results in previous research on the ABC-storage assignment (see, for 

example, Hausman et al., 1976, Graves et al., 1977, Roodbergen, 2001). Also, the 

approximation performs better for the random assignment than for the medium and skewed 

assignment. In the worst case, the differences between the approximation and simulation 

results for the random, skewed and medium assignment are 2.5%, 3.7% and 4.4% 

respectively. The reason is that the variation in travel distance is higher in the cases of the 

skewed and medium assignment. 
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2.4 Travel distance in a warehouse with multiple aisles 

In the previous section, the average travel distance within an aisle (i.e. the distance from 

the starting point to the farthest pick location in the aisle) has been estimated. In this 

section, the average tour length, including the travel distance within pick aisles (within-

aisle travel distance) and the travel distance within the cross aisle (cross-aisle travel 

distance), is considered. 

2.4.1 Within-aisle travel distance  

The within-aisle travel time is the total travel time inside the pick aisles that an order 

picker has to traverse during a pick tour. Certainly, it depends on the pick-list size and the 

nature of the routing method. If we use the return heuristic, the within-aisle travel time 

( Return
WATD ) can be estimated as the summation (over the set of all pick aisles) of the product 

of the probability that aisle j  is visited ( jm ) and the expected travel distance from the 

centreline of the cross aisle to the farthest pick in aisle j  ( jk ), given that the aisle j  is 

visited. 

 

For calculating the average tour length, we assume that ijl  and if  are given. The 

probability that an item belonging to class i  located in aisle j  is ordered, 

( )1.. , 1..ijp i c j a= = , can be then calculated by: 

1

( 1.. , 1.. )ij

ij i a

ij

j

l
p f i c j a

l
=

= ∀ = =

∑
. 

Clearly, if one item is ordered then the probability that aisle j  is visited is 
1

c

ij

i

p
=
∑ . Thus, if 

q  items are required then the probability that the aisle j  is visited is: 

1

1 1
q

c

j ij

i

m p
=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ . 

 

The expected travel distance from the centreline of the cross aisle to the farthest pick in 

aisle j  (given that the aisle j  is visited) can be estimated as 2 ( , )j a j jk w D q c= + , where 

jq  is the conditionally expected number of picks to be picked from aisle j : 
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1expected number of picks in aisle

probability that aisle is visited

c

ij

i

j

j

q p
j

q
j m

== =
∑

.  

( , )j jD q c  is the average travel distance from the starting point to the farthest pick in the 

aisle j  to pick up jq  items, it is estimated by using formula (2.9) in Section 2.3. 

 

The average 'within-aisle' travel distance of a tour can now be computed by: 

( ) ( )Return
1

2 expected travel distance if aisle  is visited * prob. that aisle  is visted
a

WA

j

TD j j
=

≈ ⎡ ⎤⎣ ⎦∑  

( )
1 1 1

2 2 2 ( , ) 1 1
q

a a c

j j a j j ij

j j i

k m w D q c p
= = =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= = + − −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑ ∑

 

( ) ( )
( )

1
1

1
1 2 1

1

2 2 ,
1

,

j
a c i

q j j ij j ij

a j ij j kj i
j i kj

j ij kj j kj

k

l q l q p
w p p q l

q
q p p q p

ψ
ψ

−

= = =

=

⎧⎧ ⎫⎧ ⎫⎡ ⎤
⎪⎪ ⎪⎪ ⎪⎢ ⎥′⎪⎪ ⎪ ⎪⎪⎢ ⎥′ ′= + + +⎨⎨ ⎨ ⎬⎬

+ ⎢ ⎥⎪⎪ ⎪ ⎪⎪′ ′ ′+⎢ ⎥⎪⎪ ⎪ ⎪⎪⎣ ⎦⎩ ⎭⎩ ⎭⎩

∑ ∑ ∑
∑

 

1

. 1 1
q

c

ij

i

p
=

⎫⎡ ⎤⎛ ⎞ ⎪− −⎢ ⎥⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪⎣ ⎦⎭

∑ .  (2.11) 

 

In the case that the S-shape (traversal) routing heuristic is used, the within-aisle travel 

distance ( WA

S shapeTD − ) can be estimated as the summation (over the set of all aisles) of the 

product of the probability that aisle j  is visited and the travel distance going through the 

aisle from the central line of the cross aisle to the central line of the rear aisle: 

( )
1 1

1 1 2
q

a c
WA correction

S shape ij a d S shape

j i

TD p w w L TD− −
= =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − − + + +⎡ ⎤⎢ ⎥⎨ ⎬⎜ ⎟ ⎣ ⎦
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑   (2.12) 

correction

S shapeTD − is a correction term for the fact that the number of visited aisles in each block 

can be an odd number. If this is the case, then the order picker returns from the last pick 

position and leaves the aisle at the front-end (on the cross aisle’s side). For single-block 

warehouse with random storage assignment, Hall (1993) assumes that the order picker has 

to return in the last aisle with probability 0.5 and the distance travel in this aisle is 2L . 

Consequently, the correction term would equal 0.5L . However, it can easily be seen that if 
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the number of picks is high, 0.5L  is either too low (if the number of aisles in one block is 

odd) or too high (even number of aisles).  

  

For our case, in order to estimate correction

S shapeTD − , it is assumed that all aisles are identical (i.e. 

the storage space for each class in each aisle is the same). It then follows that all aisles 

have the number of picks * 1
1 1

q

q q a
a

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

, where 
1

1 1
q

a
a

⎡ ⎤⎛ ⎞− −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 is the expected 

number of visited aisles. The expected travel distance inside the odd aisle(s), L′ , can be 

estimated by formula (2.9): 
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The probability that the number of visited aisles in one block is odd is 0.5, and in both 

blocks is 0.25, thus, 

 correction

S shapeTD − = ( )0.5 2L L′ − +  ( )( )0.25 2 2L L′ − 2L L′= −   (2.13) 

 

In principle, it is possible to obtain a better approximation of correction

S shapeTD −  by finding the 

probability that the last visited aisle in each block is odd. For interested readers, it is 

advisable to read De Koster et al. (1998) and Roodbergen (2001). 

2.4.2 Cross-aisle travel distance 

To estimate the cross-aisle travel distance, we have to determine where the farthest (from 

the I/O point) visited pick-line is. It is similar to the situation of estimating the farthest pick 

location in a single aisle. Therefore, it can be estimated as follows: 

( )( ){ }
/ 2

1

2 2 1 2 (prob. that  is the farthest pick-line)
a

CA

z b

j

TD j w j
=

≈ −∑  

( )
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1 1 1

2 1
q q
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j i i
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−

= = =
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⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑ ∑ , (2.14) 
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where ( )( ) ( )2

11 1 1 1 1
j j a j j

n m m m− += − − − = − −  is the probability that aisle j and/or aisle 

(a-j+1) is visited (it has to be noted aisle j and aisle (a-j+1) are symmetrical), and 

( )
/ 2

1

1.. / 2
a

j j j

j

n n n j a
=

′ = ∀ =∑  is the probability that pick-line j is visited.  

 

Adding CA

zTD  and WA

zTD  we obtain a formula for estimating the average tour length zTD . 

2.4.3 Simulation of multi-aisle layouts with the return routing method 

We used simulation to examine the performance of the proposed formulas for the return 

heuristic: (2.11) and (2.14). In the experiment, we consider a warehouse with 6 aisles (see 

Figure 2.2 for an example of 4-aisle warehouse). We also assume that items are grouped 

into 3 classes and assigned to storage locations by either the skewed, medium or random 

assignment as mentioned in Table 2.1. The effective pick-list size varies from 4 to 60 items 

per picking tour. The aisle’s length is normalized to 1. Other input parameters can be 

found in Table 2.2. 

 

Table 2.2   Parameters for experimented layouts ( 1L = , 0.11aw = , 0.18bw = , 0.06dw = ) 

 Medium assignment Skewed assignment 

Layout 1: 
6 aisles 

11 21 310.53, 0.4, 0.07l l l= = =  

12 22 320.29, 0.29, 0.43l l l= = =

13 23 330.09, 0.21, 0.7l l l= = =  

11 21 310.39, 0.4, 0.21l l l= = =  

12 22 320.14, 0.29, 0.57l l l= = =  

13 23 330.07, 0.22, 0.71l l l= = =  

Layout 2: 
10 aisles 

11 21 310.71, 0.29, 0l l l= = =  

12 22 320.57, 0.43, 0l l l= = =  

13 23 330.21, 0.50, 0.29l l l= = =  

14 24 340, 0.29, 0.71l l l= = =  

15 25 350, 0, 1l l l= = =  

11 21 310.57, 0.43, 0l l l= = =  

12 22 320.29, 0.42, 0.29l l l= = =  

13 23 330.14, 0.36, 0.50l l l= = =  

14 24 340, 0.29, 0.71l l l= = =  

15 25 350, 0, 1l l l= = =  

Layout 3: 
16 aisles 

11 21 310.71, 0.29, 0l l l= = =  

12 22 320.71, 0.29, 0l l l= = =  

13 23 330.49, 0.51, 0l l l= = =  

14 24 340.49, 0.51, 0l l l= = =  

15 25 350, 0.8, 0.2l l l= = =  

16 26 360, 0, 1l l l= = =  

17 27 370, 0, 1l l l= = =  

18 28 380, 0, 1l l l= = =  

11 21 310.64, 0.36, 0l l l= = =  

12 22 320.39, 0.61, 0l l l= = =  

13 23 330.29, 0.20, 0.51l l l= = =  

14 24 340.14, 0.36, 0.5l l l= = =  

15 25 350.14, 0.36, 0.50l l l= = =  

16 26 360, 0.21, 0.79l l l= = =  

17 27 370, 0, 1l l l= = =  

18 28 380, 0, 1l l l= = =  
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The simulations were established in the same way as for the single aisle case. For each 

simulation run we drew q  picks (q varies between 4 and 60 picks per route), which were 

first randomly assigned to pick classes based on the class order frequencies. Then, items of 

class ( 1.. )i i c=  are assigned to aisle ( 1.. )j j a=  proportional to ijl  (note that within each 

storage zone, items are randomly stored). In comparison, we used 10000 replications for 

each value of q  (which is sufficient to obtain a relative error of at most 2% with a 

probability of 98%, see Section 2.3.4). Figure 2.5 shows the results obtained from the 

probabilistic model and simulations. In accordance with our expectation, the random 

assignment always provides the longest average tour length. The average tour length is an 

increasing concave function of the pick-list size. 

 

We also considered two other warehouses: 10-aisle and 16-aisle. The results that we 

obtained from these two warehouses are very similar (see Figures 2.6 and 2.7). The 

maximum approximation error increases slightly when the number of aisles increases 

(7.3%, 7.4% and 8.0% for 6-aisle, 10-aisle and 16-aisle warehouse, respectively). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.5   Differences between approximation and simulation results for the 6-aisle 
layout when the return routing method is used 
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Figure 2.6   Differences between approximation and simulation results for the 10-aisle 
layout when the return routing method is used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7   Differences between approximation and simulation results for the 16-aisle 

when the return routing method is used 
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Figure 2.8   % difference between approximation and simulation results for 16-aisle 

warehouse with skewed assignment and the return routing method. 

 

Figure 2.8 delineates the shape of the difference in the case of the layout with 16 aisles and 

a skewed assignment scheme. From the figure, we can see that the difference between 

approximation and simulation results first increases, when the pick density – defined as the 

average number of picks (or order lines) per aisle – increases. It reaches a maximum, and 

from there it decreases. When the pick-list size is very large, the difference is very small. 

We can explain this behavior as follows. The difference (or error ζ ) consists of the 

following two components:  

• the accumulated error resulting from estimating the average travel distance within all 

visited aisles ( aζ ). This amount is proportional to the expected number of visited 

aisles (η ) and the error in estimating the travel distance in a single aisle ( ε ).  

• the error in estimating the cross-aisle travel distance ( bζ ). This depends on η  only. 

 

When the pick-list size increases first, both η  and ε  increase. As a result, aζ , bζ  and 

therefore, ζ  increase. When the pick-list size is substantially large, η  approaches the 

maximal possible number of visited aisles ( a ), and bζ  stops increasing. For even larger 

pick-list sizes, ε  will start to decrease since the order picker has to visit the entire 

warehouse. As a result, ζ  will decrease as well. The estimate also approaches the 

maximum travel distance in this case.  
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2.4.4 Simulation of multi-aisle layout with the S-shape routing method 

In this section, we use simulation to estimate the error of the approximation for the S-shape 

routing heuristic (by using Formulas 2.12, 2.13 and 2.14). We used the same warehouse 

instances as mentioned in Section 2.4.3 (see Table 2.2 for warehouses’ parameters). The 

way the simulations are established is the same as mentioned previously. The only 

difference is that the routing method used is different (see Figure 1.8 for an example of an 

S-shape route).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9   Differences between approximation and simulation results for the 16 aisle 
layout when the S-shape routing method is used 

 

Figure 2.9 shows the results for the 16-aisle warehouse. As we can see the approximated 

error is less than that of the return heuristic. The reason is that, in order to estimate the 

within-aisle travel distance for the return heuristic, we need to keep track of the farthest 

pick location in every visited aisle. While in the case of the S-shape heuristic, we need to 

estimate only the number of visited aisles and the correction term. It has to be noticed that 

the cross-aisle travel distance is the same for both routing methods. We also tested 

warehouses with 6 and 10 aisles. These produced similar results. In the worst case, the 

error is 2.9%, 3.3% and 4.1% for 6, 10 and 16-aisle warehouses respectively. It appears 

that the error slightly increases when the number of aisles grows. 

2.4.5 Comparison between S-shape and return routing method 

Comparing the two routing methods, we find that the approximation error is smaller for the 

S-shape and larger for the return method. As mentioned before, the reason is that for the 
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return method we need to keep track of the farthest pick location in every aisle. For the S-

shape routing method, it is not necessary to do so.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10  Comparison between the S-shape and return routing method (for 16-aisle 

warehouse) 

 

Figure 2.10 shows the average tour lengths for two routing methods for the warehouse 

with 16 aisles. The S-shape clearly outperforms the return routing method in the case of 

the random and medium storage assignment. This result is in line with conclusions of 

Goetschalckx and Ratliff (1988), Hall (1993) and Caron et al. (1998). The gaps are small 

for small pick-list sizes and larger when the pick-list size grows. In the case of the skewed 

assignment, the return method results in a shorter tour compared to S-shape for small pick-

list sizes 54q ≤ , but in a longer one for large pick-list sizes 54q > . The reason is that 

with the skewed storage assignment and the return heuristic, when the pick-list size is 

small, we have to travel only a small part of most of the visited aisles, thus it will result in 

a shorter travel distance. For larger pick-list sizes, the order picker has to travel further into 

every visited aisle, and thus it will result in a longer travel distance than for the S-shape, 

since the order picker returns to the cross aisle before moving to the next aisle. In this 

situation, it is smarter to travel visited aisles entirely. We can conclude that in general S-

shape outperforms the return routing method. The exception is the case of a skewed 

assignment with sufficiently small pick-list sizes, where the return method may provide a 
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shorter average tour length. The results we obtained for other layouts (6-aisle and 10-aisle) 

also support this conclusion. 

2.5 Concluding remarks 

Travel distance estimation has been long considered as an essential problem in optimizing 

OP processes in particular and warehouse operations in general. The average tour length 

mainly depends on the following factors: 

• the layout (number length and width of aisles and cross aisle, location of the I/O 

point) 

• the routing method  

• the storage assignment method 

• the number of picks per route (q) 

This chapter focuses on some typical layout types, these layouts can be considered as the 

most basic (and simple) form of major warehouses in practice. For routing order pickers, 

two common heuristics (the return and S-shape method) are used. The employed storage 

strategy is class-based assignment method. The effective pick-list size (q) varies between 4 

and 60, which covers a wide range of pick-list sizes in order picking practices, we believe. 

 

As pinpointed in the computational results, in the worst case, the difference between 

approximation and simulation result is about 8% for the return and less than 5% for the S-

shape routing method. The error is small for small warehouses and appears to be larger for 

larger warehouses (i.e. large number of aisles, or equivalently smaller number of picks per 

aisle). Regarding the pick-list size, the gap between approximation and simulation result 

becomes smaller when the pick-list size grows; it is very tight for large pick-list sizes. The 

error is not very small, especially for the return and large warehouses. However, our 

intention is to use the travel distance estimation to support for rapid warehouse design in 

practice (i.e. storage zone and layout optimization), where data (e.g., customer demand, 

product availability) are stochastic variables. Therefore, it is not necessary to pursue high 

accurate estimation. In other words, in this situation we refer a quick and efficient layout to 

the optimal one.  

 

So far, we have considered only some basic (small and simple) layouts. In practice, we 

may encounter much more complicated layouts (i.e. more than one cross aisle). It can be 

foreseen that the average within-aisle travel distance can be estimated in a same manner, 

but for estimating the cross-aisle travel distance, it is more difficult. The reason is that we 

have to keep track not of only the visited aisles (and their farthest pick locations if 



Design and Control of Efficient Order Picking Processes  52 

 

necessary) but also the visited blocks and where the transition from one block to another is 

made. For the case of random storage assignment, Roodbergen (2001) estimates the 

average tour length in a warehouse with multiple cross aisles. We can combine the models 

that we present in this chapter and Roodbergen’s model to be able to estimate the average 

tour length for multi-block class-based warehouses. Besides considering more complicated 

layouts, we can also think of more sophisticated routing methods. As shown by 

Roodbergen and De Koster (2001), a good routing heuristic for order pickers is the 

combined heuristic, which is a combination of the return and S-shape heuristic and a 

decision between these two options is made per aisle by using dynamic programming. It 

may be possible to estimate the average tour length if the combined heuristic is used.  

 

  



 

 

3 

3 Storage Zone and Layout Optimization for Manual-pick 

Class-based Storage Strategy Warehouses   

3.1 Introduction 

In the previous chapter, we proposed a probabilistic model for estimating the average tour 

length. That is to say, for a given layout ( , ,, , ...a bc w wL a ), item class pick-frequency ( if ), 

storage assignment scheme ( ijl ), routing method (either S-shape or return) and pick-list 

size q , we can estimate the average tour length (TD ). An ABC (or Pareto) analysis is 

carried out when the warehouse is first put into service or when there is a major change in 

product assortment and/or demand pattern. The purpose of this analysis is to make a 

distinction between products based on turnover speed (i.e. pick-frequency). In most cases, 

products are divided in pick-frequency classes A, B, C etc. where the product class A 

contains about 5 to 15% fastest moving items (see also Section 1.3.2). Next, each product 

class needs to be assigned ‘optimally’ to storage locations. In other words, if we divide 

storage space along each aisle into storage zones, each zone for storing a product class, 

then we have to define the optimal boundaries between zones in each aisle. The common 

objective to use here is minimizing the average tour length, which can be calculated by the 

formulas proposed in the previous chapter. We define this problem as the storage zone 

optimization problem. 

 

The layout of the picking area is given (meaning that the number of aisles and the aisle 

lengths are given) in the case of storage zone optimization problem. However, if only the 

total storage space is given, then besides the storage zoning we have to determine also the 
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optimal number of aisles and the aisle lengths. We will discuss this problem in depth in 

Section 3.5. 

 

Several publications consider the problems of determining the optimal storage zone and/or 

layout of picking area for manual-pick OP systems are concerned. As far as we know the 

most recent ones are Roodbergen (2001), Caron et al. (2000), Petersen and Schmenner 

(1999) and Jarvis and McDowell (1991). (See Section 1.3.1 for an overview of the 

literature on the internal layout design.) Caron et al. (2000) use the travel time model 

proposed in Caron et al. (1998) to address the problem of optimal layout design for 2-block 

warehouses with COI-based storage assignment. In their study the optimal layout means 

the combination of the (pick-) aisle length and number of aisles that result in the shortest 

average tour length. They conclude that the picking area layout significantly influences the 

expected average tour length. Furthermore, they state that non-optimal layouts could be 

preferred in practice, since they are much less sensitive to changes in the operating 

conditions (routing method, pick-list size, and storage assignment scheme) compared to 

the optimal layout and cause only moderate increases in picking travel distance. 

Roodbergen (2001) proposes non-linear layout optimization models for single and multiple 

block warehouses. Based on his approach, we can find the best layout by varying a number 

of parameters (pick-list sizes, aisle length, and number of aisles). A missing point, in both 

Caron et al. (2000) and Roodbergen (2001), is that no specific conclusion about the shape 

of the optimal layout (in conjunction with the pick-list size, storage assignment or routing 

method) can be made. Jarvis and McDowell (1991) prove that when the S-shape routing 

method is applied for solving the routing problem, the optimal strategy is to begin by 

placing the most frequently selected products in the aisle nearest to the I/O point. By 

means of extensive simulation experiments, Petersen and Schmenner (1999) suggest that: 

“Organize the warehouse storage so that the high volume items are concentrated in a few 

aisles close to the I/O point”. They also add that this type of product-to-location 

assignment provides average tour length savings of 10-20% compared to other types of 

storage.   

 

The OP system considered in this chapter is described in the previous chapter (i.e. manual-

pick, shelf-rack type of warehouse). In particular, it is assumed that the portion of total 

storage space ( is ) and the pick frequency ( if ) for each product class is known. In general, 

it is not too complicated to determine is  after a pick-frequency Pareto (ABC) analysis has 

been carried out (setting class boundaries for the different pick-frequency classes). The 

storage space needed for each class mainly depends on the physical size of items in the 

class, the quantity stored per item and the storage assignment method that we use. 

Examples of making an ABC-storage classification in practice can be found in Hausman et 

al. (1976), Petersen and Schmenner (1999),  and Dekker et al. (2004). 
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In this chapter, we use the same notations as in the previous chapter (all notations are listed 

in the list of abbreviation and notations at the end of the thesis). For the storage zone 

optimization problem the ijl ’s are decision variables. However for the layout optimization 

problem, not only the ijl ’s but also the a are decision variables. 

3.2 Storage zone optimization problem formulation 

The problem of optimizing storage zones for class-based storage assignment warehouses 

can be formulated as follows. For a given number of aisles ( a ) , length ( L ) and width of 

aisles ( cw ), a given width of the storage rack ( 2b cw w− ) and cross aisle ( aw ), the pick-

frequencies of classes ( if ), and fraction of total storage space needed for each class ( is ), 

our objective is to determine the optimal storage space (i.e. storage zone boundaries) for 

each class in each aisle ( ijl ). We propose the following mathematical formulation for the 

problem: 

Min ( )z ij
TD l   (3.1) 

Subject to  

1

1..
c

ij

i

l L j a
=

= ∀ =∑  (3.2) 

                             
1

1..
a

ij i

j

l s La i c
=

= ∀ =∑   (3.3) 

              ( ) ( )1.. , 1..ij ij i ip l f s La i c j a= ∀ = =   (3.4) 

 , 1 ( 1.. , 1.. 2)ij i a jl l i c j a− += ∀ = =   (3.5) 

( )0 1.. , 1..ijl i c j a≥ ∀ = =   (3.6) 

 
In the objective function (3.1), we minimize the average tour length to pick up q  picks. It 

consists of two components: the within-aisle, ( )WA

z ij
TD l , and cross-aisle travel distance, 

( )CA

z ij
TD l , where z denotes the routing method used (either the return or S-shape). The 

within-aisle travel distance is calculated by using either formula (2.11) or (2.12) depending 

on whether the return or S-shape routing method is used. The cross-aisle travel distance is 

determined by formula (2.13). In our formulation we consider these distances as functions 
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of ijl . In total, we have five sets of constraints. (3.2) concerns the aisle’s length 

conservation. (3.3) concerns the conservation of the total storage space for each class. (3.4) 

shows the relationship between ijp  and ijl . (3.5) ensures the layout symmetry. And (3.6) 

ensures the non-negativity of decision variables ijl .  

 
In the above formulation, we have five sets of linear constraints. The first two sets are 

similar to those in the classical transportation problem, which is known to be solvable in 

polynomial time. However, we have a non-linear objective function. The computation time 

for this objective function is significant when the pick-list size is very large. The total 

solution space of the problem can be very large as it rapidly increases with the number of 

storage aisles, product classes, and number of space slots per aisle (we divide each aisle 

into a number of identical pieces, called space slots). To get a rough idea about the running 

time, we considered a warehouse with 3 product classes and only 6 aisles, each divided 

into 100 space slots. The computation time to find the optimal layout achieved by total 

enumeration of the state space was about 20 minutes (on a Pentium IV 2.4 GHz CPU 

computer) when the batch size was 40 order lines per picking tour. From this 

computational experience we can conclude that for large warehouses, it is hard to solve the 

problem to optimality. Additionally, the objective function is an estimate of the real 

average travel distance. Therefore, we propose the following heuristic approach. 

3.3 A heuristic approach for storage zone optimization problem 

The following terminologies are used. An identical-aisle layout is a layout in which all 

aisles are identical (thus the storage space for a certain class is the same in all aisles). Class 

i  and j  are called proximity classes if 1i j− = . Our idea is that we first start with a 

zoning scheme and then, step by step, exchange storage spaces between classes to get 

closer to an optimal solution. Clearly, the starting solution plays a role here. We know that 

the idea behind the class-based storage strategy is to locate fast moving classes as close as 

possible to the I/O point, by doing so we may reduce the average tour length. In a same 

manner, starting from the identical-aisle layout, we exchange space slots of fast moving 

classes in far-from-depot aisles with those of slower moving classes in the closer-to-depot 

aisles. When exchanging space slots between aisles, the average tour length changes. At 

each step, we evaluate the average tour length by using the approximation formula that has 

been proposed. We limit ourselves to consider only exchanges of single slots between 

proximity classes. As the layout is symmetrical, we need to consider only a half of the 

warehouse. The exchange program in pseudo code reads as follows: 
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procedure ZoningOpt 

initialise                                  /*start with identical-aisle layout*/ 

for i  from / 2a  downto 2 do     

               for k  from 1 to 1i −  do  /*exchanging space slots 

 for j  from 1  to 1c −  do between class j  in aisle i and class 

               repeat EXCHANGE 1j −  in aisle ( )k i k> */ 

 until LegalExchange=false  or 0TD∆ > ;    

 undo the last EXCHANGE;              

end do; 

 end do; 

end do; 

end sub; 

 

In the EXCHANGE procedure, we exchange one space slot of class j  in aisle i  for one 

space slot of class ( 1j − ) in aisle ( )k i k> .  An exchange is called a legal exchange if 

after the exchange all 'ijl s  are non-negative. It is noted that as we start from a feasible 

solution and just swap storage classes between aisles, the other conditions are 

automatically satisfied. TD∆  is the difference between the average tour length after the 

exchange and the current best average tour length. This difference can be calculated by 

using the formulas that we mentioned before with appropriate values of the ijl 's. 

 

To illustrate the method, suppose that we have a half layout with three aisles (numbered 

from the I/O point as aisle 1 to 3) and three classes (A, B and C). Starting from the farthest 

aisle (aisle 3), we first do the exchanges between aisle 3 and aisle 1. It means that we first 

swap, one by one, space slots of class A in aisle 3 for B slots in aisle 1. Then we swap B 

slots in aisle 3 for C slots in aisle 1. Next, we do the exchanges between aisle 3 and aisle 2. 

Finally, we consider aisles 2 and 1.   

 

The running time of the algorithm depends on the number of aisles, the number of classes, 

the number of space slots per aisle, and the time needed to compute TD∆  (which can be 

negligible for small pick-list sizes). It is easy to verify that the complexity of the algorithm 

is ( )2O a cs , where a  is the number of aisles, c  is the number of classes and s  is the 

number of space slots per aisle (assuming that all aisles are divided into an equal number 

of space slots). The heuristic we have proposed is a type of 2-opt exchange technique, 

which belongs to the neighborhood-search-heuristics family (see, for example, Aarts and 
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Lenstra, 1997). These types of heuristics are widely used for facility design problems 

(Tompkins et al., 2003). 

3.4 Numerical results and discussions 

To evaluate the performance of the heuristic and to determine the optimal zone sizes in 

different warehouses, we carried out various numerical experiments. In the experiments, 

we considered the skewed and medium assignment (see Table 2.2 in Chapter 2) for five 

layouts (1, 2, 3, 4 and 5 with 4, 6, 8, 12 and 24 aisles respectively) and a varying pick-list 

size. We keep the aisle lengths constant over all layouts. Details about the parameters of 

the layouts are shown in Table 3.1 and Figure 3.1. The shape ratio ( ρ ) is defined as the 

ratio between the warehouse’s width, 2baw , and the aisle length, L . Based on the 

experiment results, we discuss the quality of the heuristic, the shape of the optimal storage 

zone and the robustness of the identical-aisle layout. 

3.4.1 Quality of the heuristic 

The optimal average tour lengths for layouts 1, 2 and 3 are found by total enumeration of 

the state space when the return heuristic is used. Because the number of aisles is large, we 

could not find optimal results for layouts 4 and 5 (within 240 minutes of CPU running 

time).  

 

Table 3.1 shows the differences between average tour lengths obtained from the optimal 

method, the exchange heuristic, and the average tour lengths from the identical-aisle 

layout. The gaps between the exchange heuristic and the corresponding optimal results 

appear to be very small. In the worst case, the heuristic result is only about 1.2% off the 

optimal result. For large pick-list sizes the heuristic provides the optimal solution. It is 

because of the fact that for large pick-list sizes, the order-picker has to travel the entire 

warehouse, and consequently the zoning scheme does not influence the average travel 

distance much. In all cases, the running time of the heuristic was less than 5 seconds.   
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Figure 3.1  ‘Optimal’ storage zones for layout 2, 4 and 5 when the return routing 
method is used (only left-parts of the warehouses are shown) 

I/O point 
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Table 3.1 Comparison between optimal average tour length, average tour length 
obtained by the exchange heuristic and the average tour length of the 
identical-aisle layout (using the return routing method)  

Layout 1: 4 aisles, 100, 10, 15, 5, 100a b dL w w w s= = = = =  and 0.3ρ =  

 Pick-list 
size (q) 

Optimum Heuristic Identical 
% diff. 

Heu.- Opt. 
% diff. 

Iden.- Opt. 
1 114.52 114.52 115.00 0 0.41 
2 196.48 196.63 197.77 0.08 0.65 

Medium 
assignment 

12 578.23 578.23 578.23 0 0 
1 72.49 72.50 74.12 0 2.19 
2 119.19 120.63 125.49 1.19 5.02 

Skewed 
assignment 

12 330.66 330.66 330.67 0 0 
Layout 2: 6 aisles, 100, 10, 15, 5, 100a b dL w w w s= = = = =  and 0.45ρ =  

1 128.57 128.58 130.00 0 1.10 
2 220.63 221.22 221.25 0.27 0.28 

Medium 
assignment 

12 729.06 729.06 729.06 0 0 
1 84.14 84.15 89.12 0 5.58 
2 140.09 140.92 142.67 0.59 1.81 

Skewed 
assignment 

12 416.55 416.56 416.56 0 0 
Layout 3: 8 aisles, 100, 10, 15, 5, 20a b dL w w w s= = = = =  and 0.6ρ =  

1 142.19 142.24 149.84 0.03 5.10 
2 242.18 242.53 246.79 0.14 1.87 

Medium 
assignment 

12 833.34 833.34 833.35 0 0 
1 94.39 94.50 104.75 0.12 9.90 
2 157.89 158.34 164.91 0.28 4.26 

Skewed 
assignment 

12 482.02 482.02 482.03 0 0 

Optimum = optimal average tour length found by total enumeration;  

Heuristic = average tour lengths found by the exchange heuristic; Identical = average 

tour length for the identical- aisle layout.  

% diff. Heu.- Opt. =  % difference between solutions obtained by the exchange heuristic 

and the optimal method. 

% diff. Iden.- Opt. =  % difference between the solutions from the identical-aisle layout 

and the optimal results. 

s  =  number of space slots per aisle (s = 100 means the aisle is divided into 100  space 

slots).  
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3.4.2 Shape of the optimal storage zones 

When the return heuristic is used 

Figure 3.1 shows the ‘optimal’ zone sizes for layout 2 ( 0.45ρ = ), layout 4 ( 0.9ρ = ) and 

layout 5 ( 1.8ρ = ) when the return heuristic is used.  We can see that the optimal number 

of space slots in the aisles for each class depends on the pick-list size, pick-frequency of 

classes and shape ratio change. The optimal zoning scheme is summarized in Figure 3.2. 

The names of the layout types have been adapted from Petersen and Schmenner (1999). 

The identical-aisle layout is defined as before (Section 3.3). The across-aisle layout means 

that we allocate the A-class items to the aisles closest to the I/O point, after allocating all 

A-class items, the B-class items are considered and so on. The diagonal layout is in 

between the identical- and across-aisle layout. Layout type I (identical-aisle layout) 

appears to be the best for sufficiently large pick-list sizes, or small shape-ratio (thus short-

aisle) warehouses, while layout type III (across-aisle layout) is only good for large shape-

ratio (long-aisle) warehouses with rather small pick-list sizes per route. It is surprising that 

the identical-aisle layout is optimal for large pick-list sizes regardless of the shape ratio. 

When we consider the continuous-storage space case, the optimal storage layout depends 

on the I/O position (see Figure 3.3, partly based on Tompkins et al. 2003). However, with 

the presence of the cross aisle, the I/O position does not influence the optimal storage 

layout when the pick-list size is sufficiently large, leading to the optimality of the 

identical-aisle zoning scheme. The reason is that for large pick-list sizes, it is likely that we 

have to visit all storage aisles and, therefore, any position of the I/O point on the cross aisle 

results in the same average tour length. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2     Shape of the optimal storage zone in relation with pick-list size, storage 

assignment and shape ratio (for the return routing method) 
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Figure 3.3   Optimal storage zoning in continuous storage space, and in space with aisles 

for sufficiently large pick-list sizes and the return routing method 

When the S-shape heuristic is used 

Figure 3.4 shows the optimal storage zone shapes for layouts 2, 4 and 5 when the S-shape 

is used. For all three layouts, the across-aisle layout (see Figure 3.2) appears to be the 

optimal, irrespective of the layout, the storage assignment and pick-list sizes (between 1 

and 60).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4   ‘Optimal’ storage zones for layout 2, 4 and 5 when the S-shape routing 

method is used (only left-parts of the warehouses are shown) 

 

The reason is that, among other layout types, the across-aisle layout is the one that 

minimizes the number of visited aisles, and hence the cross-aisle travel distance. 

Furthermore, for the S-shape method the average within-aisle average travel distance is 

mainly determined by the number of visited aisles. (It has to be noted that the correction 

term is only a minor portion of the average within-aisle travel distance, especially in the 

case when the number of visited aisles is large.) Therefore, the across-aisle layout is 
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favorable for the S-shape method. This result is in line with Jarvis and McDowell (1991) 

and Petersen and Schmenner (1999) who suggest that when the S-shape routing method is 

applied, to reduce the average travel distance, the most frequently ordered items should be 

concentrated in a few aisles close to the I/O point.  

3.4.3 Robustness3 of the identical-aisle layout  

When the return heuristic is used 

From Table 3.2 we can also see that the differences between results from the identical-aisle 

layouts and the corresponding optimal layouts are small for small pick-list sizes (less than 

10%) and the gaps decrease rapidly when the pick-list size grows (less than 0.01% when 

the pick-list size is larger than or equal to 12). To study this effect further, we considered 

layout 1 (4-aisle warehouse). For each possible value of the number of space slots used for 

the A-class in the aisle closest to the I/O point ( 11l ), we found the corresponding optimal 

layout.  

 

Figure 3.5 and 3.6 show the experimental results for the skewed and medium assignment, 

for q=2 and q=12, respectively. As we can see, when the pick-list size is small (q = 2), the 

average tour length is a convex function of 11l . However, this curve becomes very flat 

when the pick-list size is rather large (q = 12). It means that when q is large, multiple 

optima (or near optima) exist. As a result, the optimal average tour length and the best 

travel distance found by the exchange heuristic and from the identical-aisle layout are very 

close. This fact also explains why the heuristic performs very well for large pick-list sizes). 

 

From a practical point of view, this result (robustness of the identical-aisle layout) is very 

interesting: instead of adjusting the optimal zone borders for a single pick-list size, we now 

can select the identical-aisle layout as a good approximation for all pick-list sizes. No 

doubt, this approximation is better for the medium assignment than for the skewed storage 

assignment. 

                                                           
3 In this thesis, robustness is referred as ‘generally’ good or good in many cases. 
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Figure 3.5   Optimal average tour length for layout 1 with 2 picks per route, and 
when the return routing method is applied 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6   Optimal average tour length for layout 1 with 12 picks per route, and 
when the return routing method is applied 
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When the S-shape heuristic is used 

The identical-aisle layout can be far from the optimum in the case of the S-shape heuristic. 

Table 3.2 shows the minimum and maximum differences between the average tour length 

resulting from the optimal layout and the identical-aisle layout when the pick-list size 

varies from 1 to 48. As we can see the difference between two layout types becomes 

smaller when either the pick-list size or the shape ratio decreases. And, it becomes larger 

when the skewed assignment is used.  

 

Table 3.2   % differences between the optimal and identical-aisle layout (when the S-shape 
routing method is used and the pick-list size varies from 1 to 48) 

Medium assignment Skewed assignment 
Layout Shape ratio ( ρ ) Max. diff. Min. diff. Max. diff. Min. diff. 

6-aisle 0.6 4.60 0.20 10.38 7.93 
12-aisle 0.9 10.17 1.66 24.55 15.37 
24-aisle 1.8 15.51 3.06 38.93 18.67 

3.5 Layout optimization model 

As mention in Section 3.1, for the storage zone optimization problem the layout 

dimensions (i.e. number of aisles, aisle’s length and width) are given. However, at the 

layout design state, usually only the storage space (e.g. floor area) rather than the exact 

dimensions of the warehouse are fixed. In this situation, besides ijl 's, the number of aisles 

a is also a decision variable. We call this problem (determining the optimal number of 

storage aisles and storage zone) layout optimization problem. More specifically, for a 

given total floor space (S), the width of a pick aisle, the width of the storage rack and the 

cross aisle, pick-frequencies of classes and portion of total space needed for each class, the 

layout optimization is the problem of determining the joint optimal number of aisles and 

storage zones. 

3.5.1 Mathematical formulation 

We propose the following mathematical formulation for the problem: 

Min ( ),
z ij

TD l a   (3.7) 

Subject to 

( )
1

2 1..
c

ij b d a

i

l S aw w w j a
=

= − − ∀ =∑
 

(3.8)
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( )
1

2 1..
a

ij i b d a

j

l s a S aw w w i c
=

= − − ∀ =⎡ ⎤⎣ ⎦∑   (3.9) 

 ( ){ } ( )2 1.. , 1..ij ij i i b d ap l f s a S aw w w i c j a= − − ∀ = =⎡ ⎤⎣ ⎦   (3.10) 

, 1 ( 1.. , 1.. 2)ij i a jl l i c j a− += ∀ = =   (3.11) 

( ) 02 2
c b d a

w a S aw w w S u− − ≥⎡ ⎤⎣ ⎦   (3.12) 

( )min

22
2 2a d b

Sa
w w L w

⎡ ⎤≤ ≤ ⎢ ⎥+ +⎢ ⎥
  (3.13) 

( ), 0 1.. , 1..ija N l i c j a+∈ ≥ ∀ = =   (3.14) 

 

Compared to the formulation in Section 3.2, (3.7), (3.8), (3.9), (3.10) and (3.11) are about 

the same as (3.1), (3.2), (3.3), (3.4) and (3.5) respectively, except the number of aisles ( a ) 

now becomes a decision variable. Furthermore, there are two new constraints (3.13) and 

(3.14). (3.13) ensures that floor space utilization of the layout is always greater than or 

equal to a predetermined level ( 0u ). Floor space is rather expensive, thus using it 

efficiently is often desired. (3.14) shows how to calculate the upper bound of the number 

of aisles from the total floor space ( S ), the minimum aisle length ( minL ), the width of the 

cross aisle ( aw ), the width of the marginal aisle ( dw ), the width of the pick aisle 

( 2b cw w− ) and the centre-to-centre distance between two consecutive aisles ( bw ). Again, 

we are confronted with a difficult situation: a mixed-integer and non-linear program. We 

propose to solve the problem heuristically. 

 

A variant of the problem is the situation in which not the total floor space but the total 

storage space (total capacity of racks) is fixed. However, given a storage system, we can 

easily convert the total storage capacity to the total floor space and vice versa.   

3.5.2  A heuristic approach for layout optimization problem 

If we fix the number of pick aisles and relax the space utilization constraint then the layout 

optimization problem reduces to the zoning optimization problem. Therefore we can chase 

for a best solution by considering all possible values of the number of pick aisles, for each 

we evoke the ZoningOpt procedure to find the best zoning which does not violate the space 

utilization constraint. We can do that because the running time of the ZoningOpt procedure 

is negligible and the maximum number of aisles is limited. It can be determined by using 

the sixth constraint in Formulation (3.2) mentioned above. The heuristic is described by 

the following pseudo code: 
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procedure LayoutOpt 

for α =1 to ( )min

2
2 2a d b

S
w w L w

⎡ ⎤
⎢ ⎥+ +⎢ ⎥

 do  

2a α=  

while  ( ) 02 2c b d aw a S aw w w S u− − ≥  do  

call ZoningOpt(a)   

end do; 

save optL  and opta ; 

end do; 

end sub; 

 
optL  is the current minimum average tour length and opta  is the corresponding value of the 

number of aisles ( a ). 

3.5.3 Numerical results and discussions 

It can be seen that the LayoutOpt procedure simply bases on iteratively solving the zoning 

optimization problems and then selecting the best one among the solutions that give the 

shortest average tour length and satisfy the space utilization constraint. Therefore, the 

performance of the ZoningOpt procedure itself guarantees the quality of the heuristic for 

the layout optimization problem. 

 

Figure 3.7 shows the optimal number of aisles obtained by using the LayoutOpt procedure 

for a picking area of 495 square units, aw =3, 5bw = , 2cw =  and 1.5dw =  units (refer to 

Figure 2.2 for the layout notations). The skewed assignment is defined as before (see Table 

2.1) and the space utilization lower bound is 0.5 (i.e. 0 0.5u = ). Besides this layout, we 

also considered several others. They all show similar graphs as in Figure 3.7. We can draw 

the following conclusions from the experimental results.  

• Rule of thumb for selecting ‘good’ layout regardless of the routing method. Layouts 

with many aisles (or short aisles) are better for small pick-list sizes, while layouts 

with long aisles are better for very large pick-list sizes, regardless of the routing 

method used. The reason can be explained as follows. When the pick-list size is 

small, the order picker only has to visit few storage aisles. So, the average travel 

distance will be shorter if the aisles are short. However, when the pick-list size is 

large, the order picker has to visit a large part of the warehouse (i.e. many aisles). 

Hence, it may be better if the number of aisles is reduced. Furthermore, by reducing 

number of aisles, the cross-aisle travel distance decreases as well.  
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• Influence of demand skewness. It appears that when the pick-list size increases, the 

optimal number of aisles reduces more gradually in the case of the skewed storage 

assignment than in the cases of random storage assignment. The reason is that, with a 

given pick-list size, the number of visited aisles in the case of the skewed storage 

assignment is less than in the case of random storage assignment. Consequently, the 

effect of increasing pick-list size is less for the skewed assignment.  

• Influence of routing method. Given a pick-list size and an assignment scheme, it 

appears that using the return routing heuristic leads to a greater (or equal) optimal 

number of aisles (thus shorter aisles) than using the S-shape heuristic. This seems 

logical as with the return heuristic the order picker has to return in every visited 

aisle, thus short aisles are preferred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7   Optimal number of aisles for a picking area of 495 square units, aw =3, 

5bw = , 2cw =  and 1.5dw =  units 

3.6 Concluding remarks  

This chapter deals with the problem of finding the optimal storage zones and layout that 

minimize the average tour length for manual-pick class-based storage strategy warehouses. 

These problems are crucial in warehouse design and control; they occur whenever a 

warehouse is (re)designed, or the assortment or the order pattern changes. To solve the 
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problems, we first consider a precise approach. However, the exact algorithm is time 

consuming; it cannot handle large warehouse instances (regarding the number of aisles, 

classes and space slots per aisle). Hence, we propose a heuristic approach to solve the 

problems. This heuristic exchanges proximity classes between aisles, from far-to-depot 

aisles to closer-to-depot aisles. The approach is rather simple, but fast and proves to be of 

very good quality. It can therefore be applied to many practical warehouse design or 

improvement situations.  

 

We define a best layout as a layout that provides the shortest average tour length. Based on 

the experimental results from this and the previous chapter, we can establish several design 

guidelines for manual-pick class-based storage strategy warehouses.  

 

A. When the warehouse’s dimensions (i.e. warehouse’s length and width, the number of 

aisles) are given (see Sections 3.3&3.4):  

1. When the return method is applied to route order pickers (note that in real warehouse 

environments, one may be forced to return in the aisle because of the nature of aisles, 

of the warehouse organization and the relation between storage areas, see Dekker et 

al., 2004 for an example). 

(a) For large pick-list sizes: the identical-aisle layout is the best layout, irrespective 

of demand skewness (or skewness level of the storage assignment). 

(b) For small pick-list sizes: the across-aisle layout is the best for long-aisle4 

warehouses with skewed storage assignments. 

2. When the S-shape routing method is applied to route order pickers: the across-aisle 

layout is always the best layout, irrespective of the pick-list size, shape ratio and 

storage assignment. 

3. From Chapter 2 we know that the S-shape method outperforms the return method, 

except the case of small pick-list sizes with the skewed assignment. Therefore, if no 

preference has been made for either the S-shape or return routing method, we 

suggest that: 

(c) For small pick-list size, skewed demand and long-aisle warehouses: choose the 

across- aisle layout and apply the return routing method. 

(d) For other cases: choose the identical-aisle layout and apply the S-shape routing 

method. 

B. When only the total floor area of warehouse is given (thus the warehouse’s 

dimension are not fixed, see Section 3.5): 
                                                           
4 i.e. shape ratio is greater than 1 (see Section 3.4.2) 
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(e) Long-aisle layouts appear to be the best for large pick-list sizes, while short-

aisle layouts appear to be better than long-aisle layouts for small pick-list sizes, 

regardless of the routing method and demand skewness. 

 

The layouts for testing the quality of the proposed heuristics are rather small compared to 

real warehouse sizes (i.e. number of aisles and space slots or storage locations). The reason 

is that for large warehouse instances, it is not possible (for us) to find the (exact) optimal 

layout. Our conjecture is that the gap between heuristics and optimal result increases when 

the size of the warehouse becomes larger. However, in our situation, due to stochastic 

natures of the demand, it is not necessary to trace for the optimal layout; a robust layout 

(that is ‘good’ on average) may be better than the optimal layout (that is the best in a 

certain situation, but not necessarily good in others).  



 

 

4 

4 Travel Time Estimation and Optimal Rack Design for a 3-

dimensional Compact AS/RS 

4.1 Introduction 

In the previous chapter, we considered the problem of storage zone and layout 

optimization in manual-pick OP systems. In this chapter, we consider a layout design 

problem for a 3-dimensional compact storage system. The system uses gravity flow racks 

with conveyors, working in pairs. 

 

Although their application is still limited, compact storage systems become increasingly 

popular for storing products (Van den Berg and Gademann, 2000, Hu et al., 2005) , with 

relatively low unit-load demand, on standard product carriers. Their advantage is the full 

automation, making it possible to retrieve and store unit loads around the clock, on a 

relatively small floor area. In principle, every load can be accessed individually, although 

some shuffling may be required. They are also used to automatically presort unit loads 

within the system, so that these loads can rapidly be retrieved when they are needed. 

 

Several compact storage system technologies exist with different handling systems taking 

care of the horizontal, vertical and depth movements. In this chapter, we calculate the 

travel time and investigate the optimal dimensions for minimizing the travel time under a 

random storage strategy, for a given storage capacity, of the compact storage system as 

sketched in Figure 4.1. This system has been designed for several application areas. 

 

The compact storage system consists of an S/R machine taking care of movements in the 

horizontal and vertical direction (the S/R machine can drive and lift simultaneously). A 

gravity conveying mechanism takes care of the depth movement. Conveyors work in pairs: 

unit loads on one conveyor flow to the rear end of the rack, in the neighboring conveyor 
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unit loads flow to the S/R machine. At the backside of the rack, an inexpensive simple 

elevating mechanism lifts unit loads from the down conveyor to the upper conveyor, one at 

a time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1   A compact S/RS with gravity conveyors for the depth movements 

 

The innovation of the system is in its cheap construction: no motor-driven parts are used 

for the conveyors and the construction of the lifting mechanisms is simple as well. The unit 

loads move by (controlled) gravity. Potential application areas are also innovative. We 

have studied applications in dense container stacking at a container yard and the 

Distrivaart project in the Netherlands, where pallets are transported by barge shipping 

between several suppliers and several supermarket warehouses. This project has actually 

been implemented and has resulted in a fully automated storage system on a barge (see 
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Figure 4.2). Although this project was a technical success, it was stopped after two years 

for lack of transport pallet loads committed by suppliers and retailers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2    Distrivaart: A conveyor-supported automated compact storage system on a 

barge (source: De Koster and Waals, 2005). 
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The throughput capacity of the system depends on not only the physical design, the speeds 

of handling systems used, but also on the dimensions of the system and the storage and 

retrieval strategy used. We assume that only single cycles are carried out (in fact, we 

investigate only retrievals, since storage and retrieval are likely to be decoupled in these 

systems) and that the storage strategy is random. This is more or less a worst-case 

scenario, since in reality pre-sorting is often possible. Although finding the S/R machine 

travel time is not too difficult for the general case, finding closed-form expressions for the 

three dimensions that minimize the total travel time is more complicated. Analytically, we 

have been able to find these dimensions for the case that the rack is SIT (i.e. length and 

height of the rack are equal in horizontal and vertical travel time of the S/R machine 

respectively). For the none-square-in-time (NSIT) case, we have to rely on different 

methods. For a given total storage space, we use the nonlinear solver of What’sBest®7.0 

(LINDO optimization software for Excel users) to find the optimal dimensions and the 

corresponding travel time. After considering a wide range of total storage space values, we 

propose regression formulas for estimating the expected travel time (for single-command 

cycles) and the optimal dimensions. 

 

This chapter is organized as follows. In the next section, we review literature concerning 

travel time models for AS/RS and mention assumptions and notations used in the chapter. 

In Section 4.3, we present the travel time models for estimating the expected single-

command travel time. In Sections 4.4 and 4.5, we find the optimal rack’s dimensions that 

minimize the travel time. We illustrate the results found in Section 4.6 by an example in 

Section 4.7. Finally, we conclude and propose some potential directions for future research 

in Section 4.8. 

4.2 Literature review, assumptions and notations 

A considerable number of papers exist that analyze AS/RS performance (e.g. estimating 

expected travel time, rack’s dimensions, system throughput, etc.). Figure 4.3 lists major 

problem characteristics and solution methods used in AS/RS performance models in the 

literature. The following common assumptions are commonly used (see also Bozer and 

White, 1984, 1990, 1996, Ashayeri et al. 2002, and Foley et al., 2004): 

• The S/R machine is capable of simultaneously moving in vertical and horizontal 

direction at constant speeds. Thus, the travel time required to reach any location in the 

rack is approximated by the Tchebyshev metric. In contrast, in manual-pick OP 

systems, which use humans to retrieve items from storage area, the travel distance (or, 

equivalently, travel time) is measured by the Euclidean metric. 
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• The rack is considered to have a continuous rectangular pick face, where the I/O point 

(also: depot) is located at the lower left-hand corner. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3   Problem characteristics and solution methods used in AS/RS performance 
models 

 

In this section, we review most recent publications (i.e. most of the articles are published 

after 1995, except for some important radical ones) concerning AS/RS performance 

analysis. We discuss the publications mainly based on the system characteristics embedded 

in the model and solution methods applied. For a general review on the design and control 

of automated material handling systems, we refer to Johnson and Brandeau (1996). For an 

overview of travel time models for AS/RS published before 1995, it is advisable to see 

Sarker and Babu (1995).  

• Storage rack. Storage shape may influence the performance of AS/RS. It is proved 

that under the random storage assignment and with a constant AS/RS speed, the SIT 

rack is the optimal configuration (Bozer and White, 1984). However, this is not 

necessarily true for other storage assignments. Pan and Wang (1996) propose a 

framework for the dual-command cycle continuous travel time model under the class-

based assignment. The model is developed for SIT racks using a first-come-first-serve 

(FCFS) retrieval sequence rule. Foley and Frazelle (1991) derive the distribution of 

dual-command travel time for SIT rack with uniform distributed turnover. Recently, 

Park et al. (2005) propose the distribution of the expected dual-command travel time 

and throughput of SIT racks with two storage zones: high and low turnover. Ashayeri 

et al. (1997, 2002) compute the expected cycle time for an S/R machine where racks 

can be either SIT or NSIT. Park et al. (2003a) compute the mean and variance of 

single and dual-command travel times for NSIT racks with turnover-based storage 

assignment. They also show how to adjust the model if the class-based storage 

assignment is used. In general, AS/RSs have racks of equally-sized cells. However, in 
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some cases, a higher utilization of warehouse storage can be archived by using 

unequal sized cells. Lee et al. (1999, 2005) develop travel time models for a rack with 

unequal cells under a random storage assignment, and both single and dual-command 

cycles. They also compare the proposed continuous-rack model with a discrete-rack 

model (through simulation) and conclude that the differences in expected travel times 

are small. 

• Storage assignment. Using class-based and dedicated storage assignments may lead to 

a substantial saving on the travel time of the S/R machine (see Section 1.3.2). For a 

two-class-based storage assignment rack, Kouvelis and Papanicolaan (1995) develop 

expected command cycle time formulas for both single and dual-command cycles. 

They also present explicit formulas for the optimal boundary of the two storage areas 

in the case of single-command cycles. As exact expressions of the throughput are 

often lengthy and cumbersome, Foley et al. (2004) derive formulas bounding and 

approximating the throughput of a mini-load system with exponential distributed pick 

time and either uniform or turnover-based storage assignment. They report that for 

typical configurations, the worst-case relative error for the bounds is less than 4%. 

• S/R machine operational issues. With one shuttle, the S/R machine can at most 

execute two commands (storage and retrieval) in one travel cycle. Single and dual-

command cycles are studied in most of studies in the literature (for example, single-

command cycles in Seidmann, 1988, Park et al., 2003a; dual-command cycles in Foley 

and Frazelle, 1991, Pang and Wang, 1996, and Wilhelm and Shaw, 1997). By using 

multiple shuttles, the S/R can perform more than two commands in one travel cycle, 

and thus the system performance can be enhanced. Meller and Mungwattana (1997) 

present analytical models for estimating the throughput in multi-shuttle AS/RS 

systems. Potrč et al. (2004) present heuristics travel time models for AS/RS with equal-

sized cells in height and randomized storage under single- and multi-shuttle systems. 

Almost all studies concerning AS/SR assume that the S/R speed is constant. Certainly 

it is not true in practice (Hwang and Lee, 1990), although the impact of accelerating 

and decelerating is limited (especially for large racks). Chang et al. (1995) propose a 

travel time model of S/R machines by considering the speed profiles that exist in real-

word applications. They consider the system under random storage assignment, single 

and dual-command cycles. Chang and Wen (1997) extent this travel time model to 

investigate the impact on the rack configuration. The results demonstrate that the 

optimal rack configuration of the single-command cycles is still SIT whereas the dual-

command cycles may not be. Wen et al. (2001) also adjust the travel time model in 

Chang et al. (1995), but  for the class-based and turnover-based storage assignment. 

• Solution approach. Most of the travel time models were developed based on statistical 

analysis and simulation (for example, Hausman et al., 1976, Graves et al., 1977, Bozer 
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and White, 1984, Foley et al., 2002, 2004). Lee (1997) uses a single-server model with 

two queues to estimate the throughput of a mini-load system, where the cycle times 

are assumed to be independent, identical, and exponentially distributed (iid) random 

variables, while requests arrive according to a Poisson process. Simulation results in 

this study show that the method performs well and can be easily adapted for other 

AS/RS. However, Hur et al. (2004) claim that the exponential distribution of travel 

times does not reflect the dynamic aspect of the system. They propose to use an M/G/1 

queuing model (also with a single server and two queues). According to their 

computational results, the proposed approach gives satisfactory results with very high 

accuracy. Park et al. (1999) study an end-of-aisle OP system with inbound and 

outbound buffer positions (a mini-load system with a horse-shoe front-end 

configuration). They model the system as a two-stage cyclic queueing system 

consisting of one general and one exponential server queue with limited capacity. 

They assume that the S/R machine always executes dual-command cycles and that the 

dual-command cycle times are independent of each other. With known results for a 

two-stage cyclic queueing system, they obtain closed form expressions for the 

stationary probability and the throughput of the system. To compute the mini-load 

system throughput, the distribution of order arrivals is needed (usually the pick time 

distribution is assumed to be exponential or uniform, see for example Bozer and 

White, 1990, 1996, and Foley and Frazelle, 1991). However, this information is not 

completely available at the designing phase (only partial information is known). Foley 

et al. (2002) determine upper and lower throughput bounds for mini-load systems 

under several different types of the partial information: no information, mean only, 

and NBUE (i.e. New Better than Used in Expectation, roughly it means that the mean 

pick time of a partially processed bin is smaller than the mean pick time from a new 

bin). 

 

In the above-mentioned publications, only two travel directions are considered (vertical 

and horizontal). However, situations exist where the S/R machine can travel in three 

orthogonal directions simultaneously, i.e. vertical, horizontal and cross-aisle direction. 

Park and Webster (1989b) propose a conceptual model that can help a warehouse planner 

in the design of 3-dimensional, pallet storage systems. Park and Webster (1989a) deal with 

the problem of finding a rule for assigning rack locations to product turnover classes to 

minimize the expected travel time. In these publications, however, the rack dimensions are 

given or, in other words, the problem of determining the optimal rack dimensions is 

neglected. For the AS/RS described in Section 4.1, the S/R machine can only travel 

vertically and horizontally. However, there is another travel time/direction associated with 

each travel cycle of the S/R machine; the time needed to convey the load to the pick 

position or to reveal an empty location to store the load. For this reason, we also use the 



Design and control of Efficient Order Picking Processes  78 

 

terminology 3-dimensional compact storage for our system. We have not found any 

literature on travel time estimation and/or optimal system dimensioning for this or similar 

AS/RS types. In the following sections, we will step by step estimate the single-command 

travel time of the S/R machine for the system that we introduced in Section 4.1.  

4.3 Travel time estimation 

Besides the common assumptions mentioned in the previous section, we use the following 

explicit assumptions for our travel time model: 

• The S/R machine operates on a single-command basis (multiple stops in the aisle are 

not allowed). This restriction is relaxed when we develop travel times models for dual-

command cycles (see Appendix 4 at the end of this chapter). 

• The total storage space, the speed of the conveyor ( cs ), as well as the S/R machine’s 

speed in the horizontal ( hs ) and vertical direction ( vs ), are known.  

• The S/R machine travels simultaneously in the horizontal and vertical direction. In 

calculating the travel time, constant velocities are used for the horizontal and vertical 

travel: no accelerating or decelerating effects. These effects should be taken into 

account for the cases of short travel distances. However, in our model they are 

reflected (or included) in the pick-up/ deposit time. 

• We use random storage. That is, any point within the pick face is equally likely to be 

selected for storage or retrieval. 

• The pick-up and deposit (P/D) time for a given load is known and constant. The P/D 

time is identical for all loads. 

 

The length (L), the height (H) of the rack and the perimeter (or length 2S) of the conveyor 

form three orthogonal dimensions of the system. Without loss of generality, we suppose 

that the travel time to the end of the rack is always no less than the travel time to the 

highest location in the rack: 
v h

H L

s s
≤ . To standardize the system, we define the following 

quantities. 

2*
c

c

S
t

s
= : length (in time) of the conveyor. 

h

h

L
t

s
= :  length (in time) of the rack. 
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v

v

H
t

s
= :  height (in time) of the rack. 

{ }max , ,h v cT t t t=  

min , ,h v ct t t
b

T T T

⎧ ⎫= ⎨ ⎬
⎩ ⎭

. Note that 10 ≤≤ b  and 1=b  if and only if cvh ttt == . 

a  is the remaining element (besides b  and 1 ) of the set , ,h v ct t t

T T T

⎧ ⎫
⎨ ⎬
⎩ ⎭

,  thus 0 1b a< ≤ ≤ . 

 

For determining the optimal dimensions of the rack, we suppose that SLH ***2  is 

given. Consequently, h v ct t t V=  is also given (V is so called the total handling capacity of 

the system)  

 

Assume that the retrieval location is represented by ( , , )x y z , where ,  X Y and Z  refer to 

the movement directions of the S/R machine and conveyor. We can see that the S/R 

machine’s travel time for single-command cycles (ESC) consists of the following 

components: 

• Time needed to go from the I/O point to the pick position and to wait for the pick to be 

available at the pick position (if the conveyor circulation time is larger than the travel 

time of the S/R machine), W . In other words, W  is the maximum of the following 

quantities: 

− time needed to travel horizontally from the I/O point to the pick position, 

− time needed to travel vertically from the I/O point to the pick position, 

− time needed for the conveyor to circulate the load from the current position to the 

pick-up position, R . 

• Time needed for the S/R machine to return to the I/O point, U . 

• Time needed for picking up and dropping off the load, c  (assumed to be constant). 

Hence, the expected travel time can be expressed as follows: 

( ) ( )ESC E W E U c= + +  (4.1)  

As c  is a constant, it does not have any influence on the rack layout so from now on we 

will not consider this component.  

 

As proven by Bozer and White (1984), in the case of a 2-dimensional rack, the travel time 

from a random pick location to the I/O point can be calculated as: 
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( )
2 1

,
6 2

hE U t
β⎛ ⎞

= +⎜ ⎟
⎝ ⎠

  (4.2) 

where ( )1v

h

t

t
β β= ≤  is the shape factor of the rack (recall that we assume h vt t≥ ). 

 

Let ( )F w  denote the mass probability function that W  is less than or equal to w . We 

assume that the , ,x y z  coordinates are independently generated, where: 0 x a< ≤ , 

0 y b< ≤  and 0 1z< ≤  (that is, we consider the ‘normalized’ rack). Similar to the case of 

2-dimensional racks (see Bozer and White, 1984), we have: 

( ) P( ) ( ). ( ). ( )F w W w P X w P Y w P Z w= ≤ = ≤ ≤ ≤  

 

Furthermore, as we use randomized storage; the location coordinations are uniformly 

distributed. Therefore,  

( )P Z w w≤ = , with 0 1w≤ ≤  

   if 0
( )

1        if  1

w a w a
P X w

a w

≤ ≤⎧
≤ = ⎨ < ≤⎩

 

and 

   if 0
( )

1        if 1

w b w b
P Y w

b w

≤ ≤⎧
≤ = ⎨ < ≤⎩

, 

Hence, 
3

2

     if 0

( )        if 

w             if 1

w ab w b

F w w a b w a

a w

⎧ ≤ ≤
⎪

= < ≤⎨
⎪ < ≤⎩

 

23    if 0

( ) 2       if 

1             if 1
W

w ab w b

f w w a b w a

a w

⎧ ≤ ≤
⎪⇒ = < ≤⎨
⎪ < ≤⎩

 

 

Therefore,  

( )
1 13 2

0 0

3 2
 ( )

b a

w w w b w a

w w
E W T g w wdw T dw dw wdw

ab a= = = =

⎛ ⎞
= = + +⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫  
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( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=⇒

2

1

612

23 a

a

b
WE  (4.3) 

From (4.1), (4.2) and (4.3), it is possible now to find the single-command travel time if we 

know the relative magnitude of each dimension compared to others (i.e. which one is the 

longest, shortest). And therefore the ratio between three dimensions which minimizes the 

expected travel time can be determined. To facilitate the analysis, we distinguish two 

situations: SIT racks (section 4.4) and NSIT racks (section 4.5).  

4.4 Optimal dimensions for the square-in-time (SIT) rack  

As shown in Bozer and White (1984): “For 2-dimensional racks, the expected travel time 

will be minimized if the rack is SIT”. Suppose that this type of rack is used we further 

consider two situations:  

• when the conveyor’s length is the largest dimension (section 4.4.1),  

• when the conveyor’s length is the shortest dimension (section 4.4.2). 

4.4.1 Conveyor’s length is the largest dimension (SIT_CL) 

In this case, we have cT t= , ( )thus 1a b β= = , h ct at= , v ct at=  and 2 3
ca t V= . From 

(4.1) and (4.2): 

 

( )

( )
2

2

3

1
=

4 2

c

c

E U at

a
E W t

⎧ =⎪⎪
⎨ ⎛ ⎞⎪ +⎜ ⎟⎪ ⎝ ⎠⎩

  

2

_

2 1

4 3 2
SIT CL c

a
ES tC a

⎛ ⎞
⇒ = + +⎜ ⎟

⎝ ⎠
 (4.4) 

 

At this point, our problem turns out to be the following constrained-optimization problem: 

{ }

2

_

2 3

2 1
       ( , )

4 3 2

       ( , ) ,  0 1, 0

SIT CL c c

c c c

a
Minimize f a t ta

subject to D a t a t V a t

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

= = < ≤ ≥
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We use the Lagrangian multiplier method to include the constraint 2 3
ca t V=  in the 

objective function and obtain: ( ) ( )
2

2 32 1
, ,

4 3 2
c c c

a
L a t t a t Vaλ λ

⎛ ⎞
= + −+ +⎜ ⎟

⎝ ⎠
, where λ  is 

the Lagrangian multiplier. The critical points of ( ), ,cL a t λ  must be the solutions of the 

following system: 

( )

( )

( )

3

2
2 2

2 3

2, ,
2 00

2 3

, , 2 1
0  3 0

4 3 2

0, ,
0

c
c c

c

c

c

cc

aL a t
t a t

a

L a t a
a a t

t

a t VL a t

λ λ

λ
λ

λ
λ

⎧∂⎧ ⎛ ⎞+ + == ⎜ ⎟⎪⎪ ⎝ ⎠∂ ⎪⎪
⎪⎪∂⎪ ⎪= ⇔ + + + =⎨ ⎨∂⎪ ⎪

⎪ ⎪ − =∂
⎪ ⎪=
⎪ ⎪∂⎩ ⎩

3 2

3

3

0.46

0.72

0.89

1.24

a b

c

V

a

t t V

t V

λ⎧ = −
⎪

=⎪
⇔ ⎨

= =⎪
⎪ =⎩

 

 

It is easy to see that the sufficient condition for the critical point to be the minimum point 

is satisfied (meaning that Hessian matrix H is positive semi-definite at the critical point). 

Thus, this critical point is the minimum point and the optimal value is 
* 3

_ 1.38SIT CLESC V= . 

 

We conclude: 

“Given an SIT rack with a total storage capacity V and provided that the conveyor’s 

length ct  is the longest dimension, the estimated travel time of the S/R machine will 

be minimized if : : 0.72 : 0.72 :1v h ct t t ≡  and the optimal travel time is 31.38 V ”. 

4.4.2 Conveyor’s length is the shortest dimension (SIT_CS)  

In this case ( )so 1 , ,h v c ha b T t t t btβ= = = = =  and 3
hbt V= . From (4.2) and (4.3) we 

have: 

( )

( )
2

2

3

1
=

4 2

h

h

E v t

b
E w t

⎧ =⎪⎪
⎨ ⎛ ⎞⎪ +⎜ ⎟⎪ ⎝ ⎠⎩

  

2

_

7
=

4 6SIT CS h

b
ESC t

⎛ ⎞
⇒ +⎜ ⎟

⎝ ⎠
  (4.5) 

 

At this point, our problem turns out to be the following constrained-optimization problem: 
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{ }

2

_

3

7
       ( , )

4 6

       ( , ) ,  0 1, 0

SIT CS h h

h h h

b
Minimize f b t t

subject to D b t bt V b t

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

= = < ≤ ≥

 

In a fashion similar to SIT racks, we obtain: 

3

3

0.97

0.98  

1.01

c

v h

b

t V

t t V

=⎧
⎪

=⎨
⎪

= =⎩

 

 

The optimal value is * 3
_ 1.42SIT CSESC V= . We can conclude: 

“Given an SIT rack with a total storage capacity V and provided that the conveyor’s 

length ct  is the shortest dimension, the estimated travel time of the S/R machine will 

be minimized if  : : 1:1: 0.97v h ct t t ≡  and the optimal travel time is 31.42 V ”.  

 

Comparing two situations, we can see the rack where the conveyor’s length is the longest 

dimension provides a shorter expected (single-command) travel time. Therefore, we can 

draw the following general conclusion for the SIT rack: 

Proposition 4.1 Given an SIT rack with a total capacity V, the expected travel time 

of the S/R machine will be minimized if : : 0.72 : 0.72 :1v h ct t t ≡  and the optimal 

travel time is *
SITESC =  31.38 V .  

4.5 Optimal dimensions for none-square-in-time (NSIT) rack 

For this case, we make a distinction between the following situations: 

• the conveyor’s length is the longest dimension (NSIT_CL),  

• the conveyor’s length is the medium dimension (NSIT_CM), 

• the conveyor’s length is the shortest dimension (NSIT_CS). 

 

If the conveyor’s length is the longest dimension then we have: ,cT t=  ,h ct at=  

thusv c

b
t bt

a
β⎛ ⎞= =⎜ ⎟

⎝ ⎠
 and 3

cabt V= . From (4.2) and (4.3) we have: 
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3 2 3 2 22

_ 2

1 2 11

12 6 2 12 6 2 226
NSIT CL c c c

b a b b a ab
ESC at t t

a aa

⎛ ⎞ ⎛ ⎞⎛ ⎞ +
+ + + = + + += + ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Similarly, if the conveyor’s length is the medium dimension: ,h v hT t t bt= = , 

( )thus ,bβ = c ht at=  and 3
habt V= :  

3 2 2

_ 1
12 6 6NSIT CM h

b a b
ESC t

a

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 

And if the conveyor is the shortest dimension: , ,h v hT t t at= = ( )thus , c ha t btβ = =  and 

3
habt V= : 

3 2

_ 1
12 3NSIT CS h

b a
ESC t

a

⎛ ⎞
+ += ⎜ ⎟

⎝ ⎠
 

It is easy to see that ( )_ _ _ 0 1, 0NSIT CL NSIT CM NSIT CSESC ESC ESC b a V≤ ≤ ∀ < ≤ ≤ > . It 

means that the systems where the conveyor is the shortest or medium dimension cannot 

provide a better solution compared to the system where the conveyor is the longest 

dimension. For this reason, from now on, we can ignore _NSIT CSESC  and _NSIT CMESC .  

 

The problem of finding the optimal _NSIT CLESC  turns out to be the following constrained-

optimization problem: 

{ }

3 2
2

3

3

2 1 1
       ( , , )

12 6 2 2

       ( , , ) ,  0 1, 0, 0

c c

c c c

b b a
Minimize f a b t a t

a

subject to D a b t abt V b a t V

⎛ ⎞+
= + + +⎜ ⎟

⎝ ⎠

= = < < ≤ ≥ >

 

It is hard to analytically solve this problem. For this reason, we opt for the numerical 

optimization. For a given total storage capacity, V, we used the nonlinear optimization 

module built in What’sBest to find the optimal dimensions as well as the optimal estimated 

single cycle time of the S/R machine. We carried out an extensive number of experiments 

(on a very wide range of V: from 10 to 2000). From the experimental results found: 

• The optimal ratio between three dimensions does not depend on the system capacity 

V: _NSIT CLESC  reaches the optimum if : : 0.72 : 0.72 :1v h ct t t ≡ . 

• In order to estimate the relation between the system capacity V and the optimal 

estimated travel time *
_NSIT CLESC , we carried out a regression analysis (implemented in 

SPSS). In the analysis, the total storage capacity varied from 10 to 2000. We used 
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different curve fitting models and found that the optimal estimated travel time is best 

estimated by the following relation: * 3
_ 1.38NSIT CLESC V≈ .  The standard errors of the 

estimate is less than 510− . 

• When the system is cubic-in-time (all dimensions are equal in time), it is easy to find 

that * 3
_ _ 1.42cubic in timeESC V= . Interestingly,  *

_ _cubic in timeESC *
_SIT CSESC= .  

• As shown in Figure 4.4, there is a difference between the overall optimal value and the 

other optimums with some restrictions on the dimensions. However, the gap is very 

small; the difference between the cubic-in-time configuration and the optimal one is: 

( )3 3 31.42 1.38 1.38 *100% 2.90%V V V⎡ ⎤− ≈⎣ ⎦ .  

• The reason that the cubic-in-time rack is not optimal is that the travel time consists of 

two components (see Section 4.3). The travel time from the I/O point to the pick 

location depends on the movement times on all three directions, but the time needed to 

go back to the I/O point depends only on the vertical and horizontal travel time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4   Comparison between optimal expected travel time of SIT and NSIT racks 

for different values of total storage capacity V (in cubic units) 
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We can make the following conclusion for the NSIT rack: 

Proposition 4.2 Given a NSIT rack with a total storage capacity V, the expected 

travel time of the S/R machine will be minimized if : : 0.72 : 0.72 :1v h ct t t ≡  and the 

optimal estimated travel time is 31.38 V . 

Figure 4.4 shows all eligible possibilities (in both section 3 and 4). We can see that the SIT 

rack system (i.e. length and height of the rack are equal) results in the overall optimal 

configuration: it gives the overall shortest estimated single-command cycle time. Now, we 

are able to state the following proposition: 

Proposition 4.3  Given the 3-dimensional compact AS/RS (as described in Section 

4.1) with a total storage capacity V, the expected single-command travel time of the 

S/R machine will be minimized if the system dimensions satisfy 

: : 0.72 : 0.72 :1v h ct t t ≡  and the optimal travel time is 31.38 V . 

4.6 Effect of fixing one dimension 

As shown above, if all three dimensions are ‘open’, we can find the optimal ratio (with 

regards to minimizing the estimated travel time) between these dimensions. However, in 

the Distrivaart project (see Section 4.1), we could not freely adjust all these dimensions, 

due to space limitations and equipment standardizations. The previous analysis can also be 

used to solve the problem with space restrictions. If two dimensions are fixed, then the 

problem is trivial as all dimensions are defined (given that we know the total system’s 

storage capacity). If only one dimension is fixed, we can still adjust the others to reduce 

the estimated travel time. Clearly, the resulting optimal travel time can not be shorter than 

the ‘overall’ optimum (when we have three ‘open’ dimensions).  

 

It is straightforward in this case to determine the expected travel time of the S/R machine 

(e.g. based on formulas (4.2) and (4.3)). Figure 4.5 shows the optimal estimated travel time 

for different values of the conveyor’s length ( ct ). From this figure, we can easily see the 

effect of fixing the conveyor’s length. For example, if 32ct V=  (200% of 3 V ), at best 

we can design a system with an expected travel time of 1.53 3 V  (time units), while the 

‘overall global’ optimum, 1.38 3 V , is achieved for 31.24ct V= . Similarly, Figures 4.5 

and 4.6 show the cases when the rack’s length and height (in time) are fixed. 
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Figure 4.5   Optimal expected travel time when the conveyor’s length is fixed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6   Optimal expected travel time when the rack’s length (the longer dimension 
of the rack) is fixed 
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Figure 4.7   Optimal estimated travel time when the rack’s height (the shorter 
dimension of the rack) is fixed 

4.7 An example 

As an illustrating example, assume that we have to design a 3-dimensional compact system 

that can store 1000 pallets (other data are given in Table 4.1). The decision problems are: 

(1) finding the optimal dimensions of the system and (2) the best position of the S/R 

machine so that the expected travel time is minimized. The S/R machine either dwells at 

one end of the rack (A) or between two rack parts (B) (referring to Figure 4.8). 

 

For situation A: the expected pallet circulation time is cS s . Suppose that the length of the 

conveyors in the left part of the warehouse is (0 )X X S< <  (see Figure 4.8). As pallets 

are located randomly on the conveyors, in the situation (B) the expected time for a random 

pallet to be circulated from the current position to the position that the S/R machine can 

pick it up (the main rack) is: 

( )22

c c c

X S XX X S X S X

S s S s Ss
τ

+ −⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

,  
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where cs  are the conveyor’ speed and S  is the diameter of the conveyors in situation (A). 

X

S

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 
S X

S

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 are the probabilities that the pallet is located in the left-side and the 

right-side of the warehouse respectively. Applying the Cauchy-Schwarz inequality gives 

( ) ( ) 222

2 2c c c

X S XX S X S

Ss Ss s
τ

+ −⎡ ⎤+ − ⎣ ⎦= ≥ = . 

 

Table 4.1   System parameters 

Total system capacity (V) 1000 pallets 

Storage policy Random storage 

Pallet size in seconds*  Net  0.4 x 0.4 x 2 
(width x length x height) Gross 0.5 x 0.5 x 2.17 

Operating policy Single-command cycle 

Vertical speed ( vs ) 0.6 (meter per second) S/R machine 
Horizontal speed ( hs ) 2 (meter per second) 

Conveyors’ speed ( cs ) 2 (meter per second) 

* For a given speeds of the S/R machine and conveyer, we can convert pallet sizes in distance unit to time 

unit 

 

 

 

 

 

 

 

 

 

 

Figure 4.8   Possible positions of the S/R machine 

 

This lower bound is tight with equality for 2X S= . Therefore, the optimal position, 

which minimizes the expected single-command travel time, is the middle of the storage 

rack. 
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We apply the theorem of Section 4.5 to calculate the optimal dimensions. We have: 
* 31.24 10.11ct V= = (seconds) and *

ht = *
vt

*0.72 ct= 7.26= (seconds). The rack dimensions 

must be multiples of the pallet’s dimensions. Therefore, we choose the ‘practical optimal’ 

dimensions such that they are as closed as possible to the corresponding optimal 

dimensions found and result in a system with a storage capacity of not less than 1000 

pallets (the required capacity). We obtain the practical optimal dimensions: 10 x 8 x 6.5 

(seconds) with an optimal expected travel time of 11.17 (seconds).   

 

It turns out that it is not possible to dimension such a storage system to optimality at the 

Distrivaart project. The reason is that there are many restrictions to the ship’s dimensions. 

The length and width of the ship are limited because of berth length and depth, and also of 

river locks and the dock. The height of the ship is mainly determined based on the ship’s 

length and width (i.e. they must satisfy a certain ratio for the ship stability), and further 

restricted by the bridge heights. 

4.8 Concluding remarks 

This chapter considers a 3-dimensional compact system originating from the Distrivaart 

project that consists of rotating conveyors and an S/R machine. Bozer and White’s travel 

time model (for 2-dimensional rack systems) is extended for estimating the expected 

single-command travel time of the S/R machine. Followings are the main findings: 

• For a given 3-dimensional compact AS/RS (as above-mentioned) with a total storage 

capacity V, the optimal rack dimensions are v ht t= 30.89 V= , ct =  31.24 V , and 

the optimal travel time is 31.38 V . Equivalently, the optimal ratio between three 

dimensions is : : 0.72 : 0.72 :1v h ct t t ≡ . 

• The cubic-in-time system (all dimensions are equal in time) is not the optimal 

configuration (as intuitively we may think). However, it is a good alternative 

configuration for the optimal one as the resulting expected travel time is only about 

3% away from the optimum. This is in line with the findings by Rosenblatt and 

Eynan (1989) and Chang and Wen (1997) for 2-dimensional SIT racks with single 

and dual-command cycle respectively. They conclude that “The expected travel 

times are fairly insensitive to slight deviations in the optimal rack configuration”. 

 

A disadvantage of the method is that the rack is assumed to be continuous. This 

simplification of reality is only justified if the number of storage positions is sufficiently 
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large (see, for example, Graves et al., 1977 and Lee et al., 1999 ). The quality of the 

approximation of the real travel time depends on this. 

 

Storage strategy used in this study is randomized storage. Clearly, other storage policies 

(like class-based or dedicated storage) could be considered as well. This is an interesting 

direction for further research. Another straightforward extension of the research is to 

analyze the system when the S/R operates in a dual-command basis. In the Appendix 4, we 

show how to estimate the expected dual-command cycle time for the S/R machine.  



Design and control of Efficient Order Picking Processes  92 

 

Appendix 4   Expected cycle time for dual-command cycles 

As mentioned in Section 1.2.1, in many cases, the S/R machine can work more efficiently 

by a dual-command basis: it can both pick up and deliver loads in one cycle. Starting from 

the I/O station, it carries a load to the storage position. After putting away the load, it 

moves to the retrieval position and retrieves and brings another load back to the I/O point. 

In this appendix, we extend the travel time models developed for single-command cycles 

to dual-command cycles. All assumptions made before are kept unchanged. The cycle time 

of the S/R machine (EDC) consists of the following components: 

• Time needed to go the storage position and waiting time for the conveyor to convey 

an empty location for the storage load, if any. We assume the rotation time to reveal 

an empty location has the same probability distribution function as the rotation time 

for a retrieval load to be at the pick position. Consequently, this time component is 

the same as in case of the single-command cycles: W (see section 4.3). 

• Time needed for picking up and dropping off the two loads, c  (assumed to be 

constant). 

• Travel time from the storage point to the retrieval point: V . This is travel time 

between two random selected points. As shown in Bozer and White (1984): 

  ( )
( )

( )

2
(1)

2 2 2

(1)

2 2 2
if 0

2 2 2

2 2 if 1

V

V

V

v v v
f v v

v v vf v

f v v

β
β β β β

β β

⎧ − −
= + ≤ ≤⎪ − −= ⎨

⎪ = − < ≤⎩

  

 ( ) 2 31 3 6 30E V β β= + − ,   (4.6) 

 where 0 1β< ≤  is the shape factor of the rack. 

• The waiting time, T , that may occur if the rotation time of the conveyor carrying the 

retrieval load, R , is longer than the time the S/R machine needed to be available at 

the retrieval position: 
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +−= cVWRT

2

1
,0max .  

• Travel time needed for returning to the I/O point, U . This time component is as in 

the case of single-command cycles, and ( )E U  can be calculated by (4.2). 
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As the conveyor with the retrieval load can be activated at the moment the S/R machine 

picks up a load to leave the I/O point, it is reasonable to assume that RcVW ≥⎟
⎠
⎞

⎜
⎝
⎛ ++

2

1
. 

Consequently, 0T = . The expected dual-command travel time can now be expressed as 

follows: 

( ) ( ) ( )EDC E W E V E U= + +   (4.7) 

As in the case of single-command cycles, we make a distinction between the following 

situations: 

• the conveyor’s length is the longest dimension ( CLEDC ),  

• the conveyor’s length is the medium dimension ( CMEDC ), 

• the conveyor’s length is the shortest dimension ( CSEDC ). 

If the conveyor’s the longest dimension, we have ,cT t=  ,h ct at=  v ct bt= , 
b

a
β =  and 

3
cabt V= . From (4.2), (4.3), (4.6) and (4.7) and after some algebraic operations, we obtain:  

( )( )3 2 3 2 3 2 3 3

4 3

2 2 6 6 10 5

360
CL

b b a a a a b a b V
EDC

a ab

+ + + + + −
= . 

If the conveyor’s length is the medium dimension, we have ,h v hT t t bt= = , c ht at= , 

( )thus ,bβ = and 3
habt V= . It then follows:  

( )( )3 2 3 2 3 3

3

2 2 12 10 5

360
CM

b b a a a b b V
EDC

a ab

+ + + + −
= . 

If the conveyor is the shortest dimension: , ,h v hT t t at= = ( )thus , c ha t btβ = =  and 

3
habt V= . It then follows: 

( )( )3 3 2 3 3

3

4 12 10 5

360
CS

b a a a a V
EDC

a ab

+ + + −
= . 

It is easy to see that ( )10 ≤≤<∀≤ abEDCEDC CSCM . Numerically, we found CLEDC  

≤ CMEDC ( )4.01.0;0 ≤≤≤<∀ aab . 





 

 

5 

5 Online Order Batching Problem 

5.1 Introduction  

In chapters 3 and 4, we discussed the layout optimization problem. A good layout reduces 

the order picking travel distance and thus improves the efficiency of the OP system. In this 

chapter, we elaborate on the dynamic order batching problem, which is the problem of 

grouping on-line orders into batches such that each can be picked in one picking tour, and 

the total travel time (or distance) is minimized (see also Section 1.3.3). It has to be noticed 

that while the layout design is often considered at the tactical level (i.e. medium planning 

period) and reviewed when there is a major change in product assortment or order pattern, 

the order batching decision is made much more frequently, for example before every 

working shift.   

 

Due to inventory minimization and just-in-time policies, many companies have changed 

their ordering behavior over the last decades. Few-but-large quantity orders are being 

replaced by many-but-small orders (i.e. few items per order), which have to be processed 

in very tight time windows. When orders are small, the order batching problem becomes 

more crucial. For example, online retailing companies that focus on specialized product 

types (such as books, computers or CD's) often receive orders with only one or few items. 

If the order picker starts a tour for every order, the capacity may even be insufficient to 

serve all orders. If the order picker waits to have a sufficiently large number of orders, the 

average time in the system of the orders may be longer than desired, so that orders miss 

shipping due time. Clearly, we can increase the efficiency of the OP process in such 

environments by serving a group of orders instead of individual orders.  
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As pinpointed out in Section 1.3.3, the static order batching problem has received 

considerable research attention: both optimal and heuristic algorithms have been developed 

to solve the problem. In these algorithms, the order profile (the number of orders, number 

of items per order, item-quantity per item) is often considered as known or given. This is 

true for many traditional order picking situations, where customer orders are received 

some time before the picking process starts (orders that arrive the night before are picked 

today). However, this may not be true in quick picking environments, where orders arrive 

online and need to be shipped in a short time (for example online retailing companies). In 

these situations, arrived orders should be processed as soon as possible. Furthermore, the 

service time (including traveling, picking, setup time) is often considered as a constant (i.e. 

average value) for a given number of picks per picking tour. Certainly, it is not true; the 

travel time depends also on the exact pick locations, besides other factors like traffic, aisle 

nature, order pickers…   

 

In this chapter, we consider order batching in a quick picking environment (or online order 

batching problem), where order arrival times and picking times of a batch of orders are 

assumed to be stochastic random variables. We again consider 2-block manual-pick shelf-

rack type warehouses (depicted in Figure 5.1). As shown in Roodbergen and De Koster 

(2001), a layout with a middle aisle (2-block) often results in a lower average travel time 

than the layout without a middle aisle (single-block).  As far as we now, the only study 

which concerns the stochastic nature of the order arrivals and service time is Chew and 

Tang (1999). They model the order batching problem for a single-block warehouse as a 

queueing model and apply a series of approximations to calculate the lower bound, upper 

bound and an approximation value for the average throughput time. The limitation of this 

research is that they consider the average throughput time of the first order in a batch as 

estimation for the average throughput time of individual orders in the batch. Our research 

is mainly based on the approach given in this article, but distinguishes from it in two 

respects. First, we consider a different layout (2-block warehouse), which can be found 

commonly in practice. Second, we perform a direct analysis on the average throughput 

time of a random order. 

 

This chapter is organized as follows. In the next section we describe the system, notations 

and assumptions to be used. Then, we elaborate on the first and second moment of the 

order picker's travel time in Section 5.3. We use these moments to estimate the average 

throughput time of a random order in Section 5.4. This enables us to estimate the optimal 

picking batch size (i.e. the number of orders to be served in one pick route). In Section 5.5, 

we illustrate the method by several numerical examples. Finally, we discuss some possible 

extensions of the model and give conclusions in Section 5.6 and Section 5.7 respectively. 
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5.2 Notations and assumptions 

We initially use the following assumptions, some of which will be relaxed later.  

• Order pattern (or orders’ characteristics): arrivals of orders follow a Poisson process 

with an order arrival rate5 λ  and every order contains one order-line (note that the 

quantity per order-line can be greater than 1). Although this assumption may seem 

restrictive, many practical situations exist in which single-line order batching occurs. 

This is due to the fact that order picking is often split up over multiple storage systems 

(piece pick, box pick, pallet pick systems) leading to small orders per subsystem. 

Single-line orders are often picked separately, since no additional consideration is 

necessary. In the warehouse of a Dutch mail order company, the inventory is even 

mirrored in two systems: one for multi-item orders and one for single-line orders. We 

will come back to multi-item OP situations in Section 5.6, where we also explain how 

to deal with the multiple order-lines per order situation. We presume that the storage 

capacity of a storage location is sufficiently large: to pick up one order line the order 

picker has to visit only one storage location. 

• Service: we consider only one order picker and the service is carried out per batch of 

exactly k  orders and order splitting is not allowed. The order picker’s capacity is 

sufficiently large to handle multiple ( k ) orders per route.  

• Routing method: the used routing method is the S-shape (or traversal) heuristic. We 

refer to Section 1.3.4 for a description of different routing methods. As mentioned in 

Section 1.3.4 and Section 2.4.5, the S-shape method outperforms the return routing 

method in almost all the cases, irregardless of the storage assignment methods. Also, 

the S-shape routing method is one of the simplest routing methods, included in nearly 

every warehouse management software system, and widely used in practice. 

• Storage policy: we use a random storage strategy, which means that incoming 

products are randomly located to empty storage spaces. 

• Batching rule: batching is carried out on a first-come first-serve basis; we assume that 

the system is empty at the beginning.  

• Picker’s speed: we assume that the order picker travels with a constant speed, which is 

normalized to 1 (length/time): if the distance is d, the corresponding travel time is also 

d. 

As it is also the aim of the research to deal with real-life applications, some of these 

assumptions are relaxed later in Section 5.6, where we discuss the possibility of including 

                                                           
5 λ  can be changed over time, however we assume λ  is a constant and given for each pick shift.  
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compound-Poisson arrivals, multiple order pickers and a class-based storage assignment 

method into the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1   A 2-block warehouse layout with an S-shape pick route 

 

We use the following notations throughout the chapter (some are recalled from Section 

2.2.4): 

Data 

L  length (in travel time units) of a pick aisle 

a  number of pick aisles (an even integer) 

aw  width (in travel time units) of the cross aisle 

bw  center-to-center distance  (in travel time units) between two adjacent pick aisles 

ip  probability that a random item is picked from aisle ( 1.. )i i a= ; ip =  1/ a  

( 1.. )i a=  for the random storage assignment 

sτ  setup time per batch (constant) 

pτ  picking time per item (constant) 

λ  order arrival rate 

Intermediate variables 
WA

BTR  travel time caused by traversing the pick aisles (within aisle (WA) traveling), B  

can be + , −  or ≈  (indicating upper, lower bound or approximation values 

respectively) 
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CA

BTR  travel time caused by traversing the cross aisle (CA) 

AT  adjustment time 

( )E S  first moment of the service time (including setup, picking and traveling time) 

( )2E S  second moment of the service time 

( )Sσ  standard deviation of the service time 

Decision variables 

k  number of orders to be picked in a tour 

q  number of items in a batch of k  orders. 

 

In the next section, we estimate the first and second moment of travel time to pick up q  

items.   

5.3 Travel time estimation 

The order travel route is sketched in Figure 5.1. Starting from the I/O point, the order 

picker travels to the nearest pick aisle containing picks, either in the left or right block. 

Aisle by aisle, he travels to the farthest pick aisle in the same block in such a way that all 

visited aisles are completely traversed. After accomplishing all pick requests in the first 

block, he moves to the farthest requested pick aisle in the second block. In a same manner 

but in the downward direction, he picks while going from the farthest to the nearest aisle 

containing picks. From there, he goes back to the I/O point to complete the tour. It should 

be noticed that it does not matter which block is served first, as in both cases the picker 

travels the same distance. Furthermore, it is obvious that picking block by block provides a 

shorter (or at most equal) travel distance than picking in two blocks simultaneously.  

 

In order to estimate the throughput time, it is necessary to find the first and second moment 

of travel time. 

5.1.1 First moment of travel time 

The average travel time consists of three components: within-aisle travel time ( WATR ), 

cross-aisle travel time ( CATR ), and adjustment time ( AT ). (It should be noted that as we 

assume unity travel speed, it does not make any difference, in magnitude, between travel 

distance and travel time.) We define ( ) ( ) ( )B BE TR E TR E AT= + , where ( )E TR =  
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( ) ( )WA CAE TR E TR+  and B  can be – (lower bound), + (upper bound) or ≈  

(approximation). 

 

The adjustment time AT  consists of two components: 1AT  and 2AT . 1AT  is the travel 

time from the central line of the cross aisle to the beginning of the first pick aisle and the 

travel time from the end of the last pick aisle to the central line of the cross aisle. 2AT  is 

the correction of travel time if the last visited aisle in each block is odd (pick aisles are 

numbered alternately from left to right from 1 to a  as shown in Figure 5.1). In the 

following, we will determine the expected value: WATR , CATR  and AT  given that the pick 

list contains q  items (in our case, each order consists of only one item thus q k= ). 

 

With the S-shape routing method, the expected within-aisle travel time depends only on 

the length of pick aisle L  and the expected number of aisles visited: ( )|E J q . Chew and 

Tang (1999) show that given q  and the number of pick aisles a : 

( ) ( ) { } ( )
1 1

| | | 1
a a

qWA

i

j i

E TR q LE J q L jP J j q L a p
= =

⎡ ⎤= = = = − −⎢ ⎥
⎣ ⎦

∑ ∑  

where the term in brackets is the expected number of visited aisles.  

 

On the other hand ( )|CAE TR q  is the doubled travel time from the I/O point to the farthest 

visited aisle. It is determined by the travel time between two neighboring pick aisles, bw , 

and the position of the farthest visited aisle M . If we consider two pick aisles opposite the 

cross aisle as one pick line (see Figure 5.1) then we can make use of the formula for 

estimating in the ( )|CAE TR q  in single-block warehouses given in Chew and Tang 

(1999)6: 

( ) { }
/ 2 / 2 1

1 1 1

| 2 | 2 2
q

a a m
CA

b b r

m m r

E TR q w mP M m q w a p
−

= = =

⎡ ⎤⎛ ⎞′= = = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑ , 

where 2 1 21 (1 )(1 )r r rp p p−′ = − − −  is the probability that the pick line ( 1.. / 2)r r a= is 

visited.  

 

                                                           
6 We can modified formulas (2.12) and (2.14), in Chapter 2 for class-based storage strategy warehouses, for 
estimating the first moment of travel time in this case (i.e. random storage). However, we choose Chew and 
Tang’s approach to make it consistence with the approach of estimating the second moment of travel time later. 
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For the first adjustment term, we can see that if only a half of the warehouse (one block) is 

visited then ( )1 2 2a aAT w w= =  (it is doubled because whenever the order picker enters 

an aisle he has to leave the aisle). If both halves of the warehouse are traversed then 

1 2 aAT w= . Hence, we can determine the conditional expected value of the first correction 

term: 

( ) ( ) ( ) ( )1 | 2*0.5 2 1 2*0.5 2 1 0.5q q q

a a a
E AT q w w w= + − = − . 

 

The second adjustment term takes into account the fact that from the last pick position (in 

the last visited aisle) in each block, the order picker has to return to the center line of the 

cross aisle. It is easy to verify that: 20 2AT L≤ ≤ . The expected value: 2AT , ( )2 |E AT q ,  

can be estimated by formula (5.8) given in Appendix 5B 

 

From all estimates above, we now can come up with the following expressions of travel 

time: 

( ) ( )
/ 2 1

1 1 1

| 1 2 2
q

a a m
q

i b r

i m r

E TR q L a p w a p
−

= = =

⎡ ⎤⎡ ⎤ ⎛ ⎞′= − − + −⎢ ⎥⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑  

( ) ( )| |
a

E TR q E TR q w− = +  

( ) ( ) ( )| | 2
a

E TR q E TR q L w+ = + +  

( ) ( ) ( ) ( )2| | 2 1 0.5 |q

a
E TR q E TR q w E AT q≈ = + − +  

 

We used Visual Basic for Application (VBA) on Microsoft Excel to simulate the system. 

In the simulations, we considered 3 layouts: 6, 10 and 16 aisles (see Table 1 for other 

layout parameters). Batch size varied from 1 to 40 orders (i.e. number of locations that an 

order picker has to visit in one tour is from 1 to 40). The average travel-time value of 

10000 runs was taken as the simulation result, this number of runs is sufficient to obtain a 

98% confidence interval with a half-width of less than 1% of the sample mean. We found 

that, in the worst case, the difference between the approximated travel time and simulation 

outcome is less than 3 percent. For all layouts, the difference decreases when the batch size 

increases. When the batch size is greater than 20, the difference between approximation 

and simulation value is less than 1 percent. It is because of the fact that for larger batch 

sizes the probability that the order picker has to travel the entire warehouse is close to 1. 

Consequently, both approximation and simulation results reach the maximum travel time.  
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When we know the first moment of travel time, it is rather straightforward to compute the 

first moment of service time. We call ( | )BE S q  the first moment of service time given the 

batch size q , where B  can be the approximation, lower bound or upper bound notation. 

We assume that the setup time of a batch, sτ , is independent from the batch size. The 

picking time per item, pτ , is identical for all items.  It follows that: 

( ) ( )| |B s p BE S q q E TR qτ τ= + + . 

5.1.2 Second moment of travel time  

Without considering the adjustment time AT , the second moment of travel time can be 

formulated as  

( ) ( ) ( ) ( ) ( ) ( )22 2 2 2| | 2 | 2 2 |
b b

E TR q L E J q w E M q w LE JM q= + +   (5.1) 

 

Chew and Tang (1999) calculated ( )2 |E J q  and ( )2 |E M q  for the single-block layout. 

However, their result for ( )2 |E J q  still holds for the case of two blocks. For ( )2 |E M q , 

if we consider pick lines instead of pick aisles (see Figure 5.1) then their formula can be 

easily adapted. Hence, we have: 

( ) ( )( ) ( )
1

2 2

1 1 1

| 2 1 1 2 1
a a a

q q

i i r

i i r i

E J q a a p p p
−

= = = +

= − − − + − −∑ ∑ ∑   (5.2) 

( ) ( ) ( )
/ 2 1

22

1 1

| 2 2 1
q

a i

r

i r

E M q a i p
−

= =

⎛ ⎞′= − + ⎜ ⎟
⎝ ⎠

∑ ∑  (5.3) 

where 2 1 21 (1 )(1 ), 1.. / 2r r rp p p r a−′ = − − − = . 

 

[ ]|E JM q  is the term that describes the interaction between the number of aisles visited 

and the farthest pick line. It can be calculated by 

[ ] { }
/ 2 2

2 2 1
1 1

| , 0, ... 0 |
a m

m m a

m j

E JM q m jP J j X X X q+
= =

⎛
= = > = = = +⎜

⎝
∑ ∑  

{ }
2 1

2 1 2
1

, 0, ... 0 |
m

m m a

j

jP J j X X X q
−

−
=

+ = > = = =∑                

( )
( )

( )
( )2 1 2 1/ 2 2 2

* **

1 1 1 1 1

2 1 2( 1) 1

qq m ma m m
q q

r i r i

m r i r i

m p m p p m p

− −

= = = = =

⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤⎜ ⎟= − − − − − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠
∑ ∑ ∑ ∑ ∑   (5.4) 
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where 1iX =  if pick aisle i  is visited and 0iX = otherwise. 
2*

1

m

i i jj
p p p

=
= ∑  and **

ip =  

2( 1)

1

m

i jj
p p

−

=∑  (the proof can be found in the Appendix 5A). Subsequently, ( )2 |E TR q  

can be computed by substituting (5.2)-(5.4) into (5.1). We can see that TR  differs from 

TR+  and TR−  only by constants, thus their variances are identical: 

( ) ( ) ( ) ( ) ( ) 22 2 2 2| | | | |TR q TR q TR q E TR q E TR qσ σ σ+ −= = = − ⎡ ⎤⎣ ⎦ . 

 

However, TR≈  does not differ from TR  by a constant. To make things easier, we assume 

that ( ) ( )2 2| |TR q TR qσ σ≈ = . 

 

For a given number of items per batch q , the variance of service time ( )2 |S qσ  is just the 

summation of the variance of travel time and the variance of picking time, since the setup 

time is constant and the picking time is independent of the travel time. The variance of the 

picking time simply equals 2
pqτ . Hence,  

( ) ( ) ( ){ }2
2 2 2| | |B B B pS q E TR q E TR q qσ τ⎡ ⎤= − +⎣ ⎦ ,  

where B  can be the approximation, lower bound or upper bound notation. 

5.4 Throughput time analysis for / /1kM G  queueing model  

Due to stochastic natures of both order arrivals and service, a natural way to deal with the 

order batching problem is to model the OP process as a queueing system. With the 

assumptions made earlier, our problem can be modeled as an / /1kM G  queue, where kG  

denotes that the service is performed per batch of exactly k  orders and the distribution 

function of the service time has a general form, while inter-arrival times are exponentially 

distributed. In other words, the order batching problem in this case can be considered as 

the problem of determining the optimal service batch size ( k ) for the / /1kM G  queue 

such that the average throughput time of a random customer is minimized.  

 

In the literature, there are only few publications in which this type of queue is thoroughly 

studied. Foster and Perera (1964) show that the probability generating function of the 

system size at random epochs ( )P z  can be expressed by the following formula: 
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1

1

( )
(1 )(1 )

(1 )
( )

1
( )

k
jk

j j

k

zu
z

k
P z

z

K z

δ
δ

−

=

−
− −

−
=

−

∏
  (5.5) 

where { }( ) (1 )K z zψ λ= −  is the Laplace-Stieltjes transform of the cumulative service 

time distribution function. λ  is the arrival rate, u
λ
µ

=  is the utilization rate (or traffic 

density).  ( )1 |E S kµ =  is the service rate of a batch consisting of k  orders. jδ , with 

1,.., ( 1)j k= − , are ( 1)k −  roots inside the unit circle of the characteristic equation 

( )kz K z= . It follows from Rouche's theorem that this equation has exactly ( 1)k −  roots 

inside the unit circle (detailed explanations can be found in Gross and Harris, 1998, p. 

282). If we know the form of the service time then the steady-state probabilities { }np  can 

be theoretically obtained by successive differentiation of ( )P z . Nevertheless this work is 

cumbersome when k  becomes large. 

 

Chaudhry (1991) is also interested in this queue and he provides a closed-form expression 

in term of the roots of certain characteristic equations for computing the average queueing 

time of orders. However, he only considers the queueing time of the last customer in the 

service batch, which, certainly, differs from the waiting time of a random customer. 

Another type of queues that is also considered in the same article is [ ],/ /1a b
M G . In this 

queue, services can be performed as soon the number of orders waiting in the queue 

reaches the lower threshold a  ( b  is the capacity of the server, a b≤ ). Chaudhry et al. 

(1987) discuss a numerical computation approach to compute the steady-state probability 

of this system. However, from a practical point of view, this approach is rather 

complicated to use. In order to obtain steady-state probabilities, we first have to find the 

roots of the characteristic equations and than successively take the derivative of the 

probability generating function. This requires tremendous computational efforts, especially 

when the batch size is large.   

 

Apparently, it is too difficult from a practical point of view, to compute exact results for 

the / /1kM G  queue. Furthermore, for the sake of the order batching problem, it is not 

necessary to find an extremely accurate throughput time. Therefore, in this research we are 

interested in finding a good and easy-to-compute approximation for the average waiting 

time of a random order. We use the well-known 2-moment approximation formulation 

(see, for example, Tijms, 1994, p. 335): 
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( )2 2

/ /1 / /1 / /1
1k k kS SM G M D M M

W c W c W= − + , 

where ( ) ( )2 2 2| |Sc S k E S kσ=  is the squared coefficient of variation of the service time; 

/ /1k
M M

W  and 
/ /1k

M D
W  denote the average throughput time of orders (or waiting time in the 

system of a random order) when the service time distribution is exponential and 

deterministic, respectively. As recommended in Tijms (1994), this method performs very 

well in the case that 2
Sc  is not very high and the traffic density u  is not very low. Our 

approach for determining the optimal batch size is sketched in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2   Two moment approximation approach for general service time distribution 

 

When the service time is exponential, we have (Gross and Harris, 1998, p.125): 

( )

1 2 1 1
0 0 0 0 0

02/ /1
10

( ) ( )1 1

2 1
k

k k k k k
k

M M
k

r r r r rk
W kr

k kr

λ µλ
λ µ µ

− − − − −

=

⎡ ⎤⎛ ⎞− − −−
= + +⎢ ⎥⎜ ⎟

−⎢ ⎥⎝ ⎠⎣ ⎦
∑ , 

where 0r  is the unique real root of the characteristic equation ( )1
0 0 0kr rµ λ µ λ+ − + + = .  

 

When the service time is deterministic it can be shown that (1 )( ) u zK z e− −= . Substituting 

this into (5.5) we have: 

1

1

(1 )

( )
(1 )( )

(1 )
( )

1

k
jk

j j

k

u z

z
z k u

P z
z

k
e

δ
δ

−

=

− −

−
− −

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

∏
  (5.6) 
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where jδ , ( )1,.., 1j k= − , now become ( )1k −  roots inside the unit circle of the equation 

(1 )k u zz e− −= . In the literature, several solution methods have been proposed for finding 

roots of this equation. The common technique used is transforming the equation into 

( )1 2k −⎡ ⎤⎢ ⎥  independent equations, each of which has only one root inside the unit circle. 

These roots and their conjugates form the ( 1)k −  roots we need (see Chaudhry et al., 1987 

and 1990).  When ( )1k −  roots of the equation are known, we can find 
/ /1k

M D
W  by taking 

the limitation of ( )P z  when z  reaches 1: ( ) 1/ /1

1
k zM D

d
W P z

dzλ == . We note that, for 

1z = , ( )P z  is indeterminate of the 0 / 0  form. Therefore, we proceed as follows. Let 

( )N z  and ( )D z  denote the numerator and denominator of the right-hand side of equation 

(5.6) respectively. Then we use the following well-known result in queueing theory (see 

Madan (2000)): 

( ) ( ) ( ) ( ) ( ) ( )
( )( )1 2/ /1

1 1 1 11 1 1
1 =

2 1
k zM D

N D D Nd
W P z P

dz Nλ λ λ=

′ ′′ ′ ′′−
′= =

′
. 

 

As mentioned earlier, successive differentiations are cumbersome when the batch size is 

large; but in this case, we only need to take the first order derivation of the generating 

function. The derivative operator is available in many common mathematical software 

packages (such as Maple or Matlab). These make it possible to carry out a numerical 

analysis for the value of 
/ /1k

M D
W , even for very high batch-size values. 

5.5 Numerical examples 

In order to illustrate the procedure, we consider three warehouse instances with parameters 

given in Table 1. These parameters are based on the OP instance mentioned in Chew and 

Tang (1999). Figure 5.3 shows the calculated throughput times of the deterministic, 

exponential and general form service time model for the three warehouses, where the 

average throughput time of the general form service time model is interpolated from the 

average throughput time of the corresponding constant and exponential service time model 

(by using the two-moment approximation method described in Section 5.4). It appears that 

the average throughput time is a convex function of the batch size. We can explain this 

behavior as follows. There are mainly three elements that affect the average throughput 

time of an order. They are the waiting time to form a batch, the waiting time for service 

(i.e. picking) and the service time. When the batch size is small the batch-forming waiting 
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time and service time are small, but the service waiting time can be large (i.e. limited 

number of pickers). In contrast, when the batch size is large, the batch-forming waiting 

time and service time are large, but the service waiting time can be small. This trade-off 

indicates that the optimal batch size exists. This is in line with the finding of Chew and 

Tang (1999) when they considered single-block warehouses. In the figure, it can also be 

seen that the approximation curve is extremely close to the deterministic curve when the 

batch size is large. This is due to the fact that the squared coefficient of variation of service 

time is almost zero for large batch sizes. It suggests to us that the deterministic model is a 

good approximation for the general service time queue. This result is in line with the 

finding, for the case of single-aisle warehouses, mentioned in Le-Duc and De Koster 

(2003). 

 

It should be noted that, to satisfy the equilibrium condition, the batch size can only be 

defined on a semi-bounded interval ),k −⎡ ∞⎣ , where k −  is a minimum batch size value 

such that the traffic density, kλ µ , is less than 1.   

 

Table 5.1   Parameters for the simulation experiment 

Attributes Quantities  

a  6, 10, 16 aisles 
λ  4 orders/ 10 minutes 

L  30 seconds 

aw  6 seconds 

bw  10 seconds 

sτ  180 seconds 

pτ  12 seconds 
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Figure 5.3   Average throughput time for different service time distributions (with the 
approximation value of the service time) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.4   Average throughput time of a random order for the 6-aisle layout (W_LB 

is the approximated value of the average throughput time, by the 2-

moment approximation approach, based on the lower bound value of the 

first and second moment of service time). 
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To find how good the estimation (the order throughput time) is, we used the AutoMod 

simulation package to simulate the OP system. In the experiment, the average order 

throughput times were taken after a run length of 48 hours (warming up time was 4 hours, 

determined by using AutoStat – a tool accompanying AutoMod for batch running and 

statistical analyses). Figure 5.4 shows the simulation results together with the expected 

lower bound, upper bound and approximation value of the throughput time for the layout 

with 6 aisles (we mention only one case as other cases - 10 and 16 aisles- bring similar 

pictures). The lower bound, upper bound and approximation of throughput time are 

correspondingly determined by the lower bound, upper bound and approximation of 

service time. For example, in order to find the lower bound of the throughput time, we first 

estimate the lower bound of the first and second moment of service time. Then using these 

moments we calculate the throughput time of the deterministic and exponential service 

time queue. Finally, we use the 2-moment approximation formula to obtain the lower 

bound of the throughput time. As we can see from Figure 5.4, the bounds are tight, 

especially when the batch size is large. It means that the approximation provides sufficient 

accuracy in estimating the average throughput time of a random order. This result is in 

accordance with the finding of Chew and Tang (1999) for single-block warehouses. 

Furthermore, the optimal batch size is relatively small; close to its lower bound. It means 

that we need not to search the optimum batch size on a large interval. This is an important 

point as it can help to reduce the search time significantly. Perceiving this, we propose a 

greedy procedure for determining the optimal batch size as follows. We first determine the 

lower bound of the batch size. Starting from the batch size lower bound, we iteratively 

increase the batch size by one, until the average throughput time (determined by two-

moment approximation approach) increases. The optimal batch size is the value that 

minimizes the average throughput times found. 

5.6 Some possible extensions of the model 

We have considered the OP process with single-line orders, a single order picker and the 

random storage strategy. This can be considered as a basic model and it can be extended in 

several directions.  

 

As the first extension, we can consider multiple order pickers instead of a single one. 

Under this situation, the OP process can be modeled as a batch processing and multi-server 

queue: 
/ /k

M G c
W , where c  is the number of servers (or order pickers). It is too difficult, if 

not impossible, to find the exact results for this type of queues. However, in the literature, 

a simple method exists for finding the bounds of the average waiting time of a multi-server 

queue from its corresponding single server queue (see, for example, Gross and Harris 
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(1998), p. 340). According to their method, the lower bound of 
/ /k

M G c
W  can be found by 

assuming that 
/ /k

M G c
W  is equivalent to 

/ /1k
M G

W  where the service rate is c  times faster. 

The upper bound can be obtained by assigning batches in cyclic order to the c  servers with 

no jockeying allowed (See Figure 5. 5 - first batch to server 1, second batch to server 2, ..., 

( 1c + )st to server 1, ...). Then each server faces a single queue, in which the inter-arrival 

time is the c -fold convolution of the original inter-arrival distribution, with no change in 

the service time process. The waiting time of a random batch taken from one of these 

queues provides an upper bound for the multi-server queue. These bounds are very useful: 

we can use them to interpolate the expected value of the throughput time. One reasonable 

value of the throughput time could be the average value of the lower and upper bound. In 

this approximation we neglect possible aisle congestion which may occur when multiple 

order pickers work in the same picking area at the same time. However, we may expect 

that this effect is small when the S-shape routing method is used, as aisles are mostly 

(particularly for not too small batch sizes) traveled in a single direction. 

 

The second extension could be that we consider the class-based storage assignment 

method. As mentioned earlier, when the random storage strategy is used, 

1/ ( 1.. )ip a i a= = , where ip  is the probability that aisle i  is visited. When the class-

based storage assignment method is used, there are two possibilities, depending on whether 

partial-aisle assignment is allowed or not. A partial-aisle assignment means that we can 

store different product classes in the same aisle, while in the other cases product class is 

stored in one or more entire aisles. Our model already captures the latter case, because in 

the calculations we use the general expression of ip ( ip  can differ from 1/ a ). It is also 

possible to consider the partial-assignment case. However, the expression for the second 

moment of the travel time may become very complicated (see Chapter 2). 

 

 

 

 

 

 

Figure 5. 5   Cyclic order assignment of orders to servers/order pickers 

 

A single order-line order picking can be observed in warehouses where single and multi-

line orders are picked separately or single-line orders form the majority. However, in other 

cases, orders may consist of more than one order line. Thus, another interesting extension 
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could be that we consider compound-Poisson arrivals instead of Poisson arrivals. The OP 

process can then be modeled as the compound-Poisson arrivals with batch service queue. 

For this type of queues, it is still possible to trace the expected waiting time if both 

moments of the service time are known. Unfortunately, again it is very tough to come up 

with a closed-form formulation for the second moment of service time. We suggest that we 

approximate this system by / /XM G c , where ( ) ( )X E k E i=  with ( )E k  and ( )E i  are 

the expected number of orders in a batch and items per order, respectively. This means that 

we can still apply / /XM G c  queue to estimate the optimal number of items per batch and 

than based on this value and ( )E i  to determine the ‘optimal’ number of orders to be 

included in a batch. 

5.7 Concluding remarks 

This chapter focuses on finding a simple but efficient approach for determining the optimal 

picking batch size for order pickers in a typical 2-block warehouse. In order to do so, we 

first extend the results given in Chew and Tang (1999) for single-block warehouses to 

estimate the first and second moment of the service time. Then, we use these moments to 

estimate the waiting time of a random order based on the corresponding batch service 

queueing model. The optimal picking batch size is then determined in a straightforward 

manner. Results from the simulation experiments show that our approach provides a high 

accuracy level. Furthermore, the method is very simple; it can be easily applied in practice.  

 

The average waiting time appears to be a convex function of the batch size. As a result, a 

unique optimum picking batch size exists. As the optimum batch size is close to its lower 

bound (obtained from the traffic density condition), we propose a simple greedy procedure, 

which can be used to search for the optimum in a short computational time.  

 

The OP system that we considered is a simple one; we can extend it in several directions. It 

is easy to include multiple order pickers. However, in general it is rather difficult to 

capture the effect of aisle congestion, compound-Poisson arrivals or other storage 

strategies and different layouts. These topics issue a challenge for future research. 
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Appendix 5A    

We use the following definitions: 

M m+= :  the farthest pick line is pick line m  and pick aisle 2m  is visited, 

M m−= :  the farthest pick line is pick line m  and pick aisle 2m  is not visited. 

1     if pick aisle  is visited

0     otherwisei

i
X

⎧
= ⎨

⎩
 

( ) { } { }
/ 2 2 2 1

1 1 1

| , | , |
a m m

m j j

E JM q m jP J j M m q jP J j M m q
−

+ −
= = =

⎛ ⎞
= = = + = =⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

 { }
/ 2 2

2 2 1
1 1

, 0, 0,..., 0 |
a m

m m a

m j

m jP J j X X X q+
= =

⎛
= = > = =⎜

⎝
∑ ∑  

                    { }
2 1

2 1 2
1

, 0, 0,..., 0 |
m

m m a

j

jP J j X X X q
−

−
=

⎞
+ = > = = ⎟

⎠
∑    (5.7) 

Applying the inclusion-exclusion rule, we have: 

{ }2 2 1, 0, 0,..., 0 |m m aP J j X X X q+= > = =  

{ } { }2 1 2, 0,..., 0 | , 0,..., 0 |m a m aP J j X X q P J j X X q+= = = = − = = = ∞  

{ } { }2 1 2 1| 0,..., 0, * 0,..., 0 |m a m aP J j X X q P X X q+ += = = = = =  

{ } { }2 2| 0,..., 0, * 0,..., 0 |m a m aP J j X X q P X X q− = = = = =  

 Thus,  
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The conditional expectation { }
2

2 1
1

| 0,..., 0,
m

m a

j

jP J j X X q+
=

= = =∑  is just the expected 

number of aisles visited given q  and aisles from 2m  to a  are not visited. From Chew and 

Tang (1999), this amount is ( )
2
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2 1
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= ∑  is normalized 

probability. A similar argument holds for {
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= =∑ }0,aX q= . At this 

step, (5.7) can be simplified as follows: 
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Appendix 5B   Adjustment time estimation 

The second adjustment term ( 2AT ) takes into account the fact that from the last pick 

position in the last visited aisle (in each block) the order picker has to return to the center 

line of the cross aisle. For each block, such a turn has to be made if and only if the number 

of visited aisles (in the visited block) is odd. The probability that the turn occurs in one of 

the blocks and all i  picks fall into exactly g  aisles ( { }|1 2, is oddg G g a g∈ ≤ ≤ ) is: 

( )
2

,
2

i
a g

X g q
g a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

where ( )X g  is 1 minus the probability that all i  picks fall into less than g  aisles, 

conditional on the fact that all i  items fall into at most g  specific aisles (see Roodbergen, 

2001): 

( ) ( )1 1

1
, 1 1

q

g i

i

g g i
X g q

g i g

− +

=

⎛ ⎞⎛ ⎞ −
= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∑  

 

We call 1CR  and 2CR  are the correction time if the turn happens in only one and two 

blocks respectively. As items are randomly located within the warehouse, we assume that 

if g  aisles are visited then the expected items in each visited aisle will be n g . It then 

follows: 
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where 
( )

!
0.5

! !
q q

k q k−
 is the probability that ( )1 1k k q≤ ≤ −  items fall into one block and 

( )q k−  items into the other. 

 

Finally, the adjustment time due to making a turn if the number of visited aisles in a block 

is odd would equal:  

( )2 1 2|E AT q CR CR= +  (5.8) 

 





 

 

6 

6 On Determining the Optimal Number of Work Zones in a 

Pick-and-Pack Order Picking System 

6.1 Introduction  

In the previous chapters, it was explicitly assumed that order pickers can be assigned to 

pick items from any location in the pick area. This chapter considers the situation where 

the pick area is organized into distinct sub-areas (or work zones), with one order picker or 

a group of order pickers assigned to each zone to pick requested items stored in that zone 

(zone picking, see Section 1.3.3). Orders are picked simultaneously from the zones 

(synchronized picking). After picking, the picked items are brought to an order 

consolidation area (by a transportation conveyor) where they are combined into complete 

orders before shipment. This type of order picking can be observed in many distribution 

centers (see Section 1.3.5 for a description of similar systems). 

 

Compared to other picking methods, zoning has the following advantages. 

• Zoning reduces the congestion in the aisles, since zoning reduces the number of order 

pickers working simultaneously in an aisle (in many cases, only one worker per zone). 

• It reduces the picking time. By using zoning, the pick area per order picker is smaller, 

thus with a same pick-list size per pick tour, the average travel distance (or time) of a 

pick tour is likely to be shorter. Added to this, the familiarity of the order pickers with 

item locations leads to a reduction in searching time. 
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• It is easier to administer and control. Zoning allows items with similarities in physical 

characteristics or product carriers to be stored in the same zone. It also facilitates the 

use of relevant storage, handling equipments, and special labor skills in each zone.  

 

Due to these advantages, zoning is widely used in practice. One example is warehouse of 

Wehkamp, a mail-order company. The case worked out in Section 6.4 is based on 

Wehkamp’s data. 

 

At the tactical decision level, a critical problem associated with zoning is to define the 

work zone storage capacity (or work zone borders). More specifically, for a given layout, 

operational policies (routing, batching method) and a storage assignment policy, it is the 

problem of how to divide the picking area into work zones such that a certain objective is 

maximized or minimized. Example objectives include the system throughput (Petersen, 

2002) and the work load balance between zones (Jane and Laih, 2005). If we assume that 

all aisles are identical and all zones are of the same size (an equal number of identical 

aisles), then the zone partitioning problem becomes the problem of determining the 

optimal number of aisles constituting a work zone. It should be mentioned here that this 

problem has not been studied in the literature (see Section 1.3.3). The most related 

publication is Petersen (2002), where the effects on the travel distance in a zone of the 

number of aisles in the zone, of storage assignment methods, and of the number of items in 

the pick list are investigated. However, the zone storage capacity is fixed (i.e. aisle length 

is a decision variable). Therefore, the problem essentially differs with the problem of 

determining work zone storage capacity. In this chapter we shall investigate this problem 

for an OP system where picked orders are consolidated for packaging. 

 

The rest of the chapter is organized as follows. We describe the OP system with zoning in 

Section 6.2. Then, we introduce an integer programming formulation for the problem of 

assigning items to pick routes in each zone (item-to-route assignment problem) and discuss 

its computational time in Section 6.3. In Section 6.4, we consider a case study to determine 

the optimal number of zones, by solving the item-to-route problem. Finally, we conclude 

the chapter in Section 6.5. 

6.2   Order picking system  

The schematic layout of the OP system under investigation is sketched in Figure 6.1. 

Basically, we have two functional areas: one area for picking and one for packing. Items 

are stored in rectangular bin-shelving storage racks. Batched orders are picked 

simultaneously (synchronized zone picking) from different zones in the picking area by a 
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group of order pickers. After an order picker has completed a pick tour, the picked items 

are deposited on a conveyor and transported to the buffer area. When all items of an order 

have been picked, they are sorted and picked. 

• Batch generation: orders (requests from a customer consist of one or several items7) 

arriving within a predetermined interval are grouped together in one batch for joint 

release to the order pickers. Within a batch, orders are spread over the zones based on 

the storage locations of their items. They are consolidated later at the packing area.  

• Picking operation: all batched items from the same work zone are picked by one order 

picker or a group of order pickers designated to the work zone. Each order picker can 

only be assigned to at most one work zone (zone picking). As each order picker can 

only pick a limited number of items (e.g. due to the capacity limitation of the picking 

cart) in one pick route, the batched items from a work zone may require t pick shifts to 

be completed, where 1 t τ≤ ≤  with { }t
zones
max=τ . (In the case of a single order picker 

per zone, the number of pick shifts required is the number of pick routes.) The order 

picker starts a batch by obtaining a picking cart and pick lists (each is a list of items to 

be picked in one pick route) from a central location. The order picker then goes to the 

left-most aisle in the work zone to start a pick route. After picking all requested items, 

the order pickers place them on the transportation conveyor, and go back to the left-

most aisle to start a new pick route. The transportation conveyor runs continuously to 

move all picked items to the buffer area. For each batch of orders, it is assumed that 

the order picker receives all pick instructions at the beginning of the batch. For the 

ease of discussions later on, we divide the throughput time of a batch into periods 

from 1 to τ +1, where periods are defined as follows. Period 1 is the time lapse 

between the starting time (to pick the batch) and the moment when all the order 

pickers (from all zones) have finished the first pick route. Period 2 starts from the end 

of the period 1 and ends when all the second pick routes in all zones have been 

completed, and so on. The last period starts from the moment when all last pick routes 

have been completed, and ends when all items are sorted (no picking operation is 

carried out, only the packing). 

• Packing operation: a conveyor runs continuously in the buffer area for buffering 

incomplete orders (an order is called incomplete if not all of its items are picked). 

Orders only enter the sorter when they are complete. It means that newly-picked items 

enter the sorter if and only if all the items in the orders they belong to either have been 

picked or were previously picked (waiting in the buffer area). The complete orders are 

sorted to sorter exits (see Figure 6.1) according to destinations (e.g. each shipping lane 

                                                           
7 ‘Item’ here means stock keeping unit (SKU), in the literature it is also called ‘order line’ 
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is assigned to a group of proximity destination postcodes). A group of packers 

manually pack the orders. After packing, orders are transported to the shipping docks 

for delivery to the customers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1    Schematic layout of the pick-and-pack OP system 

 
With a given work force level (the number of workers at both picking and packing stages), 

the objective of our study is to minimize the total time to complete a batch of orders 

(throughput time). There are two decision problems that may impact the overall time to 

complete an order batch.  

• At the operational level, the problem is how to assign items to different routes in each 

zone (recall that completion of a batch in one zone may require more than one pick 

route to be completed). The item assignment and sequence in which we pick routes in 

each zone has an important impact on the latter stage when the items are consolidated. 

Let us consider a simple example. We have two picking zones A and B, each with one 

order picker, with a pick capacity of one unit per pick route. In a batch, we have to 

complete two orders: order1=A1+B1, order2=A2+B2. For this situation, we have four 

possible pick sequences: (A1 A2, B1 B2), (A1 A2, B2 B1), (A2 A1, 

B1 B2) and (A2 A1, B2 B1). It is clear that the second and third sequence result 

in the longest throughput time, as there is no order to pack after the first pick shift. In 

the general case, when we have a set of orders, a given layout (number of zones, the 

size of zone), and a work force level at both the picking and packing area, we can 

formulate this problem as a mixed integer-linear program. We will discuss this in the 

next section. 

• At the tactical level, we have to decide the number of zones into which the overall 

picking area should be divided (or in other words, how large the zone size should be). 

When the zone size increases, the route time (to pick a given number of items) also 
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increases. And consequently, the throughput time may also increase. However, on the 

other hand, large zones reduce the consolidation problem, as orders are spread over 

fewer zones. This makes it simpler to arrange the pick sequence (item-to-route 

assignment in each zone) in such a way that the number of complete orders arriving at 

the packing area (per time unit) increases. And thus, the throughput time may be 

shorter. The best zoning scheme is the one that brings the best compromise between 

these two opposite effects.  

 

In practice, the number of aisles in a warehouse is limited. Therefore, when we assume that 

zones are identical, we can choose from only a limited number of possible zone sizes 

(number of aisles per zone). For example, if we have 20 aisles then we have the following 

zone-size possibilities: 1, 2, 4, 5, 10 and 20 aisles (with 20, 10, 5, 4, 2 and 1 zones 

respectively). Because of that, our solution strategy is as follows. For each zoning scheme, 

we first solve the item-to-route assignment problem. In a next step, we vary the zone sizes 

and choose the zone size that provides the shortest overall throughput time. In the next 

section we will step by step formulate a mathematical model for the item-to-route 

assignment problem and discuss a solution approach.  

6.3   Mathematical model for item-to-route assignment problem 

In the model, the following assumptions are made: 

• (Storage) aisles are identical.  

• A work zone is a set of adjacent entire aisles (e.g. one aisle can not belong to more 

than one zone). All zones have the same number of aisles; this assumption is made to 

keep the workload balanced among zones.  

• The picking capacity per pick route is determined by the number of items to be picked 

in one pick route. 

• Order pickers always start from the left-most aisle (of the assigned zones). Within a 

zone, the average route length depends only on the number of items per route, the 

zone size, the storage assignment and the routing method used.  

• The travel time between from one side of the aisle to the other is negligible. It means 

that an order picker can pick items from both sizes of the aisles in a single pass. No 

additional time is needed to reach the higher-level storage locations in an aisle. 

• Multiple order pickers can work in one work zone at the same time (i.e. traffic 

congestion is negligible).  
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• The item transportation time ( µ ) between the picking and packing area is a constant. 

• Routes between order pickers in different zones are synchronized.  

• Packing can only start from period 2 onward. 

• Only complete orders can enter the sorter, incomplete orders are buffered. The buffer 

capacity is sufficiently large to buffer all order needed. 

Data 

q   the maximum number of items that an order picker can pick in a pick route. 

We assume that this is identical for all order pickers as the pick capacity of an 

order picker depends on the picking vehicle or cart.  

a  number of aisles per zone 

L   length (in travel time unit) of a storage aisle 

bw  centre-to-centre distance (in travel time unit) between two consecutive storage 

aisles 

st  set-up time of a pick route 

µ  transportation (conveyor) time  

pir  picking rate (number of units per time unit that an order picker can pick). It is 

assumed to be identical for all order pickers. 

par  overall packing rate (number of orders per time unit). This rate depends on the 

average order size (number of items per order) and the average packing time 

per unit. 

kN  number of order pickers in zone k 

, , ,t i o k   indices of period, item, orders and zones 

K  set of zones 

O  set of all orders 

oI  set of all items in order o  

kI  set of all items in zone k 

I   set of all items, o k
o O k K

I I I
∈ ∈

= =U U  

τ  the maximum number of required pick shifts in the zones, 
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( ),q aℜ  time needed to finish a pick route of q items (or picks) in a zone containing a 

aisles and return to the left-most aisle of the assigned zone. It consists of four 

components: travel time, setup time, picking time and correction time. (It has 
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to note that the number of items in the last pick route (in each zone) can be less 

than the route’s capacity.) If the random storage assignment and the S-shape 

routing method are used, then it can be calculated by (see details in Appendix 

6A):  
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 (6.1) 

Decision variables 

1 if item  is picked in period ( 1.. )

0 otherwiseti

i t t
x

τ=⎧
= ⎨

⎩
  

1 if order  has been completely picked in period ( 1.. )

0 otherwiseto

o t t
y

τ=⎧
= ⎨

⎩
  

toTL   total number of items of order o completely picked by the end of period t 

tNCO  number of newly complete orders in period  t ( 1.. )t τ=  

tUCO  number of complete (but unpacked) orders transferred from period t ( 1.. )t τ= to 

period  t+1. This is because in a period of length ( ),q a µℜ + , we can only 

pack a limited number of complete orders: ( )[ ]⎣ ⎦paraqP ., µ+ℜ= . 

tPAC  number of complete order packed in period t ( 1.. )t τ=  

 

The whole batch is completed only when all orders have been packed. Therefore, the 

throughput time, the overall time (ψ ) to complete a batch, is the summation of time 

required to pick all items (the total picking time), the transportation (for all pick shifts) and 

the time needed to pack all remaining unpacked orders after the last pick shift. The 

throughput time can be calculated by: 

( ) ( ){ } ( ){ }1 , ,M paq a q a UCO rτψ τ µ µ= − ℜ + + ℜ + +  (6.2) 

where ( ),Mq aℜ  is the longest pick-route time in period τ ; Mq  is the maximum number 

of items which need to be picked from some zone in period τ  ( Mq  is known if order 

profile is given). Having mentioned all assumptions and variables, we now can formulate 

the item-to-route assignment problem as follows. 
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MODEL 

Objective  Min UCOτ  

Such that 

1

1ti

t

x
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= −∑∑ ∑∑  ( )1..t τ∀ =  (6.9)  

1 0PAC =     (6.10) 

tPAC P≤  ( )2..t τ∀ =    (6.11) 

1t tPAC UCO −≤  ( )2..t τ∀ =  (6.12)  

1t t t tUCO NCO UCO PAC−= + −  ( )1..t τ∀ =  (6.13) 

0 0UCO =   (6.14)  

0tUCO ≥  ( )1..t τ∀ =  (6.15) 

{ }, 0,1ti tox y ∈  ( ), 1.. , ko O t i Iτ∀ ∈ = ∈  (6.16) 

 

In the objective function, we minimize the throughput time to finish a batch of q orders 

(note that in (6.1) two first components and par are constant, thus minimizing ψ  also 

means minimizing UCOτ ). Constraint (6.3) ensures that each item is assigned to exactly 

one pick route. Constraint (6.4) is the capacity constraint. It indicates that the maximum 

number of items that can be picked from zone k by kN  order pickers in one period cannot 

exceed the total capacity of the kN  order pickers. Constraints (6.5)-(6.8) imply that 
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1toy =  if order o  is completed by the end of period t (meaning that all items belong to 

order o are picked in pick shift t), and 0toy =  otherwise. Constraints (6.9)-(6.15) indicate 

that the number of complete orders left over period t+1 equals the number of newly 

complete order during period t plus the number of complete orders left over from period t-

1 minus the number of orders that have been packed in period t. The last constraint defines 

the nonnegative and binary property of variables tix  and toy . It can be seen that we have a 

mixed linear-integer formulation. The hardest constraints are (6.3) and (6.4). Constraints 

(6.5)-(6.15) are used just for keeping track of the number of unpacked orders in the last 

period (UCOτ ). 

6.4   Case study and numerical experiments 

In this section, the investigated case is introduced and the results (obtained by using 

formulation presented in Section 3) are successively discussed. 

6.4.1   Introduction 

The case we consider is based on the distribution center of Wehkamp, a large online 

retailer in the Netherlands. Its mission is “being an innovative home-shopping organization 

with a wide assortment of consumer products against competitive prices and recognizable 

better service”. The company uses a pick and pack system (which was simplified and 

sketched in Figure 6.1). About 15000 orders have to be picked per day, each containing 1.6 

items (in total 2.3 units per order) on average. Since the picking and packing department 

have a limited capacity, orders received from customers are processed several times (in 

batches) a day; each batch contains about 1000 items in total. The picking process is 

described in Section 6.2. The order picker starts a batch by picking up a picking cart and 

obtaining pick lists from the central location. Pick routes always start from the left-most 

aisle in the zone. The picked items are dropped on the transportation conveyor, which 

conveys them to the packaging area. At the packaging area, complete orders are sorted by 

packing destination station (automatically) and then per order (manually), while 

incomplete orders (i.e. items) are buffered until they are complete (see Figure 6.1). In this 

case, all the buffering takes place at the packing station. When an order at packing station 

is complete, a light indicator turns on to signal the packers that packaging can start. 

 

As previously discussed, the zone size may strongly influence the system throughput time. 

Therefore, it is a crucial decision for the manager to decide how large zones should be, or, 

equivalently, the number of zones the pick area should be divided into, such that the 

system throughput of the system is minimized. In the next section, we will use the model 

of Section 6.3 to answer this question for the case. 
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6.4.2   Numerical experiments and results 

Table 6.1 shows the current operational data as well as the size of the picking area. The 

company has 36 storage aisles and uses 18 order pickers. Therefore, there are 6 possible 

zoning schemes (see Table 6.2). The packing rates depend on the average order size 

(average number of items per order); they are 8, 3, 1 and 0.5 order(s) per minute for order 

sizes of 1.6, 5, 10, and 20 items respectively. 

 

Table 6.1    Operational data and system parameters 

Operational data  System parameters  
Average number of items per batch  1000 Number of storage aisles  36 
Average number of items per order 1.6   
Max. number of items per route  Aisle length (L) in seconds 60 
(capacity or pick-list size) 40   

Number of order pickers 18 Distance between two  
Set-up time ( st ) in seconds 180 consecutive aisles ( bw ) 5 

Picking time per item (1 pir )  5 seconds  

Packing rate ( par ): 8, 3, 1 and 0.5 order(s) per 60 seconds for 1.6, 5, 10, and 20 items 

order size respectively 
 

Table 6.2    Possible zoning schemes 

Number of zones 
Number of storage aisles 

per zone 
Number of order pickers 

per zone 

1 36 18 
2 18 9 
3 12 6 
6 6 3 
9 4 2 

18 2 1 

 

In order to determine the optimal number of zones, we carried out a number of 

experiments. We considered four pick-list sizes (10, 20, 30 and 40 items per pick route), 

and three order sizes (1.6, 5, 10, and 20 items per order on average). Combining this with 6 

zoning schemes, we have 96 scenarios in total, including the current situations (1.6 items 

per order, maximum 40 items per pick route). An order batch was generated as follows. 

We fixed the number of items per batch. For each item, a storage location (in one of the 36 

aisles) and an order (to which the item belongs, from 1 toκ ) were randomly drawn from a 

uniform distribution (implying that random storage assignment is used). The average order 
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size was controlled by adjusting κ : ( )#items
#orders 1 1κ κ= − . For each scenario we 

generated 5 order batches, and after solving the item-to-route assignment problem of 

Section 6.3, we calculated the average throughput time value. The average travel time per 

pick route can be calculated, based on the zone size, the number of items per route, and the 

routing method used. In our case, the S-shape method is used and the route time is 

calculated by using formulation (6.1). The route times for the different pick-list and zone 

sizes are tabulated in Appendix 6B. 

 

Table 6.3    Average throughput time (in minutes) 

Order 
size 

(items) 

Pick-
list size 

1  
zone 

2 
zones 

3 
zones 

6 
zones 

9 
zones 

18 
zones 

Mean 

10 149.49 130.58 121.49 124.01 112.48 97.42 122.58 
20 105.75 105.61 104.13 103.71 99.61 97.42 102.71 
30 111.34 110.37 108.66 106.89 103.25 101.13 106.94 
40 116.41 114.92 112.15 110.66 106.88 104.83 110.98 

Small 
(1.6) 

Mean 120.75 115.37 111.61 111.32 105.56 100.20 110.80 
10 149.64 130.73 121.64 94.15 96.95 111.33 117.41 
20 99.85 92.57 90.34 85.58 86.66 84.67 89.95 
30 97.88 96.95 95.07 88.26 89.46 87.58 92.53 
40 102.91 101.42 98.70 92.12 93.29 87.96 96.07 

Medium
(5) 

Mean 450.28 421.67 405.75 360.11 366.36 371.54 395.95 
10 150.47 131.56 122.47 116.98 116.02 119.41 126.15 
20 127.32 127.24 125.01 117.58 122.23 119.67 123.18 
30 132.21 131.62 129.41 120.26 124.50 122.25 126.71 
40 136.91 135.42 133.03 124.79 127.25 120.83 129.71 

Large 
(10) 

Mean 136.73 131.46 127.48 119.90 122.50 120.54 126.44 
10 153.47 134.56 125.47 120.25 116.91 125.41 129.35 
20 127.38 127.24 127.01 121.80 125.61 122.67 125.29 
30 133.21 131.62 129.41 122.84 126.87 124.25 128.03 
40 137.91 135.42 133.03 124.79 128.63 125.58 130.89 

Very 
large 
(20) 

Mean 137.99 132.21 128.73 122.42 124.51 124.48 128.39 
 

 

We used LINGO (version 8.0) to solve the item-to-route assignment problem (discussed in 

Section 6.3). It turns out that we can find the optimal solution for all 96 scenarios (within 

25 seconds, 2.4 MHz Pentium CPU). The results of the experiments are presented in Table 

6.3. 
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Table 6.3 shows that for the current demand situation (1.6 items per order on average) the 

18-zone configuration gives the shortest throughput time for the system8. It means that for 

not very large order sizes, the configuration that minimizes the picking time (i.e. the 18-

zone configuration) also minimizes the system throughput time. The reason is that when 

the zone size increases, the reduction in picking time is dominant the increase in packing 

time in the case of small orders. For very large orders (i.e. 20 items per order on average), 

it appears that the 6-zone configuration outperforms the other zoning schemes. It shows the 

effect of spreading orders over works zones: large zone may reduce the picking time, but 

may increase the consolidation time. This effect seems to be clear for large order sizes.  

 

For the current situation, a pick-list of 40 items per route is not optimal. A pick-list size of 

20 appears to be optimal in most of the cases. When the pick-list size changes from 10 to 

40, the throughput time decreases and then goes up. We can explain this behavior as 

follows. If we increase the pick-list size, the overall travel time to complete a batch will 

decrease. Therefore, the overall picking time of a batch will be reduced. However, the 

accumulative number of complete orders, which have to be packed in the last period when 

the picking is completed, will grow (potentially). That increases the overall packing time, 

thus the throughput time. Clearly, there exists a trade-off between picking time and 

packing time when increasing the pick-list size.  

6.5 Concluding remarks 

In this chapter, the problem of choosing the right number of work zones at a manual pick-

and-pack OP system has elaborated. At the first phase, the problem of assigning items to 

pick routes in each zone was formulated, such that the throughput time is minimized, as a 

mixed integer-linear program. At the second phase, this problem was used as a tool for 

evaluating different zone-size options to find the optimal one. The method was illustrated 

with data obtained from a distribution center of a large online retailer in the Netherlands.  

 

Only random storage assignment and the S-shape routing method are used. However, our 

model can be applied for other operational policies (like the return routing, class-based or 

COI-based assignments), as long as we can estimate the travel time of a pick route.  

 

There are several issues which have not been addressed in this study. First, the congestion 

in the aisles (resulting from having more than one order picker per zone) is not taken into 

account. Second, though the optimal solutions for all investigated instances are found, it 

does not guarantee that a ‘good’ solution for the item-to-route problem can be obtained for 
                                                           
8 the 18-zone option would be more favorable if we take aisle congestion into account (in an 18-zone 
configuration, each zone has only one order picker, thus it is free from the travel congestion) 
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large-size instances (i.e. more aisles, periods, items). More experiments/analyses should be 

done in order to get more insights into the problem complexity. 
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Appendix 6A   Picking time estimation 

• Travel time consists of three components: travel time in the cross-aisles aisles, 

travel time within the storage aisles, and travel time back to the left-most aisle of 

the zone (e.g. to start a new pick route). As we assume that the order picker always 

starts a pick route from the left-most aisle of the zone, the last component equals to 

the cross-aisle travel time. With the S-shape routing method and random storage, 

the average travel time within storage aisles can be estimated by 

1
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probability that q picks fall in aisles 1,...,1 −i , and bw  is the travel time between two 

consecutive storage aisles (see Figure 6.1). 

 

Finally, ( ),n mℜ  is estimated as follows (the first component is the within-aisle travel 

time, the second one is the cross-aisle travel time, the third one is the correction time, the 

fourth one is the set-up time, and finally the last one is the picking time): 
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Appendix 6B   Average route time (in minute) with different 
zone and pick-list sizes 

Pick-list size 1 zone 2 zones 3 zones 6 zones 9 zones 18 zones 
1 7.29 5.79 5.29 4.79 4.63 4.46 
2 9.65 7.63 6.94 6.22 5.94 5.54 
3 11.46 9.13 8.30 7.33 6.88 6.15 
4 13.07 10.53 9.59 8.40 7.76 6.61 
5 14.52 11.78 10.72 9.30 8.53 7.02 
6 15.93 13.00 11.81 10.10 9.18 7.41 
7 17.25 14.14 12.82 10.84 9.74 7.79 
8 18.54 15.23 13.78 11.53 10.24 8.16 
9 19.78 16.28 14.68 12.17 10.70 8.54 

10 20.99 17.29 15.54 12.76 11.13 8.92 
11 22.16 18.25 16.36 13.32 11.54 9.29 
12 23.32 19.19 17.13 13.83 11.94 9.67 
13 24.44 20.09 17.88 14.32 12.33 10.04 
14 25.54 20.96 18.59 14.78 12.72 10.42 
15 26.62 21.80 19.28 15.22 13.10 10.79 
16 27.67 22.61 19.94 15.65 13.49 11.17 
17 28.71 23.40 20.58 16.06 13.86 11.54 
18 29.72 24.17 21.19 16.47 14.24 11.92 
19 30.72 24.92 21.79 16.87 14.62 12.29 
20 31.69 25.64 22.36 17.26 15.00 12.67 
21 32.65 26.35 22.92 17.65 15.37 13.04 
22 33.60 27.03 23.47 18.04 15.75 13.42 
23 34.52 27.70 24.00 18.42 16.12 13.79 
24 35.43 28.35 24.52 18.80 16.50 14.17 
25 36.33 28.99 25.03 19.18 16.87 14.54 
26 37.21 29.62 25.52 19.56 17.25 14.92 
27 38.08 30.22 26.01 19.94 17.62 15.29 
28 38.93 30.82 26.48 20.32 18.00 15.67 
29 39.77 31.41 26.95 20.70 18.37 16.04 
30 40.59 31.98 27.41 21.08 18.75 16.42 
31 41.41 32.54 27.85 21.45 19.12 16.79 
32 42.21 33.09 28.29 21.83 19.50 17.17 
33 43.00 33.63 28.73 22.20 19.87 17.54 
34 43.77 34.17 29.16 22.58 20.25 17.92 
35 44.54 34.69 29.58 22.96 20.62 18.29 
36 45.29 35.21 30.00 23.33 21.00 18.67 
37 46.04 35.71 30.41 23.71 21.37 19.04 
38 46.77 36.22 30.82 24.08 21.75 19.42 
39 47.50 36.71 31.22 24.46 22.12 19.79 
40 48.21 37.20 31.62 24.83 22.50 20.17 



 

 

7 

7 Conclusions and Future Research 

Warehouses are an important part of almost every supply chain. As elaborated in Chapter 

1, warehouses have multiple functions; they are used to maintain a source of supply, to 

buffer against demand uncertainties, to achieve transportation/production economies, etc. 

New trends in distribution, logistics, and manufacturing have brought several new 

functions to warehouses. A warehouse nowadays can be used as a cross-dock facility, a 

distribution or a return center, or light manufacturing (final assembly, product 

customization …).  Among all the warehouse functions, order picking is the most critical 

one. Any inefficiency in order picking can lead to unsatisfactory service and high 

operational cost for its warehouse, and consequently for the whole supply chain. In order 

to operate efficiently, the order process needs to be robustly designed and optimally 

controlled. This thesis aimed at providing models to support the design and control of 

efficient OP processes. In detail, the following models are investigated.  

7.1   Travel distance estimation for manual-pick class-based storage strategy 

warehouses 

Travel time (or travel distance) is often used as an objective function for optimizing OP 

processes, since travel time immediately impacts operational cost and customer service 

(more elaborate reasons can be found in Section 1.2.3). Estimating the travel time is not 

trivial problem. The length of a pick route depends on order batching policy, the number of 

picks (or visit locations), layout of the picking area, the storage assignment method, and 

the routing method used.  
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In the literature, several travel time (or distance) models exist. Most of these models were 

developed for AS/RS (see Section 4.1). Only few models can be applied for random 

storage manual-pick warehouses. No analytical travel time model for class-based storage 

assignment manual-pick warehouses can be found in the literature, despite of their 

popularity in practice. Chapter 2 of this thesis presents an approximate travel-time model 

for this type of warehouse. The model focuses on some typical layout types, which can be 

considered as the most basic (and simple) forms of major warehouses in practice. To route 

order pickers, two common routing heuristics (the return and S-shape method) are used. 

The effective pick-list size (q) varies between 4 and 60, which covers a wide range of pick-

list sizes in OP practices.  

 

Numerical experiments shows that  in the worst case (among the experimented instances), 

the difference between approximation and simulation result is about 8% for the return and 

less than 5% for the S-shape routing method. The error is small for small warehouses and 

appears to be larger for larger warehouses (i.e. large number of aisles, or equivalently 

smaller number of picks per aisle). Regarding the pick-list size, the gap between 

approximation and simulation result becomes smaller when the pick-list size grows; it is 

very tight for large pick-list sizes.  

 

The presented travel time model can also be applied to more complicated (larger) 

warehouses. A feasible way of doing that is to partition the layout into sub-layouts so that 

the model is applicable. Travel time between sub-layouts can be estimated by taking into 

account the travel time and frequency between the sub-layouts. 

7.2 Storage zone and layout optimization for manual-pick class-based storage 

strategy warehouses 

In Chapter 3, the travel time model developed in Chapter 2 is used as the objective 

function for two problems: storage zone and layout optimization for manual-pick class-

based storage strategy warehouses. In the first problem, it is assumed that the layout (i.e. 

number of aisles) is given. The decision variables are the storage zone divisions of product 

classes in each aisle.  The second problem considers situations where only the storage area 

(or floor) is fixed. So, besides the storage zone divisions, the number of aisles is also a 

decision variable. These problems are crucial in warehouse design and control; they often 

occur when a warehouse is (re)designed, or the assortment or the order pattern changes. To 

solve the problems, we first consider a precise approach. However, the exact algorithm is 

time consuming; it cannot handle large warehouse instances (regarding the number of 

aisles, classes and space slots per aisle). Hence, a heuristic approach is proposed to solve 

the problems. This heuristic exchanges proximity classes between aisles, from far-to-depot 
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aisles to close-to-depot aisles. The approach is rather simple, but fast and proves to be of 

very good quality. It can therefore be applied to many practical warehouse design or 

improvement situations.  

 

Results from numerical results support the following warehouse design guidelines with 

respect to minimizing the average route length.  

1. For a given layout, the across-aisle zoning layout type and the return routing is the 

best combination for the cases of small pick-list sizes, skewed demand and long-aisle 

warehouses, while the combination of the identical-aisle zoning layout and the S-

shape routing method is the best for other cases.  

2. For a given layout, when the S-shape routing method is used, the across-aisle zoning 

is the best zoning type.  

3. For a given layout, when the return routing method is used: (a) for large pick-list sizes, 

the identical-aisle zoning type is the best; (b) for small pick-list sizes, the across-aisle 

zoning type is the best for long-aisle warehouses with skewed storage assignments. 

4. For a given warehouse floor area, the long-aisle layout type is better for large pick-list 

sizes and short-aisle layout type is better for small pick-list sizes. 

7.3  Travel times and rack design for a compact AS/RS 

Chapter 4 discusses a compact system originating from the Distrivaart project that consists 

of rotating conveyors and an S/R machine. Because of the special structure and 

engineering design, the cycle time of the S/R machine depends on three rack dimensions 

(rack length, height and depth – or conveyor’s perimeter). Every pallet position can be 

accessed individually. For a given storage capacity and an S/R operating mode (i.e. dual or 

single), Chapter 4 determines the rack dimensions (or, equivalently, the ratio between the 

dimensions) that minimize the cycle time of the S/R machine.  

 

By extending Bozer and White’s model for 2-dimensional AS/RSs, it is possible to 

estimate the single-command cycle times. Based on this travel model, we found 

1. For a given 3-dimensional compact AS/RS (as above-mentioned) with a total storage 

capacity V, the optimal rack dimensions are v ht t= 30.89 V= , ct =  31.24 V , and the 

optimal travel time is 31.38 V . Equivalently, the optimal ratio between three 

dimensions is : : 0.72 : 0.72 :1v h ct t t ≡ . 
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2. The cubic-in-time system (all dimensions are equal in time) is not the optimal 

configuration (as intuitively we may think). However, it is a good alternative 

configuration for the optimal one as the resulting expected travel time is only about 

3% off the optimum.  

The method assumes that the rack is continuous. This simplification of reality is only 

justified if the number of storage positions is sufficiently large.  

7.4 Online order-batching problem 

Order batching is the method of grouping a set of orders into a number of sub-sets, each of 

which can then be retrieved by a single picking tour, such that a specific objective is 

achieved. Several batching methods are mentioned in Section 1.3.4. Traditionally, 

information about orders and service time (including traveling, set-up, picking,…) are 

considered as deterministic variables. In reality they are stochastic variables. When orders 

arrive online and need to be picked and shipped in a tight time window, a trade-off has to 

be made between timeliness and picking efficiency. It would be inefficient, and also the 

capacity may be insufficient, if we start to pick too early or for each order. The decision is, 

therefore, how many orders should be picked together in one pick route.  

 

Chapter 5 focuses on finding a simple but efficient approach for determining the optimal 

picking batch size for order pickers in a typical manual-pick shelf-rack type warehouse. In 

order to do so, the OP system is modeled as a queueing model with batch service. The first 

and second moments of the service time are estimated based on the batch size, the routing 

method and storage assignment used. The waiting time of a random order is estimated by 

using these moments and the corresponding batch service queueing model. The optimal 

picking batch size is then determined in a straightforward manner. Results from the 

simulation experiments show that our approach provides a high accuracy level. 

Furthermore, the method is simple; it can be easily applied in practice.  

 

The average waiting time appears to be a convex function of the batch size. As a result, a 

unique optimum picking batch size exists. As the optimum batch size is close to its lower 

bound (obtained from the traffic density condition), we propose a simple greedy procedure, 

which can be used to search for the optimum in a short computation time.  

 

In the numerical experiments, only random storage assignment and the S-shape routing 

method are considered. However, the proposed order batching method can be applied for 

other warehouse layouts, routing and storage assignment methods, as long as the first and 

second moment of the service time are tractable. For single or 2-block warehouses, it 
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would not be difficult to estimate the first moment of the service time when other storage 

assignments are used (it is given in Chapter 2, for class-based storage). Nevertheless, 

obtaining the second moment may be cumbersome.  

7.5 Determining number of work zones in a pick-and-pack OP system 

Using zone picking reduces the overall picking time because of the smaller traversed area, 

of the familiarity of the order picker with the item locations in the zone, and less traffic 

congestion. One of the crucial decisions associated with zoning is to determine the optimal 

number of work zones (when the picking area is given, it is equivalent to determining the 

zone size). A larger number of zones may help to reduce the picking time, but may 

increase the time needed to consolidate the orders. Chapter 6 of this thesis addresses the 

problem of choosing the appropriate number of work zones at a synchronized pick-and-

pack OP system. At the first phase, the problem of assigning items to pick routes in each 

zone, such that the throughput time is minimized, is formulated as a mixed integer-linear 

program. At the second phase, this problem is used as a tool for evaluating different zone-

size options to find the optimal one. This approach is illustrated by data taken from an OP 

system used in a distribution center of a large online retailer in the Netherlands. The 

numerical experiments show that it is possible to determine the optimal number of zones 

for a given order pattern (number of orders and order size) and a range of pick-list sizes. A 

small-zone scheme (i.e., few aisles per work zone) may outperform a large-zone scheme 

when the order size is small (i.e. few lines). However, a large-zone scheme may 

outperform small-zone schemes for large order sizes.  

 

Although in the experiments only random storage assignment and the S-shape routing 

method are used, the method can be applied for other operational policies (like the return 

routing method, class-based or COI-based storage assignment), as long as the tour length is 

tractable.  

7.6 Future research 

This thesis has revealed several future research directions. They can be divided into two 

streams. The first one focuses on extending the developed models to cope with more 

complicated OP situations. The second pinpoints several issues that have not been 

(thoroughly) treated in the thesis.  

 

The presented models reflect several typical OP situations. When applying the models to 

different OP situations, some adjustments may be needed.  
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• The maximum number of (storage) blocks considered in Chapters 2 and 3 is 2. In 

practice we may encounter warehouses which contain more than 2 blocks. The 

presented models therefore need to be adapted in order to cope with larger warehouse 

instances.  

• In Chapter 4, it is possible to determine the optimal rack dimensions for single-

command cycles. Further effort is required in order to find the optimal rack 

dimensions for dual-command cycles.  

• The queueing model in Chapter 5 can be extended in several directions. First, it would 

be more realistic if we consider Compound Poisson arrivals (instead of single 

Poisson), as in practice each order may contain several items. Second, the order 

batching problem is considered for only one isolated (work) zone. How can the model 

be adapted for the situation when there are several zones?  What are the interactions 

between the zones? For example, when the batch size in one zone changes, what are 

its implications to other zones’ performance and consequently to the system 

throughput? A network of queues can be a good approximate model for the system. 

And finally, aisle congestion may occur when there are multiple order pickers working 

in the same zone at the same time. Incorporating this effect into the model would be a 

challenging work.  

• Although we found optimal solutions for the item-to-route assignment problem for all 

investigated instances in Chapter 6, it does not mean that we can find the optimal 

solution when larger instances are encountered. Further effort is need to testify the 

complexity of the problem.   

Several issues have not been treated thorough in this thesis as well as in the literature.  

• First is the interaction between picking and replenishment. Items need to be stored in 

storage locations (replenishment) before they are retrieved to fill customer orders 

(picking). Certainly, there are links between these two processes. For example, by 

using a dedicated storage assignment, the average tour length can be reduced, 

compared to when using the random storage assignment. However, the total travel 

time for replenishing may be longer (note that often the I/O point and reserve area are 

located on two opposite sides of the picking area). Most of the research in the 

literature focuses on the picking process only; the replenishment is largely ignored. 

Further research is required to identify the interactions between these two processes. 

• Second is the problem of determining the optimal work force level for a picking area. 

The work force level (i.e. number of order pickers) certainly influences the system 

throughput time, especially for manual-pick OP systems. Although the total number of 

hired order pickers is often considered at the tactical level, the number of order picker 
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per a certain work area in a warehouse can be easily adjusted on short term basis. For 

example, we can appoint some order pickers from an exceed-pick-capacity area to an 

area when a high pick rate is desired. As far as we know, determining optimal number 

of order pickers for a pick area has not been investigated in the literature. This is an 

interesting future research.  

• Third issue concerns the impact of storage assignment on traffic congestion in the 

aisles. For example, with class-based storage, one may expect that the aisle congestion 

will happen more often in a fast moving product area than in lower moving product 

areas. Integrating the aisle congestion effect into travel distance models (like ones 

presented in Chapter 2) will lead to a better estimation of the real tour length.  

• Finally, the order picking, order sorting (and packaging) and truck dispatching 

problem are strongly related; 1 minute saving in order picking or order sorting time 

does not guarantee that customers will receive products 1 minute sooner. Integrating 

these problems into a unique model makes it possible to see the effect of order picking 

time on customer lead time. Certainly, it is a challenge research problem. 

 





 

 

List of Abbreviations and Common Terminologies and 
Notations 

 

COI Cube-per-order index 

EDC  Expected dual-command cycle time 

ESC  Expected single-command cycle time 

I/O Input/output (point) (also: depot) 

NBUE  New better than used in expectation 

NSIT Non SIT (rack) 

OB  Order batching 

OP Order picking 

P/D Pick up/ deposit (point) 

S/R Storage/retrieval (machine or crane) 

S/RS Storage and retrieval systems 

SIT Square-in-time (rack) 

SKU Stock keeping unit 

 

Customer order  A list of SKUs (each with a certain quantity) ordered by a customer  

Cycle time  Time needed for the S/R machine to complete a travel cycle (leaving 

and returning to the I/O point) 

Order-line  SKU appeared on customer orders 

Pick list  A list of items (with quantity) to be picked in one pick route (or 

tour) 

Pick tour (or route)  A travel tour by which the order picker has to make in order to pick 

up all requested items on a pick list 

Pick-list size  Number of items in a pick tour 

Tour length  The length (distance or time) of a pick tour 
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Main notations used in Chapters 2&3 

a  number of pick aisles (also denoted as ‘storage’ aisles) 

ijl  partial length of pick aisle j  used for storing of product class i  

q   number of picks (or order lines) in a picking tour (the pick-list size) 

jq  expected number of picks to be picked from aisle j , given that the pick-list size is 

q 
c  number of (product) classes 

L   length of a pick aisle 

aw   width of the cross aisle 

bw  centre-to-centre distance between two consecutive (pick) aisles 

cw  width of the storage rack 

dw  width of the rear aisle, 0dw =  for closed-end aisle layouts 

if   order frequency of  product class i , ∑∑
∈∈

=
ll j

ij

j

iji fff

i

, where il  is the set of 

items belong to product class i  and llU =
=

c

i
i

1

 

is  percentage of the total storage space used for class i  

ijP  the probability that the farthest pick in aisle j  is in zone i  

ijp   the probability that an item of class i  located in aisle j  is ordered (we assume 

this to be proportional to the pick frequency of class i ) 

( , )jD q c the expected travel distance (in a single direction starting from the cross aisle) 

within aisle j  to pick up q  items, given that there c classes 

CA

zTD   travel distance within the cross aisle (called ‘cross-aisle’ travel distance), z  

denotes the name of the routing method used. 
WA

zTD  travel distance within pick aisles (called ‘within-aisle’ travel distance). 

zTD  (expected) average tour length. 

ζ  accumulative error in estimating the average tour’s length 

aζ  accumulative error in estimating the within-aisle travel distance 

bξ  error in estimating the cross aisle travel distance 

ε  error in estimating the travel distance in an aisle (for the return routing method) 
η  expected number of visited aisles 
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jk  expected travel distance from the central line of the cross-aisle to the farthest pick 

location in aisle j, given that aisle j is visited: 2 ( , )j a j jk w D q c= +  

jm   probability that the aisle j  is visited 

jn  probability that aisle j and/or aisle (a-j+1) is visited 

jn′  probability that a pick-line j is visited  

ρ  shape ratio: 2
baw

L
ρ =  

s  number of space slots per (pick-) aisle 

Main notations used in Chapter 4  

ESC expected single-command travel time of the S/R machine  

EDC expected dual-command travel time of the S/R machine  

( )E w  expected time needed to go from the I/O point to the pick position and to wait for 

the pick to be available at the pick position 

( )E u  expected time needed for the S/R machine to return to the I/O point 

( )E v  expected time to travel from a storage location to a pick location (in dual- 

 command cycles) 

Main notations used in Chapter 5 

ip  probability that a random item is picked from aisle ( 1.. )i i a= ; ip =  1/ a  

( 1.. )i a=  for the random storage assignment 

sτ  setup time per batch (constant) 

pτ  picking time per item (constant) 

WA

BTR  travel time caused by traversing the pick aisles, B  can be + , −  or ≈  (indicating 

upper, lower bound or approximation values respectively) 
CA

BTR  travel time caused by traversing the cross aisle 

AT  adjustment time 

( )E S  first moment of the service time (including setup, picking and traveling time) 

( )2E S  second moment of the service time 

( )Sσ  standard deviation of the service time 

λ  order arrival rate 

k  number of orders to be picked in a tour 

q  number of items in a batch of k  orders 
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Main notations used in Chapter 6 

q   the maximum number of items that an order picker can pick in a pick route (or 

tour)  

a  number of aisles per zone 

L   length (in travel time unit) of a storage aisle 

bw  centre-to-centre distance (in travel time unit) between two consecutive storage 

aisles 

st  set-up time of a route 

µ   transportation (conveyor) time  

pir  picking rate (number of units per time unit that an order picker can pick). It is 

assume to be identical for all order pickers 

par  overall packing rate (number of orders per time unit). 

kN  number of order pickers in zone k 

, , ,t i o k   indices of period, item, orders and zones 

K  set of zones 

O  set of all orders 

oI  set of all items in order o  

kI  set of all items in zone k 

I  set of all items, o k
o O k K

I I I
∈ ∈

= =U U  

τ  the maximum number of required pick shifts in the zones 

( ),q aℜ  time needed to finish a pick route of q items (or picks) in a zone containing a 

aisles and return to the left-most aisle of the assigned zone 

1 if item  is picked in pick shift ( 1.. )

0 otherwiseti

i t t
x

τ=⎧
= ⎨

⎩
  

1 if order  has been completely picked in or before period ( 1.. )

0 otherwiseto

o t t
y

τ=⎧
= ⎨

⎩
  

toTL  total number of items of order o completely picked at the end of period t 

tNCO   number of newly completed picked orders in period  t ( 1.. )t τ=  

tUCO   number of complete (but unpacked) orders transferred from period t ( 1.. )t τ= to 

period  t+1.  

tPAC     number of complete order packed in period t ( 1.. )t τ=  

ψ  throughput time (time to pick and pack a batch of orders)  
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Tóm Tắt Nội Dung Của Đề Tài (Summary in Vietnamese) 

Quản lý hậu cần hay còn gọi là quản lý tiếp nhận vận chuyển (logistics management) là 

một khái niệm bao hàm việc lập kế hoạch, thực thi, điều hành một cách hữu hiệu nhất công 

việc vận tải, lưu kho, quản lý thông tin và các dich vụ liên quan đến hàng hóa, từ điểm 

nguồn đến điểm tiêu thụ cuối. Đây là một lĩnh vực hết sức quan trọng vì nó ảnh hưởng đến 

mọi mặt của đời sống con người, một cách trực tiếp hay gián tiếp. Một khâu đặc biệt quan 

trọng của quản lý hậu cần đó là quản lý kho bãi (warehouse management). Có rất nhiều lý 

do cho việc cần thiết phải sử dụng kho bãi. Một vài nguyên nhân thường gặp là để duy trì 

một nguồn hàng liên tục tránh trường hợp thiếu hàng khi cần đến; để giảm chi phí vận tải; 
để làm địa điểm trung chuyển hàng gom hàng từ nhiều khách hàng hoặc tách hàng cho 

nhiều khách hàng khác nhau … Trong nghiên cứu này, chúng tôi đề cập đến một khâu cốt 
lõi nhất của hầu hết các kho bãi đó là chu trình lấy hàng từ nơi lưu giữ ra theo yêu cầu của 

khách hàng (order picking). Nhiều nghiên cứu đã chỉ ra rằng với một kho bãi thông thường 

thì chu trình này chiếm hơn 55% tổng chi phí khai thác. Muốn nâng cao hiệu quả và giảm 

chi phí khai thác, chu trình cần phải được thiết kế và điều hành một cách tối ưu nhất. Mục 

đích của nghiên cứu này là đưa ra một số mô hình tối ưu hóa nhằm hỗ trợ cho quá trinh 

thiết kế và điều hành chu trinh này. 

 

Quãng đường đi trong kho (để lấy hàng) có một ý nghĩa quan trọng, nó có thể được coi là 

tỉ lệ thuận với thời gian và với chi phí khai thác. Do đó nhà kho cần được thiết kế, bố trí, 
điều hành sao cho quãng đường đi để lấy hàng là ngắn nhất. Mô hình thứ nhất mà chúng 

tôi đề xuất ở nghiên cứu này là mô hình xác định quãng đường đi trong nhà kho 

(warehouse travel distance estimation) cho hai loại nhà kho thông dụng nhất, nhà kho sử 

dụng nhân công (chương 2) và nhà kho bốc lấy hàng tự động (chương 4). Ở chương 3 và 4, 

sử dụng mô hình này chúng tôi đã có thể đề ra các mô hình tối ưu hỗ trợ cho việc lựa chọn 

kích thước, số lượng dẫy đặt hàng (storage racks) và vị trí của từng loại hàng cụ thể trên 

mỗi dẫy (layout and storage optimization). Tiếp theo, ở chương 5, chúng tôi đã thiết lập 

mô hình xác định tối ưu số lượng hàng mỗi nhân công cần lấy mỗi lần để quãng đường 

trung bình là ngắn nhất (order batching for minimizing the average travel distance). Tập 
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trung vào tình huống cụ thể của các công ty bán lẻ qua mạng (online retail companies), 

chúng tôi đã áp dụng lý thuyết hàng đợi (queueing theory) để giải quyết vần đề này một 
cách triệt để. Ở những nhà kho lớn, khu vực lấy hàng thường được chia ra thành các khu 

vực nhỏ hơn để dễ quản lý, giảm quãng đường đi, và cũng để giảm thời gian tìm kiếm 

hàng vì không quen thuộc với vị trí đặt hàng… Ở chương 6, chúng tôi đề ra một mô hình 

trợ giúp cho việc lựa chọn số lượng vùng lấy hàng (number of picking zones). Mô hình 

được áp dụng với số liệu thực tế lấy từ nhà kho của công ty Wehkamp, Hà Lan. Kết quả từ 

các mô hình đề xuất ở nghiên cứu này đã được so sách với kết quả lấy được từ các mô hình 

mô phỏng tương ứng (simulation). Các so sánh đã chỉ ra rằng các mô hình chúng tôi để 
xuất đều đảm bảo một độ chính xác cao. Hơn thế nữa, chúng không yêu cầu thời gian tính 

toán lớn, có thể áp dụng vào các thực tế một cách khá dễ dàng.  
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Design and Control of Efficient Order Picking
Processes

Within a logistics chain, products need to be physically moved from

one location to another, from manufacturers to end users. During this

process, products are buffered or stored at certain places (ware-

houses) for a certain period of time. Order picking – the process of

retrieving products from storage (or buffer area) in response to a

specific customer request – is the most critical warehouse process. It is

a labour intensive operation in manual systems and a capital inten-

sive operation in automated systems. Order picking underperfor-

mance may lead to unsatisfactory service and high operational cost

for the warehouse, and consequently for the whole chain. In order to

operate efficiently, the order picking process needs to be designed

and controlled optimally. 

This thesis aims at providing analytical models to support the design

and control of efficient order picking processes. Various methods for

estimating picking tour length, determining the optimal storage zone

boundaries, layout, picking batch size and number of pick zones are

presented. The methods are tested by simulation experiments and

illustrated by numerical examples.
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