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Abstract. This paper presents an integrated methodology for optimal design and control of nonlinear flexible mechanical systems,

including minimum time problems. This formulation is implemented in an optimum design code and it is applied to the nonlinear

behavior dynamic response. Damping and stiffness characteristics plus control driven forces are considered as decision variables.

A conceptual separation between time variant and time invariant design parameters is presented, this way including the design

space into the control space and considering the design variables as control variables not depending on time. By using time

integrals through all the derivations, design and control problems are unified. In the optimization process we can use both types

of variables simultaneously or by interdependent levels. For treating minimum time problems, a unit time interval is mapped onto

the original time interval, then treating equally time variant and time invariant problems. The dynamic response and its sensitivity

are discretized via space-time finite elements, and may be integrated either by at-once integration or step-by-step. Adjoint system

approach is used to calculate the sensitivities.
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1. Introduction

Structures and flexible mechanical systems, by one hand, as well as optimal design and optimal control, by another

hand, have been traditionally treated with separated formulations. As the theory and methods of nonlinear structural

analysis have progressed, there is no distinction between flexible mechanical systems and structures. Also, in the

last 15 years there has been the integration of optimal design and optimal control problems [1–4].

Numerical methods for the solution of optimum control problems are divided into two major approaches: methods

based on the Pontryagin’s maximum principle and direct methods. The former ones need considerable preparatory

work to derive the adjoint differential equations and are very sensitive to the initial estimate of the control variables

and to the integration of adjoint differential equations. Direct methods transform an infinite dimensional optimal

control problem into a finite dimension optimization problem [5,6].

This paper presents an integrated methodology for optimal design and control of nonlinear flexible mechanical

systems. In order to implement it, one uses: (i) a nonlinear structural finite element technique to model large

displacements, referring all the quantities to an inertial frame and using stress and strain measures that are invariant

with the rigid body motion [7]; (ii) a conceptual separation between time variant and time invariant design parameters,

this way including the design space into the control space and considering the design variables as control variables

not depending on time. By using time integrals through all the derivations, the design and control problems are
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unified. In the optimization process we can use both types of variables simultaneously or by interdependent levels.

Both types are designated here as design variables.

Minimum time problems are considered. Time variation is treated by mapping a fixed time domain onto the

original time domain, extending the idea of fixed reference volume [8] to the time domain. This fashion, the time

domain turns free of design variables, then the jacobian of the transformation being dependent on them. The total

time interval is therefore considered a new state variable.

A bound formulation is applied to handle the multicriteria problems. To model the systems, a space-time finite

element discretization is utilized and the solution of the dynamic equations is obtained either by at-once method or

step-by-step.

The aim of the Design Sensitivity Analysis (DSA) is the calculation of the performance measure gradients with

respect to the design variables. It represents an important tool for design improvement and it is a necessary stage

within the optimization process. A general overview of the DSA problems and methods of nonlinear structural

mechanics is given elsewhere [9]. Basically, the methods may be classified as direct differential methods and adjoint

system methods. Both are applied in this work. For minimum time problems there is no way of checking the

sensitivities by finite differences comparison. In this case one needs to compare them with closed form solutions.

The response analysis and corresponding DSA are implemented in the interactive optimal design code OPTIMISE

in order to use optimality criteria or nonlinear programming optimization runs.

2. Response analysis

The virtual work dynamic equilibrium equation of the system at the time t is given as

δW =

∫

(ρtü · δtu +t S · δtε −t f · δtu) 0dV −

∫

tT · δtu 0dΓ (1)

where all the quantities are referred to the undeformed configuration, δ represents variation of the state fields, ‘·’
refers to the standard tensor product, upper dot ‘.’ refers to the material time derivative, ρ is the mass density at time

t = 0, tu is the displacement, tS is the second-Piola stress measure, tε is the Green strain tensor, tf is the body force

per unit volume, tT is the surface traction, 0V is the undeformed volume of the body, and 0Γ is the surface of the

undeformed body.

A space-time finite element model is used to discretize the dynamic analysis response. After space discretization

we have the governing matrix equation as

M tÜ +t Ct
SU̇ +t Kt

SU =t P (2)

where M is the mass matrix, tCS ≡t CS(tU̇ ), tKS ≡t KS(tU ) are respectively the damping and stiffness matrices,
tP is the loading vector and tU,t U̇ ,t Ü are respectively the displacement, velocity and acceleration vectors, all the

quantities defined at time t.
For temporal modeling, finite elements of dimension ∆t were considered, selecting hermitean cubic elements to

model the displacements and quadratic lagrangean elements to model the loading, extending the algorithm given

in [7] to the case of nonlinear systems. By taking the time derivative of the Eq. (2) by one hand, and by another hand

its integration once and then twice with average values of stiffness and damping in ∆t given as

K̄ ≡t+∆t/2 KS(tU +t U̇∆t/2), C̄ ≡t+∆t/2 CS(tU̇ +t Ü∆t/2) (3)

one obtains four equations that combine to give the dynamic finite time-element equation as

De
S ze = P e (4)

where

De
S =





tKS
tCS M 0nxn 0nxn 0nxn

tDS11

tDS12
0nxn

t+∆tDS11

t+∆tDS12
0nxn

tDS21

tDS22
0nxn

t+∆tDS21

t+∆tDS22
0nxn



 , P e =







tP
P1

P2







(5)

and
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ze = (tz,t+∆t z), tz = (tU,t U̇ ,t Ü) (6)

In Eq. (5) n stands for number of space degrees-of-freedom and tDSjk
are functions of K̄ , C̄ , M . The Eq. (4) may

be solved step-by-step, i.e., element-by-element in time, or assembled to be solved at-once. In this case, we have to

assemble for a total time interval T discretized in N time nodes, resulting in the dynamic equation

DS z = P (7)

where 2n time boundary conditions are imposed by transferring the corresponding columns of the assembled matrix

DS to the right-hand side of Eq. (7) after multiplying by the vector U c of those conditions, resulting the equation

K̂SÛ = P̂ , P̂ = P − DcUc (8)

The Eq. (8) is a nonlinear equation where K̂S is a nonsymmetrical matrix dependent on the response. Therefore, the

Eq. (8) has to be solved iteratively.

3. Design sensitivity analysis

Consider now a general performance measure defined in the time interval [0, T ] as

Ψ =

∫

G(tz,
t
b, t) dt (9)

where tb is the vector of design and control variables and the other quantities were defined in Eqs (1) and (6). The

external forces tP generally belong to the design vector. For minimum time problems consider also a terminal

condition

T Φ(T z,T b, T ) = 0 (10)

The design sensitivity analysis problem is to derive the total design variation of the measure in Eq. (9) with respect

to the design tb, for the system represented by the equation of motion, Eq. (8), and subject to the terminal condition

of the Eq. (10).

3.1. The adjoint method of design sensitivity analysis for minimum time problems

The total design variation for the performance measure of Eq. (9) is

δ̄Ψ = ¯̄δΨ + δ̃Ψ + Ψ,t δ̄T (11)

where ¯̄δΨ and δ̃Ψ represent respectively the explicit and implicit (state dependent) design variations. Although the

total time T is also considered as a state variable, it is here treated separately of the other state variables.

In order to formulate design sensitivity analysis one is going to use the adjoint system method. For that, replace

the arbitrary variation of state fields by adjoint fields into the virtual work equation as

W a = (K̂S Û − P̂ ) · Ûa = 0 (12)

and define an extended ‘action’ function

A = Ψ − W a (13)

The basic idea of introducing an adjoint system is to replace the implicit design variations of the state fields by

explicit design variations and adjoint fields, then determining these adjoint fields by vanishing the implicit design

variation of the ‘action’ function A [4] as

δ̃A = 0 (14)

then the total design variation of Ψ can be written as

δ̄Ψ = ¯̄δA + Ψ,t δ̄T (15)
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Fig. 1. Impact absorber.

The total time variation may be now determined by imposing the terminal condition of the Eq. (10) after any design

variation, i.e.

δ̄T Φ = ¯̄δ
T
Φ + δ̃T Φ +T Φ,t δ̄T = 0 (16)

or

δ̄T = −(¯̄δ
T
Φ + δ̃T Φ)

/

T Φ,t (17)

to substitute into the Eq. (15) and get the total design variation of the measure of interest.

3.2. Design sensitivity analysis modeling

In order to solve the design sensitivity analysis problem, the sensitivities are firstly performed at the element level

and then the sensitivity equations are assembled. The explicit design variation of the vector of element forces of

Eq. (4) is

¯̄δRe = ¯̄δP e − ¯̄δF e, F e = De
S ze (18)

and the implicit design variation of the internal forces gives

δ̃F e = δ̃De
S ze + De

S δ̃ze = De δ̃ze (19)

where

De =





tK tC M 0nxn 0nxn 0nxn
tD11

tD12
tD13

t+∆tD11
t+∆tD12 0nxn

tD21
tD22

tD23
t+∆tD21

t+∆tD22 0nxn



 (20)

with

tK =t KS +t KS,U
tU , tC = tCS +t CS ,U̇

tU̇ (21)

Sensitivities of Eq. (18) and the element dynamic matrix of Eq. (20) are assembled and again imposed the time

boundary conditions resulting respectively ¯̄δR̂ and K̂.

Now, the application of the Eq. (14) to the Eq. (13) gives the adjoint system equilibrium

K̂T Ûa = (Ψ,
Û

)T (22)

Thus, the total design variation of Eq. (15) is

δ̄Ψ = ¯̄δΨ + Ûa · ¯̄δR̂ (23)
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Fig. 2. Starting design displacement [m].
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Fig. 3. Starting design velocity [m/s].

4. Optimum design problem

For minimum time problems, the merit measure is the total time interval, expressed as

Ψ0 ≡ T =

∫

dt (24)

Because the final time is an unknown quantity, a difficulty arises for the time discretization. Since the problem
domain varies as the optimization iterates progress, a fixed unit time interval is mapped onto the original time interval
T , and the original time t is transformed to the non-dimensional time τ = t/T such that we have

d/dt = T−1d/dτ , d2
/

dt2 = T−2d2
/

dτ2 (25)

All the performance measures are transformed accordingly, that is
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Fig. 4. Starting design acceleration [m/s2].
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Fig. 5. Optimal multicriterium control force [N].

Ψ0 =

∫

T dτ , Ψ =

∫

Ḡ(τ z̄,
τ
b̄,τ) T dτ, 1Φ(1z̄,1b̄, T ) = 0 (26)

All the analysis and design sensitivity analysis may be ran for a fixed unit time interval with mass, damping, velocities

and accelerations transformed as

m = T−2M, c = T−1C, U ′ = T U̇ , U ′′ = T 2 Ü , ′ ≡ d/dτ (27)

In order to solve the multicriterium problems, a bound formulation is used. A new fictitious design variable β is

introduced which is also a new objective and an upper bound for the original objectives. This way, the optimization

problem is formulated as

min β, s.t. Ψ0k � β, (k = 1, 2, . . . , m0); Ψj � 0, (j = 1, 2, . . . , m); T Φ = 0 (28)
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Fig. 6. Optimal multicriterium design displacement [m].
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Fig. 7. Optimal multicriterium design velocity [m/s].

where Ψ0k are the original objectives (now new constraints) and Ψ j are the original constraints. The formulation of

Eq. (28) may be considered a general formulation for multicriterium as well as for unicriterium problems.

5. Numerical example

5.1. Impact absorber for minimum time and mean square velocity

The impact absorber of the Fig. 1, with ν = µ = 1, is optimized with respect to the spring and damping

coefficients, and to the driven control force [ tP, 0 � t � T ], in order to minimize two merits: the total time T
and the mean square velocity E =

∫

u̇2 dt. The mean displacement constraint |um| � 0.01 m and the terminal



322 J.B. Cardoso et al. / Design and control of nonlinear mechanical systems for minimum time

a

-1,20E+01

-1,00E+01

-8,00E+00

-6,00E+00

-4,00E+00

-2,00E+00

0,00E+00

2,00E+00

4,00E+00

6,00E+00

8,00E+00

1,00E+01

0 0,5 1 1,5 2 2,5

Fig. 8. Optimal multicriterium design acceler. [m/s2].

displacement constraint T u = 0 are imposed. The system impacts with the velocity u̇ = 1 m/s at t = 0. The starting

design in this example is b ≡ [β = 1; K0 = 1 N/m; C0 = 1 Ns/m; tP = 0, (0 � t � T )], where T = 10 s, with

which one obtains E = 0.499 m2/s. The starting responses of displacement, velocity and acceleration are given in

Figs 2, 3 and 4, respectively.

The optimization was performed by levels, firstly with respect to K 0 and C0 and then with respect to the driven

control force tP . The optimum design values were obtained as K0 = 109.96 N/m and C0 = 0.84043 Ns/m and the

optimal control force as represented in Fig. 5. The final optimum values of the objectives were obtained as T =
2.715 s and E = 0.52082 m2/s with a maximum violation equal to 3.75352e-4.

The displacement, velocity and acceleration responses for the optimum design are given in the Figs 6, 7 and 8.

6. Concluding remarks

A design sensitivity analysis and an optimal design formulation have been developed to perform minimum time

problems. By extending the spatial domain to the space-time domain, the design space is included in the control

space. Thus, one can unify in one single formulation the problems of optimum design and optimal control, treating

the design variables as control variables that do not change with time.

Using at-once integration of the equations of motion, and its sensitivities, the adjoint structure method can be used

with all of its advantages and without its main disadvantage in dynamics: the necessity of backwards integration

of the adjoint system. So, the needing of backwards integration with its major drawback, the memorization of the

response history, is not associated with path-dependent problems, as it is frequently assumed, but it is associated

with the fact of using step-by-step integration. It is also possible and easy to apply temporal boundary conditions at

any point in time, not necessarily at the start of the integration, as in the step-by-step integration method.

For minimum time control problems, since the domain varies as the optimization proceeds, a fixed reference

unit time interval is mapped onto the original time interval and total time is considered as a state variable. After

the transformation of all the responses and optimization measures to the new unit time domain, the minimum time

problem may be treated as a fixed time interval problem. This way, fixed time interval problems and varying time

interval problems can be treated in a unified fashion.
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