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Abstract
Design and Cryptanalysis of a Customizable Authenticated Encryption Algorithm

Matthew Joseph Kelly

Supervising Professors: Alan Kaminsky & Marcin Łukowiak

It is common knowledge that encryption is a useful tool for providing confidentiality. Authentica-

tion, however, is often overlooked. Authentication provides data integrity; it helps ensure that any

tampering with or corruption of data is detected. It also provides assurance of message origin. Au-

thenticated encryption (AE) algorithms provide both confidentiality and integrity / authenticity by

processing plaintext and producing both ciphertext and a Message Authentication Code (MAC). It

has been shown too many times throughout history that encryption without authentication is gener-

ally insecure. This has recently culminated in a push for new authenticated encryption algorithms.

There are several authenticated encryption algorithms in existence already. However, these

algorithms are often difficult to use correctly in practice. This is a significant problem because

misusing AE constructions can result in reduced security in many cases. Furthermore, many existing

algorithms have numerous undesirable features. For example, these algorithms often require two

passes of the underlying cryptographic primitive to yield the ciphertext and MAC. This results in a

longer runtime. It is clear that new easy-to-use, single-pass, and highly secure AE constructions are

needed. Additionally, a new AE algorithm is needed that meets stringent requirements for use in

the military and government sectors.

This thesis explores the design and cryptanalysis of a novel, easily customizable AE algorithm

based on the duplex construction. Emphasis is placed on designing a secure pseudorandom permu-

tation (PRP) for use within the construction. A survey of state of the art cryptanalysis methods is

performed and the resistance of our algorithm against such methods is considered. The end result

is an algorithm that is believed to be highly secure and that should remain secure if customizations

are made within the provided guidelines.
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Chapter 1

Introduction

The overarching goal of cryptography is to enable people to communicate privately over an inse-

cure channel in the presence of adversaries. This notion may be abstracted further; for example, the

sending and receiving party may be the same person writing to and reading from a storage medium

over time. Two requirements for achieving this goal are encryption and authentication. Encryp-

tion provides confidentiality while authentication provides data integrity and assurance of message

origin.

Encryption without authentication has been shown to be insecure in practical instances several

times in recent history. For example, Wireless Equivalence Privacy (WEP), an algorithm for “se-

curing” communications over wireless networks, is badly broken due (in part) to a lack of proper

authentication [1]. In fact, it is so badly broken that people with no cryptographic expertise can use

existing tools on standard consumer machines to break into networks that use 104-bit WEP in less

than 60 seconds [2].

Another example of a flaw in prevalent systems due to a lack of proper authentication came in

2002. An attack was found on the CBC mode of encryption employed by protocols such as SSL

and IPSEC. The attack could have been avoided had an authenticated encryption scheme been used

[3].

1.1 Motivation

Many authenticated encryption algorithms are in existence today, but they are often unsatisfactory

in terms of performance, security, or ease of use. Some algorithms require two passes per block of

plaintext to encrypt and authenticate. This is generally undesirable because it often means a much

slower algorithm. Other algorithms have been shown to be insecure or difficult to use properly.

Many algorithms, such as the ones based on generic composition, require two keys. This should be

avoided when possible because key management is a difficult problem.

Furthermore, a new authenticated encryption algorithm is required that meets the stringent re-

quirements of government and military applications. Such algorithms are not typically in the public

domain. The goal of this is partially to reduce or eliminate academic interest in cryptanalyzing the

algorithm and publishing results. This stance is highly controversial. Still, the security of such

algorithms depends entirely on the secrecy of the key and not on the secrecy of the algorithm. The

assumption is still made that the enemy knows the details of the algorithm being used at any time

[4].

For this reason, there is a need for a customizable authenticated encryption algorithm. This

algorithm should remain secure as long as customizations are made within certain guidelines. The
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result is an algorithm which can be made unique on a per-user or per-application basis without the

effort of cryptanalyzing every specific instantiation. We present such an algorithm here. First, it is

important to understand how authenticated encryption has been evolving over the years.

1.2 Overview of Authenticated Encryption

1.2.1 AE Through Generic Composition

The naı̈ve approach to authenticated encryption is generic composition. In this construction, one

simply computes the ciphertext under a given key and computes the MAC under a different key.

These operations can be done in any order or at the same time. There are thus three generic compo-

sition types: Encrypt-and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. The names here are

straightforward and describe exactly the order of operations. In Encrypt-and-MAC, the encryption

and authentication operations are performed in parallel and the ciphertext and MAC are concate-

nated together at the end. MAC-then-Encrypt computes the MAC, appends it to the plaintext, and

then encrypts the result. Encrypt-then-MAC computes the ciphertext first and then computes the

MAC over the ciphertext.

There is much ongoing debate about which generic composition method is best and each method

has pros and cons in terms of security and performance. As a simple example, consider the perfor-

mance of each method at a high level of abstraction. In Encrypt-and-MAC, the encryption (de-

cryption) and authentication can happen in parallel. If using MAC-then-Encrypt, decryption must

be performed before the MAC can be verified. The MAC can be checked before decryption in the

case of Encrypt-then-MAC, thus saving the performance hit of decryption for messages in which

authentication fails [5].

1.2.2 AE Modes of Operation

There are many existing block cipher modes of operation that provide authenticated encryption. The

main difference between a generic composition and a mode of operation for authenticated encryp-

tion is that a generic composition always requires two keys, while a mode of operation generally

requires only one. This is a huge benefit because key management is a difficult task, so it is desirable

to limit the number of keys required for a cryptographic algorithm.

Patent-Encumbered Modes

The first notable modes of operation for AE were created by Jutla, an IBM researcher, in the year

2000. The two modes are called Integrity Aware Cipher Block Chaining (IACBC) and Integrity

Aware Parallelizable Mode (IAPM) [6]. IACBC, as the name suggests, was inspired by the CBC

mode of operation. This mode is highly serial in nature. IAPM was inspired by the Electronic

Codebook (ECB) mode, which is highly parallelizable but insecure when used directly. Jutla’s

modes are historically noteworthy in that they provide authenticated encryption in a single pass

with minimal overhead; however, they come with many disadvantages. For example, they do not

support additional authenticated data (e.g. headers that are only authenticated, not encrypted). An

even bigger problem is that they are highly patent encumbered. On top of all this, they require two

keys and the underlying block cipher decryption mode. As a result of the lack of popularity, there

has not been much cryptanalysis performed on IACBC or IAPM.
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In 2001, Rogaway et al. [7] introduced a new AE mode called Offset Codebook (OCB) mode.

This mode is based on IAPM, but with many added features. OCB requires only a single key

and provides support for additional authenticated data. Furthermore, it is highly parallelizable and

also a single-pass mode. The main disadvantages of OCB are that it also requires the block cipher

decryption mode and that it is also patent encumbered.

Patent-Free Modes

Counter with CBC-MAC (CCM) mode was created by Whiting et al. in 2003 as a response to OCB’s

patented status [8]. CCM mode is patent-free but has many disadvantages. Like all of the patent-free

modes that will be discussed here, it requires two passes under a single key. It does not, however,

require the decryption mode of the underlying block cipher since it is built on Counter mode. CCM

mode does not support block sizes other than 128 bits and does not support stream processing. This

is a significant disadvantage because stream processing is often exactly what a AE construction is

used for (e.g. streaming network traffic). Rogaway and Wagner present a detailed analysis of all of

the disadvantages of CCM mode in [9].

Carter-Wegman + Counter (CWC) mode was introduced by Kohno et al. in 2004 as an attempt

to improve upon the deficiencies of CCM mode [10]. Like CCM mode, it is a single-key mode

that requires two passes. Unlike CCM, the second pass does not consist of any invocations of

the underlying block cipher. It instead uses what is called a Carter-Wegman (CW) universal hash

function. This CW hash function operates over a prime field and thus requires integer multipliers

which consume a large amount of area when implemented in hardware.

McGrew and Viega created Galois/Counter Mode (GCM) in 2004 in an effort to improve upon

the efficiency of CWC mode [11]. Instead of operating in a prime field, GCM performs multipli-

cation in a binary Galois field. As a result, it consumes much less area in hardware. Like all other

patent-free modes described here, it is single-key and two-pass. It should be noted that some people

may argue that GCM is single-pass because only the first pass calls the underlying block cipher.

GCM has seen widespread adoption by the cryptographic community. It is arguably the most used

mode of operation for AE in existence today. Indeed, GCM is a main reason for the advent of Intel’s

carry-less multiplication instruction (PCLMULQDQ) in their 2010 line of processors [12].

EAX mode was introduced in 2004 by Bellare et al. as another alternative to CCM mode [13].

Like CCM mode, it is not parallelizable. Like all other modes listed here, it is single-key and two-

pass. EAX mode is derived from a generic composition called EAX2 by the authors. EAX2 mode

leaves the Pseudorandom Function (PRF) used for MAC computation and the underlying block

cipher mode used for encryption unspecified. EAX2 uses two keys. EAX is a specific instantiation

of EAX2 that uses only a single key. Like GCM, EAX mode has also seen widespread adoption.

1.2.3 Other Existing AE Constructions

Stream Cipher Based

There are two notable stream ciphers that provide authenticated encryption: Helix [14] and Phelix

[15], both from Whiting et al. Phelix is the successor of Helix and was submitted to the recent

eSTREAM competition which was a competition aimed at yielding better stream ciphers. Phelix,

though very fast, is not currently a viable AE candidate because of its vulnerability to differential-

linear attacks as exposed by Wu and Preneel [16]. The security flaw relates to lack of resistance to



4

misuse of the stream cipher. Still, new stream cipher based AE constructions are probable in the

future.

Duplex Constructions

The duplex construction is based on a sponge construction and has promising applications to au-

thenticated encryption. This construction has many extremely desirable features. It is single-key,

single-pass, and supports additional authenticated data and intermediate MACs. For these reasons,

the duplex construction forms a foundation for this thesis; see Chapter 3 for an in-depth treatment.

At the time of writing there is a new AE competition going on called CAESAR (Competition

for Authenticated Encryption: Security, Applicability, and Robustness). Of the 57 first-round candi-

dates, there are nine duplex-based submissions that are not withdrawn: Artemia, Ascon, ICEPOLE,

Ketje, Keyak, NORX, PRIMATEs, STRIBOB, and π-Cipher [17]. It is far too early to tell which of

these, if any, will be found to be secure and efficient enough for practical use. Furthermore, none of

these submissions are readily customizable at an algorithmic level. Therefore they are not suitable

for our purposes.

1.3 Our Contributions

The main contribution of this thesis is a novel, customizable authenticated encryption algorithm

based on the duplex construction. This construction is suitable for hardware (e.g. FPGA) imple-

mentation. An itemized list of specific contributions is listed here:

1. Authenticated encryption algorithm specification

(a) Includes customization suggestions and guidelines

2. Software model of the algorithm (C/C++)

(a) Includes various tests and test data generators

(b) Includes GF(216) library for algorithm verification

3. Tool for finding suitable bitwise permutations for algorithm customization (Python)

4. Survey of relevant cryptanalysis techniques and cryptanalysis results

5. Statistical test results

6. Tool for ensuring acceptable distribution of P-values (Python)

The rest of this thesis is organized as follows. In Chapter 2 we discuss some mathematical

concepts that are central to this thesis. In addition, we explain the notation used for the remainder

of this document. Chapter 3 explains in detail the sponge and duplex constructions as well as their

resistance to generic attacks. The duplex construction forms the basis for the algorithm designed in

this thesis. In Chapter 4 we provide a full specification for the AE algorithm as well as providing

guidelines for customizations that can be made without reducing our security margin. Cryptanalysis

of our construction is considered in Chapter 5, where we provide a survey of potentially relevant

attacks. A variety of statistical tests and their results for our algorithm are presented in Chapter 6.

Finally, we conclude in Chapter 7 and provide some ideas for future work.
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Chapter 2

Mathematical Foundation and Notation

There are several mathematical concepts central to this research that we will briefly explain here.

The notation used in the rest of this thesis is also explained here for clarity.

2.1 Algebraic Structures

2.1.1 Groups

An algebraic group is a set of elements G together with a binary operation ∗ (e.g. multiplication or

addition) that satisfies the following properties:

1. Associativity. The operation is associative, i.e. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. Closure. G is closed under ∗; that is, a ∗ b ∈ G for all a, b ∈ G.

3. Identity. There is an element e ∈ G (called the identity) such that a ∗ e = e ∗ a = a for all

a ∈ G.

4. Inverses. For each element a ∈ G there exists an element a−1 ∈ G (called the inverse of a)

such that a ∗ a−1 = a−1 ∗ a = e.

A group may also have the property that a ∗ b = b ∗ a for all a, b ∈ G. In other words, it is

commutative. We call these groups abelian groups. The most common example of a group is

probably Z, the set of integers under addition, where the identity e = 0.

2.1.2 Rings

An algebraic ring is a set of elements R together with two binary operations · (called multiplication,

with a · b denoted ab for brevity) and + (called addition) that satisfies the following properties:

1. R is an abelian group under addition; its identity is called 0.

2. Associativity. Multiplication and addition are both associative.

3. Distributivity. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca; that is, multiplication distributes

over addition.

A ring is called abelian if multiplication also commutes over it. The most common example of a

ring is also Z, but now with multiplication as well as addition.
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2.1.3 Fields

An algebraic field is a set of elements F together with the operations · and + such that:

1. F is an abelian ring.

2. F is an abelian group under multiplication; its identity is called 1.

Groups, rings, and fields (all of which are algebraic structures) may be of finite or infinite

cardinality. The cardinality of an algebraic structure G is called its order and is denoted |G|.
We use an exponential representation as shorthand for applying an operation ∗ to the same

element. For example, a ∗ a ∗ a = a3. For some structure G, the order of an element a ∈ G
is the smallest integer k such that ak = e. For structures of finite order, it is a well-known result

(Lagrange’s theorem) that the order of an element divides the order of the structure [18].

2.1.4 Galois Fields

Finite fields are also commonly referred to as Galois fields (GFs). It is another well-known result

that all Galois fields are of prime power order. A Galois field of order pk is denoted GF(pk) or Fpk ,

where p is prime. p is called the characteristic of the field and it is the smallest positive integer such

that ap = 0. Fields with p = 2 are typically of the most interest to cryptographers, and they are

often called binary Galois fields. k is called the degree of the field.

When the degree of a field is greater than one, its elements can be represented as polynomials

belonging to the set of equivalence classes modulo an irreducible polynomial f(x). The degree of

this polynomial, denoted deg(f(x)), is equal to the degree of the field. We denote a GF of order

pk along with its irreducible polynomial as GF(pk)/ 〈f(x)〉. Elements in the field are represented

using a polynomial basis in the indeterminate x with the form

a = αk−1x
k−1 + αk−2x

k−2 + . . .+ α1x+ α0,

where αi ∈ Zp. For example, in a binary Galois field we have αi ∈ Z2. Since operations in the GF

are done modulo f(x), any element a ∈ GF(pk) must satisfy deg(a) < k.

For a binary Galois field we often represent elements in binary or hex format, as this is how

they will be implemented in practice. For example, consider the element x15 + x3 + x2 + 1 in

GF(216). This element can be represented in hex as 0x800d, where the most-significant bit (MSB)

corresponds to x15.

Addition in finite fields is done by performing element-wise addition over Zp. In a binary

Galois field, this is equivalent to the bitwise XOR operation. Multiplication is performed by doing

polynomial multiplication as usual and then reducing modulo f(x) if needed. There are methods of

optimizing this operation in both software and hardware.

Interpreting binary strings as elements of a binary Galois field is only useful for certain opera-

tions. Other times, we interpret portions of our state as arbitrary bitstrings for which certain other

operations are defined.

2.2 Bitstrings

Bitstrings are strings of elements in Z2; in other words, they are binary strings. We say s ∈ Z
n
2

if s is a bitstring of length n. Z
∗
2 indicates bitstrings of arbitrary but finite length and Z

∞
2 denotes
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bitstrings of infinite length.

2.2.1 Operations

There are several relevant operations we define for bitstrings:

• ⌊s⌋ℓ indicates the truncation of a bitstring s to ℓ bits

• s||t indicates the concatenation of bitstrings s and t, with the resulting length being |s|+ |t|

• s ≪ r indicates the logical left rotation of bitstring s by r bits

• s ≫ r indicates the logical right rotation of bitstring s by r bits

• s ⊕ t indicates the exclusive-or (XOR, or bitwise addition modulo 2) of bitstrings s and t,
where |s| = |t| is assumed

• HW(s) indicates the Hamming weight of bitstring s

• HD(s, t) indicates the Hamming distance between bitstrings s and t, where |s| = |t| is

assumed

The Hamming weight of a string is defined as the number of nonzero elements it contains. The

Hamming distance between two strings is the number of elements that differ between them. Note

that for elements of Zn
2 ,

HD(s, t) = HW(s⊕ t).

For this work, a bitstring of length 16 is called a word. The state of our cryptosystem, as we will

see, is an element of Z512
2 that may be considered at times as the concatenation of 32 contiguous

words. Where it matters, the MSB will be specified for a given operation.

2.3 Shannon’s Information Theory

It is widely recognized that Claude Shannon laid the foundation for modern symmetric key cryp-

tography in the late 1940s through two seminal papers on information theory and secrecy systems.

His major relevant contributions include the notions of entropy, confusion, and diffusion [19][20].

2.3.1 Entropy

Entropy, as defined by Shannon, is the measure of the amount of information in some message M .

It is denoted as H(M) and is quantitatively defined as

H(M) = log2 n,

where n is the number of possible meanings of the message. For example, the entropy of a message

containing only information about what month it is is log2(12) ≈ 3.58 since there are 12 months.

Another way to look at this is that exactly ⌈3.58⌉ = 4 bits are required to minimally encode in

binary what month it is.



8

Entropy also measures uncertainty. The uncertainty of a message M is the number of plaintext

bits needed to be recovered from ciphertext in order to learn the plaintext. For example, if we know

that the plaintext is either “HEADS” or “TAILS” when provided with the ciphertext “ASDFQJWE”,

then the uncertainty is unity. We need only learn one bit (if chosen correctly) to learn the plaintext.

We often discuss the entropy of cryptosystems with respect to their key space. For example, a

symmetric key system with a 128-bit key should have an entropy of 128 bits.

2.3.2 Transformations

A transformation is simply a function

t : X → Y,

where X is the domain and Y is the codomain. Some transformations on a space are entropy-

preserving; that is, if an input x has entropy H(x) before the transformation, it has the exact

same entropy (and thus uncertainty) after the transformation. An obvious requirement for entropy-

preserving transformations is that they are bijective. We call a bijective transformation in which

the domain is equal to the codomain a permutation. This notion is of central importance to the

remainder of this thesis.

2.3.3 Confusion and Diffusion

Also of central importance to this thesis are Shannon’s qualitative notions of confusion and dif-

fusion. Confusion is a generic method used to obscure the relationship between the plaintext and

ciphertext. For example, substitution provides confusion. Diffusion is a generic method that aims to

dissipate the redundancy of plaintext throughout the ciphertext. For example, bitwise permutations

provide diffusion. In theory, extremely large-scale substitutions are sufficient to create a secure

symmetric key system. However, in practical block cipher systems both confusion and diffusion are

required for efficiency reasons [21].
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Chapter 3

Sponge and Duplex Constructions

Our algorithm is based on the duplex construction, a highly flexible new cryptographic primitive

derived from the sponge construction with promising applications to authenticated encryption. We

describe both the sponge and duplex constructions in this chapter and provide details about resis-

tance to generic attacks.

3.1 Sponge Construction

The sponge construction is a relatively new cryptographic primitive that has gained popularity since

KECCAK won the Secure Hash Algorithm (SHA-3) competition in 2013 [22][23]. Essentially, it

provides a way to generalize hash functions (which normally have outputs of fixed length) to func-

tions with arbitrary length output. This generalization allows cryptographic sponges to be used for

applications other than hashing. We present a few here but there are numerous more possibilities.

The sponge construction is stateless; there is no information stored between calls to it.

Sponges are based on the iteration of an underlying function f . This function can either be a

general transformation or a permutation. A transformation need not be bijective; that is, it may not

be invertible. A permutation is bijective and thus invertible by definition. The security proofs are

different for transformations versus permutations, and there are advantages and disadvantages for

each choice of a function type [24].

3.1.1 Sponge Parameters

The output Z of the parameterized sponge construction is given as

Z = sponge[f,pad, r](M, ℓ),

where pad is a padding function for the input, r is the rate of absorption, M is the message (or

other input) data, and ℓ is the desired output length.

Figure 3.1 shows the sponge construction. It is split into two distinct phases: the absorbing

phase and the squeezing phase. This is where the term “sponge” comes from. Inputs (e.g. message

and/or key material) are absorbed in the first phase and the output (e.g. a MAC or keystream) is

squeezed out in the second phase.

The state of the sponge construction is split into two contiguous portions: the outer state, which

is accessible externally, and the inner state, which is hidden. The size of the outer state is given by

the rate r and the size of the inner state is specified by the capacity c. The size of the entire state is
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Figure 3.1: The sponge construction sponge[f,pad, r] [24]

b = r + c. The speed of the construction partially relies on the rate, while the security is partially

dependent on the capacity (see Section 3.1.3).

The padding function pad is first applied to M to make it a multiple of r. M is then absorbed

r bits at a time. More concretely, absorption is the process of XORing r-bit blocks into the state

while interleaving with applications of the underlying sponge function f . If the rate is increased,

then more bits are absorbed at a time and thus the construction runs faster. However, increasing

the rate means that the capacity must decrease and so there is a clear trade-off between speed and

security. Squeezing consists of concatenating r bits at a time to an output bitstring Z that is truncated

to ℓ bits. The sponge function f must be called once for each r bits of output after the first full block.

Simplified Sponge

A padding function is required for the classical sponge construction in order to ensure that inputs

can be reformed into bitstrings with length equal to a multiple of r. Two basic requirements of a

padding function are that it be reversible and that it never produce identical outputs for different

inputs. We omit the lower level details of good padding functions here for brevity and refer the

interested reader to [24] instead.

It is also useful, as we will see, to consider a sponge construction in which no padding function

pad is required. The parameterized interface for such a construction becomes

Z = sponge[f, r](M, ℓ).

Alternatively, we can say that pad exists but it is trivially given as

pad(M) = M.
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This lets us remain aligned with the original definition. In either case, we assume that any necessary

padding is performed at some higher level in the overall system. This simplification allows us to

focus more design effort towards the underlying sponge function f and ignore the details of padding.

3.1.2 Applications

Hashing

The sponge construction was originally envisioned as a generalization of hash functions to functions

with arbitrary length output. Using the sponge construction for hashing is straightforward. We

denote a hash function by

H : Z∗
2 → Z

ℓ
2,

where ℓ is the desired length of the message digest. In this case, the message M is padded and

absorbed as usual. After absorption completes, the construction switches to squeezing mode and

the state is squeezed until a message digest of length ℓ is acquired.

Without any structural changes, several other applications can be derived from the sponge con-

struction. These following applications are of considerable relevance to the ultimate goal of authen-

ticated encryption.

MAC Generation

A Message Authentication Code (MAC) function is essentially a keyed hash function. We denote a

MAC function under a given key K and initialization vector IV by

MACK,IV : Zk
2 × Z

v
2 × Z

∗
2 → Z

ℓ
2,

where k is the length of the key, v is the length of the IV, and ℓ is the desired length of the tag

(MAC). In this case, K||IV is absorbed first and then the padded message is absorbed directly after

as usual. Squeezing works the same as in a hash computation. Note that the sponge construction

is particularly attractive here (and in general with keyed modes) because to the sponge, there is no

differentiation between the key, IV, and message data. All input data is treated exactly the same, and

thus the design remains simple. This is in great contrast to traditional symmetric key cryptosystem

design in which a key schedule is required.

Bitstream Encryption

The previous two direct applications of the sponge construction were characterized by long absorb-

ing phases (assuming a long message) and short squeezing phases. Bitstream encryption, i.e. using

the sponge as a stream cipher, is characterized oppositely: absorbing is quick while squeezing is

likely a much longer process. We denote a stream cipher under a given key K and initialization

vector IV by

STREAMK,IV : Zk
2 × Z

v
2 → Z

∞
2 ,

where k is the length of the key and v is the length of the IV. The codomain of such a stream cipher

is the set of infinite bitstreams; in practice, the output is truncated to provide just enough keystream

material to encrypt a given message M . For this application, we simply absorb K||IV and switch

to the squeezing phase immediately. Squeezing continues until a keystream is no longer needed.
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The keystream is XORed with the message to produce the ciphertext. Notice again how the overall

structure of the algorithm remains the same as it was for its original application of hashing.

3.1.3 Generic Security

It is typical to employ Kerckhoffs’ principle when discussion the security of a cryptosystem. This

principle states that a cryptosystem should be secure regardless of any knowledge the adversary may

have about the system (excluding the key). Stated in a different way, the adversary is assumed to

know every detail of the system except for the key [25]. Indeed, we even presume that an attacker

has access to the cryptosystem. In the case of a sponge construction, the adversary knows f (and

f−1 if f is a permutation). The easiest way for him or her to gain knowledge about f that may

differentiate it from a random transformation is to simply make calls to it (and f−1 if a permutation)

[24].

A random oracle model is often useful as a framework for security proofs. A random oracle

(RO), which lies at the core of most sponge security proofs, is a theoretical ideal function

RO : Z∗
2 → Z

∞
2

such that every bit of the output, for every possible input, is chosen uniformly and independently.

We state security proofs in the context of indistinguishability in the random oracle model. We sup-

pose that an adversary is able to query both a random oracle and the pseudorandom function (PRF)

that we are testing. The adversary then decides which of the systems is the PRF. If it is “hard” for

the adversary to do this, then the PRF is called indistinguishable from random. This is what we

desire. Hardness is given in terms of computational complexity and is subject to interpretation. For

example, if the adversary is able to accurately distinguish the two systems after only 240 queries,

then the PRF is not indistinguishable from random since a complexity of 240 is computable with

today’s technology. If, however, it takes a minimum of 2128 queries, then the system is indistinguish-

able from random since this is not computable (i.e. such a computation would not finish within any

reasonable time frame) and will not be computable in the foreseeable future [25].

The security of the sponge construction is based on the assumption that the underlying sponge

function f is secure. That is, if f is indistinguishable from random then so should be the sponge

construction it is instantiated within. Consequently, cryptographers designing a system based on the

sponge construction need only be concerned with designing and cryptanalyzing a secure underlying

function. The sponge construction, when used properly, is said to be secure against generic attacks

– attacks which do not exploit any specific properties of the underlying sponge function. We call

this the generic security of the construction [24].

3.1.4 Security of Keyed Sponges

The generic security of keyed constructions is higher than unkeyed. For our purposes we are inter-

ested only in the security of the keyed sponge construction where a permutation is used for f .

In [26] it is proven that the advantage of distinguishing a keyed permutation-based sponge from

a random oracle is

max

(

1− exp

(

−
M2

2 + 2MN

2c

)

,
N

2|K|

)

,
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where M is the data complexity, N is the time complexity, c is the capacity, and |K| is the size of

the key. The advantage is the probability of success of a generic attack.

We can take N as the number of queries to the permutation f and its inverse. The data com-

plexity M is typically considered to be upper bounded by the implementation under a given key K.

For example, it is very reasonable and common practice to enforce that no more than, say, M = 240

operations be performed under a given key. In [26] this exponent is called a usage exponent and is

denoted as a. The assumption is made that a ≪ c/2 and the requirement (as is typical) is that no

attacks are faster than a brute force search on the keyspace. This ultimately leads to our metric of

interest: a lower bound on the capacity c such that there are no generic attacks (that allow differ-

entiation from a random oracle) that are faster than exhausitive search. This lower bound is given

as

c ≥ |K|+ a+ 1.

Jovanovic et. al [27] further improved on these results in 2014 by proving that the generic

security level of keyed sponge constructions is lower bounded by

min(2(r+c)/2, 2c, 2|K|).

3.2 Duplex Construction

The duplex construction is highly related to the sponge construction. The main differences are that

the duplex construction maintains state between calls and that there no longer exists a clear separa-

tion between the absorbing and squeezing phases. Absorbing and squeezing happen essentially at

the same time, hence “duplexing”. Other than this, switching from the sponge to the duplex con-

struction is simply a matter of adjusting how inputs and outputs are handled. The duplex mode has

several applications, with authenticated encryption being the one of obvious interest to us.

3.2.1 Duplex Parameters

Parameters for the duplex construction are mostly the same as for the sponge construction. However,

since the duplex construction maintains state, we build a duplex object D and make calls to it. The

function which processes inputs and produces outputs is called duplexing:

Zi = D.duplexing(σi, ℓi)

Figure 3.2 shows the duplex construction. The i-th input is denoted σi and the i-th output is

denoted Zi, which is truncated to ℓi bits. Inputs are absorbed and processed at the same time that

outputs are squeezed. For a duplex object it is possible to have an empty input or to not request an

output. A blank call is a call to duplexing for which no input is provided (|σi| = 0). A mute call

is a call for which no output is requested (ℓi = 0). The reasons for these types of calls will soon be

apparent.

Simplified Duplex

In addition to the padding required for the sponge construction, the duplex construction also re-

quires domain separation. This can be generally defined as a mechanism that allows differentiation
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Figure 3.2: The duplex construction duplex[f,pad, r] [24]

between varying types of inputs (e.g. between header and body data). In other words, it eliminates

ambiguity on the receiving end that naturally arises from support for arbitrary length inputs. The

KECCAK designers use a frame bit appended to the end of every input (see Figure 3.3) in their orig-

inal definition of the duplex construction [28]. The value of this bit toggles for every input type so

that the receiver can differentiate between outputs. Since the order of the inputs (and thus outputs)

is always the same, a single frame bit is sufficient.

We also note that a frame bit is not the only way to achieve domain separation. In general one

can append a frame string, denoted γi, to the end of every input. The only requirements are that

|γi| ≥ 1 and γi 6= γi+1 for all i. For example, each frame string could be a byte instead of a single

bit.

For the simplified duplex construction, we can make the assumption that both the padding and

domain separation are accomplished at some higher level if needed. This again allows us to focus

more design effort towards the underlying sponge function.

3.2.2 Duplex for Authenticated Encryption

Authenticated encryption is easily achieved using the duplex construction. It can be modeled under

a given key K as

AEK : Zk
2 × (Z∗

2)
2 → Z

∗
2 × Z

ℓ
2,

where k is the length of the key and ℓ is the length of the MAC desired.

Figure 3.3 shows the duplex construction being used in an AE use case. Frame bits are shown,

but recall that these are ignored in the simplified duplex construction. First, we construct a duplex

object D. Then we absorb K (or optionally K||IV ) using one or more mute calls to D.duplexing.

More that one mute call may be required if the length of the key exceeds the rate r. We denote a

header input to D as A; these arbitrary length inputs are authenticated but not encrypted. We denote

a body input to D as B; these arbitrary length inputs are both encrypted and authenticated. A inputs
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are absorbed using one or more mute calls to D.duplexing. B inputs are absorbed in a similar

fashion and then the keystream Z is XORed with B to produce the ciphertext C. The tag T is

produced using a blank call to D.duplexing after all header and body inputs have been processed.

Figure 3.3: The duplex construction as used for authenticated encryption [29]

A more general case is shown in a slightly modified view in Figure 3.4. In this view, the duplex

object D is shown as a block and the different header and body inputs (Ai and Bi respectively) are

absorbed over a series of calls to D.duplexing. For example, the body B consists of three blocks

of size r and so it requires three calls to be completely absorbed. An intermediate tag is requested

after the first header and body pair is processed and before the next header begins. This is a very

typical use case for e.g. network traffic. The tag can be of arbitrary length.

Figure 3.4: The duplex construction as used for authenticated encryption (general case) [29]

Clearly, the ciphertext and tags produced at any point depend on all of the previous inputs to D.

Intermediate tags can be produced if desired, since blank calls can be made at any time. In summary,
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using the duplex construction for authenticated encryption provides the following advantages:

1. Easy to use

2. Single key required

3. Single-pass for encryption and authentication

4. Support for intermediate tags

5. Support for Additional Authenticated Data (AAD, or headers)

6. Secure against generic attacks

7. Ability to trade off speed and security by adjusting r

The main disadvantage to using the duplex construction for AE is that it is not easily parallelizable

as given here. This should not be a concern most of the time since data (e.g. IP traffic) is often

received and sent in a serial fashion for AE applications. Compared to other methods of achieving

AE, the duplex construction is clearly superior in the majority of applications.

3.2.3 Security

A reduction is used to prove the security of the duplex construction. Any calls made to the duplex

construction can be reduced to calls to the keyed sponge construction. Therefore the security of

the duplex depends on the security of the corresponding sponge, which can be shown to be secure

against generic attacks. For a concrete example, consider the i-th duplexing call to a duplex object

D:

Zi = D.duplexing(σi, ℓi)

= sponge(pad(σ0) || pad(σ1) || . . . || pad(σi))

Or in the case of a simplified duplex object D, we have:

Zi = D.duplexing(σi, ℓi)

= sponge(σ0 || σ1 || . . . || σi),

where σi may be key, header, or body material. Since this is true in general, it is clear that the duplex

reduces to the sponge. For a more rigorous proof, we refer to [28].
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Chapter 4

Algorithm Specification

Our authenticated encryption algorithm is based on the simplified duplex construction. Padding and

domain separation are assumed to be done at some higher level in the overall system if needed. For

this reason, it is sufficient to specify only the duplex parameters and the sponge function f .

For Known Answer Tests (KATs) corresponding to this specification, see Appendix D.

4.1 Duplex Parameters

We allow two key sizes: 128 bits and 256 bits. These are the NIST recommended symmetric key

sizes as of 2011 [30]. Our construction uses a 512-bit internal state, so we have b = 512. The rate

r is 128 bits for both key lengths, which means that the capacity c is 384. Keeping the rate at a

constant 128 bits for both instantiations means that switching between key lengths is a trivial task.

The capacity c = 384 provides sufficient security against generic attacks for both 128- and

256-bit keys. As explained in Chapter 3, we know from [27] that the generic security level is

min(2(r+c)/2, 2c, 2|K|).

For a 128-bit key, the security level is 2128. For a 256-bit key, the security level is 2256.

4.2 Permutation f

Our underlying sponge function f is a permutation, so it has the advantage of being fully entropy-

preserving. Since it is bijective, f−1 exists by definition. We specify both f and f−1 here. While

f−1 is never used in practice, it may be useful for cryptanalysis and verification purposes.

The permutation consists of a number of rounds. Figure 4.1 shows a diagram of a single round

of the forward permutation. Figure 4.2 shows a single inverse round. Each round can be represented

as the composition of several subfunctions or steps: a substitution, a bitwise permutation, a mixing

layer, and the addition of a round constant. These are represented respectively as S, π, M, and ⊕ in

the diagrams.

4.2.1 Substitution Step

The substitution step is a bricklayer permutation that uses 32 identical, bijective 16 × 16 S-boxes.

This step is the main source of confusion within the permutation. Furthermore, it is the only non-

linear step, as is typical with most substitution-based symmetric key algorithms [25].
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Figure 4.1: A single round of the sponge permutation f . Each line represents a 16-bit word.
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Figure 4.2: An inverse round of the permutation f . Each line represents a 16-bit word.
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To the best of our knowledge this is the first cryptosytem to use such large S-boxes. We believe

that, at the time of writing, the largest S-boxes used in the literature are the 8× 8 bijective S-boxes

used by the Advanced Encryption Standard (AES) [31][32].

Our S-box is an AES-inspired design taken directly from Wood’s thesis on the subject [33]. The

primary reason for using this particular class of 16-bit S-boxes is that they are efficiently imple-

mentable in hardware. Rather than being based on a random mapping, they are based on multiplica-

tive inversion in a finite field followed by an affine transformation. This allows us to implement an

actual circuit which performs the operations rather than use the corresponding (and prohibitively

large) look-up table.

Specifically, we use the reference C implementation provided in Appendix C of the aforemen-

tioned thesis. This S-box is based on multiplicative inversion in GF(216)/ 〈p(x)〉 where

p(x) = x16 + x5 + x3 + x+ 1.

We represent an input to the S-box (and inverse S-box) as a 16-bit column vector

x =
(

x15 x14 . . . x1 x0
)T

,

where x15 is the MSB. Using this notation, the forward S-box function is given as

S(x) =









































0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1
0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0
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and the inverse is

S−1(x) =

















































































0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1
1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0
1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1
0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1
1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1
0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1
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A hardware implementation for this particular S-box requires just 1238 XOR gates and 144
AND gates. However, No concrete implementation (e.g. in VHDL) is provided; this is an area for

future work.

4.2.2 Bitwise Permutation Step

Bitwise permutations are easily implementable in hardware via a simple rerouting of wires. Com-

pared to a permutation on the words of the state, a bitwise permutation intuitively provides much

better diffusion. The bitwise permutation step is the main source of long-range (i.e. across the entire

state) diffusion in the algorithm.

The bitwise permutation also helps maximize the minimum number of active S-boxes by being

subject to certain constraints. We use a permutation that satisfies the following properties:

1. All outputs of a given S-box go to 16 different mixers

2. The permutation is a derangement; it has no fixed points

3. High order; it does not repeat within the number of rounds

4. No low order bits; the order of any bit equals the order of the overall permutation

5. Easily definable by some function

There is obviously no cryptographic significance to how “easy” it is to express a bitwise permuta-

tion. This is merely to cut down on the search space and to avoid having to provide a table with 512
entries to express the permutation.

We denote the bitwise permutation function

π : Z512 → Z512,

where it operates on the index of a given bit, x ∈ Z512.

To understand our specific choice of π, it is useful to consider a poor choice first. For this we

can turn our attention to the lightweight block cipher PRESENT which operates on a 64-bit state

over 31 rounds. PRESENT uses the bitwise permutation

πP : Z63 → Z63

given by the linear function

πP (x) = 16x mod 63.

Since it operates in Z63, an augmented mapping πP (63) = 63 is required for the last bit [34].

The particular structure of πP led to an attack on PRESENT in 2009 [35]. The attack leverages

the following undesirable properties of πP :

1. There are four fixed points: x = 0, 21, 41, 63

2. The order is only three: π3
P (x) = πP (x)
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The combination of these properties results in a decrease in the lower bound on the number of active

S-boxes across four rounds since it is possible to construct a trail that branches back into itself after

πP is iterated only three times. See Figure A.1 for a diagram that illustrates this trail.

A simple way to avoid fixed points is to use an affine function rather than a linear function. An

affine function over Z512 is of the form

π(x) = αx+ β mod 512.

For π to be bijective, we require gcd(α, 512) = 1. Since the prime factorization of 512 is simply

29, it is equivalent to say that α must be odd [25].

A low order bit is defined as a bit that has order less than the order of the overall bitwise permu-

tation. It is cumbersome to mathematically characterize all permutations that satisfy the property

that no bits have low order. Instead, we wrote a script (see Appendix E) to search for such per-

mutations. The script also identifies if a given permutation satisfies all other properties that we

require. We found 384 permutations defined by affine functions over Z512 that satisfy all properties.

A complete listing is provided in Table B.1.

We chose the following permutation to use for our algorithm since it is the first function to

satisfy all properties:

π(x) = 31x+ 15 mod 512

This particular bitwise permutation has order 32 and its inverse is given by

π−1(x) = 479(x− 15) mod 512

since 31−1 ≡ 479 in Z512.

4.2.3 Mix Step

The purpose of the mix step is to provide local diffusion (i.e. across two words) and increase the

linear and differential branch numbers of a round from two to three. See Chapter 5 for more detail

on branch numbers. We use a mixer based on multiplication by a 2× 2 matrix in GF(216) modulo

the irreducible polynomial

p(x) = x16 + x5 + x3 + x2 + 1.

The mixer takes two words A and B as input and produces outputs A′ and B′ as follows:

(

A′

B′

)

=

(

1 x
x x+ 1

)(

A
B

)

The mix step is invertible because the matrix is invertible; its inverse is given by

(

A
B

)

=

(

a b
b c

)(

A′

B′

)
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where

a = x15 + x14 + x12 + x11 + x9 + x8 + x6 + x5 + x4 + x+ 1

b = x14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x3 + 1

c = x15 + x13 + x12 + x10 + x9 + x7 + x6 + x3 + x.

This can be verified by using the provided GF(216) C library. The MSB of each word is taken as

the leftmost bit and is represented by x15.

The forward mixer is efficiently implementable in hardware. Notice that the outputs A′ and B′

can be written as

A′ = A⊕Bx

B′ = Ax⊕Bx⊕B

since addition in GF(216) is simply the XOR operation. Figure 4.3 shows how this matrix multipli-

cation is implemented.

A B

x∗ x∗

A′ B′

Figure 4.3: Hardware implementation of the forward mixer function.

The x∗ operation is a multiplication by x in GF(216). Its implementation, which is shown in

Figure 4.4, is very simple. Notice that a multiplication by x is simply a left rotation followed by a

reduction if the MSB was one. The reduction is derived from the fact that

x16 ≡ x5 + x3 + x2 + 1 mod p(x)

for our particular irreducible polynomial p(x), and it is implementable using just three XOR gates.

4.2.4 Add Round Constant Step

The add round constant step is the simplest by far, and it is its own inverse. A constant 512-bit value

is added to the state using bitwise XOR in order to disrupt symmetry and prevent slide attacks. The

round constant RCi for round i is given by the formula

RCi = SHA3-512(ASCII(i)),
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Figure 4.4: Hardware implementation of the x∗ function. The leftmost bit is the MSB.

where ASCII(i) is a function that provides the one or two byte ASCII representation of i and

SHA3-512 is the SHA-3 hash function that outputs a 512-bit message digest. Table 4.1 provides

the values of RCi up to i = 16.

4.3 Number of Rounds

This algorithm uses 10 rounds for a 128-bit key and 16 rounds for a 256-bit key. The number of

rounds is determined, as is typical with block ciphers and permutations, by calculating the number

needed for resistance to linear and differential cryptanalysis and adding some buffer to increase the

security margin. For a more in-depth treatment, refer to Chapter 5.

4.4 Customization

While a specific instantiation is specified here, our algorithm is highly customizable within our

security margin. This could be useful in the case that different users want unique, proprietary

algorithms. We list several possible customizations here.

4.4.1 State Initialization

In the given specification, the inner state (like the outer state) is initialized to zero. This is not

a requirement; indeed, the inner state could be initialized to any 384-bit value. Each user could

generate their own unique value to set during the initialization phase. This happens before the first

mute calls that absorb the key.
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Constant Hex Value

RC1
00197a4f5f1ff8c356a78f6921b5a6bfbf71df8dbd313fbc5095a55de756bfa1

ea7240695005149294f2a2e419ae251fe2f7dbb67c3bb647c2ac1be05eec7ef9

RC2
ac3b6998ac9c5e2c7ee8330010a7b0f87ac9dee7ea547d4d8cd00ab7ad1bd5f5

7f80af2ba711a9eb137b4e83b503d24cd7665399a48734d47fff324fb74551e2

RC3
ce4fd4068e56eb07a6e79d007aed4bc8257e10827c74ee422d82a29b2ce8cb07

9fead81d9df0513bb577f3b6c47843b17c964e7ff8f4198f32027533eaf5bcc1

RC4
5058cb975975ceff027d1326488912e199b79b916ad90a3fe2fd01508cd7d7c0

1bc8aaa4d21a8473fb15f3b151ab9e44172e9ccb70a5ea04495af3ec03b5153e

RC5
84da272d13a44f0898ee4ea53334c255d894cc54d357c55466d760debde482a2

44c128df641e80673a8bc34a1620d880b7965e549f313ddccfd506b073413b87

RC6
bb93aaa23b38ea96c9346ef91e184982bf50e91033f4354ecb20d3c7390c2b41

862e8825ec3d0fee0a6f978881f90728c6748e4aed8b732350075d6c2bdd8e4b

RC7
fe32f3eba76626dedf36622bfdc5ccd33db2f3e0dd7c3c128298ea78c1cc7fee

1a140edb8e57cd5824c7f4b817c0fc94e70da5b9399faaf9a848a46ad30679e9

RC8
952ba02486b818febc0ec98559df27c79357838f011b1e5bc11f2cfb6fc0573e

545978c2bc5b390f44907f8da0dfd68206fe4521f86ba6c879ec1e69caed9533

RC9
b41e6bb4ed20294016399c268da6bf88c89e2dc118a361b3560ee8daed973a8f

9778df40e308c1206fa42f97f3fd3f63d2b4b3b57eb5bcbec6ad64d46216b692

RC10
6954a418cecc43633bd526c2499dfc16b832f58b216b9a8b226a6a0b7918d364

a7939004339de0ba08e2b547e64dc5622e24b0c4f8f415d9e0a84cb94b6c5f3f

RC11
2e4b9ad37091e3e5a218c5e57b33ed3470ba4f31fbcf16424684fdd5cde38e88

9eae3f018b37af58c24ccc8af57abc2c6911408dd20ef6435e4494a3e6599a06

RC12
aa42aca73bd7f8a17e987f281422b266e44f0de1615d2d393c620c8c5a2c80b4

f06178c8455bf98179603f2f1bcb30b2559f282c799e40533b0665f97a2a706a

RC13
969c39ae2dc16834310344c0579d0ffdfde01772dbf9a4cab984953c395d7791

1510f39e5f37295e3611a1d46101460daf731ddbdab1ec1bbc512edc44680d8d

RC14
8a1e6ce31f0b526d884b584aa1a5ae4294fcf85fd2e525f959ed1a54233359c7

c5fece6d24775e7d4a9ad97c2632a3be5b331a8f580f557b269e7b65123a5992

RC15
9bd64a932f09672def04b6a94753a3e4087a1c3895078dc70927fcd774888dfd

400b95fd1c6a0b2a91a1ba44eea09f5163dba4dfa9da7b8eb97d791cab566437

RC16
48401f65c2d2d9e71fe47bd80b28d834eee8fff3be9aa4608cba33e6fedce0b1

693c80cdc36db7f504e4abea23ccc6729a030f5b3e035fb59c2c788215cf84a8

Table 4.1: Round constants for up to 16 rounds



26

4.4.2 S-boxes

The AES-inspired S-box used here is efficiently implementable in hardware. There are certainly

many other cryptographically secure 16-bit S-boxes, but randomly generated ones may not be suit-

able for hardware implementation due to size constraints. This is an area for further research. Still,

several other AES-like 16-bit S-boxes are presented in [33]. Any new S-box introduced into the

algorithm shall be analyzed to determine its linear and differential characteristics and the number of

rounds should be adjusted accordingly if necessary.

4.4.3 Bitwise Permutations

The bitwise permutation provided in the specification is subject to the constraints explained before.

There are many permutations that satisfy these constraints. We chose to use a permutation that is

easily definable by an affine function as obtained by our script; this is not a requirement. A user

could generate their own bitwise permutation subject to the given constraints via exhaustive search.

4.4.4 Mixers

Our mixer is based on a specific 2×2 matrix multiplication in GF(216) modulo a specific irreducible

polynomial p(x). Many matrices are expected to satisfy the constraints that we impose. These

constraints are:

1. The matrix should be invertible in GF(216)/ 〈p(x)〉

2. The matrix should have differential and linear branch number equal to three (the maximum

possible; see Chapter 5)

3. The transformation should be efficiently implementable in hardware

Note that the inverse transformation need not be efficiently implementable. Like the addition of a

new S-box, any new mixer (i.e. matrix) introduced to the algorithm should be analyzed to ensure it

meets these constraints. A transformation defined by 2× 2 matrix multiplication that does meet the

second requirement, for example, would lower our security margin and possibly require increasing

the number of rounds significantly.

It should be noted that before settling on a mixer based on matrix multiplication, many mixers

based on modular addition, XOR, and rotation operations were tested. Systems or operations that

rely mainly on these operations are typically called ARX-based. None of the ARX-based mixers

we tested met our requirement of increasing the branch number from two to three. However, for

completeness, we enumerate all of the mixers examined in this work in Appendix C.

4.4.5 Round Constants

The round constants presented here are based on SHA-3 hash values. However, they could be any

values that satisfy the following constraints. Round constants should be:

1. Unique for each round; to prevent against slide attacks

2. Random, pseudorandom, or highly asymmetric; to reduce symmetry in the state
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The round constants are not expected to have any cryptographic significance outside of this. Differ-

ent users can generate their own unique set of round constants without difficulty.

There are also other ways of injecting asymmetry into the algorithm using constants. For exam-

ple, the round constants could actually be rotation constants that define the amount to rotate each

word on the inputs to mixers.
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Chapter 5

Cryptanalysis

We have already discussed the security of this construction against generic attacks in Chapter 3.

The only requirement remaining is to assess the security of the underlying sponge permutation f .

We present a survey of potentially relevant cryptanalysis techniques here. Focus is placed on

differential and linear cryptanalysis since these techniques are so general, powerful, and prevalent.

Resistance against these techniques should result in resistance against many other less general tech-

niques. There is far too much to be said about various cryptanalysis techniques, and there are far too

many to discuss here. Our aim is to provide intuitive explanations of prevalent methods and simply

explain why our permutation should be resistant. Further cryptanalysis, as with all cryptosystems,

is always welcome for future work.

5.1 Differential Cryptanalysis

Differential cryptanalysis was publicly introduced by Biham and Shamir in 1991 in their landmark

paper on the subject, [36]. Since then, it has been applied with varying degrees of success to a great

number of cryptosystems. As such, it is a fundamental requirement of symmetric key cryptosystem

design to prove resistance to differential cryptanalysis.

5.1.1 Overview

The goal of differential cryptanalysis is to exploit non-random behavior of a system (in our case, a

permutation) with regard to the propagation of differences. A difference, denoted ∆X , is the bitwise

XOR (for our case) of two bitstrings. For example,

∆X = X ′ ⊕X ′′

is the difference between bitstrings X ′ and X ′′. For differential cryptanalysis, a difference ∆X
is fed through a system and a resulting difference ∆Y is obtained. The pair of these two related

differences is called a differential and is denoted (∆X,∆Y ).
Differentials occur with some associated probability. For an ideal system the probability of a

given differential is 1/2n where n is the length of the bitstrings involved. A system is said to exhibit

non-random behavior if the magnitude of the probability pD for some differential (∆X,∆Y ) is

much greater than the ideal value. This information could be used to mount an attack on the system

[37].

To launch an effective attack, a cryptanalyst first has to focus on the S-boxes. The S-boxes are

analyzed to determine their maximum differential probabilities. Note that in an actual attack, high
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probability 1-bit-to-1-bit differentials are of most interest since these will likely be the easiest to

propagate through the overall system.

A differential trail or characteristic is the propagation of non-zero differentials throughout a

system (i.e. across rounds). Figure A.1 shows an example trail through four rounds of PRESENT.

A differentially active S-box is an S-box that has a non-zero difference at its input during an attack;

it is part of a differential trail. For example, if Figure A.1 shows a differential trail, then there are

six differentially active S-boxes.

Proving resistance against differential cryptanalysis for a substitution-permutation network re-

quires coming up with a lower bound on the minimum number of active S-boxes across some num-

ber of rounds. The more active S-boxes there are, the less likely an attack is to succeed since

exponentially more chosen plaintexts will be needed for additional each active S-box. The branch

number of an operation is of particular importance here. It can be simply defined as the minimum

number of active S-boxes across just two rounds of a system (e.g. our permutation). The technique

of maximizing the branch number of a round is known as the wide trail design strategy. It is the

main design strategy behind AES, which has a round branch number of five [38][31].

The number of plaintext/ciphertext pairs required to mount a successful differential attack should

exceed the number required for a brute force attack. As the differential probability reduces across

rounds, more pairs are required for a successful attack. We loosely refer to the number of pairs

required as the complexity of the differential attack. The number of rounds is increased until this

complexity exceeds that of a brute force method.

5.1.2 Algorithm Resistance

To determine the resistance of our algorithm to differential cryptanalysis, we first have to determine

the maximum differential probability of our S-box. We determined this value to be pD,max = 2−14

using an S-box evaluation program called Eval16BitSboxwritten with Kaminsky’s Parallel Java

2 library [39][40].

Next, it is necessary to determine the branch number of a round. For this, we only need to

analyze the mixer. We purposefully designed a mixer with differential branch number equal to

three, meaning that minimally three S-boxes will be differentially active between two rounds. This

is in fact the maximum achievable branch number for a transformation defined by multiplication

by a 2 × 2 matrix. To verify this, we used a SAT solver called CryptoMiniSat [41]. This SAT

solver takes as input a Boolean equation in conjunctive normal form (CNF) and determines if it is

satisfiable; that is, if it can ever produce an output of ‘1’ for any set of input values. Our CNFs were

generated using Kaminsky’s SatProblem Java class [39]. The Boolean satisfiability problem is

known to be NP-complete [42]; however, our CNFs were small enough that it finished within a

minute for all cases tried (see Appendix C for failed mixer designs).

The CNFs generated are unsatisfiable if and only if the mixer has differential branch number

equal to three since it answers the following question: is it possible to have a difference in only one

input and only one output? Through SAT solver analysis we determined that this is not possible for

our matrix multiplication-based mixer; that is, if there is a non-zero difference in only one input,

there must be a non-zero difference in each output. In the event that there is a difference in both

inputs, there may be a difference in only one output. This still leads to a differential branch number

of three since two S-boxes must have been active in the previous round to lead to those two input

differences. The probability of a difference in either output is pD,out = 2−15.
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With all of this information, it is possible to calculate the number of rounds needed for resistance

to differential attacks. The worst-case probability of successfully propagating a difference over two

rounds is given by

(pD,max)
BD · pD,out,

where BD = 3 is the differential branch number. From this we constructed Table 5.1, which shows

the worst-case differential probabilities for higher numbers of rounds.

Rounds Worse Case Differential Probability

2 2−57

4 2−114

6 2−171

8 2−228

10 2−285

12 2−342

14 2−399

16 2−456

Table 5.1: Worst case differential probabilities over increasing rounds

Therefore the complexity of a differential attack exceeds the complexity of a brute force search

of a 128-bit keyspace at six rounds. To increase our security margin significantly, we require 10
rounds for a 128-bit key. For a 256-bit key, 16 rounds are required to achieve a similar security

margin.

5.2 Linear Cryptanalysis

Linear Cryptanalysis was first introduced by Matsui in 1993 in his landmark paper, [43]. As with

differential cryptanalysis, it is a fundamental requirement of symmetric key cryptosystem design to

prove resistance against linear attacks.

5.2.1 Overview

Linear cryptanalysis is surprisingly similar to differential cryptanalysis in many ways. However,

for linear cryptanalysis we are concerned with estimating the behavior of a system using linear ex-

pressions rather than highly probable differential characteristics. As with differential cryptanalysis,

the first step is to analyze the S-boxes involved in the substitution-permutation network. An S-box,

by definition, should be highly nonlinear to provide sufficient confusion. However, it is possible to

uncover linear approximations of S-box outputs that occur with high (or low) probability. We can

represent our S-box as a vectorial Boolean function

S : Z16
2 → Z

16
2

in which the input X and output Y are represented as row vectors, e.g.

X =
(

X1 X2 ... X15 X16

)

,
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where Xi ∈ Z2. Favoring typical convention found in the literature, X1 is the MSB [37]. This

notation allows us to easily represent linear approximations in the form

(

16
⊕

i=1

Xi

)

=

(

16
⊕

i=1

Yi

)

or equivalently
(

16
⊕

i=1

Xi

)

⊕





16
⊕

j=1

Yj



 = 0.

The ideal linear probability p that such an approximation holds true is exactly equal to 1/2.

We are concerned with deviations from this ideal probability, known as the linear bias, ǫ. Clearly,

ǫ = p− 1/2. We found the maximum linear bias of our particular S-box to be ǫL,max = 2−8 using

the same program as previously described.

S-boxes that are involved in a linear approximation of a system are called linearly active S-

boxes. A linear approximation across rounds is called a linear trail; it involves several linearly

active S-boxes. Our goal, as with differential cryptanalysis, consists of trying to maximize the

minimum number of linearly active S-boxes. The linear branch number BL is the minimum number

of linearly active S-boxes across two rounds of our permutation. As with differential cryptanalysis,

it depends solely on our mixer.

5.2.2 Algorithm Resistance

Recall that we have verified via SAT solver analysis that the differential branch number of our

mixer is three. In [31], Daemen and Rijmen prove the following result: the linear branch number of

a linear transformation specified by multiplication by a matrix M is equal to the differential branch

number of the linear transformation specified by the transpose of that matrix. Therefore, a sufficient

condition for the differential and linear branch numbers to be equal is that the matrix is symmetric.

Our matrix is symmetric, and therefore we know BD = BL without the need for further analysis.

The final step to prove the resistance of our algorithm against linear cryptanalysis involves

determining the linear bias of two complete rounds of our permutation. To combine linear biases,

we use Matsui’s Piling-Up Lemma from [43]:

ǫ = 2n−1
n
∏

i=1

ǫi,

where n = 3 is the number of linearly active S-boxes across two rounds and ǫi = ǫL,max = 2−8 is

the worst case linear bias of those S-boxes. Note that we need not consider the mixer since, being a

linear function, it must have a maximum linear probability pmix = 1, corresponding to a maximum

bias of ǫmix = 1/2. This gets cancelled out. Also from Matsui’s paper, we know that the number of

plaintext/ciphertext pairs (again referred to loosely as the complexity) needed to exploit the overall

bias ǫ is approximately ǫ−2. Using this information, we constructed Table 5.2.

Therefore the complexity of a linear attack exceeds the complexity of a brute force search of a

128-bit keyspace at six rounds. To increase our security margin significantly, we require 10 rounds

for a 128-bit key. For a 256-bit key, 16 rounds are required to achieve a similar security margin.
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Rounds Worst Case Linear Bias PT/CT Pairs Required

2 2−22 244

4 2−44 288

6 2−66 2132

8 2−88 2176

10 2−110 2220

12 2−132 2264

14 2−154 2308

16 2−176 2352

Table 5.2: Worst case linear biases and linear attack complexities over increasing rounds

5.3 Differential and Linear Cryptanalysis Variants

There have been numerous efforts to extend on the foundations of differential and linear cryptanal-

ysis over the years in order to produce attacks that are potentially more powerful. We present a brief

overview of the some of the most prevalent variants here.

5.3.1 Differential-Linear Cryptanalysis

As the name suggests, differential-linear cryptanalysis is a combination of differential and linear

cryptanalysis in which a differential trail is followed by a linear trail. It was introduced in 1994

by Langford and Hellman [44], who demonstrated a differential-linear attack on 8-round DES that

requires far fewer plaintexts than previous attacks. The attack is based on a differential trail over the

first three rounds that holds with probability 1 followed by a high magnitude bias linear approxima-

tion for the following rounds. While it was a requirement for this attack to use a unity probability

differential trail over the initial rounds, Biham et al. [45] were able to generalize differential-linear

attacks in 2002 to differential trails with probability less than 1. Recall from Chapter 1 that these

results were used in 2007 by Wu and Praneel [16] to break the stream cipher Phelix, which had

promising applications to authenticated encryption prior to this.

We believe that any differential-linear attack on our permutation f would be limited to a few

rounds at best due to the extremely low maximum differential probability of our S-box. For example,

our absolute worst case differential probability over the first two rounds is bounded by 2−57. Even

without considering the linear approximation that must follow this, the complexity of such an attack

is already approaching the limits of feasibility after these two rounds.

5.3.2 Truncated and Higher-Order Differentials

Both truncated and higher-order differential attacks were introduced in Knudsen’s 1995 paper on

the subject [46]. Knudsen shows that there exist systems which are provably secure against regular

differential attacks yet susceptible to truncated or higher-order differential attacks.

A differential in which only some of the bits are known is called a truncated differential. The

idea is that because fewer bits are being estimated, the propagation should be easier. However,

the propagation of truncated differentials relies largely on strong alignment of the system. For a

complete treatment of this, we refer to the KECCAK team’s excellent coverage of the subject in [47].

We note only that a particular conclusion is that bit-oriented transformations have weak alignment,
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thus truncated differentials become extremely difficult to propagate. Because of the effect of our

bitwise permutation and the very small differential probabilities of our S-box, we believe that any

attack based on truncated differentials would not exceed a few rounds of our underlying permutation

at worst.

A higher-order differential is a differential that consists of several differences. It could be

thought of as a difference of differences. One of the conclusions of [46] is that a higher-order

differential attack will only be effective against a system of sufficiently low algebraic degree. This

is why, for example, such attacks have yet to be effective against AES. Because of this, as we

will elaborate on in the next section, we believe that our system will be resistant to higher-order

differential attacks.

5.4 Algebraic Attacks

Differential and linear cryptanalysis take a probabilistic approach to estimating the behavior of a

system. In contrast, algebraic attacks take a deterministic approach in that they aim to find mathe-

matical models of a system that hold with unity probability. For example, in 2001 Ferguson et al.

[48] introduced an elegant and complete algebraic representation of AES. The ability to create such

a simple mathematical representation of the cipher initially raised alarm throughout the crypto-

graphic community. However, the security of AES seems to not be compromised since we believe it

is far too difficult to solve such an algebraic system. We discuss a few potentially relevant algebraic

attacks here that follow a similar idea.

5.4.1 XL and XSL Attacks

There has been some ongoing work related to reducing the cryptanalysis of cryptosystems to the

solution of multivariate quadratic (MQ) equations. The first attempted attack to leverage this work,

called the eXtended Linearization (XL) attack, was introduced by Courtois et al. in 2000 [49]. This

attack works by transforming a system of MQ equations into a much larger overdefined system of

linear equations. The idea is that while we are bad at solving nonlinear systems, linear systems are

quite easy for us to solve. However, XL is still an impractical attack because after linearization the

system of equations is simply too large to solve.

In 2002, Courtois et al. [50] introduced the eXtended Sparse Linearization (XSL) attack as an

attempt to improve on XL. This attack leverages the fact that the complexity of XL drops signif-

icantly if the MQ system is sparse and regularly structured in addition to being overdefined. The

authors shows that for Serpent (an AES candidate) and AES itself, the MQ system does end up

satisfying these properties. Still, no practical attack has risen out of these efforts due to the fact that

the complexity of such an attack remains computationally infeasible.

Until there is reason to believe otherwise, it seems that these algebraic attacks would be highly

ineffective against our permutation. Even if there were a practical XSL attack demonstrated on

AES, which all literature indicates as highly implausible right now, the much larger size of our S-

box and therefore the much higher algebraic complexity (see [33]) leads us to conjecture that our

permutation would still be resistant.
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5.4.2 Cube Attacks

Cube attacks were fairly recently introduced by Dinur and Shamir in 2008 [51]. This cryptanalysis

method is intriguing because it can be applied to cryptosystems which are treated as a black box;

that is, the internal structure of the system does not need to be known. For an attack to work, at least

one output bit must be able to be represented by a polynomial of relatively low degree. Cube attacks

have had minor success. For example, Lathrop demonstrated a successful attack on four rounds of a

224-bit hash variant of KECCAK in his 2009 thesis on the subject [52]. He estimates that this attack

could be practical up to seven rounds.

Given that KECCAK is also based on the sponge construction, it may be fair to question whether

cube attacks are applicable to our algorithm. However, KECCAK is unique in the sense that its round

function has a very low degree of only two. Systems like AES which use sufficiently large S-boxes,

as ours does, do not generally have the property that output bits can be represented as polynomials

of small degree. In fact, the degrees of any such polynomials are typically extremely high [53].

Therefore we conclude that our algorithm is immune to cube attacks.

5.5 Other Cryptanalysis

There are several other attacks that are very dissimilar from both differential and linear attacks as

well as algebraic attacks. We present the two that we believe to be the most prevalent and relevant

in this section.

5.5.1 Slide Attacks

Slide attacks were introduced in 1999 by Biryukov and Wagner [54]. A slide attack has the inter-

esting property that it is independent of the number of rounds of the system. Therefore the common

method of having a high number of simple rounds to provide security is no longer valid if proper

care is not taken. These attacks work by exploiting the self-similarity of a system with respect to

the behavior of its rounds. For example, a block cipher with a periodic key schedule is at risk be-

cause the groups of rounds belonging to a period of the key schedule can be abstractly considered

as “larger rounds” within the slide attack methodology. This similarity is then exploited.

One of the key advantages that we repeatedly mention in this thesis is that the sponge and duplex

constructions do not require a key schedule since keys are treated the same as any other input data.

Therefore, we do not even have to consider any weaknesses that may be presented by poor subkey

generation. For unkeyed permutation design, one of the simplest methods to prevent against slide

attacks is to XOR round constants into the state every round. This disrupts self-similarity across

rounds as long as the round constants never repeat, which ours do not. In addition, our round

constants are completely independent of each other and no relation can be drawn between them

except for the fact that they are all generated by the SHA-3 hashing function. These properties

easily lead to the conclusion that our permutation f is not susceptible to slide attacks.

5.5.2 Integral Attacks

Integral cryptanalysis was initially presented in 1997 by Daemen et al. [55] as a dedicated attack on

the block cipher Square (interestingly, in the same paper as the initial specification of Square). As
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such, it is sometimes called the Square attack. However, it has since been extended to attacks on

other systems.

Integral cryptanalysis analyzes the propagation of special sets (or multisets) of chosen plaintexts.

In the basic version, all of the bitstrings belonging to a set are related by the property that most of

the bits are held constant while a contiguous block is varied through all 2n possibilities, where n is

the length of the block. For example, if n = 8 (a byte), then a set will contain 28 = 256 unique

bitstrings that iterate through all possibilities of values for that byte. These bitstrings necessarily

have the property that the bitwise XOR sum of the varied bytes will be equal to zero. It is the

behavior of this sum that is analyzed as it propagates throughout the system, and any significant

non-random behavior can lead to an attack.

While the classical form of this attack has even been extended to AES with some success [56],

we argue that our bitwise permutation step eliminates any chance of success against our underlying

f function. This technique will clearly break down for systems that are not entirely block-based,

so our hybrid design approach of using both bit-oriented and word-oriented operations excels here.

Indeed, this is the same argument the KECCAK team initially makes in [22].

Z’aba et. al generalized integral attacks in 2008 to bit-oriented systems with some success [57].

While arguably not as powerful as the basic block-oriented form of the attack, it has, for example,

broken up to five rounds of PRESENT with only 80 chosen plaintexts compared to the 220 required

for a differential attack. However, they note at the conclusion of their paper that bit-oriented integral

attacks simply do not extend, even with low probability, past the first few rounds of such systems.

This is in great contrast to differential and linear cryptanalysis, which always extend but with greatly

reduced probability. The exact resistance of our algorithm to this new bit-oriented integral attack

would have to be studied more in depth, but given the aforementioned results, we believe that it is

highly unlikely that an integral attack would extend past the initial rounds of our permutation.
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Chapter 6

Statistical Testing

In addition to the previously described cryptanalysis techniques, it can be insightful to analyze

the output of a cryptosystem purely on a statistical basis. Two methods of statistical testing were

explored here: using the NIST Statistical Tool Suite for randomness testing, and creating our own

tool to check that we meet the avalanche criterion. Both of these methods help provide evidence

that the system behaves randomly. However, they are certainly not a replacement for the previously

described cryptanalysis techniques.

6.1 NIST STS Testing

6.1.1 Overview

NIST created and maintains the Statistical Tool Suite (STS) for randomness testing of binary data

[58]. While its primary purpose is for testing random and pseudorandom number generators, it

can be applied to general symmetric key cryptosystem testing if proper measures are taken. For

example, Soto (in affiliation with NIST) used an earlier version of the STS in 1999 to analyze the

AES candidates [59].

The STS requires very long bitstrings as input in order to ensure valid results. The NIST recom-

mendation is at least 55 bitstrings each of length 220 bits (1 Mb) for most tests in the suite. Because

block ciphers such as the AES candidates have small, fixed length outputs, Soto had to concatenate

many “derived” output blocks together to form one input bitstring for the STS. The derived blocks

come from using the block cipher, for example, in various modes of operation such as CBC. The

validity of this method is debatable since the STS ends up testing the mode of operation of the

block cipher rather than the block cipher itself. A better statistical test for block ciphers and other

symmetric key cryptosystems with fixed length outputs would be the coincidence test based on a

Bayesian approach as described by Kaminsky in [60].

For this reason, we chose a different method to generate STS inputs. Because the STS is in-

tended for random and pseudorandom number generators, we used the sponge construction in the

keystream generation mode detailed in Section 3.1.2. We absorb a 128-bit key (with no IV, for

simplicity) and squeeze out 1 Mb of keystream material. This is very similar to a pseudorandom

number generator because a good keystream generator will behave as a cryptographically secure

pseudorandom bitstream generator. While this does not directly test the duplex construction, we

remind the reader that the duplex construction can be reduced to the sponge construction as shown

in Section 3.2.3. Therefore we believe that this is the best method to use the NIST STS for statistical

testing of our cryptosystem.
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There is one input file generated for every number of rounds up to the maximum of 16. Each

input file consists of 128 bitstrings, each of which is acquired by toggling a unique bit of the key

and squeezing as previously described.

6.1.2 STS Test Descriptions

The NIST STS runs a battery of 15 different tests on an input file in an attempt to discover any

non-random behavior. We very briefly describe those tests here. Interested readers may refer to [58]

for a much more in-depth description of each test.

1. Frequency: Determines whether the number of ones and zeros in a bitstring is approximately

the same as it would be for a truly random bitstring. All subsequent tests rely on the passing

of this test.

2. Block Frequency: Determines whether the number of ones and zeros in M -bit blocks of a

bitstring is approximately the same as it would be for a truly random bitstring. We use the

default recommended value for our input size: M = 128.

3. Runs: Determines whether the number of runs of ones and zeros of various length is ap-

proximately the same as it would be for a truly random bitstring. A run is an uninterrupted

sequence of identical bits.

4. Longest Run of Ones in a Block: Determines whether the longest run of ones in M -bit

blocks of a bitstring is approximately the same as it would be for a truly random bitstring.

(A deviation from random for longest run of ones also indicates a deviation for longest run

of zeros, thus only one test is needed.) The preset value for M is 104 for bitstrings of length

greater than 750, 000; this is what we use.

5. Binary Matrix Rank: Determines whether the linear independence (i.e. rank) of disjoint

M × Q matrices built from an input bitstring is approximately the same as it would be for a

truly random bitstring. The preset values M = Q = 32 are used.

6. Discrete Fourier Transform (Spectral): Determines whether the spectral frequency of a

bitstring is approximately the same as it would be for a truly random bitstring.

7. Non-Overlapping Template Matching: Determines whether the number of occurrences of

an m-bit aperiodic pattern within a bitstring is approximately the same as it would be for a

truly random bitstring. Patterns are not allowed to overlap. We use the default recommended

value for our input size: m = 9. This test is actually comprised of 148 separate tests for

different preset patterns.

8. Overlapping Template Matching: Determines whether the number of occurrences of an

m-bit all-one pattern within a bitstring is approximately the same as it would be for a truly

random bitstring. The pattern may overlap. We use the default recommended value for our

input size: m = 9.

9. Maurer’s “Universal Statistical” Test: Determines whether the achievable level of com-

pression of a bitstring is approximately the same as it would be for a truly random bitstring.

A bitstring that can be compressed significantly is considered to exhibit non-random behavior.
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10. Linear Complexity: Determines whether the length of a Linear Feedback Shift Register

(LFSR) that adequately models M -bit blocks in a bitstring is approximately the same as it

would be for a truly random bitstring. A block that can be adequately modeled by a small

LFSR is considered to exhibit non-random behavior. We use the default recommended value

for our input size: M = 500.

11. Serial: Determines whether the frequency of all possible overlapping m-bit patterns is ap-

poximately the same as it would be for a truly random bitstring. Note that for m = 1, this

is equivalent to the previously described Frequency test. We use the default recommended

value for our input size: m = 16.

12. Approximate Entropy: Determines whether the frequency of all possible m- and (m+1)-bit

patterns is approximately the same as it would be for a truly random bitstring. We use the

default recommended value for our input size: m = 10.

13. Cumulative Sums (Cusums): Determines whether the (forward and reverse) cumulative

sums of a bitstring are approximately the same as they would be for a truly random bitstring.

A cumulative sum that is too large or small indicates too many ones or zeros in the early (for

forward) or late (for reverse) stages of the bitstring.

14. Random Excursions: Determines whether the distribution of the number of visits of a one-

dimensional random walk to a certain state is approximately the same as it would be for a

truly random bitstring. This test is actually comprised of eight separate tests, one for each of

the states in [−4,−1] ∪ [+1,+4].

15. Random Excursions Variant: Determines whether the distribution of the number of visits

across many one-dimensional random walks to a certain state is approximately the same as it

would be for a truly random bitstring. This test is actually comprised of 18 separate tests, one

for each of the states in [−9,−1] ∪ [+1,+9].

To interpret the results of each test, one needs to understand some very basic probability theory.

The null hypothesis is the hypothesis that there exists no statistical significance in a given set of

observations. We accept or reject the null hypothesis based on the results of each test on each

bitstring. For our purposes, accepting the null hypothesis means that the bitstream in question

exhibits no significant non-random behavior; this is what we desire. Each STS test outputs a P-

value (between 0 and 1) that summarizes the strength of the evidence against the null hypothesis.

It indicates the probability that a perfectly random bitstring would have produced a sequence less

random than the one under test. For example, if a test returns a P-value of 1, then the bitstring under

test exhibits perfect randomness.

In order to translate this to a pass/fail test, we must choose a significance level, denoted α, such

that if P-value ≥ α then the null hypothesis is accepted. We use the default NIST-recommended

value of α = .01 here. This means that an acceptance of the null hypothesis has a 99% confidence

level. In other words, we expect that one out of every 100 truly random bitstrings is falsely rejected.

6.1.3 Results

NIST recommends two approaches for interpreting the results of a statistical test for all bitstrings

in an input file. The first is based on the proportion of P-values which pass (i.e. for which the null



39

hypothesis is accepted for that bitstring). The STS directly provides support for this. The second

is based on the distribution of P-values. The STS provides some support for this, but further work

is needed to come up with an overall pass/fail result for each test. For this, we wrote the script

provided in Section E.3.

P-value Proportions

The first method of interpreting test results for an entire input file is based on the proportion of

bitstrings that generate P-values which pass the test. Acceptable proportions are given by the con-

fidence interval

p̂± 3

√

p̂(1− p̂)

m
,

where p̂ = 1 − α = 0.99 and m = 128 is the sample size. In our case, the lower bound on the

confidence interval is approximately 0.9636. If a proportion is below this, the test on that input file

fails. The Random Excursions Variant test does not always use all m = 128 inputs it is given and

thus the lower bound may be decreased in some cases. The details behind this are considered out

of scope of this thesis. However, we do note that the minimum lower bound for this particular test

occurs at approximately 0.9576 when m = 66 is used.

We present in Table 6.1 the pass/fail results for every number of rounds up to the maximum of

16 as provided directly by the NIST STS output. If a test failed, we indicate which test it was and

the corresponding P-value. For tests which consist of numerous subtests, we list exactly which test

failed. For example, a failed Non-Overlapping Template test includes the template number. A failed

Random Excursion (Variant) test includes the state it failed on.

At first, it may seem alarming that statistical tests are failing at all. However, one must take

into account that the proportion for a failed test at most exceeds the lower bound less than .03.

Furthermore, there are no significantly repeated failures; that is, no specific test fails a high number

of times and therefore raises a concern. While the Non-Overlapping Template test does fail more

often than others, it represents the vast majority of the overall tests run and so this is expected. In

addition, it does not repeatedly fail on a specific template.

We contrast these results with those found for the AES candidate HPC in [59]. This was the only

AES candidate found to exhibit definitively non-random statistical behavior. HPC failed 23.96% of

the time in multiple tests, which is far greater than our failure rate. In the same year it was discovered

that HPC suffers from equivalent keys [61]. Our results are similar to the rest of the AES candidate

algorithms, for which there are no real statistical anomalies.

P-value Distribution

It is also important to verify that the distribution of P-values for each test is uniform enough. Even

if a test passed in the previous section, a uniformity failure on the P-values indicates non-random

behavior. The uniformity test NIST recommends involves computing a χ2 statistic with nine degrees

of freedom on the “binned” P-values for each test. NIST provides minimal support for this by

binning the P-values into 10 equally spaced intervals for each test. The χ2 statistic is given by

χ2 =
10
∑

i=1

(Fi −
s
10)

2

s
10

,
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# Rounds # Tests Passed # Tests Failed Failed Tests & Proportions

1 188 1 Spectral (0.9609)

2 188 1 Random Excursions Variant [+3] (0.9529)

3 187 2
Non-Overlapping Template [#58] (0.9531)

Random Excursions Variant [+2] (0.9529)

4 187 2
Non-Overlapping Template [#54] (0.9609)

Overlapping Template (0.9609)

5 187 2
Non-Overlapping Template [#32] (0.9609)

Non-Overlapping Template [#86] (0.9609)

6 187 2
Non-Overlapping Template [#4] (0.9531)

Non-Overlapping Template [#100] (0.9609)

7 186 3
Non-Overlapping Template [#22] (0.9609)

Non-Overlapping Template [#68] (0.9609)

Random Excursions [+4] (0.9420)

8 187 2
Non-Overlapping Template [#126] (0.9453)

Non-Overlapping Template [#137] (0.9609)

9 187 2
Non-Overlapping Template [#12] (0.9609)

Random Excursions [-1] (0.9467)

10 188 1 Non-Overlapping Template [#103] (0.9609)

11 187 2
Non-Overlapping Template [#45] (0.9453)

Non-Overlapping Template [#109] (0.9609)

12 186 3
Spectral (0.9609)

Non-Overlapping Template [#104] (0.9609)

Non-Overlapping Template [#110] (0.9609)

13 189 0 N/A

14 188 1 Non-Overlapping Template [#79] (0.9531)

15 189 0 N/A

16 186 3
Non-Overlapping Template [#81] (0.9609)

Non-Overlapping Template [#102] (0.9609)

Non-Overlapping Template [#130] (0.9531)

Table 6.1: NIST Statistical Test Suite results



41

where Fi is the number of P-values in bin i and s is the sample size. A new valued called P-valueT
is then calculated as follows:

P-valueT = igamc(
9

2
,
χ2

2
)

where igamc is the incomplete gamma function given by

Q(a, x) =
1

Γ(a)

∞
∫

x

e−tta−1dt

and the gamma function Γ is

Γ(z) =

∞
∫

0

tz−1e−tdt.

The resulting P-valueT is compared to a new significance level α = .0001 as recommended by

NIST. If P-valueT ≥ α then the uniformity test passes.

Our Python script uses the SciPy library [62] to help compute P-valueT for every test and for

every number of rounds. There were zero uniformity failures for each number of rounds tested up

to the maximum of 16.

6.2 Avalanche Testing

The avalanche criterion (AC) is stated as follows: when a single bit of the input changes, on average

half of the output bits should change. For our construction, it makes most sense to test for the AC at

the permutation level. In particular, we are interested in how many rounds it takes for the AC to be

satisfied. At this number of rounds, the permutation f is said to achieve full diffusion. Intuitively,

it is good practice to maximize the number of full diffusions achieved within the number of rounds

used for the algorithm.

As part of our permutation test code given in Section E.1.5, we provide a function for computing

the average Hamming distance (i.e. number of bits changed) between the input and output for every

number of rounds up to the maximum of 16. This is done by, for each number of rounds, consec-

utively toggling one bit at a time of the initial state and running the permutation, keeping track of

Hamming distances between the inputs and outputs along the way. The minimum and maximum

Hamming distances are also computed for completeness. The results of this experiment are shown

in Table 6.2.

From this table, it is clear that full diffusion is achieved over the entire 512-bit state after just

three rounds of the underlying permutation. This means that for a 128-bit key with 10 rounds, three

full diffusions are achieved. For a 256-bit key with 16 rounds, five full diffusions are achieved.

As with the NIST STS results, this does not at all imply resistance against powerful attacks such

as linear and differential cryptanalysis. In fact, linear and differential cryptanalysis have been shown

to be very effective against cryptographic primitives which satisfy the AC [63]. We present these

results merely as further proof of the excellent diffusive capabilities of our bitwise permutation and

mixing steps.
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# Rounds Average HD Min HD Max HD

1 21.94 10 36
2 180.29 113 242
3 256.28 223 283
4 256.10 226 287
5 256.40 220 289
6 256.55 227 293
7 255.50 211 287
8 255.65 220 289
9 256.20 219 289
10 256.05 219 295
11 256.87 218 287
12 255.39 224 291
13 255.18 218 289
14 256.82 224 288
15 256.04 223 290
16 255.41 221 286

Table 6.2: Avalanche test results for the permutation f
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we designed an authenticated encryption algorithm based on the duplex construc-

tion that we believe to be highly secure. This algorithm can be customized on a per-user or per-

application basis by following the guidelines we presented as part of its specification. We believe

that this is the only customizable authenticated encryption algorithm to date. Furthermore, we

believe that this is the first cryptosystem to use a 16-bit S-box. We have shown that this large S-

box, when combined with good diffusion, provides superior resistance against differential and linear

cryptanalysis due to its small differential probabilities and linear biases. Because this S-box is based

on bijective power mappings over a Galois field, it can be efficiently implemented in hardware (like

the rest of our algorithm) and does not require a look-up table.

Following the algorithm specification, we presented a survey of state of the art cryptanalysis

techniques and assessed our algorithm’s resistance against them. Additionally, we provided a com-

prehensive statistical evaluation of the cryptosystem through the use of existing tools as well as our

own. Our algorithm demonstrates no significant non-random statistical behavior and its underlying

permutation achieves full diffusion on the entire 512-bit state after only three rounds.

7.2 Future Work

The scope of this thesis is quite wide. As a result, there are many items that we would love to

research further but have so far been unable to. Several of these items are provided here.

1. Cryptanalysis: The duplex construction we use guarantees security against generic attacks,

and our underlying permutation is designed for resistance against many powerful cryptanaly-

sis techniques. However, as with all cryptosystems, further cryptanalysis is always welcome

and encouraged. In particular, it is likely possible to prove better bounds for our resistance

against differential and linear cryptanalysis. So far, we have proved only the absolute worst

case. Furthermore, it could be interesting to dig deeper into the fairly new bit-oriented inte-

gral attacks. While we strongly believe our permutation to be secure against such an attack,

it would be a worthwhile exercise to attempt to prove this resistance.

2. Hardware Design: Due to time constraints we have only provided a software model of the

algorithm in this thesis. In practice, our algorithm is intended for hardware (e.g. FPGA)

implementation. One of the natural next steps is to implement the construction in hardware

and benchmark its performance.
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3. S-boxes: The particular instantiation of our algorithm described in Chapter 4 uses a specific

S-box based on bijective power mappings. We analyzed this S-box to determine its maximum

differential probability and maximum linear bias. There are several other similar S-boxes

provided in [33]. It would be helpful to also analyze these other S-boxes in order to determine

if their statistical properties are much different. If the maximum probabilities and biases are

very close to those of our particular S-box, these other S-boxes could be swapped in as a

customization without the need for determining new security margins (and possibly adjusting

the number of rounds). In addition, it would be extremely fruitful to find completely new

cryptographically secure 16-bit S-boxes that are efficiently implementable in hardware.

4. Large Mixers: Part of the reason that we use a 2 × 2 matrix multiplication for our mixer is

that it is extremely efficient to implement in hardware. It is well known that the maximum

branch number of an m × m matrix is m + 1. We achieve the maximum differential and

linear branch number of three with this mixer. Larger matrices are capable of achieving

higher branch numbers, and so it would be interesting to further explore them. In particular,

Maximum Distance Separable (MDS) matrices such as the one used in AES are capable of

achieving the maximum branch number. However, the construction of large MDS matrices

that are efficiently implementable is a difficult problem [38]. An in-depth analysis of the

tradeoff between a large MDS matrix with fewer rounds and a small matrix with more rounds

is welcome for future work.

5. ARX-Based Mixers: As part of the work that did not make it into the final AE algorithm

presented here, we analyzed many ARX-based mixers. None of these mixers were able to

achieve a branch number greater than two (the worst possible). So far it is unclear what

an ARX-based mixer with branch number equal to three would look like, if it even exists.

While we believe that our matrix multiplication-based mixer is an excellent choice, it would

still be interesting to further analyze ARX-based mixers in an attempt to generalize their

characteristics with respect to differential and linear cryptanalysis.
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Appendix A

PRESENT Trail Illustration

Figure A.1: Example of an attack on PRESENT that arose due to poor selection of a bitwise

permutation. The combination of fixed-points and a low-order permutation results in a trail which

minimizes the number of active S-boxes across four rounds [35].
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Appendix B

Bitwise Permutation Listing

The following bitwise permutations defined by the affine function

π(x) = αx+ β

satisfy all required properties listed in Chapter 4. The order of all bitwise permutations listed here

is 32.

α 31 33 95 97 159 161 223 225 287 289 351 353 415 417 479 481

C
o
rr

es
p

o
n

d
in

g
β

v
a
lu

es

15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16

31 48 31 48 31 48 31 48 31 48 31 48 31 48 31 48

47 80 47 80 47 80 47 80 47 80 47 80 47 80 47 80

63 112 63 112 63 112 63 112 63 112 63 112 63 112 63 112

79 144 79 144 79 144 79 144 79 144 79 144 79 144 79 144

95 176 95 176 95 176 95 176 95 176 95 176 95 176 95 176

111 208 111 208 111 208 111 208 111 208 111 208 111 208 111 208

127 240 127 240 127 240 127 240 127 240 127 240 127 240 127 240

143 272 143 272 143 272 143 272 143 272 143 272 143 272 143 272

159 304 159 304 159 304 159 304 159 304 159 304 159 304 159 304

175 336 175 336 175 336 175 336 175 336 175 336 175 336 175 336

191 368 191 368 191 368 191 368 191 368 191 368 191 368 191 368

207 400 207 400 207 400 207 400 207 400 207 400 207 400 207 400

223 432 223 432 223 432 223 432 223 432 223 432 223 432 223 432

239 464 239 464 239 464 239 464 239 464 239 464 239 464 239 464

255 496 255 496 255 496 255 496 255 496 255 496 255 496 255 496

271 271 271 271 271 271 271 271

287 287 287 287 287 287 287 287

303 303 303 303 303 303 303 303

319 319 319 319 319 319 319 319

335 335 335 335 335 335 335 335

351 351 351 351 351 351 351 351

367 367 367 367 367 367 367 367

383 383 383 383 383 383 383 383

399 399 399 399 399 399 399 399

415 415 415 415 415 415 415 415

431 431 431 431 431 431 431 431

447 447 447 447 447 447 447 447

463 463 463 463 463 463 463 463

479 479 479 479 479 479 479 479

495 495 495 495 495 495 495 495

511 511 511 511 511 511 511 511

Table B.1: Bitwise permutations satisfying all desired properties
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Appendix C

ARX-Based Mixers

As part of the design process for the cryptosystem described in this thesis, many ARX-based mixers

were analyzed before deciding to switch to a mixer based on matrix multiplication in a Galois field.

None of these ARX-based mixers were able to increase the linear and differential branch numbers

from two to three, which is one of our requirements. For completeness, we enumerate all of the

mixers we analyzed here.

One of the mixers is based on the ARX structure used in Threefish, the block cipher used within

SHA-3 candidate Skein [64]. Another is based on the recently released lightweight block cipher

Speck that was created by the National Security Agency [65]. From these ideas, more complex

ARX structures were constructed and analyzed.

In all diagrams shown here, the ROT operation represents all possible nontrivial left and right

rotations on a single word. Mixers corresponding to every single combination of rotations were

analyzed. The ⊞ symbol denotes addition modulo 216. It is a nonlinear operation due to effect of

the carry bit. The ⊕ symbol denotes XOR, as usual.
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A B

ROT

A′ B′

Figure C.1: Candidate mixer inspired by Threefish
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A B

ROT

ROT

A′ B′

Figure C.2: Candidate mixer inspired by Speck
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Figure C.3: Custom candidate mixers
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Appendix D

Known Answer Tests

Key (128) 00000000000000000000000000000000

IV 00000000000000000000000000000000

A (header) 0000000000000000000000000000000000000000000000000000000000000000

B (body)
0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

Ciphertext
55851b98d902192aa6e0f23738205b74802c7702b5b88bd44de711f4188d5a43

a5fcfdd178e6e8e05a28761723974fe978c1c83d378a40490bf5e944f862b452

Tag (MAC) 2a0ae2db865ec69dc7a075d089986466

Key (128) 00000000000000000000000000000000

IV 00000000000000000000000000000000

A (header)
0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

B (body)

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

Ciphertext

a5fcfdd178e6e8e05a28761723974fe978c1c83d378a40490bf5e944f862b452

9f671ea19fbc2611d372b98ba6eda6f46ef6b6123ec2c1512e7c9e0cfd878a87

46726b4fe11801f76457be25f0ba2b662a0ae2db865ec69dc7a075d089986466

f360b07d5d532261868d610ffa26cc4d8cbdc43cf9f777ce7cb3861b2ff35022

Tag (MAC) b42652acb41d263633b554bb15bad007
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Key (128) 00000000000000000000000000000000

IV 00000000000000000000000000000000

A (header) (empty)

B (body) 0000000000000000000000000000000000000000000000000000000000000000

Ciphertext daa223c25a6dacc0934c82a7c0bf45e730d4bc43cb07e36703a34e24655c4c65

Tag (MAC) 802c7702b5b88bd44de711f4188d5a43

Key (128) 00000000000000000000000000000001

IV 00000000000000000000000000000000

A (header) (empty)

B (body) 0000000000000000000000000000000000000000000000000000000000000000

Ciphertext e77f18fee964bc2c4a3419a3cf97c558b38d5649af7877a31793cb7850ec8d61

Tag (MAC) 51c466c4d46e4a94d627452d1802a257

Key (128) a110c8b01dc0ffeedea110c8a11decaf

IV 12345678901234567890123456789012

A (header) (empty)

B (body) b0a710ad50fc0c0a5ca1ab1eca55e77e

Ciphertext f80da4aa7a9a54541902747e4eef2977

Tag (MAC) 8f81ba4c838d9f5ee93bbef40752a0f8
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Key (256) 0000000000000000000000000000000000000000000000000000000000000000

IV 00000000000000000000000000000000

A (header) 0000000000000000000000000000000000000000000000000000000000000000

B (body)
0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

Ciphertext
53fe8b7d1cfefc5f12fe27b42efe8669d1f15b0ecfb0b8adcc0aeeee50f170d7

ce5a0e25d9b03dc55057e093fbaad8e5b83cb0fbc3249e3e38ec9bc7966b177e

Tag (MAC) 1770e24ce3ddeaed27a817c41d6af97b

Key (256) 0000000000000000000000000000000000000000000000000000000000000000

IV 00000000000000000000000000000000

A (header)
0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

B (body)

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

Ciphertext

ce5a0e25d9b03dc55057e093fbaad8e5b83cb0fbc3249e3e38ec9bc7966b177e

0fc577cf886970f3638628130c7e0b0264ca2017d5f150cd9a2c0866008319ce

f9feb4a28983be315cfb538fcb79f30c1770e24ce3ddeaed27a817c41d6af97b

531d26ae76128bfc19fa632472f010d57c14a906fef7801110125a0e1ef3fd9a

Tag (MAC) d29be6e3b6013168e83421743a82fed2

Key (256) 0000000000000000000000000000000000000000000000000000000000000000

IV 00000000000000000000000000000000

A (header) (empty)

B (body) 0000000000000000000000000000000000000000000000000000000000000000

Ciphertext ed2376dfe1268a96f10cad1f97f7a9d38838ff1abc53459a1f395170f552f3ec

Tag (MAC) d1f15b0ecfb0b8adcc0aeeee50f170d7
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Key (256) 0000000000000000000000000000000000000000000000000000000000000001

IV 00000000000000000000000000000000

A (header) (empty)

B (body) 0000000000000000000000000000000000000000000000000000000000000000

Ciphertext b1fc1266e17b4aac3bf582ce759c1f21c16e30d893e455f0246eaf948a83d9d3

Tag (MAC) 558b474275fc8910a6b713eed680c5d6

Key (256) a110c8b01dc0ffeedea110c8a11decafa110c8b01dc0ffeedea110c8a11decaf

IV 12345678901234567890123456789012

A (header) (empty)

B (body) b0a710ad50fc0c0a5ca1ab1eca55e77e

Ciphertext d1c39640e6e42373c54a727d4ed45cd6

Tag (MAC) 2e15194003f7ed304557991dc19e4e88
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Appendix E

Source Code Listings

E.1 AE Algorithm Software Implementation

E.1.1 State.h

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ A 512− b i t s t a t e s p l i t i n t o 32 16− b i t words .

∗ P r o v i d e s word and b i t a c c e s s .

∗ I n c l u d e s a l l n e c e s s a r y f u n c t i o n s f o r absorb ing , s q u e e z i n g , copy ing , e t c .

∗

∗ Author : Matt K e l l y

∗ Date : June 2014

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# i f n d e f STATE H

# d e f i n e STATE H

# i n c l u d e <s t d i n t . h>

# i n c l u d e <s t d i o . h>

# i n c l u d e <s t d e x c e p t> / / s t d : : o u t o f r a n g e

# i n c l u d e <s t r i n g . h> / / memcpy

# d e f i n e WIDTH 512

# d e f i n e WORD SIZE 16

# d e f i n e NUM WORDS WIDTH / WORD SIZE

c l a s s S t a t e {

p r i v a t e :

u i n t 1 6 t s t a t e [NUM WORDS] ;

p u b l i c :

/∗∗

∗ C o n s t r u c t o r − c r e a t e new a l l−z e r o s t a t e

∗ /

S t a t e ( )

{

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

s t a t e [ i ] = 0 ;

}

/∗∗

∗ Copy c o n s t r u c t o r

∗ /

S t a t e ( c o n s t S t a t e &o t h e r )

{

memcpy ( s t a t e , o t h e r . s t a t e , s i z e o f ( s t a t e ) ) ;

}

/∗∗

∗ Copy c o n t e n t s o f t h i s s t a t e i n t o g i v e n o u t p u t array ,

∗ s t a r t i n g from g i v e n o f f s e t .

∗ /

void copy ( u i n t 1 6 t o u t p u t [ ] , i n t numWords , i n t o f f s e t )

{
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memcpy(& o u t p u t [ o f f s e t ] , s t a t e , s i z e o f ( u i n t 1 6 t ) ∗ numWords ) ;

}

/∗∗

∗ R e t u r n r e f e r e n c e t o word a t g i v e n i n d e x i n s t a t e

∗ /

u i n t 1 6 t& operator [ ] ( c o n s t unsigned i n t x )

{

i f ( x > NUM WORDS − 1 )

throw s t d : : o u t o f r a n g e ( ” I n v a l i d i n d e x ” ) ;

re turn s t a t e [ x ] ;

}

/∗∗

∗ R e t u r n r e f e r e n c e t o word a t g i v e n i n d e x i n s t a t e

∗ /

c o n s t u i n t 1 6 t& operator [ ] ( c o n s t unsigned i n t x ) c o n s t

{

i f ( x > NUM WORDS − 1 )

throw s t d : : o u t o f r a n g e ( ” I n v a l i d i n d e x ” ) ;

re turn s t a t e [ x ] ;

}

/∗∗

∗ R e t u r n t r u e i f t h i s s t a t e i s e q u a l t o o t h e r s t a t e

∗ /

c o n s t bool operator ==( c o n s t S t a t e& o t h e r )

{

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

i f ( s t a t e [ i ] != o t h e r [ i ] ) re turn f a l s e ;

re turn t rue ;

}

/∗∗

∗ R e t u r n t r u e i f t h i s s t a t e i s d i f f e r e n t from o t h e r s t a t e

∗ /

c o n s t bool operator ! = ( c o n s t S t a t e& o t h e r ) { re turn ! operator ==( o t h e r ) ; }

/∗∗

∗ Get b i t a t g i v e n i n d e x

∗ /

i n t g e t B i t ( unsigned i n t x ) c o n s t

{

re turn ( s t a t e [ x / 16] >> ( x % 1 6 ) ) & 1 ;

}

/∗∗

∗ Clear b i t a t g i v e n i n d e x

∗ /

void c l e a r B i t ( unsigned i n t x )

{

s t a t e [ x / 16] &= ˜ ( 1 << ( x % 1 6 ) ) ;

}

/∗∗

∗ S e t b i t a t g i v e n i n d e x

∗ /

void s e t B i t ( unsigned i n t x )

{

s t a t e [ x / 16] |= (1 << ( x % 1 6 ) ) ;

}

/∗∗

∗ I n v e r t b i t a t g i v e n i n d e x

∗ /

void i n v e r t B i t ( unsigned i n t x )

{

s t a t e [ x / 16] ˆ= (1 << ( x % 1 6 ) ) ;

}

/∗∗

∗ S e t o u t e r r = 128 b i t s o f s t a t e t o g i v e n v a l u e



63

∗ /

void s e t O u t e r S t a t e ( u i n t 1 6 t v a l u e [ 8 ] )

{

memcpy ( s t a t e , va lue , s i z e o f ( u i n t 1 6 t ) ∗ 8 ) ;

}

/∗∗

∗ XOR o u t e r r = 128 b i t s o f s t a t e w i t h g i v e n v a l u e

∗ Assumpt ion : v a l u e i s c o r r e c t l e n g t h

∗ /

void x o r O u t e r S t a t e ( u i n t 1 6 t v a l u e [ 8 ] )

{

f o r ( i n t i = 0 ; i < 8 ; ++ i )

s t a t e [ i ] ˆ= v a l u e [ i ] ;

}

/∗∗

∗ S e t i n n e r c = 384 b i t s o f s t a t e t o g i v e n v a l u e

∗ /

void s e t I n n e r S t a t e ( u i n t 1 6 t v a l u e [ 2 4 ] )

{

memcpy(& s t a t e [ 8 ] , va lue , s i z e o f ( u i n t 1 6 t ) ∗ 8 ) ;

}

/∗∗

∗ Clear a l l b i t s ( s e t s t a t e t o 0 x000 . . . 0 )

∗ /

void c l e a r A l l ( )

{

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

s t a t e [ i ] = 0 x0000 ;

}

/∗∗

∗ S e t a l l b i t s ( s e t s t a t e t o 0xFFF . . . F )

∗ /

void s e t A l l ( )

{

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

s t a t e [ i ] = 0xFFFF ;

}

/∗∗

∗ Get t h e hamming w e i g h t o f t h i s s t a t e

∗ /

i n t getHW ( )

{

i n t hw = 0 ;

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i ) {

u i n t 1 6 t x = s t a t e [ i ] ;

whi le ( x ) {

i f ( x & 1 ) hw++;

x >>= 1 ;

}

}

re turn hw ;

}

/∗∗

∗ Get t h e hamming d i s t a n c e from t h i s s t a t e t o a n o t h e r s t a t e

∗ /

i n t getHammingDis tance ( S t a t e o t h e r )

{

i n t hd = 0 ;

f o r ( i n t i = 0 ; i < WIDTH; ++ i )

i f ( g e t B i t ( i ) != o t h e r . g e t B i t ( i ) ) hd ++;

re turn hd ;

}

/∗∗

∗ P r i n t s t a t e i n words w i t h n i c e f o r m a t t i n g

∗ /
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void p r i n t ( FILE ∗o u t = s t d o u t )

{

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i ) {

i f ( i > 0 && i % 8 == 0 ) f p r i n t f ( out , ”\n ” ) ;

f p r i n t f ( out , ”%04hx ” , s t a t e [ i ] ) ;

}

f p r i n t f ( out , ”\n\n ” ) ;

}

/∗∗

∗ P r i n t s t a t e i n b i t s w i t h n i c e f o r m a t t i n g

∗ /

void p r i n t B i t s ( FILE ∗o u t = s t d o u t )

{

f o r ( i n t i = 0 ; i < WIDTH; ++ i ) {

i f ( i > 0 && i % 128 == 0 ) f p r i n t f ( out , ”\n ” ) ;

i f ( i > 0 && i % 16 == 0 && i % 128 != 0)

f p r i n t f ( out , ” ” ) ;

f p r i n t f ( out , ”%d ” , g e t B i t ( i ) ) ;

}

f p r i n t f ( out , ”\n\n ” ) ;

}

/∗∗

∗ P r i n t s t a t e i n b i t s w i t h no f o r m a t t i n g

∗ /

void dumpBits ( FILE ∗o u t = s t d o u t )

{

f o r ( i n t i = 0 ; i < WIDTH; ++ i )

f p r i n t f ( out , ”%d ” , g e t B i t ( i ) ) ;

f p r i n t f ( out , ”\n ” ) ;

}

} ;

# e n d i f /∗ STATE H ∗ /

E.1.2 MixerGF.h

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ M a t h e m a t i c a l f u n c t i o n s f o r GF( 2 ˆ 1 6 )

∗ The i r r e d u c i b l e p o l y n o m i a l x ˆ16 + x ˆ5 + x ˆ3 + x ˆ2 + 1 i s used .

∗

∗ Author : Matt K e l l y

∗ Date : June 2014

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# i f n d e f MIXER GF H

# d e f i n e MIXER GF H

# i n c l u d e <s t d i n t . h>

# i n c l u d e <s t d i o . h>

# i n c l u d e ” s t r i n g . h ”

/∗ F i e l d p o l y n o m i a l = x ˆ16 + x ˆ5 + x ˆ3 + x ˆ2 + 1 ∗ /

# d e f i n e FIELD POLY 0 x002d

/∗

∗ M u l t i p l y two p o l y n o m i a l s i n GF( 2 ˆ 1 6 ) , u s i n g t h e

∗ LSB f i r s t a l g o r i t h m

∗ /

u i n t 1 6 t g f m u l t i p l y ( u i n t 1 6 t a , u i n t 1 6 t b )

{

u i n t 1 6 t i ;

u i n t 1 6 t acc = 0 x0000 ; /∗ Accumula tor ∗ /

u i n t 1 6 t msb ; /∗ C u r r e n t MSB o f a ∗ /

f o r ( i = 0 ; i < 1 6 ; ++ i ) {

/∗ I f LSB o f b i s 1 , add a t o a c c u m u l a t o r ∗ /

i f ( b & 0 x0001 ) acc ˆ= a ;
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/∗ S t o r e MSB o f a , t h e n s h i f t i t o f f ∗ /

msb = a & 0 x8000 ;

a <<= 1 ;

/∗ I f MSB o f a was 1 , add f i e l d p o l y n o m i a l t o a ∗ /

i f ( msb ) a ˆ= FIELD POLY ;

/∗ Advance t o n e x t b i t o f b ∗ /

b >>= 1 ;

}

re turn acc ;

}

/∗

∗ D i v i d e two p o l y n o m i a l s ( b / a ) i n GF( 2 ˆ 1 6 )

∗ /

void g f d i v i d e ( u i n t 1 6 t a , u i n t 1 6 t b , u i n t 1 6 t ∗q , u i n t 1 6 t ∗r , u i n t 1 6 t f i e l d p o l y )

{

u i n t 1 6 t i = 0 ;

u i n t 1 6 t j ;

u i n t 1 6 t q u o t i e n t = 0 x0000 ; /∗ Q u o t i e n t ∗ /

u i n t 1 6 t rem = b ; /∗ Remainder ∗ /

u i n t 1 6 t msb a ; /∗ C u r r e n t MSB o f a ∗ /

/∗ Perform i n i t i a l a l i g n m e n t ∗ /

msb a = a & 0 x8000 ;

whi le ( ! msb a && i < 16 ) {

a <<= 1 ;

msb a = a & 0 x8000 ;

i ++;

}

/∗ Take care o f f i e l d p o l y n o m i a l MSB ( b i t 8 ) ∗ /

i f ( f i e l d p o l y ) {

q u o t i e n t |= (1 << ( i + 1 ) ) ;

rem ˆ= ( a << 1 ) ;

}

/∗ Compute f o r r e m a i n i n g b i t s a f t e r a l i g n m e n t ∗ /

/∗ From t h i s p o i n t msb a i s a lways 1 ∗ /

f o r ( j = 0 ; j < i +1 ; ++ j ) {

i f ( ( rem << j ) & 0 x8000 ) {

/∗ Reduce i f needed ∗ /

q u o t i e n t |= (1 << ( i−j ) ) ;

rem ˆ= a ;

}

a >>= 1 ;

}

∗q = q u o t i e n t ;

∗ r = rem ;

}

/∗

∗ Find m u l t i p l i c a t i v e i n v e r s e o f a number i n GF( 2 ˆ 1 6 )

∗ u s i n g t h e Ex tended E u c l i d A l g o r i t h m .

∗ /

u i n t 1 6 t g f i n v e r s e ( u i n t 1 6 t a )

{

/∗ Map 0 x0000 t o 0 x0000 ∗ /

i f ( a == 0 x0000 ) {

re turn 0 x0000 ;

}

u i n t 1 6 t b = FIELD POLY ;

u i n t 1 6 t rem [ 1 6 ] ;

u i n t 1 6 t aux [ 1 6 ] ;

u i n t 1 6 t q , r ;

u i n t 1 6 t i ;

rem [ 0 ] = b ;

rem [ 1 ] = a ;

aux [ 0 ] = 0 ;

aux [ 1 ] = 1 ;
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i = 1 ;

whi le ( rem [ i ] > 0 x0001 ) {

i ++;

i f ( i == 2 )

g f d i v i d e ( rem [ i −1] , rem [ i −2] , &q , &r , 1 ) ;

e l s e

g f d i v i d e ( rem [ i −1] , rem [ i −2] , &q , &r , 0 ) ;

rem [ i ] = r ;

aux [ i ] = g f m u l t i p l y ( q , aux [ i −1]) ˆ aux [ i −2];

}

/∗ I n v e r s e o f A ( x ) i s i n c u r r e n t i n d e x o f aux ∗ /

re turn aux [ i ] ;

}

/∗

∗ C a l c u l a t e t h e i n v e r s e o f a 2 x2 m a t r i x

∗ I n p u t m a t r i x i s assumed t o be i n v e r t i b l e

∗ /

void g f 2 x 2 i n v e r s e ( u i n t 1 6 t M[ 2 ] [ 2 ] )

{

u i n t 1 6 t i ;

u i n t 1 6 t A[ 2 ] [ 4 ] = {{M[ 0 ] [ 0 ] , M[ 0 ] [ 1 ] , 1 , 0} ,

{M[ 1 ] [ 0 ] , M[ 1 ] [ 1 ] , 0 , 1}};

/ / S e t A [ 0 ] [ 0 ] t o 1

u i n t 1 6 t a 0 0 i n v = g f i n v e r s e (A [ 0 ] [ 0 ] ) ;

f o r ( i = 0 ; i < 4 ; ++ i )

A[ 0 ] [ i ] = g f m u l t i p l y ( a00 inv , A[ 0 ] [ i ] ) ;

/ / S e t A [ 1 ] [ 0 ] t o 0

u i n t 1 6 t a10 = A [ 1 ] [ 0 ] ;

f o r ( i = 0 ; i < 4 ; ++ i )

A[ 1 ] [ i ] = A[ 1 ] [ i ] ˆ g f m u l t i p l y ( a10 , A[ 0 ] [ i ] ) ;

/ / S e t A [ 1 ] [ 1 ] t o 1

u i n t 1 6 t a 1 1 i n v = g f i n v e r s e (A [ 1 ] [ 1 ] ) ;

f o r ( i = 0 ; i < 4 ; ++ i )

A[ 1 ] [ i ] = g f m u l t i p l y ( a11 inv , A[ 1 ] [ i ] ) ;

/ / S e t A [ 0 ] [ 1 ] t o 0

u i n t 1 6 t a01 = A [ 0 ] [ 1 ] ;

f o r ( i = 0 ; i < 4 ; ++ i )

A[ 0 ] [ i ] ˆ= g f m u l t i p l y ( a01 , A[ 1 ] [ i ] ) ;

/ / R e t u r n i n M

M[ 0 ] [ 0 ] = A [ 0 ] [ 2 ] ;

M[ 0 ] [ 1 ] = A [ 0 ] [ 3 ] ;

M[ 1 ] [ 0 ] = A [ 1 ] [ 2 ] ;

M[ 1 ] [ 1 ] = A [ 1 ] [ 3 ] ;

}

# e n d i f /∗ MIXER GF H ∗ /

E.1.3 SboxGF.h

This code was written by Christopher Wood as part of his thesis work in [33]; we merely condensed

it for brevity here.

/∗∗

∗ Author : C h r i s t o p h e r A . Wood , caw4567@rit . edu

∗

∗ M o d i f i e d by Matt K e l l y i n June 2014 f o r b r e v i t y .

∗ /

# i f n d e f SBOXGF H

# d e f i n e SBOXGF H
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# i n c l u d e <s t d i n t . h>

# i n c l u d e <s t d i o . h>

/ / Q u o t i e n t and rema inder s t r u c t

t y p e d e f s t r u c t

{

u i n t 1 6 t q ;

u i n t 1 6 t r ;

u i n t 8 t e r r o r ;

} QR;

/ / B i t masks f o r t h e MSB and LSB

# d e f i n e MSB 16 0 x8000

# d e f i n e HMSB 16 0 x10000

# d e f i n e LSB 0x1

/ / S t a n d a r d d e f i n i t i o n s ( f o r sbox16 . c )

# d e f i n e PX 16 0x002B

# d e f i n e FPX 16 0x1002B

u i n t 1 6 t g16 add ( u i n t 1 6 t x , u i n t 1 6 t y )

{

re turn x ˆ y ;

}

u i n t 1 6 t g16 sub ( u i n t 1 6 t x , u i n t 1 6 t y )

{

re turn x ˆ y ;

}

u i n t 1 6 t g16 mul ( u i n t 1 6 t x , u i n t 1 6 t y )

{

u i n t 1 6 t accum = 0 ;

u i n t 1 6 t msb = 0 ;

u i n t 1 6 t i ;

f o r ( i = 0 ; i < 1 6 ; i ++)

{

i f ( y & LSB ) accum ˆ= x ;

msb = ( x & MSB 16 ) ; / / f e t c h t h e MSB

x <<= 1 ;

i f ( msb ) x ˆ= PX 16 ;

y >>= 1 ;

}

re turn accum ;

}

/∗∗

∗ P o l y n o m i a l d i v i s i o n i n GF ( 2 ˆ 1 6 ) .

∗ /

QR g 1 6 d i v ( u i n t 3 2 t a i , u i n t 1 6 t b )

{

u i n t 1 6 t a = ( u i n t 1 6 t ) a i ;

i n t msb = MSB 16 ;

i n t d = 0 ;

QR r e s u l t = {0 , 0} ;

/ / A l i g n t h e denomina tor w i t h t h e numera tor

whi le ( b > 0 && ! ( b & MSB 16 ) ) {

++d ;

b <<= 1 ;

}

/ / I f t h e p o l y n o m i a l MSB i s s e t (17 t h b i t ) , i n c r e m e n t

/ / t h e q u o t i e n t and r ed uc e t h e numera tor .

i f ( a i & HMSB 16 ) {

r e s u l t . q ˆ= 1 << ( d + 1 ) ;

a ˆ= b << 1 ;

}

f o r ( ; d > −1; d−−) {

i f ( ( a & msb ) && ( b & msb ) ) {

r e s u l t . q ˆ= 1 << d ;
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a ˆ= b ;

}

msb >>= 1 ;

b >>=1;

}

r e s u l t . r = a ;

re turn r e s u l t ;

}

/∗∗

∗ Modular i n v e r s e i n GF( 2 ˆ 1 6 ) u s i n g t h e EEA a l g o r i t h m .

∗ /

u i n t 1 6 t g 1 6 i n v ( u i n t 1 6 t x )

{

/ / T r i v i a l s p e c i a l c a s e s .

i f ( x == 0) re turn 0 ;

i f ( x == 1) re turn 1 ;

u i n t 1 6 t r0 = PX 16 ; / / rem [ i − 2]

u i n t 1 6 t r1 = x ; / / rem [ i − 1]

u i n t 1 6 t a0 = 0 ; / / aux [ i − 2]

u i n t 1 6 t a1 = 1 ; / / aux [ i − 1]

u i n t 1 6 t tmp ;

QR qr ;

i n t f i r s t R u n = 0 ;

whi le ( r1 > 0)

{

i f ( f i r s t R u n != 0) q r = g 1 6 d i v ( r0 , r1 ) ;

e l s e

{

qr = g 1 6 d i v ( FPX 16 , r1 ) ;

f i r s t R u n ++;

}

r0 = r1 ; r1 = qr . r ;

tmp = a0 ; a0 = a1 ;

a1 = g16 add ( tmp , g16 mul ( q r . q , a1 ) ) ;

}

re turn a0 ;

}

u i n t 1 6 t g 1 6 c h a n g e b a s i s ( u i n t 1 6 t x , u i n t 1 6 t∗ M)

{

i n t 3 2 t i ;

u i n t 1 6 t y = 0 ;

f o r ( i = 1 5 ; i >= 0 ; i−−)

{

i f ( x & 1) y ˆ= M[ i ] ;

x >>= 1 ;

}

re turn y ;

}

# e n d i f /∗ SBOXGF H ∗ /

E.1.4 Sbox16.h

This code was written by Christopher Wood as part of his thesis work in [33]; we merely condensed

it for brevity here.

/∗∗

∗ Author : C h r i s t o p h e r A . Wood , caw4567@rit . edu

∗

∗ M o d i f i e d by Matt K e l l y i n June 2014 f o r b r e v i t y .
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∗ /

# i f n d e f SBOXGF H

# d e f i n e SBOXGF H

# i n c l u d e <s t d i n t . h>

# i n c l u d e <s t d i o . h>

/ / Q u o t i e n t and rema inder s t r u c t

t y p e d e f s t r u c t

{

u i n t 1 6 t q ;

u i n t 1 6 t r ;

u i n t 8 t e r r o r ;

} QR;

/ / B i t masks f o r t h e MSB and LSB

# d e f i n e MSB 16 0 x8000

# d e f i n e HMSB 16 0 x10000

# d e f i n e LSB 0x1

/ / S t a n d a r d d e f i n i t i o n s ( f o r sbox16 . c )

# d e f i n e PX 16 0x002B

# d e f i n e FPX 16 0x1002B

u i n t 1 6 t g16 add ( u i n t 1 6 t x , u i n t 1 6 t y )

{

re turn x ˆ y ;

}

u i n t 1 6 t g16 sub ( u i n t 1 6 t x , u i n t 1 6 t y )

{

re turn x ˆ y ;

}

u i n t 1 6 t g16 mul ( u i n t 1 6 t x , u i n t 1 6 t y )

{

u i n t 1 6 t accum = 0 ;

u i n t 1 6 t msb = 0 ;

u i n t 1 6 t i ;

f o r ( i = 0 ; i < 1 6 ; i ++)

{

i f ( y & LSB ) accum ˆ= x ;

msb = ( x & MSB 16 ) ; / / f e t c h t h e MSB

x <<= 1 ;

i f ( msb ) x ˆ= PX 16 ;

y >>= 1 ;

}

re turn accum ;

}

/∗∗

∗ P o l y n o m i a l d i v i s i o n i n GF ( 2 ˆ 1 6 ) .

∗ /

QR g 1 6 d i v ( u i n t 3 2 t a i , u i n t 1 6 t b )

{

u i n t 1 6 t a = ( u i n t 1 6 t ) a i ;

i n t msb = MSB 16 ;

i n t d = 0 ;

QR r e s u l t = {0 , 0} ;

/ / A l i g n t h e denomina tor w i t h t h e numera tor

whi le ( b > 0 && ! ( b & MSB 16 ) ) {

++d ;

b <<= 1 ;

}

/ / I f t h e p o l y n o m i a l MSB i s s e t (17 t h b i t ) , i n c r e m e n t

/ / t h e q u o t i e n t and r ed uc e t h e numera tor .

i f ( a i & HMSB 16 ) {

r e s u l t . q ˆ= 1 << ( d + 1 ) ;

a ˆ= b << 1 ;

}
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f o r ( ; d > −1; d−−) {

i f ( ( a & msb ) && ( b & msb ) ) {

r e s u l t . q ˆ= 1 << d ;

a ˆ= b ;

}

msb >>= 1 ;

b >>=1;

}

r e s u l t . r = a ;

re turn r e s u l t ;

}

/∗∗

∗ Modular i n v e r s e i n GF( 2 ˆ 1 6 ) u s i n g t h e EEA a l g o r i t h m .

∗ /

u i n t 1 6 t g 1 6 i n v ( u i n t 1 6 t x )

{

/ / T r i v i a l s p e c i a l c a s e s .

i f ( x == 0) re turn 0 ;

i f ( x == 1) re turn 1 ;

u i n t 1 6 t r0 = PX 16 ; / / rem [ i − 2]

u i n t 1 6 t r1 = x ; / / rem [ i − 1]

u i n t 1 6 t a0 = 0 ; / / aux [ i − 2]

u i n t 1 6 t a1 = 1 ; / / aux [ i − 1]

u i n t 1 6 t tmp ;

QR qr ;

i n t f i r s t R u n = 0 ;

whi le ( r1 > 0)

{

i f ( f i r s t R u n != 0) q r = g 1 6 d i v ( r0 , r1 ) ;

e l s e

{

qr = g 1 6 d i v ( FPX 16 , r1 ) ;

f i r s t R u n ++;

}

r0 = r1 ; r1 = qr . r ;

tmp = a0 ; a0 = a1 ;

a1 = g16 add ( tmp , g16 mul ( q r . q , a1 ) ) ;

}

re turn a0 ;

}

u i n t 1 6 t g 1 6 c h a n g e b a s i s ( u i n t 1 6 t x , u i n t 1 6 t∗ M)

{

i n t 3 2 t i ;

u i n t 1 6 t y = 0 ;

f o r ( i = 1 5 ; i >= 0 ; i−−)

{

i f ( x & 1) y ˆ= M[ i ] ;

x >>= 1 ;

}

re turn y ;

}

# e n d i f /∗ SBOXGF H ∗ /

E.1.5 Permutation.h

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ The u n d e r l y i n g sponge p e r m u t a t i o n f .

∗

∗ Author : Matt K e l l y
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∗ Date : June 2014

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# i f n d e f PERMUTATION H

# d e f i n e PERMUTATION H

# i n c l u d e ” S t a t e . h ”

# i n c l u d e ” Sbox16 . h ”

# i n c l u d e ” MixerGF . h ”

c l a s s P e r m u t a t i o n {

p r i v a t e :

i n t numRounds ;

c o n s t u i n t 1 6 t RC[ 1 6 ] [ 3 2 ] =

/ / SHA3−512( ASCII ( 1 ) )

{{0x0019 , 0 x7a4f , 0 x5f1 f , 0 xf8c3 , 0 x56a7 , 0 x8f69 , 0 x21b5 , 0 xa6bf , 0 xbf71 , 0 xdf8d , 0 xbd31 , 0 x3fbc , 0 x5095 , 0 xa55d , 0 xe756 , 0 xbfa1 ,

0 xea72 , 0 x4069 , 0 x5005 , 0 x1492 , 0 x94f2 , 0 xa2e4 , 0 x19ae , 0 x251f , 0 xe2f7 , 0 xdbb6 , 0 x7c3b , 0 xb647 , 0 xc2ac , 0 x1be0 , 0 x5eec , 0 x7e f9 } ,

/ / SHA3−512( ASCII ( 2 ) )

{0xac3b , 0 x6998 , 0 xac9c , 0 x5e2c , 0 x7ee8 , 0 x3300 , 0 x10a7 , 0 xb0f8 , 0 x7ac9 , 0 xdee7 , 0 xea54 , 0 x7d4d , 0 x8cd0 , 0 x0ab7 , 0 xad1b , 0 xd5f5 ,

0 x7f80 , 0 xaf2b , 0 xa711 , 0 xa9eb , 0 x137b , 0 x4e83 , 0 xb503 , 0 xd24c , 0 xd766 , 0 x5399 , 0 xa487 , 0 x34d4 , 0 x 7 f f f , 0 x324f , 0 xb745 , 0 x51e2} ,

/ / SHA3−512( ASCII ( 3 ) )

{0 xce4f , 0 xd406 , 0 x8e56 , 0 xeb07 , 0 xa6e7 , 0 x9d00 , 0 x7aed , 0 x4bc8 , 0 x257e , 0 x1082 , 0 x7c74 , 0 xee42 , 0 x2d82 , 0 xa29b , 0 x2ce8 , 0 xcb07 ,

0 x9fea , 0 xd81d , 0 x9df0 , 0 x513b , 0 xb577 , 0 xf3b6 , 0 xc478 , 0 x43b1 , 0 x7c96 , 0 x4e7f , 0 x f8 f4 , 0 x198f , 0 x3202 , 0 x7533 , 0 xeaf5 , 0 xbcc1} ,

/ / SHA3−512( ASCII ( 4 ) )

{0x5058 , 0 xcb97 , 0 x5975 , 0 x c e f f , 0 x027d , 0 x1326 , 0 x4889 , 0 x12e1 , 0 x99b7 , 0 x9b91 , 0 x6ad9 , 0 x0a3f , 0 xe2fd , 0 x0150 , 0 x8cd7 , 0 xd7c0 ,

0 x1bc8 , 0 xaaa4 , 0 xd21a , 0 x8473 , 0 xfb15 , 0 xf3b1 , 0 x51ab , 0 x9e44 , 0 x172e , 0 x9ccb , 0 x70a5 , 0 xea04 , 0 x495a , 0 xf3ec , 0 x03b5 , 0 x153e} ,

/ / SHA3−512( ASCII ( 5 ) )

{0x84da , 0 x272d , 0 x13a4 , 0 x4f08 , 0 x98ee , 0 x4ea5 , 0 x3334 , 0 xc255 , 0 xd894 , 0 xcc54 , 0 xd357 , 0 xc554 , 0 x66d7 , 0 x60de , 0 xbde4 , 0 x82a2 ,

0 x44c1 , 0 x28df , 0 x641e , 0 x8067 , 0 x3a8b , 0 xc34a , 0 x1620 , 0 xd880 , 0 xb796 , 0 x5e54 , 0 x9f31 , 0 x3ddc , 0 xcfd5 , 0 x06b0 , 0 x7341 , 0 x3b87} ,

/ / SHA3−512( ASCII ( 6 ) )

{0xbb93 , 0 xaaa2 , 0 x3b38 , 0 xea96 , 0 xc934 , 0 x6ef9 , 0 x1e18 , 0 x4982 , 0 xbf50 , 0 xe910 , 0 x33f4 , 0 x354e , 0 xcb20 , 0 xd3c7 , 0 x390c , 0 x2b41 ,

0 x862e , 0 x8825 , 0 xec3d , 0 x0fee , 0 x0a6f , 0 x9788 , 0 x81f9 , 0 x0728 , 0 xc674 , 0 x8e4a , 0 xed8b , 0 x7323 , 0 x5007 , 0 x5d6c , 0 x2bdd , 0 x8e4b} ,

/ / SHA3−512( ASCII ( 7 ) )

{0xfe32 , 0 xf3eb , 0 xa766 , 0 x26de , 0 xdf36 , 0 x622b , 0 xfdc5 , 0 xccd3 , 0 x3db2 , 0 xf3e0 , 0 xdd7c , 0 x3c12 , 0 x8298 , 0 xea78 , 0 xc1cc , 0 x7fee ,

0 x1a14 , 0 x0edb , 0 x8e57 , 0 xcd58 , 0 x24c7 , 0 xf4b8 , 0 x17c0 , 0 xfc94 , 0 xe70d , 0 xa5b9 , 0 x399f , 0 xaaf9 , 0 xa848 , 0 xa46a , 0 xd306 , 0 x79e9} ,

/ / SHA3−512( ASCII ( 8 ) )

{0x952b , 0 xa024 , 0 x86b8 , 0 x18fe , 0 xbc0e , 0 xc985 , 0 x59df , 0 x27c7 , 0 x9357 , 0 x838f , 0 x011b , 0 x1e5b , 0 xc11f , 0 x2cfb , 0 x6fc0 , 0 x573e ,

0x5459 , 0 x78c2 , 0 xbc5b , 0 x390f , 0 x4490 , 0 x7f8d , 0 xa0df , 0 xd682 , 0 x06fe , 0 x4521 , 0 xf86b , 0 xa6c8 , 0 x79ec , 0 x1e69 , 0 xcaed , 0 x9533} ,

/ / SHA3−512( ASCII ( 9 ) )

{0xb41e , 0 x6bb4 , 0 xed20 , 0 x2940 , 0 x1639 , 0 x9c26 , 0 x8da6 , 0 xbf88 , 0 xc89e , 0 x2dc1 , 0 x18a3 , 0 x61b3 , 0 x560e , 0 xe8da , 0 xed97 , 0 x3a8f ,

0x9778 , 0 xdf40 , 0 xe308 , 0 xc120 , 0 x6fa4 , 0 x2f97 , 0 xf3 fd , 0 x3f63 , 0 xd2b4 , 0 xb3b5 , 0 x7eb5 , 0 xbcbe , 0 xc6ad , 0 x64d4 , 0 x6216 , 0 xb692} ,

/ / SHA3−512( ASCII ( 1 0 ) )

{0x6954 , 0 xa418 , 0 xcecc , 0 x4363 , 0 x3bd5 , 0 x26c2 , 0 x499d , 0 xfc16 , 0 xb832 , 0 xf58b , 0 x216b , 0 x9a8b , 0 x226a , 0 x6a0b , 0 x7918 , 0 xd364 ,

0 xa793 , 0 x9004 , 0 x339d , 0 xe0ba , 0 x08e2 , 0 xb547 , 0 xe64d , 0 xc562 , 0 x2e24 , 0 xb0c4 , 0 x f8 f4 , 0 x15d9 , 0 xe0a8 , 0 x4cb9 , 0 x4b6c , 0 x 5 f 3 f } ,

/ / SHA3−512( ASCII ( 1 1 ) )

{0x2e4b , 0 x9ad3 , 0 x7091 , 0 xe3e5 , 0 xa218 , 0 xc5e5 , 0 x7b33 , 0 xed34 , 0 x70ba , 0 x4f31 , 0 x f b c f , 0 x1642 , 0 x4684 , 0 xfdd5 , 0 xcde3 , 0 x8e88 ,

0 x9eae , 0 x3f01 , 0 x8b37 , 0 xaf58 , 0 xc24c , 0 xcc8a , 0 xf57a , 0 xbc2c , 0 x6911 , 0 x408d , 0 xd20e , 0 xf643 , 0 x5e44 , 0 x94a3 , 0 xe659 , 0 x9a06} ,

/ / SHA3−512( ASCII ( 1 2 ) )

{0xaa42 , 0 xaca7 , 0 x3bd7 , 0 xf8a1 , 0 x7e98 , 0 x7f28 , 0 x1422 , 0 xb266 , 0 xe44f , 0 x0de1 , 0 x615d , 0 x2d39 , 0 x3c62 , 0 x0c8c , 0 x5a2c , 0 x80b4 ,

0 xf061 , 0 x78c8 , 0 x455b , 0 xf981 , 0 x7960 , 0 x3f2 f , 0 x1bcb , 0 x30b2 , 0 x559f , 0 x282c , 0 x799e , 0 x4053 , 0 x3b06 , 0 x65f9 , 0 x7a2a , 0 x706a} ,

/ / SHA3−512( ASCII ( 1 3 ) )

{0x969c , 0 x39ae , 0 x2dc1 , 0 x6834 , 0 x3103 , 0 x44c0 , 0 x579d , 0 x0f fd , 0 xfde0 , 0 x1772 , 0 xdbf9 , 0 xa4ca , 0 xb984 , 0 x953c , 0 x395d , 0 x7791 ,

0x1510 , 0 xf39e , 0 x5f37 , 0 x295e , 0 x3611 , 0 xa1d4 , 0 x6101 , 0 x460d , 0 xaf73 , 0 x1ddb , 0 xdab1 , 0 xec1b , 0 xbc51 , 0 x2edc , 0 x4468 , 0 x0d8d} ,

/ / SHA3−512( ASCII ( 1 4 ) )

{0x8a1e , 0 x6ce3 , 0 x1f0b , 0 x526d , 0 x884b , 0 x584a , 0 xa1a5 , 0 xae42 , 0 x94fc , 0 x f85f , 0 xd2e5 , 0 x25f9 , 0 x59ed , 0 x1a54 , 0 x2333 , 0 x59c7 ,

0 xc5fe , 0 xce6d , 0 x2477 , 0 x5e7d , 0 x4a9a , 0 xd97c , 0 x2632 , 0 xa3be , 0 x5b33 , 0 x1a8f , 0 x580f , 0 x557b , 0 x269e , 0 x7b65 , 0 x123a , 0 x5992} ,

/ / SHA3−512( ASCII ( 1 5 ) )

{0x9bd6 , 0 x4a93 , 0 x2f09 , 0 x672d , 0 xef04 , 0 xb6a9 , 0 x4753 , 0 xa3e4 , 0 x087a , 0 x1c38 , 0 x9507 , 0 x8dc7 , 0 x0927 , 0 xfcd7 , 0 x7488 , 0 x8dfd ,

0x400b , 0 x95fd , 0 x1c6a , 0 x0b2a , 0 x91a1 , 0 xba44 , 0 xeea0 , 0 x9f51 , 0 x63db , 0 xa4df , 0 xa9da , 0 x7b8e , 0 xb97d , 0 x791c , 0 xab56 , 0 x6437} ,

/ / SHA3−512( ASCII ( 1 6 ) )

{0x4840 , 0 x1f65 , 0 xc2d2 , 0 xd9e7 , 0 x1fe4 , 0 x7bd8 , 0 x0b28 , 0 xd834 , 0 xeee8 , 0 x f f f 3 , 0 xbe9a , 0 xa460 , 0 x8cba , 0 x33e6 , 0 xfedc , 0 xe0b1 ,

0 x693c , 0 x80cd , 0 xc36d , 0 xb7f5 , 0 x04e4 , 0 xabea , 0 x23cc , 0 xc672 , 0 x9a03 , 0 x0f5b , 0 x3e03 , 0 x5fb5 , 0 x9c2c , 0 x7882 , 0 x15cf , 0 x84a8}};

p u b l i c :

/∗∗

∗ C o n s t r u c t a p e r m u t a t i o n w i t h t h e g i v e n number o f rounds .

∗ /

P e r m u t a t i o n ( i n t numRounds )

{

numRounds = numRounds ;

}
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/∗∗

∗ Per forms s u b s t i t u t i o n u s i n g 16 x16−b i t S−box

∗ /

u i n t 1 6 t sub16 ( u i n t 1 6 t a )

{

re turn s b o x f o r w a r d ( a ) ;

}

/∗∗

∗ Per forms i n v e r s e s u b s t i t u t i o n u s i n g 16 x16−b i t S−box

∗ /

u i n t 1 6 t s u b 1 6 I n v e r s e ( u i n t 1 6 t a )

{

re turn s b o x i n v e r s e ( a ) ;

}

/∗∗

∗ Per forms a d d i t i o n modulo 65536 on two 16− b i t i n p u t s

∗ /

u i n t 1 6 t add ( u i n t 1 6 t a , u i n t 1 6 t b )

{

re turn ( u i n t 1 6 t ) ( ( ( u i n t 3 2 t ) ( a + b ) ) % 6 5 5 3 6 ) ;

}

/∗∗

∗ R o t a t e l e f t by g i v e n amount

∗ /

u i n t 1 6 t r o t l ( u i n t 1 6 t a , i n t r o t C o n s t )

{

re turn ( ( a << r o t C o n s t ) | ( a >> (16 − r o t C o n s t ) ) ) ;

}

/∗∗

∗ R o t a t e r i g h t by g i v e n amount

∗ /

u i n t 1 6 t r o t r ( u i n t 1 6 t a , i n t r o t C o n s t )

{

re turn ( ( a >> r o t C o n s t ) | ( a << (16 − r o t C o n s t ) ) ) ;

}

/∗∗

∗ Apply m i x i ng f u n c t i o n based on m a t r i x m u l t i p l i c a t i o n i n GF

∗ /

void mix ( u i n t 1 6 t &a , u i n t 1 6 t &b )

{

u i n t 1 6 t a i n = a ;

u i n t 1 6 t M[ 2 ] [ 2 ] = {{0x0001 , 0 x0002} , {0x0002 , 0 x0003}};

a = g f m u l t i p l y ( a i n , M[ 0 ] [ 0 ] ) ˆ g f m u l t i p l y ( b , M[ 0 ] [ 1 ] ) ;

b = g f m u l t i p l y ( a i n , M[ 1 ] [ 0 ] ) ˆ g f m u l t i p l y ( b , M[ 1 ] [ 1 ] ) ;

}

/∗∗

∗ Apply i n v e r s e m i x i ng f u n c t i o n based on m a t r i x m u l t i p l i c a t i o n i n GF

∗ /

void m i x I n v e r s e ( u i n t 1 6 t &a , u i n t 1 6 t &b )

{

u i n t 1 6 t a i n = a ;

u i n t 1 6 t M[ 2 ] [ 2 ] = {{0x0001 , 0 x0002} , {0x0002 , 0 x0003}};

g f 2 x 2 i n v e r s e (M) ;

a = g f m u l t i p l y ( a i n , M[ 0 ] [ 0 ] ) ˆ g f m u l t i p l y ( b , M[ 0 ] [ 1 ] ) ;

b = g f m u l t i p l y ( a i n , M[ 1 ] [ 0 ] ) ˆ g f m u l t i p l y ( b , M[ 1 ] [ 1 ] ) ;

}

/∗∗

∗ Perform a b i t w i s e p e r m u t a t i o n d e f i n e d by t h e a f f i n e f u n c t i o n

∗ p i ( x ) = a lpha ∗ x + b e t a

∗ where gcd ( alpha , 512) = 1 t o e n s u r e i n v e r t i b i l i t y .

∗ /

void p e r m u t e B i t s ( S t a t e &s t a t e , i n t a lpha , i n t b e t a )

{

S t a t e s t a t e C o p y ( s t a t e ) ;
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f o r ( i n t i = 0 ; i < WIDTH; ++ i ) {

i n t newIndex = ( a l p h a∗ i + b e t a ) & (WIDTH−1);

i f ( s t a t e C o p y . g e t B i t ( i ) )

s t a t e . s e t B i t ( newIndex ) ;

e l s e

s t a t e . c l e a r B i t ( newIndex ) ;

}

}

/∗∗

∗ Perform i n v e r s e b i t w i s e p e r m u t a t i o n d e f i n e d by t h e i n v e r s e a f f i n e f u n c t i o n

∗ p i ˆ{−1}(x ) = a l p h a I n v e r s e ∗ ( x − b e t a )

∗ /

void p e r m u t e B i t s I n v e r s e ( S t a t e &s t a t e , i n t a l p h a I n v e r s e , i n t b e t a )

{

S t a t e s t a t e C o p y ( s t a t e ) ;

f o r ( i n t i = 0 ; i < WIDTH; ++ i ) {

/ / i & ( n−1) == i mod n f o r n power o f 2

i n t newIndex = ( a l p h a I n v e r s e ∗( i−b e t a ) ) & (WIDTH−1);

i f ( s t a t e C o p y . g e t B i t ( i ) )

s t a t e . s e t B i t ( newIndex ) ;

e l s e

s t a t e . c l e a r B i t ( newIndex ) ;

}

}

/∗∗

∗ P e r m u t a t i o n s t e p .

∗ /

void permute ( S t a t e &s t a t e )

{

p e r m u t e B i t s ( s t a t e , 31 , 1 5 ) ;

}

/∗∗

∗ I n v e r s e p e r m u t a t i o n s t e p .

∗ /

void p e r m u t e I n v e r s e ( S t a t e &s t a t e )

{

p e r m u t e B i t s I n v e r s e ( s t a t e , 479 , 1 5 ) ;

}

/∗∗

∗ Add RC i t o t h e s t a t e .

∗ /

void addRC ( S t a t e &s t a t e , i n t roundNum )

{

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

s t a t e [ i ] ˆ= RC[ roundNum ] [ i ] ;

}

/∗∗

∗ A forward round .

∗ /

void round ( S t a t e &s t a t e , i n t roundNum , bool v e r b o s e = f a l s e )

{

/ / S−box

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

s t a t e [ i ] = s b o x f o r w a r d ( s t a t e [ i ] ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r S−box :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

/ / Permute

permute ( s t a t e ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r pe rmute :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

/ / Mix
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i n t k = 0 ; / / Mixer number

f o r ( i n t j = 0 ; j < NUM WORDS; j += 2 )

mix ( s t a t e [ j ] , s t a t e [ j + 1 ] ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r mix :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

/ / Add round c o n s t a n t

addRC ( s t a t e , roundNum ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r addRC :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

}

/∗∗

∗ An i n v e r s e round .

∗ /

void r o u n d I n v e r s e ( S t a t e &s t a t e , i n t roundNum , bool v e r b o s e = f a l s e )

{

/ / Add round c o n s t a n t

addRC ( s t a t e , roundNum ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r addRC i n v e r s e :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

/ / Mix i n v e r s e

i n t k = 0 ; / / Mixer number

f o r ( i n t j = 0 ; j < NUM WORDS; j += 2 )

m i x I n v e r s e ( s t a t e [ j ] , s t a t e [ j + 1 ] ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r m i x I n v e r s e :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

/ / Permute i n v e r s e

p e r m u t e I n v e r s e ( s t a t e ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r pe rmute i n v e r s e :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

/ / S−box i n v e r s e

f o r ( i n t i = 0 ; i < NUM WORDS; ++ i )

s t a t e [ i ] = s b o x i n v e r s e ( s t a t e [ i ] ) ;

i f ( v e r b o s e ) {

p r i n t f ( ” A f t e r S−box i n v e r s e :\n ” ) ;

s t a t e . p r i n t ( ) ;

}

}

/∗∗

∗ Run t h e forward p e r m u t a t i o n .

∗ /

void f o r w a r d ( S t a t e &s t a t e , bool v e r b o s e = f a l s e )

{

f o r ( i n t i = 0 ; i < numRounds ; ++ i )

round ( s t a t e , i , v e r b o s e ) ;

}

/∗∗

∗ Run t h e i n v e r s e p e r m u t a t i o n .

∗ /

void i n v e r s e ( S t a t e &s t a t e , bool v e r b o s e = f a l s e )

{

f o r ( i n t i = 0 ; i < numRounds ; ++ i )

r o u n d I n v e r s e ( s t a t e , numRounds − i − 1 , v e r b o s e ) ;

}

} ; / / P e r m u t a t i o n
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# e n d i f /∗ PERMUTATION H ∗ /

E.1.6 Sponge.h

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ The s i m p l i f i e d sponge c o n s t r u c t i o n .

∗ Padding , i f n e c e s s a r y , i s assumed t o be done a t some

∗ h i g h e r l e v e l i n t h e o v e r a l l s y s t e m .

∗

∗ Author : Matt K e l l y

∗ Date : June 2014

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# i f n d e f SPONGE H

# d e f i n e SPONGE H

# i n c l u d e <a s s e r t . h>

# i n c l u d e ” S t a t e . h ”

# i n c l u d e ” P e r m u t a t i o n . h ”

c l a s s Sponge {

p r i v a t e :

S t a t e s t a t e ;

P e r m u t a t i o n f ;

p u b l i c :

/∗

∗ C o n s t r u c t a new Sponge w i t h t h e g i v e n number o f rounds .

∗ /

Sponge ( i n t numRounds )

: f ( numRounds ) {}

/∗∗

∗ Absorb i n p u t da ta .

∗ A s s u m p t i o n s : i n p u t a r r a y i s c o r r e c t s i z e

∗ i n p u t i s a m u l t i p l e o f r = 128

∗ /

void a b s o r b ( u i n t 1 6 t i n p u t [ ] , i n t numWords )

{

a s s e r t ( numWords % 8 == 0 ) ;

i n t o f f s e t = 0 ;

whi le ( numWords > 0 ) {

s t a t e . x o r O u t e r S t a t e (& i n p u t [ o f f s e t ] ) ;

f . f o r w a r d ( s t a t e ) ;

numWords −= 8 ;

o f f s e t += 8 ;

}

}

/∗∗

∗ Squeeze o u t p u t da ta t o d e s i r e d l e n g t h .

∗ Assumpt ion : o u t p u t a r r a y i s c o r r e c t s i z e

∗ /

void s q u e e z e ( u i n t 1 6 t o u t p u t [ ] , i n t numWords ) {

/ / We can t a k e r = 128 b i t s (8 words ) per s q u e e z e

/ / a f t e r t h e f i r s t 128 b i t s

i f ( numWords <= 8 ) {

s t a t e . copy ( o u t p u t , numWords , 0 ) ;

} e l s e {

/ / F i r s t 8 words

s t a t e . copy ( o u t p u t , 8 , 0 ) ;

numWords −= 8 ;

i n t o f f s e t = 8 ;

whi le ( numWords >= 8 ) {

f . f o r w a r d ( s t a t e ) ;

s t a t e . copy ( o u t p u t , 8 , o f f s e t ) ;

numWords −= 8 ;
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o f f s e t += 8 ;

}

/ / L e f t o v e r

i f ( numWords > 0 ) {

f . f o r w a r d ( s t a t e ) ;

s t a t e . copy ( o u t p u t , numWords , o f f s e t ) ;

}

}

}

} ; /∗ SPONGE H ∗ /

# e n d i f

E.1.7 Duplex.h

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ The s i m p l i f i e d d u p l e x c o n s t r u c t i o n .

∗ Padding and domain s e p a r a t i o n ( f rame b i t h a n d l i n g ) , i f n e c e s s a r y ,

∗ are assumed t o be done a t some h i g h e r l e v e l i n t h e o v e r a l l s y s t e m .

∗

∗ Author : Matt K e l l y

∗ Date : June 2014

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# i f n d e f DUPLEX H

# d e f i n e DUPLEX H

# i n c l u d e ” Sponge . h ”

c l a s s Duplex {

p r i v a t e :

Sponge s p o ng e ;

i n t k e y S i z e ;

i n t i s I n i t i a l i z e d ;

p u b l i c :

/∗∗

∗ C o n s t r u c t a new Duplex o b j e c t w i t h t h e g i v e n key s i z e .

∗ /

Duplex ( i n t keySize , i n t numRounds )

: s p o n ge ( numRounds )

{

a s s e r t ( k e y S i z e == 128 | | k e y S i z e == 2 5 6 ) ;

k e y S i z e = k e y S i z e ;

i s I n i t i a l i z e d = 0 ;

}

/∗∗

∗ S e t t h e key by a b s o r b i n g i t w i t h a mute c a l l .

∗ /

void se tKey ( u i n t 1 6 t key [ ] )

{

i n t numWords = k e y S i z e / 1 6 ;

s p o ng e . a b s o r b ( key , numWords ) ;

}

/∗∗

∗ S e t t h e IV by a b s o r b i n g i t w i t h a mute c a l l .

∗ /

void s e t I V ( u i n t 1 6 t i v [ 8 ] )

{

s p o ng e . a b s o r b ( iv , 8 ) ;

}

/∗∗
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∗ S e t t h e key and IV w i t h two mute c a l l s .

∗ /

void i n i t i a l i z e ( u i n t 1 6 t key [ ] , u i n t 1 6 t i v [ 8 ] )

{

se tKey ( key ) ;

s e t I V ( i v ) ;

i s I n i t i a l i z e d = 1 ;

}

/∗∗

∗ Duplex ing c a l l :

∗ I n p u t may be any s i z e , i n c l u d i n g 0

∗ Outpu t may be any s i z e , i n c l u d i n g 0

∗ A s s u m p t i o n s : s igma i s c o r r e c t s i z e

∗ s igma i s m u l t i p l e o f r = 128

∗ z i s c o r r e c t s i z e

∗ /

void d u p l e x i n g ( u i n t 1 6 t s igma [ ] , i n t s igmaSize , u i n t 1 6 t z [ ] , i n t z S i z e )

{

a s s e r t ( i s I n i t i a l i z e d ) ;

i f ( s i g m a S i z e > 0 )

s p o n ge . a b s o r b ( sigma , s i g m a S i z e ) ;

i f ( z S i z e > 0 )

s p o n ge . s q u e e z e ( z , z S i z e ) ;

}

} ; / / Duplex

# e n d i f

E.1.8 TestPermutation.cpp

# i n c l u d e <s t d i o . h>

# i n c l u d e <s t d l i b . h> /∗ e x i t ∗ /

# i n c l u d e ” S t a t e . h ”

# i n c l u d e ” P e r m u t a t i o n . h ”

# d e f i n e NUM ROUNDS 16 / / d e f a u l t number o f rounds

/∗∗

∗ Check f o r a v a l a n c h e c r i t e r i o n over i n c r e a s i n g

∗ numbers o f rounds

∗ /

void t e s t A v a l a n c h e C r i t e r i o n ( i n t maxRounds )

{

f o r ( i n t round = 1 ; round <= maxRounds ; ++ round ) {

P e r m u t a t i o n f ( round ) ;

S t a t e z e r o S t a t e I n ;

S t a t e r e f S t a t e O u t ;

f . f o r w a r d ( r e f S t a t e O u t ) ;

f l o a t hdAvg = 0 ;

i n t hdMax = 0 ;

i n t hdMin = 512 ;

f o r ( i n t i = 0 ; i < WIDTH; ++ i ) {

S t a t e s t a t e I n ( z e r o S t a t e I n ) ;

s t a t e I n . s e t B i t ( i ) ;

S t a t e s t a t e O u t = S t a t e ( s t a t e I n ) ;

f . f o r w a r d ( s t a t e O u t ) ;

i n t hd = r e f S t a t e O u t . ge tHammingDis tance ( s t a t e O u t ) ;

hdAvg += hd ;

i f ( hd > hdMax ) hdMax = hd ;

i f ( hd < hdMin ) hdMin = hd ;

}

hdAvg /= 512 ;

p r i n t f ( ”−−−− %2d r o un ds −−−−\n\n ” , round ) ;

p r i n t f ( ”Avg HD: %.2 f\n ” , hdAvg ) ;

p r i n t f ( ”Max HD: %d\n ” , hdMax ) ;

p r i n t f ( ”Min HD: %d\n\n ” , hdMin ) ;

}
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}

/∗∗

∗ Keep f l i p p i n g a b i t o f t h e i n i t i a l s t a t e and comput ing t h e

∗ f o rward and i n v e r s e p e r m u t a t i o n s .

∗ I f a l l o f t h e s e t e s t s pass , we have h igh c o n f i d e n c e t h a t t h e

∗ t h e fo rward and i n v e r s e p e r m u t a t i o n s are c o r r e c t .

∗ /

void o n e O f f I n v e r s e ( )

{

S t a t e s t a t e ;

P e r m u t a t i o n f (NUM ROUNDS) ;

f o r ( i n t i = 0 ; i < 512 ; ++ i ) {

f o r ( i n t j = 0 ; j <= i ; ++ j )

s t a t e . s e t B i t ( j ) ;

S t a t e s t a t e C o p y = S t a t e ( s t a t e ) ;

f . f o r w a r d ( s t a t e C o p y , f a l s e ) ;

f . i n v e r s e ( s t a t e C o p y , f a l s e ) ;

i f ( s t a t e C o p y != s t a t e ) {

p r i n t f ( ”ERROR: s t a t e s do n o t match :\n\n ” ) ;

p r i n t f ( ” I n i t i a l s t a t e :\n ” ) ;

s t a t e . p r i n t ( ) ;

p r i n t f ( ” F i n a l s t a t e ( a f t e r round and r o u n d I n v e r s e ) :\ n ” ) ;

s t a t e C o p y . p r i n t ( ) ;

e x i t ( 1 ) ;

}

s t a t e . c l e a r A l l ( ) ;

}

s t a t e . s e t A l l ( ) ;

f o r ( i n t i = 0 ; i < 512 ; ++ i ) {

f o r ( i n t j = 0 ; j <= i ; ++ j )

s t a t e . c l e a r B i t ( j ) ;

S t a t e s t a t e C o p y = S t a t e ( s t a t e ) ;

f . f o r w a r d ( s t a t e C o p y , f a l s e ) ;

f . i n v e r s e ( s t a t e C o p y , f a l s e ) ;

i f ( s t a t e C o p y != s t a t e ) {

p r i n t f ( ”ERROR: s t a t e s do n o t match :\n\n ” ) ;

p r i n t f ( ” I n i t i a l s t a t e :\n ” ) ;

s t a t e . p r i n t ( ) ;

p r i n t f ( ” F i n a l s t a t e ( a f t e r round and r o u n d I n v e r s e ) :\ n ” ) ;

s t a t e C o p y . p r i n t ( ) ;

e x i t ( 1 ) ;

}

s t a t e . s e t A l l ( ) ;

}

p r i n t f ( ” A l l i n v e r s e t e s t s p a s s e d !\n ” ) ;

}

/∗∗

∗ Run t e s t s .

∗ /

i n t main ( )

{

o n e O f f I n v e r s e ( ) ;

t e s t A v a l a n c h e C r i t e r i o n (NUM ROUNDS) ;

}

E.1.9 DuplexKAT.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ G e n e r a t e s Known Answer T e s t s ( KATs ) f o r t h e Duplex c o n s t r u c t i o n .

∗

∗ Author : Matt K e l l y
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∗ Date : June 2014

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

# i n c l u d e ” Duplex . h ”

/∗∗

∗ P r i n t word a r r a y w i t h n i c e f o r m a t t i n g

∗ /

void p r i n t W o r d s ( u i n t 1 6 t a r r [ ] , i n t numWords , FILE ∗o u t = s t d o u t )

{

i f ( numWords == 0 )

f p r i n t f ( out , ” ( empty )\n ” ) ;

e l s e {

f o r ( i n t i = 0 ; i < numWords ; ++ i ) {

i f ( i == 0 ) f p r i n t f ( out , ” ” ) ;

i f ( i > 0 && i % 8 == 0 ) f p r i n t f ( out , ”\n ” ) ;

f p r i n t f ( out , ”%04hx ” , a r r [ i ] ) ;

}

f p r i n t f ( out , ”\n ” ) ;

}

}

/∗∗

∗ XOR a r r a y s A and B t o g e t h e r , o u t p u t t i n g i n D

∗ /

void x o r A r r a y s ( u i n t 1 6 t A[ ] , u i n t 1 6 t B [ ] , u i n t 1 6 t D[ ] , i n t numWords )

{

f o r ( i n t i = 0 ; i < numWords ; ++ i ) D[ i ] = A[ i ] ˆ B[ i ] ;

}

/∗∗

∗ P r i n t a s i n g l e KAT based on i n p u t da ta .

∗ IVs are r e s t r i c t e d t o 128 b i t s f o r s i m p l i c i t y .

∗ /

void genKAT ( u i n t 1 6 t key [ ] , i n t keySize , u i n t 1 6 t i v [ 8 ] ,

u i n t 1 6 t A[ ] , i n t headSize , u i n t 1 6 t B [ ] , i n t bodySize ,

i n t t a g S i z e )

{

u i n t 1 6 t CT[ bodySize ] ; / / C i p h e r t e x t

u i n t 1 6 t T [ 8 ] ; / / Tag

u i n t 1 6 t Z [ bodySize ] ; / / Dup lex ing o u t p u t

a s s e r t ( k e y S i z e == 128 | | k e y S i z e == 2 5 6 ) ;

/ / I n i t i a l i z e a new Duplex o b j e c t

Duplex D( keySize , k e y S i z e == 128 ? 10 : 1 6 ) ; / / 128− b i t key u s e s 10 rounds

D. i n i t i a l i z e ( key , i v ) ;

/ / Absorb header and g e n e r a t e k e y s t r e a m

D. d u p l e x i n g (A, headS ize , Z , bodySize ) ;

/ / XOR o u t p u t w i t h body t o p r o d u c t c i p h e r t e x t

x o r A r r a y s ( Z , B , CT , bodySize ) ;

/ / Absorb body and g e n e r a t e t a g

D. d u p l e x i n g (B , bodySize , T , t a g S i z e ) ;

p r i n t f ( ” #####################################\n ” ) ;

p r i n t f ( ”Key :\n ” ) ;

p r i n t W o r d s ( key , k e y S i z e / 1 6 ) ;

p r i n t f ( ” IV :\n ” ) ;

p r i n t W o r d s ( iv , 8 ) ;

p r i n t f ( ”A ( h e a d e r ) :\ n ” ) ;

p r i n t W o r d s (A, h e a d S i z e ) ;

p r i n t f ( ”B ( body ) :\ n ” ) ;

p r i n t W o r d s (B , bodySize ) ;

p r i n t f ( ”CT:\n ” ) ;

p r i n t W o r d s (CT , bodySize ) ;

p r i n t f ( ” Tag :\n ” ) ;

p r i n t W o r d s ( T , t a g S i z e ) ;

p r i n t f ( ” #####################################\n\n ” ) ;

}

/∗∗

∗ Genera te a l l KATs f o r 128− b i t key

∗ /
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void genKAT 128 ( ) {

u i n t 1 6 t i v [ 8 ] = {0}; / / IV c o u l d be any l e n g t h , b u t 128− b i t i s c o n v e n i e n t

u i n t 1 6 t key [ 8 ] = {0}; / / 128− b i t key

u i n t 1 6 t A[ 6 4 ] = {0}; / / Header

u i n t 1 6 t B[ 6 4 ] = {0}; / / Body

genKAT ( key , 128 , iv , A, 16 , B , 32 , 8 ) ;

genKAT ( key , 128 , iv , A, 32 , B , 64 , 8 ) ;

genKAT ( key , 128 , iv , A, 0 , B , 16 , 8 ) ;

/ / F l i p a b i t o f t h e key

u i n t 1 6 t key2 [ 8 ] = {0x0000 , 0x0000 , 0x0000 , 0x0000 ,

0x0000 , 0x0000 , 0x0000 , 0 x0001} ;

genKAT ( key2 , 128 , iv , A, 0 , B , 16 , 8 ) ;

u i n t 1 6 t key3 [ 8 ] = {0xa110 , 0 xc8b0 , 0 x1dc0 , 0 x f f e e ,

0 xdea1 , 0 x10c8 , 0 xa11d , 0 x e c a f } ;

u i n t 1 6 t i v 2 [ 8 ] = {0x1234 , 0x5678 , 0x9012 , 0x3456 ,

0x7890 , 0x1234 , 0x5678 , 0 x9012} ;

u i n t 1 6 t B2 [ 8 ] = {0xb0a7 , 0 x10ad , 0 x50fc , 0 x0c0a ,

0 x5ca1 , 0 xab1e , 0 xca55 , 0 xe77e } ;

genKAT ( key3 , 128 , iv2 , A, 0 , B2 , 8 , 8 ) ;

}

/∗∗

∗ Genera te a l l KATs f o r 256− b i t key

∗ /

void genKAT 256 ( ) {

u i n t 1 6 t i v [ 8 ] = {0}; / / IV c o u l d be any l e n g t h , b u t 128− b i t i s c o n v e n i e n t

u i n t 1 6 t key [ 1 6 ] = {0}; / / 256− b i t key

u i n t 1 6 t A[ 6 4 ] = {0}; / / Header

u i n t 1 6 t B[ 6 4 ] = {0}; / / Body

genKAT ( key , 256 , iv , A, 16 , B , 32 , 8 ) ;

genKAT ( key , 256 , iv , A, 32 , B , 64 , 8 ) ;

genKAT ( key , 256 , iv , A, 0 , B , 16 , 8 ) ;

/ / F l i p a b i t o f t h e key

u i n t 1 6 t key2 [ 1 6 ] = {0x0000 , 0x0000 , 0x0000 , 0x0000 ,

0x0000 , 0x0000 , 0x0000 , 0x0000 ,

0x0000 , 0x0000 , 0x0000 , 0x0000 ,

0x0000 , 0x0000 , 0x0000 , 0 x0001} ;

genKAT ( key2 , 256 , iv , A, 0 , B , 16 , 8 ) ;

u i n t 1 6 t key3 [ 1 6 ] = {0xa110 , 0 xc8b0 , 0 x1dc0 , 0 x f f e e ,

0 xdea1 , 0 x10c8 , 0 xa11d , 0 xeca f ,

0 xa110 , 0 xc8b0 , 0 x1dc0 , 0 x f f e e ,

0 xdea1 , 0 x10c8 , 0 xa11d , 0 x e c a f } ;

u i n t 1 6 t i v 2 [ 8 ] = {0x1234 , 0x5678 , 0x9012 , 0x3456 ,

0x7890 , 0x1234 , 0x5678 , 0 x9012} ;

u i n t 1 6 t B2 [ 8 ] = {0xb0a7 , 0 x10ad , 0 x50fc , 0 x0c0a ,

0 x5ca1 , 0 xab1e , 0 xca55 , 0 xe77e } ;

genKAT ( key3 , 256 , iv2 , A, 0 , B2 , 8 , 8 ) ;

}

/∗∗

∗ Genera te some KATs .

∗ /

i n t main ( )

{

genKAT 128 ( ) ;

genKAT 256 ( ) ;

}

E.2 Permutation Analyzer

”””

S i mp l e t o o l f o r a n a l y z i n g p r o p e r t i e s o f b i t w i s e p e r m u t a t i o n s
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d e f i n e d by l i n e a r and a f f i n e f u n c t i o n s .

Au thor : Matt K e l l y

Date : June 2014

”””

# ! / u s r / b i n / env py t ho n

STATE SIZE = 512

NUM SBOXES = 32

NUM MIXERS = 16

SBOX SIZE = STATE SIZE / NUM SBOXES

MIXER SIZE = STATE SIZE / NUM MIXERS

def gcd ( a , b ) :

””” S i m p l e GCD c o m p u t a t i o n ”””

whi le b != 0 :

( a , b ) = ( b , a % b )

re turn a

c l a s s B i t :

”””

A b i t k e e p s t r a c k o f i t s i n d e x h i s t o r y as i t

i s m o d i f i e d by t h e p e r m u t a t i o n .

”””

def i n i t ( s e l f , i n i t i a l I n d e x ) :

””” C o n s t r u c t a new b i t w i t h t h e g i v e n i n i t i a l i n d e x ”””

s e l f . i n i t i a l I n d e x = i n i t i a l I n d e x

s e l f . i n d i c e s = [ i n i t i a l I n d e x ]

s e l f . s bo xes = [ i n i t i a l I n d e x / / SBOX SIZE ]

s e l f . m i x e r s = [ i n i t i a l I n d e x / / MIXER SIZE ]

def g e t O r d e r ( s e l f ) :

””” Get t h e o r d e r o f t h i s b i t ”””

re turn s e l f . i n d i c e s [ 1 : ] . i n d e x ( s e l f . i n i t i a l I n d e x ) + 1

def r e s e t ( s e l f ) :

””” R e s e t t h i s b i t ”””

s e l f . i n d i c e s = [ s e l f . i n i t i a l I n d e x ]

c l a s s P e r m u t a t i o n :

”””

A p e r m u t a t i o n can e i t h e r be d e f i n e d by a l i n e a r or an

a f f i n e f u n c t i o n .

T h i s c l a s s k e e p s t r a c k o f i n f o r m a t i o n abou t t h e p e r m u t a t i o n .

”””

def i n i t ( s e l f , s i z e , pType , a l p h a = 0 , b e t a = 0 ) :

””” C o n s t r u c t a new l i n e a r or a f f i n e p e r m u t a t i o n ”””

i f pType not in [ ’ l i n e a r ’ , ’ a f f i n e ’ ] :

r a i s e TypeEr ro r ( ” I n v a l i d p e r m u t a t i o n t y p e ! ” )

s e l f . s i z e = s i z e

s e l f . pType = pType

s e l f . a l p h a = a l p h a

s e l f . b e t a = b e t a

s e l f . o r d e r = 0

s e l f . b i t s = [ B i t ( i ) f o r i in r a n g e ( s i z e ) ]

def s t r ( s e l f ) :

””” Get a s t r i n g r e p r e s e n t a t i o n o f t h i s p e r m u t a t i o n ”””

r e t S t r = ’ ’

f o r b i t in s e l f . b i t s :

r e t S t r += ”%3d : [ ” % b i t . i n i t i a l I n d e x

f o r i in r a n g e ( l e n ( b i t . i n d i c e s ) ) :

i f i == l e n ( b i t . i n d i c e s )−1:

r e t S t r += ”%3d (%d ) ” % ( b i t . i n d i c e s [ i ] , b i t . s bo xe s [ i ] )

e l s e :

r e t S t r += ”%3d (%d ) , ” % ( b i t . i n d i c e s [ i ] , b i t . s bo xe s [ i ] )

r e t S t r += ’ ]\n ’

re turn r e t S t r

def permute ( s e l f ) :

””” Perform t h e p e r m u t a t i o n ”””

done = F a l s e

o r d e r = 0

whi le not done and o r d e r < s e l f . s i z e :

done = True

i f s e l f . pType == ’ l i n e a r ’ :
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s e l f . pe rmuteL inea rOnce ( )

e l i f s e l f . pType == ’ a f f i n e ’ :

s e l f . pe rmuteAf f ineOnce ( )

o r d e r += 1

f o r b i t in s e l f . b i t s :

i f b i t . i n d i c e s [−1] != b i t . i n i t i a l I n d e x :

done = F a l s e

s e l f . o r d e r = o r d e r

def pe rmuteL inea rOnce ( s e l f ) :

””” Perform t h e l i n e a r p e r m u t a t i o n o n l y once ”””

f o r b i t in s e l f . b i t s :

# L a s t b i t does n o t g e t permuted f o r l i n e a r p e r m u t a t i o n

i f b i t . i n i t i a l I n d e x == s e l f . s i z e −1:

newIndex = b i t . i n i t i a l I n d e x

e l s e :

newIndex = s e l f . a l p h a ∗ b i t . i n d i c e s [−1] % ( s e l f . s i z e −1)

b i t . i n d i c e s . append ( newIndex )

b i t . s bo xe s . append ( newIndex / / NUM SBOXES)

b i t . m i x e r s . append ( newIndex / / NUM MIXERS)

def pe rmuteAf f ineOnce ( s e l f ) :

””” Perform t h e a f f i n e p e r m u t a t i o n o n l y once ”””

f o r b i t in s e l f . b i t s :

newIndex = ( s e l f . a l p h a ∗ b i t . i n d i c e s [−1] + s e l f . b e t a ) % s e l f . s i z e

b i t . i n d i c e s . append ( newIndex )

b i t . s bo xe s . append ( newIndex / / NUM SBOXES)

b i t . m i x e r s . append ( newIndex / / NUM MIXERS)

def ge t L owOr d e r B i t s ( s e l f ) :

””” Get a l l b i t s w i t h o r d e r l e s s than t h e p e r m u t a t i o n o r d e r ”””

l o w O r d e r B i t s = [ ]

f o r b i t in s e l f . b i t s :

o r d e r = b i t . g e t O r d e r ( )

i f o r d e r < s e l f . o r d e r :

l o w O r d e r B i t s . append ( b i t )

re turn l o w O r d e r B i t s

def g e t F i x e d P o i n t s ( s e l f ) :

””” Get a l l b i t s w i t h o r d e r 1 ”””

f i x e d P o i n t s = [ ]

f o r b i t in s e l f . b i t s :

i f b i t . g e t O r d e r ( ) == 1 :

f i x e d P o i n t s . append ( b i t )

re turn f i x e d P o i n t s

def hasMaxSboxSuccessors ( s e l f ) :

”””

Check i f t h i s p e r m u t a t i o n s e n d s a l l o u t p u t s o f e v e r y S−box t o

d i f f e r e n t S−boxes

”””

s b ox es = [ s e l f . b i t s [ i : i +SBOX SIZE ] f o r i in x r a ng e ( 0 , s e l f . s i z e , SBOX SIZE ) ]

f o r sbox in s b ox es :

n e x t S b o x e s = [ ]

f o r b i t in sbox :

n e x t S b o x e s . append ( b i t . s bo xe s [ 1 ] )

i f l e n ( s e t ( n e x t S b o x e s ) ) != SBOX SIZE :

re turn F a l s e

re turn True

def hasMaxMixerSuccesso r s ( s e l f ) :

”””

Check i f t h i s p e r m u t a t i o n s e n d s a l l o u t p u t s o f e v e r y S−box t o

d i f f e r e n t m i x e r s

”””

s b ox es = [ s e l f . b i t s [ i : i +SBOX SIZE ] f o r i in x r a ng e ( 0 , s e l f . s i z e , SBOX SIZE ) ]

f o r sbox in s b ox es :

n e x t M i x e r s = [ ]

f o r b i t in sbox :

n e x t M i x e r s . append ( b i t . m i xe r s [ 1 ] )

i f l e n ( s e t ( n e x t M i x e r s ) ) != SBOX SIZE :

re turn F a l s e

re turn True

def i s De r angemen t ( s e l f ) :

””” T h i s p e r m u t a t i o n i s a derangement i f i t has no f i x e d p o i n t s ”””

re turn l e n ( s e l f . g e t F i x e d P o i n t s ( ) ) == 0

def r e s e t ( s e l f ) :

””” R e s e t a l l b i t s i n t h i s p e r m u t a t i o n ”””
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f o r b i t in s e l f . b i t s :

b i t . r e s e t ( )

def t e s t A l l L i n e a r ( ) :

””” A n a l y z e a l l p o s s i b l e l i n e a r f u n c t i o n s ”””

f o r a l p h a in r a n g e ( 2 , STATE SIZE ) :

i f gcd ( a lpha , STATE SIZE−1) == 1 :

p = P e r m u t a t i o n ( STATE SIZE , ’ l i n e a r ’ , a l p h a )

p . permute ( )

l o w O r d e r B i t s = p . ge t L owO r de r B i t s ( )

p r i n t ”\na = %d : Derange = %d , Order = %d , LowOrderBi ts = %d ,\

MaxSboxSucc = %d , MaxMixerSucc = %d\n ” % (

a lpha , p . i s De rangemen t ( ) , p . o r d e r , l e n ( l o w O r d e r B i t s ) ,

p . hasMaxSboxSuccessors ( ) , p . hasMaxMixerSuccesso r s ( ) )

f o r b i t in l o w O r d e r B i t s :

p r i n t ”\ t%d ( o r d e r %d ) : %s ” % ( b i t . i n i t i a l I n d e x , b i t . g e t O r d e r ( ) , b i t . i n d i c e s )

def t e s t A l l A f f i n e ( ) :

””” A n a l y z e a l l p o s s i b l e a f f i n e f u n c t i o n s , assuming s t a t e s i z e i s a power o f 2 ”””

f o r a l p h a in r a n g e ( 1 , STATE SIZE , 2 ) :

f o r b e t a in r a n g e ( 1 , STATE SIZE ) :

p = P e r m u t a t i o n ( STATE SIZE , ’ a f f i n e ’ , a lpha , b e t a )

p . pe rmute ( )

l o w O r d e r B i t s = p . ge t L owO r de r B i t s ( )

p r i n t ”\na = %d , b = %d : Derange = %d , Order = %d , LowOrderBi ts = %d ,\

MaxSboxSucc = %d , MaxMixerSucc = %d\n ” % (

a lpha , be t a , p . i s De r angemen t ( ) , p . o r d e r , l e n ( l o w O r d e r B i t s ) ,

p . hasMaxSboxSuccessors ( ) , p . hasMaxMixerSuccesso r s ( ) )

f o r b i t in l o w O r d e r B i t s :

p r i n t ”\ t%d ( o r d e r %d ) : %s ” % ( b i t . i n i t i a l I n d e x , b i t . g e t O r d e r ( ) , b i t . i n d i c e s )

def main ( ) :

# t e s t A l l L i n e a r ( )

t e s t A l l A f f i n e ( )

i f n a m e == ’ m a i n ’ :

main ( )

E.3 P-value Uniformity Test

”””

C a l c u l a t e s t h e u n i f o r m i t y o f p−v a l u e s f o r each t e s t

and p r i n t s numbers o f f a i l u r e s .

See h t t p : / / c s r c . n i s t . gov / groups / ST / t o o l k i t / rng / documents / SP800−22rev1a . p d f

S e c t i o n 4 . 2 . 2

Au thor : Matt K e l l y

Date : June 2014

”””

from s c i p y . s p e c i a l import gammainc

# I f p−v a l u e T < f a i l t h r e s h o l d , u n i f o r m i t y t e s t f a i l s

f a i l t h r e s h o l d = 0 .0001

f o r rnd in r a n g e ( 1 , 1 7 ) :

f a i l s = 0

r e p o r t f i l e = ” r e s u l t s−s t r eam128 / s t ream128−%drnd / f i n a l A n a l y s i s R e p o r t . t x t ” % rnd

wi th open ( r e p o r t f i l e ) a s f :

l i n e s = f . r e a d l i n e s ( ) [ 7 : 1 9 5 ] # Only grab r e l e v a n t l i n e s

f o r l i n e in l i n e s :

p v a l s = [ f l o a t ( v a l ) f o r v a l in l i n e . s p l i t ( ) [ 0 : 1 0 ] ]

sample s = sum ( p v a l s )

c h i s q = sum ( [ ( ( f l o a t ( p v a l s [ i ] ) − ( s amples /10 ) )∗∗2 / ( sample s / 1 0 ) ) f o r i in r a n g e ( l e n ( p v a l s ) ) ] )
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p v a l T = gammainc ( 4 . 5 , c h i s q / 2 )

i f p v a l T < f a i l t h r e s h o l d :

f a i l s += 1

p r i n t ”%2d r o un ds : %d u n i f o r m i t y f a i l u r e s ” % ( rnd , f a i l s )
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