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ABSTRACT The growing development of IoT (Internet of Things) devices creates a large attack surface 
for cybercriminals to conduct potentially more destructive cyberattacks; as a result, the security industry has 
seen an exponential increase in cyber-attacks. Many of these attacks have effectively accomplished their 
malicious goals because intruders conduct cyber-attacks using novel and innovative techniques. An anomaly-
based IDS (Intrusion Detection System) uses machine learning techniques to detect and classify attacks in 
IoT networks. In the presence of unpredictable network technologies and various intrusion methods, 
traditional machine learning techniques appear inefficient. In many research areas, deep learning methods 
have shown their ability to identify anomalies accurately. Convolutional neural networks are an excellent 
alternative for anomaly detection and classification due to their ability to automatically categorize main 
characteristics in input data and their effectiveness in performing faster computations. In this paper, we 
design and develop a novel anomaly-based intrusion detection model for IoT networks. First, a convolutional 
neural network model is used to create a multiclass classification model. The proposed model is then 
implemented using convolutional neural networks in 1D, 2D, and 3D. The proposed convolutional neural 
network model is validated using the BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, and IoT-23 
intrusion detection datasets. Transfer learning is used to implement binary and multiclass classification using 
a convolutional neural network multiclass pre-trained model. Our proposed binary and multiclass 
classification models have achieved high accuracy, precision, recall, and F1 score compared to existing deep 
learning implementations. 

INDEX TERMS Internet of Things, Anomaly detection, IoT intrusion detection, machine learning, deep 
learning, transfer learning, network security, convolutional neural network.

I. INTRODUCTION 

Cybersecurity is a crucial part of the information 
management framework of today's IoT environment. The 
following factors contributed to the widespread exposure of 
IoT vulnerabilities to cyber-attacks: the large-scale 
distribution of IoT devices from every household to every 
home, smart power grids, and smart cars, as well as the 
complexity of the communication protocols used by IoT 
users, will create significant security threats. Although the 
IoT increases efficiency and productivity through smart and 
remote control, it also increases cyberattack risk. The IoT 
information protection architecture is essential in today's 
technological innovations. The number of IoT devices in use 
has risen significantly from 16 billion in 2015 to over 30 
billion in 2020, increasing since homes and companies are 

steadily relying on web technology. By 2024, the IoT is 
projected to reach 83 billion devices [1]. The increased 
variety of IoT systems being produced demonstrates that the 
IoT manufacturing industry is progressing toward revolutio-
nizing IoT architecture. Therefore, the requirements that 
govern IoT devices connectivity are complex, needing a 
shared forum to promote communication between devices. 
Industry and manufacturing use 40.2 % of IoT devices; 30.3 
% of IoT equipment is used in the medical sector; retail uses 
8.3 %, security uses 7.7% of IoT equipment; and transport 
uses 4.1 %, IoT equipment [1]. 

The growing variety of IoT devices developed for various 
applications ensures that the IoT manufacturer is 
increasingly evolving IoT technologies and reducing the 
time to sell their produce. End users have benefited from IoT 
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devices, and critical facilities have also used them 
successfully in carrying out their daily tasks. Besides taking 
significant measures to have improved protection features, 
the IoT makes consumers potentially susceptible to cyber-
attacks on their personal information. A large number of 
critical vulnerabilities on IoT networks are also a threat. 
Common cyber-attacks involve DDoS (Distributed Denial of 
Service), ransomware, and botnet attacks, which seek to 
exploit IoT networks and destroy their computational 
capabilities. The volume of data produced by these devices 
increases exponentially and can contain confidential 
information. The IoT-generated data is expected to reach 
73.1 ZB by 2025 [2]. 

Although IoT applications are favored over traditional 
devices and frameworks, such implementations remain 
susceptible to a range of attack approaches that take 
advantage of both well-known and novel attack routes. Since 
IoT and web-based framework infiltration became more 
accessible in recent years, attacks such as DoS (Denial of 
Service), DDoS, and other remote hacking techniques are 
more commonly used to breach their confidentiality. The 
attacker intended to overwhelm the target IoT networks with 
malicious behavior.  Hackers often exploit unpatched, non-
patchable, or unencrypted IoT networks to access valuable 
data held on insecure IoT devices. While protection systems 
are better now than in the past, some people always try to 
deceive devices by breaking into smart locks and garage 
doors [3]. 

IoT systems have benefited people in several ways; 
however, there are several weaknesses in IoT systems. 
Security is the most challenging aspect of IoT networks. It is 
hard to prevent IoT threats since there are no agreed-upon 
guidelines for developing IoT devices. Different communic-
ation protocols can introduce additional complexity when 
implementing an IoT framework [4]. The challenges 
associated with the wide variety of IoT protocols complicate 
delivering a reliable and uniform cybersecurity approach for 
IoT networks. Adversaries can attack and compromise the 
IoT networks due to many vulnerabilities available in the IoT 
protocols. Device disruption, data theft, interruption, and 
MiTM (Man-in-The-Middle) are all threats that can be 
applied to any of these scenarios [5]. The rise of malicious 
threats on critical infrastructure has required proactive 
protection technology to enhance the protection of critical 
systems. The IDS has gained popularity as reactive network 
security. Network intrusion detection aims to evaluate 
different network data through various behavioral analyses 
of the network to ensure its security is maintained. 
Commercial security products are typically mainly focused 
on thresholds, signatures, heuristics-driven approaches, or 
statistics. These techniques work well for known threats but 
fail when attempting to identify new or unknown threats. In 
addition, these approaches often necessarily require domain 
training and knowledge and continuing updates. The 
inability to identify new developing cyber threats and the 
need for manual signature database updates restrict the 
effectiveness of signature-based detection systems. 

The increased use of the Internet has prompted IoT 
protection firms to build more sophisticated technologies and 
standard security approaches to protect IoT devices from 
intruders. There are a wide variety of methods that are 
available for network anomaly detection. Machine learning 
has been both necessary and effective in the timely 
identification of cyber-attacks. While several anomaly-
detection methods are used, fewer attempts were made to 
implement CNN (Convolutional Neural Network) for 
anomaly detection. Malicious actions in IoT networks must 
be detected and stopped immediately; therefore, the function 
of IDS has become critical in securing IoT networks by 
identifying anomalies. Our proposed IDS use a deep 
learning-based model for multiclass and binary class traffic 
classification. The proposed system uses a convolutional 
neural network architecture in the multiclass classifier to 
categorize 15 types of attacks and effectively distinguishing 
them from regular network traffic. A model also built using 
a CNN and focuses on transfer learning for binary and 
multiclass class traffic classification. This article makes the 
following significant contributions: 

 A novel anomaly detection model for IoT networks 
based on a convolutional neural network. 

 A transfer learning model for binary and multiclass 
classification based on a convolutional neural network. 

 A strategy for creating a new dataset from a current 
one to detect anomalous behavior in IoT networks. 
The processing and generation of features focused on 
the flow of raw network traffic. We created four 
datasets using this strategy and then combined them 
with increasing the number of attack categories. The 
proposed datasets may be accessed [6]. 

 Performance improvements of binary and multiclass 
classification models. 

The rest of the paper proceeds as follows: Section II 
discussed the related work. The proposed model is presented 
in Section III. In Section IV, data collection strategies and 
datasets used are discussed. The analysis of the evaluation 
results are presented in Section V, with discussion and 
comparison results in Section VI. Finally, Section VII 
concludes the paper and offers ideas for future work. 

II. RELATED WORK 

The massive rise in data transmission via various IoT devices 
and communication protocols has increased security 
concerns, emphasizing the need for effective IDS. Deep 
learning is a form of artificial intelligence that uses several 
neurons to model the learning process. Researchers have 
focused their attention on more comprehensive artificial 
intelligence methods of anomaly detection, and that is why 
deep learning has gained more importance in the industry. 
The review of deep learning approaches carried out by 
Aldweesh et al. [7] provides a comprehensive evaluation of 
intrusions. In the past, several researchers used KDD99 or 
NSL-KDD datasets to identify malicious activities; the 
survey paper main findings emphasized the need for a 
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modern and legitimate dataset to get accurate output results. 
Kaur et al. [8] use a CNN model to identify and describe 
several attacks. They analyzed their model via CICIDS2017 
and CICIDS2018 datasets. Their model provides multiclass 
attack classification, but the detection rate for many attacks 
was not satisfactory.  

Ferrag et al. [9] conduct a deep learning survey for data 
security intrusion detection. The authors compare seven deep 
learning models using 35 well-known datasets and classify 
them into seven separate categories. They conducted binary 
and multiclass classification and checked their strategies on 
BoT-IoT and CIC-IDS2018 datasets. The authors investigat-
ed several attack methods to evaluate the effectiveness 
across different deep learning models. These models were 
evaluated using their false alarm rates, accuracy, and 
detection rates. The CNN model is more effective than the 
FFN (FeedForward Neural Network) and RNN (Recurrent 
Neural Network) models. The convolutional neural networks 
have proven successful in several applications, including 
target tracking, image processing, and surveillance systems. 
A convolutional neural network extracts features from 
labeled files to perform classification. Due to the 
computational and memory requirements of these multilabel 
convolutional neural network models, deployment on edge 
devices is complicated. Odetola et al. [10] develop a 
multilabel classification method using a convolution neural 
network on edge IoT devices. The framework uses a single 
convolutional neural network with many predefined layers 
and configurable loss functions. Their model achieved less 
latency and MACC (multiply and accumulate) operations. 
They suggest a multilabel identification technique that 
enhances the capabilities of a model prepared for traditional 
classification to perform multilabel classification. Their 
approach is perfect for extracting different features from a 
single image. Their technique enables multilabel 
classification at a low cost and with a substantial degree of 
precision. 

Ge et al. [11] propose a novel scheme for connected IoT 
networks based on deep learning principles. They used the 
FFN model for binary and multiclass classification. Their 
model produced accurate binary classification results but 
failed to produce precise multiclass classification results. 
Pecori et al. [12] developed IoT benign and malicious 
network traces by combining separate datasets. The 
integrated dataset consists of four attack categories and a 
normal category. They used seven hidden layers and 50 
epochs to achieve the best performance; however, accuracy, 
recall, and F1 score are not satisfactory for binary and 
multiclass classification. Their model is inapplicable due to 
the complex structure of neural networks and the inadequate 
detection rate. 

Idrissi et al. [13] conducted a study to identify IoT 
vulnerabilities and security threats. Their paper uses real-
world threats and vulnerabilities to identify several types of 
IoT threats and vulnerabilities. They also discuss recent 
research in IoT security, focusing on intrusion detection 
techniques based on neural network strategies. Tian et al. 

[14] proposed a distributed approach for identifying network 
threats through URLs using deep learning algorithms. Their 
system was designed to protect multiple web applications in 
the EoT (Edge of Things) distributed environment. Their 
framework can be practically effective because of its 
automated function collection, ease of upgrading, and 
reliability in defending against attacks on distributed deep 
models. Hassan et al. [15] suggest a hybrid deep learning 
algorithm that uses a CNN and a WDLSTM (Weight-
Dropped Long Short-Term Memory ) model to identify 
intrusions in a large data context. CNN is used to discover 
the best features, and the WDLSTM technique is used to help 
a neural network resist overfitting. Using the UNSW-NB15 
dataset, the model had a binary classification accuracy of 
97.1% and a multiclass classification accuracy of 98.4%. The 
entire computational environment has evolved as a result of 
significant advances in information and communication 
technology.  

Swarna et al. [16] suggested a DNN (Deep Neural 
Network) to recognize and forecast unexpected cyberattacks 
in IoMT (Internet of Medical Things) networks to establish 
reliable and productive IDS. The proposed DNN framework 
achieved improved accuracy and a 32% reduction in 
computation time, allowing quicker detection to prevent 
post-intrusion effects in critical cloud computing. The 
development of networks has always been associated with 
advancing information technology, but now, the Internet 
economy is growing rapidly with IoT. Li et al. [17] propose 
a deep migration learning model architecture for IoT feature 
selection and anomaly detection in smart cities that 
incorporate deep learning and intrusion detection 
technologies. Their paper provides a migration learning 
model analysis scheme as well as system feature selection. 
The proposed algorithm has a fast detection time, but the 
detection rate is insufficient for some attacks.  

Governments worldwide are encouraging smart city 
applications to increase the standard of everyday living in 
metropolitan environments. The growing rise of Internet-
enabled devices is triggering an increase in botnet attacks 
centered on the IoT. Sriram et al. [18] propose a network 
traffic flow-based deep learning botnet identification 
technique. In certain situations, the efficiency of IoT 
applications relies on the consistency and credibility of the 
information. Yin et al. [19] developed an integrated deep 
learning model for anomaly detection in IoT networks. They 
used LSTM autoencoder and CNN to identify the anomalies. 
They use a two-stage window-based data preprocessing to 
achieve improved learning predictions. Their suggested 
approach was restricted to binary classification and achieved 
better accuracy, precision, recall, and F1-score. 

Privacy and confidentiality are seen as critical concerns 
when it comes to the IoT. Intruders may carry out various 
attacks, resulting in issues with the privacy and security of 
IoT devices. Manimurugan et al. [20] suggested a DBN 
(Deep Belief Network) model for anomaly identification in 
smart medical environments. Their model provided better 
outcomes for the normal class, but the anomaly class 
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outcome was not satisfactory. Wang et al. [21] build a deep 
hierarchical network for packet-level analysis of malicious 
traffic capable of understanding traffic characteristics from 
raw packet data. They extracted spatial features from the raw 
packet using a CNN and temporal features using GRU 
(Gated Recurrent Units). Their model had a high detection 
rate for specific attack categories but a low detection rate for 
others. Table I presents a summary of the intrusion detection 
models using deep learning techniques. The table shows that 

many research papers only focused on accuracy performance 
measures and binary classification to evaluate the deep 
learning intrusion detection model. The detection rate for 
some articles is not satisfactory. Several academic papers 
evaluated intrusion detection techniques using an old KDD 
intrusion detection dataset. Many latest cyber-attacks are not 
considered in the KDD99 dataset, and the KDD99 dataset was 
not developed considering the IoT network. In Table I, DR 
represents detection rate, Acc means accuracy.

TABLE I. 
OVERVIEW OF RELATED WORK

Article Year Model Dataset Classification  Performance   

[22] 2019 Autoencoder KDD99 Binary Acc= 84-100 

[23] 2019 CNN KDD99 ------------- Acc=97.34 

[24] 2020 DNN KDD99 ------------- Acc=92.70 

[25] 2021 SRDLM KDD99 Multiclass Acc=94.03 

[26] 2018 DNN NSL-KDD Binary Acc =99.29  

[27] 2018 CNN NSL-KDD ------------- Acc=82.83 

[28] 2018 CNN NSL-KDD Multiclass Acc=85.07 

[29] 2019 GA Optimized DBN NSL-KDD Multiclass Acc= 99.45 

[30] 2019 SMO NSL-KDD Binary Acc =99.02 

[31] 2019 MLP NSL-KDD Binary Acc =79.70 

[32] 2019 DNN NSL-KDD Binary Acc=98.00 

[33] 2020 CNN NSL-KDD Multiclass Acc = 86.95 

[34] 2020 RNN NSL-KDD Multiclass Acc=92.18 

[35] 2021 DNN NSL-KDD  Multiclass Acc= 83.33 

[36] 2017 D-FES AWID Binary  Acc=99.90 

[37] 2018 LSTM AWID Binary  Acc =98.22 

[38] 2019 Stacked Autoencoder AWID  Multiclass Acc=99.90 

[39] 2019 Autoencoder AWID Binary Acc=98.00 

[40] 2019 LSTM ISCX2012 Binary Acc =99.99 

[41] 2018 Autoencoder UNSW-NB15 Multiclass  DR=68.91 

[42] 2018 Bidirectional LSTM UNSW-NB15 Binary Acc=95.71 

[15] 2019 CNN UNSW-NB15 Multiclass Acc =98.43 

[43] 2019 Autoencoder, SVM UNSW-NB15 Binary Acc=97.00 

[44] 2019 MLP, CNN, DNN UNSW-NB15 Binary Acc=99.24 

[45] 2020 CNN  UNSW-NB15 ------------- Acc=89.02 

[46] 2020 CNN UNSW-NB15 ------------- Acc=96 

[47] 2019 Stacked Autoencoders Personal Dataset ------------- Acc=95.00 

[48] 2019 LSTM, GRU Personal Dataset Multiclass Acc =96.08 

[49] 2019 Feed Forward DNN Personal Dataset Binary Recall =97 

[50] 2019 CNN Personal Dataset ------------- Acc=98.80 

[51] 2019 MLP Personal Dataset ------------- Acc=87.10 

[52] 2019 GRU Personal Dataset Multiclass Acc=95.60 

[53] 2019 GRU Personal Dataset Multiclass F1 score =80.30 

[54] 2020 CNN ------------- Multiclass Acc=92.53 

[55] 2019 CNN VAST 2013 ------------- Acc=95.86 

[56] 2020 C-CMU P1 & DMD2018 ------------- Acc=99.20 

[16] 2020 DNN Kaggle Multiclass Acc=99.90 

[21] 2020 CNN, GRU Multiple  Binary Acc=99.42 

[57] 2020 Fast GRNN MedBIoT Multiclass F1 score =99.99 

[58] 2020 CNN SWaT Multiclass Acc=98.02 

[19] 2020 C-LSTM_AE Webscopre S5 ------------- Acc=99.62 

[59] 2021 CNN Gas pipeline Multiclass Acc=95.97 

[11] 2019 FFN BoT- IoT Multiclass Acc= 98.09 

[60] 2019 RNN BoT-IoT Multiclass Acc =98.20 

[9] 2020 DNN, RNN, CNN BoT-IoT Multiclass Acc =98.37 

[61] 2020 FFN BoT-IoT Multiclass Acc=99.79 

[62] 2020 SNN BoT-IoT Multiclass Acc=98.73 
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III. PROPOSED MODEL 

A. MODEL DESIGN 

The convolutional neural networks have recently produced 
excellent responses in voice recognition and image 
recognition. This paper proposes a model focused on 
convolutional neural networks due to its superior image 
analysis capability. The results produced by convolutional 
neural networks are attractive in these fields. Furthermore, 
by transforming intrusion detection issues into image 
recognition problems, convolutional neural network benefits 
may be more fully utilized. A convolutional neural network 
allocates weights and biases to different image elements and 
distinguishes one from the other. 

In this paper, we design and develop 1D, 2D, 3D 
convolutional neural networks for anomaly detection in IoT 
networks. A general structure of the proposed model is 
presented in Fig. 1. The model consists of an input layer, four 
blocks of convolution layers, flatten layer, a fully connected 
layer, and an output layer. Each block consists of a 
convolutional layer, normalization layer, pooling layer, and 
dropout layer. The input layer receives inputs from the 
reshaping system. The reshaping system transforms network 
data into a format compatible with CNN1D, CNN2D, and 
CNN3D models. The blocks of convolution layers are the 
primary components of a convolutional neural network. The 
pooling layer was omitted from the CNN2D model fourth 
block and excluded from the CNN3D model third and fourth 
blocks. The reason for eliminating the pooling layer from 
these models is because additional downsampling of the 
input data is not possible. The convolution layer extract 
features from the input image and learns image attributes 
from tiny squares of input data, preserving the association 
between pixels. The layer normalization aims to normalize 
all the inputs to a neural network layer. The layer 
normalization layer standardizes the output of the 
convolution layer for the average pooling layer. The pooling 
layer lets to improve features by summarizing features in 
sub-maps with robust features. The average pooling layer 
determines the overall number of features in each patch by 
computing the total number of updates throughout the whole 
function map. 

A neural network that uses convolution has a possibly 
overfitting issue and will have to undergo extensive fine-
tuning of the test dataset parameters. A dropout layer reduces 
the chance of overfitting by ignoring some neurons during 
the training phase. When adjacent frames are interrelated 
strongly with feature maps, a regular dropdown does not 
regularize the activations. We used a spatial dropout layer 
that drops the entire feature maps instead of individual units. 
The tensor is reshaped to create a flat operation on a tensor 
with the number of elements in the tensor, excluding the 
batch size, equal to the number of elements in the tensor. The 
flattening layer is fully connected to a dense layer. A total of 
512 neurons were used in the dense layer. The last layer of 
the model is the output layer, and the number of neurons in 
the output layer equals the number of classes. To further 

demonstrate the effectiveness of the CNN model in detecting 
an anomaly in IoT networks, we implement the same 
structure across the CNN1D, CNN2D, and CNN3D models. 
Six IoT intrusion detection datasets were used to train, 
validate, and test CNN1D, CNN2D, and CNN3D models. 

 

FIGURE 1. Layers View of Proposed Model 

B. CONVOLUTION1D MODEL DESIGN  

Convolution is calculated in 1D using time access and the 
kernel movies in one direction. The input and output data for 
CNN1D are two-dimensional, and it is most often used for 
time series data. First, an input vector 64 × 1 is generated to 
fit the 64 best features chosen by the feature selection 
algorithm. After the input layer, four convolution layer 
blocks were added to the model. The four-convolution layer 
blocks are considered a method of feature learning. The 
convolution layers extract features from the input image and 
find image properties from small data samples within the 
input, retaining the vector relationship. The proposed 
CNN1D model layer’s view is presented in Fig. 2. 

Convolution first layer use relu activation, 32 filters, 
kernel size 5, and the same padding parameter. The layer 
normalization adjusts the preceding layer activation 
separately for each given sample in a batch. The output of 
the first convolution layer and layer normalization is (64, 
32). The average pooling layer offers a solution to 
downsample feature maps by summarizing features in a 
feature map segment. The average pooling layer output (32, 
32). We used a spatial dropout layer to regularize the training 
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data model and reduce overfitting with a drop value of 0.05. 
Each of the four convolution layers uses identical parameters 
except the filters, which are doubled in each subsequent 
layer. The classification part consists of fully connected 
flatten and dense layers. The flatten layer is applied to the 
model transforming the tensor into a shape equivalent to 
tensor elements. There is no batch size parameter for the 
flatten layer. The flatten layer is connected to a fully 
connected dense layer, and the dense layer is connected to 
the output layer. The dense layer has 512 neurons, whereas 
the output layer has a class number dependent number of 
neurons. 

C. CONVOLUTION2D MODEL DESIGN 

The CNN2D is a three-dimensional neural network that is 
most often used to process image data. Kernel moves in two 
directions in a CNN2D model. First, an 8 × 8 input image is 
created to match the 64 features of the CNN2D model. The 
CNN2D model consists of an input layer, four convolution 
layer blocks, fully connected layers, and an output layer. The 
CNN2D first convolutional layer uses a relu activation, with 
a (5, 5) kernel, 32 filters, and same padding parameter. The 
proposed CNN2D model layer view is presented in Fig. 3. 
The output of the first convolution layer and normalization 
layer is (8, 8, 32). By summing the locations of features in 
segments, the average pooling layer offers a method for 
generating sample characteristic maps. The average pooling 
layer output (4, 4, 32). A spatial dropout layer is added at the 
end of the first convolution layer to minimize the model 
overfitting and regularize the training data output. A dropout 
value of 0.05 was used for the dropout layer. The same 
parameter values are used throughout all four convolution 
layers, with the exception of the filters, which are doubled in 
each successive layer. The average pooling layer was not 
used in the fourth convolution layer block because the input 
vector shapes were reduced to (1, 1, 128) in the third 
convolution layer block. To construct a feature vector, we 
flatten the output of the convolutional layer. The flatten layer 
is linked to the fully connected dense layer, and the dense 
layer is attached to the output layer. The number of neurons 
in the output layer is calculated by the number of classes in 
the dataset. 

D. CONVOLUTION3D MODEL DESIGN 

The CNN3D is a four-dimensional neural network that is 
commonly used to process three-dimensional image data. 
The kernel moves in three directions in CNN3D. First, an 
input image with the dimensions 4 × 4 × 4 is generated to 
match the 64 features of the CNN3D model. The CNN3D 
layer view of the proposed model is shown in Fig. 4. In 
addition to the input layer, the CNN3D model has four 
convolutions layers blocks, flatten layer, a dense layer, and 
an output layer. Relu activation, 32 filters, kernel size (5, 5, 
5), and the same padding were used in the CNN3D first layer. 
Layer normalization and average pooling layer are used next 
to the convolution layer. The output of the average pooling 

layer (2, 2, 2, 32). A spatial dropout layer is created at the 
end of the first convolution layer block to prevent overfitting 
the model and regularize the performance. The average 
pooling layer is used only in the first two convolution layer 
blocks because, in the second convolution layer, the pooling 
layer reduces the vector dimension to (1, 1, 1, 64). The layer 
normalization and spital dropout were used along with all 
convolution layer blocks. The flatten layer was added to 
reshape the number of elements of the tensor. The flatten 
layer is connected to the dense layer, and the dense layer 
connects to the output layer. The dense layer has 512 
neurons, while the output layer contains an undetermined 
number of neurons based on the class number. 

E. TRANSFER LEARNING  

Transfer learning is a kind of machine learning technique in 
which a model produced for one activity is utilized as the 
starting point for a model on a different task. Transfer 
learning principle is used to deploy a pre-train multiclass 
CNN model for the multiclass and binary models. In the first 
phase, we used IoT-DS-2 pre-trained multiclass classificati-
on CNN1D, CNN2D, CNN3D models for the binary 
classification of the IoT-DS-2 dataset via the transfer 
learning principle. In the next phase, we used the same pre-
trained learning model for multiclass classification of BoT-
IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23, 
and IoT-DS-1 datasets. Because the BoT-IoT, IoT Network 
Intrusion, MQTT-IoT-IDS2020, IoT-23, and IoT-DS-1 
datasets are subsets of the IoT-DS-2 dataset, the transfer 
learning concept was used in the multiclass classification 
model for these datasets. Transfer learning from a multiclass 
CNN model to a binary class CNN model is effective 
because the binary CNN model is trained using a subset of 
data used by the multiclass classification model. Using the 
multiclass CNN model for binary CNN model, the input, 
convolution layers, and fully connected layers are adopted 
from the already IoT-DS-2 dataset trained model. 

The output layer was removed from the pre-trained 
multiclass CNN model. A new output layer was added to the 
model with two neurons and a softmax activation function 
for binary classification. The new model is trained using a 
binary class dataset. All current model layers were disabled 
during training except the dense and output layers used in the 
binary dataset training process. A binary classification model 
based on transfer learning is presented in Fig. 5. The binary 
classification model uses a pre-train multiclass classification 
model. The input layer has the same number of features. The 
convolution layers, normalization layers, pooling layers, 
dropout layers, and flatten layer were frozen while the binary 
classification model was being trained. During the training 
phase, only the dense and output layers were allowed to 
learn. The binary classification model uses an IoT-DS-2 
dataset pre-trained model consisting of all attack classes 
from BoT-IoT, IoT Network Intrusion, MQTT-IoT-
IDS2020, IoT-23, and IoT-DS-1 datasets. The binary CNN 
model has a relu activation function and 256 neurons at the 
dense layer. The output layer uses two neurons and a softmax 
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FIGURE 2. Convolution1D Layers View of Proposed Model 

 

FIGURE 3. Convolution2D Layers View of Proposed Model 

 

FIGURE 4. Convolution3D Layers View of Proposed Model 
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activation function. The same hyperparameters are used for 
CNN1D, CNN2D, and CNN3D for binary classification. 
Next, the transfer learning methodology was applied to 
multiclass classification using the BoT-IoT, IoT Network 
Intrusion, MQTT-IoT-IDS2020, IoT-23, and IoT-DS-1 
datasets. The multiclass model uses the IoT-DS-2 dataset 
pre-trained model to detect and classify anomalies in these 
datasets.  

 

FIGURE 5. Layers View of Proposed Binary Model using Transfer 
Learning  

F. MODEL TUNING  

Most deep learning networks require many training iterations 
to reach the convergence stage, but iterations may be reduced 
by choosing a precise parameters configuration that enables 
more convolution in the training process, creating and 
guiding the network structure. In addition, regularization is 
also beneficial in avoiding overfitting. We used three 
regularization methods and various hyperparameters to tune 
the multiclass and binary class models. We used the same 
hyperparameters and monitoring optimization for the 
multiclass and binary CNN models to implement the model 
generalization for different classification problems. As the 
baseline construct, we used a multiclass CNN model 
consisting of four blocks of convolution layers, a flatten 
layer, a dense layer with 512 neurons, and the number of 
classes in the dataset represented by the neurons in the output 
layer. We initialize the CNN model layers with random 
values to help it learn the features over time. 

We used three different methods for regularization: L1, 
L2, and dropout. The kernel, bias, and activity regularizers 
are used on the L1 and L2 data preparation levels. L1 is 

additionally randomized, and L2 is integrated with L1. 
Dropout, L1, and L2 produce a more generalized model. 
Convolutional neural networks with three architectures were 
investigated. We specifically increased/decreased the 
number of convolutional layer blocks, increasing/reducing 
filters and kernel size. We also used different dropout rates 
at the convolutional layer blocks and dense layers. The 
findings indicate that the reference convolutional neural 
network model performs better. We choose adam optimizer 
and apply a sparse categorically cross-entropy loss function 
to adjust the optimizer weights. In deep learning algorithms, 
the learning rate is essential since it specifies the size of the 
steps taken by a model during each iteration. We performed 
a series of tests, varying the learning rate for adam optimizer 
(0.01, 0.001, 0.0001, 0.00001), and 0.0001 was chosen as the 
best learning rate with maximum detection rate. As the 
network learns, the loss function becomes inversely 
proportional to its output, and the error trend decreases as 
accuracy increases. Finally, to prevent overfitting, we 
implemented an early stopping strategy. When the validation 
loss does not reduce over a set number of iterations, the 
training process will stop. The number of epochs must be 
adjusted to guarantee the highest potential network output 
during the testing period, to the point that the network 
accuracy vs. epochs no longer increases. We used 50, 100, 
200, and 500 epochs in each CNN model. Since all CNN 
models converge within 100 epochs, we consider 100 epochs 
to be the optimum number of epochs. 

The activation function of a deep learning algorithm is 
important. The relu activation function is used in convolution 
layers, as well as in the dense layer. Softmax activation is 
used in the output layer. The batch size is also a key 
hyperparameter to adjust in deep learning systems. By 
increasing the batch size, we can improve the degree to 
which computations are parallelized, and we can distribute 
the training examples across several worker nodes. As a 
result, model training may be significantly accelerated. 
However, larger batch sizes have seemed to generalize 
poorly for testing results despite producing comparable 
training losses to smaller batch sizes [63]. The generalization 
gap refers to the difference between train and test error. We 
ran a set of experiments of different batch sizes to see what 
would work best (16, 32, 64, 128, 256, 512). A batch size of 
64 to 128 was considered the optimal choice for training and 
testing the CNN model. 

IV. DATA COLLECTION  

A. DATASETS 

The initial phase involves the processing of raw network 
traffic. This process extracts network functionality from 
pcap files from datasets. In this study, we used four publicly 
available IoT datasets. We used CICFlowmeter [64] to 
extract the features from pcap files and export them in a CSV 
format. The CICFlowmeter is an open-source flow 
generation platform that generates network features from 
pcap data. TCP flows are typically terminated by link 
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teardown, while UDP flows are terminated by a flow 
timeout. Our suggested IoT datasets provide general network 
features and flow-based network features. Each dataset 
contains 80 distinct network features. 

1). BoT-IoT DATASET 

Koroniotis et al. [65] created the BoT-IoT dataset. The BoT-
IoT dataset testbed includes VMs linked to the network both 
over a LAN and the Internet. The PFSense system connects 
the VMs to the Internet. The Ubuntu server provides IoT 
resources to emulate a real IoT network, while Kali Linux is 
used as an attack system. The ostinato tool is used to generate 
normal network traffic. A realistic smart home framework 
was generated using five IoT devices that were run locally 
and linked to the cloud services through the node-red system 
for developing network traffic. The MQTT protocol is used 
to transmit IoT messages into the Cloud. The taxonomy of 
attacks in the BoT-IoT dataset is shown in Fig. 6. There are 
four attack categories which are further divided into ten 
subcategories. A comprehensive explanation of the testbed 
configuration and attacks is available in the referenced 
article [65]. Our adapted BoT-IoT dataset may be accessed [6]. 

 

FIGURE 6. BoT-IoT Dataset Attack Taxonomy 

2). IoT INTRUSION DETECTION DATASET 

Kang et al. [66] developed the IoT Network Intrusion 
detection dataset. A standard smart home system consisting 
of a smart home SKT NGU and EZVIZ Wi-Fi camera was 
used to produce an IoT Network Intrusion d12ataset. These 
two IoT devices are used victim devices and are wired to a 
smart home Wi-Fi router. Laptops, tablets, and smartphones 
are also linked to the smart home router. These devices were 
used as attacking devices in the testbed. Fig. 7 shows the 
taxonomy of attacks in the IoT Network Intrusion dataset. 

 
FIGURE 7. IoT Network Intrusion Dataset Attack Taxonomy 

There are four attack categories which are further divided 
into eight subcategories. Binary, category, or subcategory 
can be used for as label features. Our adapted IoT intrusion 
detection dataset is available for download on the website [6].  

3). MQTT-IoT-IDS2020 DATASET 

Hindy et al. [67] develop the MQTT-IoT-IDS2020 dataset. 
This dataset comprises both common attacks and brute force 
attacks from the MQTT networking framework. Twelve 
MQTT sensors, a broker, a system to replicate a camera feed, 
and an intruder make up the network. The twelve sensors 
automatically publish random messages during regular 
service. The dataset includes the most common MQTT 
attacks and scenarios for testing real-world devices. There 
are four attack categories in the MQTT-IoT-IDS2020 
dataset. Fig. 8 shows the attack categorization in the MQTT-
IoT-IDS2020 dataset. Our adapted MQTT-IoT-IDS2020 
dataset is available [6]. 

 

FIGURE 8. MQTT-IoT-IDS2020 Dataset Attack Taxonomy 

4). IoT-23 DATASET 

The IoT-23 dataset was developed by Stratosphere 
Laboratory CTU University, Czech Republic [68]. There are 
20 malicious-related events and three non-malicious-related 
events for IoT devices. The objective of the IoT-23 dataset is 
to give researchers a massive, labeled dataset of real IoT and 
IoT malware infections to build machine learning models. 
Attacks in the IoT-23 dataset are classified into nine types, 
as shown in Fig. 9. 

 

FIGURE 9. IoT-23 Dataset Attack Taxonomy 

The IoT-23 dataset includes twenty different network 
activities to simulate multiple use cases for IoT devices. The 
benign network traffic was collected by gathering the 
network traffic of three separate IoT devices. These three 
devices are real hardware devices, not simulated. Malicious 
and normal situations operate with unrestricted Internet 
connectivity in a managed network setting, like every other 
actual IoT network system. This dataset aims to provide the 
community with different datasets: the first category 
contains normal and malicious networks, while the other 
includes only benign IoT network capture. The primary 
advantage of the IoT intrusion detection dataset is that it 
accurately mimics a recent trend in IoT network traffic; it is 
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also one of the few publicly accessible IoT intrusion detection 
datasets. Our adapted IoT-23 dataset may be accessed [6]. 

B. FEATURE PROCESSING 

A flow has the same source IP, destination IP, source port, 
destination port, and protocol. After extracting the features, 
the next step is to label each dataset instance according to a 
predefined condition. Each dataset we used in this paper has 
its own set of rules for labeling dataset instances as normal 
or malicious. CICFlowmeter extracts 80 network features 
from pcap files. First, the network features flow ID, source 
IP, destination IP, and timestamp were removed from all 
datasets. These network features describe communication in 
a specific IoT network; however, our proposed model applies 
to all IoT networks. Second, the dataset non-numeric 
category features are coveted to a numeric field. We used 0 
to fill NaN values in all datasets. After converting the pcap 
files to CSV files, duplicate instances were introduced. 
Finally, redundant instances were removed from all datasets.  

The BoT-IoT dataset instances presented in Table II, the 
IoT Network Intrusion Detection dataset instances are shown 
in Table III, MQTT-IoT dataset instances presented in Table 
IV, and IoT-23 dataset instances presented in Table V. After 
removing redundant instances, we can assess the model 
output during the testing process using previously unseen 
data. We normalized input feature columns within a defined 
range (−1, 1) to remove extreme high values and effectively 
speed up calculations. The binary label column is encoded as 
0 for normal and 1 for attack network instances. BoT-IoT 
dataset multiclass were labeled from 0 to 3 for normal, 
DoS/DDoS, Scan, and Data theft. The IoT Network Intrusion 
detection dataset multiclass were labeled from 0 to 4 for 
normal, DoS, MITM ARP Spoofing, Mirai, and Scan. 
MQTT-IoT dataset multiclass were labeled from 0 to 4 for 
normal, MQTT Bruteforce, Scane_A, Scan UDP, and Sparta. 
The IoT-23 dataset multiclass was labeled from 0 to 9 for 
normal, attack, Mirai, file download, heartbeat, C&C, Torii, 
port scan, DDoS, Okiru. 

C. PREPROCESSING DATASET 
We present four adapted datasets in Table II to V. We 
developed these datasets using the same software to ensure 
precise regularity in all datasets. First, we combined BoT-
IoT, IoT Network Intrusion, and MQTT-IoT-IDS2020 
datasets to increase the number of attacks in the dataset. The 
new dataset consists of 9 attack classes and a normal class. 
The new dataset, named IoT-DS-1, is described in Table VI. 
The IoT-DS-1 dataset multiclass was labeled 0 for normal 
and 1 to 9 for attack categories. The first reason for the 
generation of IoT-DS-1 is to increase the number of attacks. 
The second reason is to evaluate our model with two 
different datasets having the same number of attack 
categories. Next, we combined BoT-IoT, IoT Network 
Intrusion, MQTT-IoT-IDS2020, and IoT-23 datasets further 
to increase the number of attacks in the dataset. Table VII 
shows the new dataset named IoT-DS-2, which contains 15 
attack classes and a normal class. The IoT-DS-2 dataset 

multiclass was labeled 0 for normal and 1-15 for attack 
categories. Due to the imbalance in the training set, we 
adjusted the class weights to give the classifiers distinct 
sensitivity to each class. To simplify the class weights 
calculation, we divided the number of instances in each class 
using all class quotients to determine the weight. As a result, 
the under-represented class with fewer samples would have 
a higher weight score. 

The preprocessed data is divided into three sets for 
classification purposes: training, validation, and testing. The 
training phase input selected features from the training set 
and fed them into a neural network model. The testing 
procedure is used to evaluate the classifier performance 
against a given test set. We investigated binary and 
multiclass classification methods. A binary classification 
model generates either a normal or an attack category for 
each instance, while a multiclass classification model 
produces either a normal or an attack category. We used the 
TensorFlow library and Keras implementations. All our 
experiments were conducted with Google Colab Pro on a 
Tesla V100-SXM2 with 27.4 GB RAM. The Pareto Theory, 
also known as the 80/20 rule, is used to partition the dataset. 
The dataset is first divided into 80 % for training and 20 % 
for testing in a stratified way. The stratified methodology 
ensures an equivalent number of samples from each division 
of training, validation, and testing sets. The training set is 
then divided into 80 % for training and 20 % for validation 
in a stratified way. The total number of instances and class 
numbers present in each dataset as shown in Table VIII. All 
three convolution neural network models were evaluated 
using these six datasets described in Table VIII. 

D. FEATURE SELECTION 

The selection of features is an important step in the 
development of a deep learning model. Model improvement 
techniques known as feature selection include identifying 
and then only choosing certain features that are needed to 
enhance prediction. The feature selection strategy minimizes 
overfitting, speeds up model training, and allows the model 
less prone to test errors. We used a feature selection 
technique called RFE (Recursive Feature Elimination) in this 
paper to extract relevant features from our proposed datasets. 
Accuracy, precision, recall, and F1 score are used to rank 
features. A random forest algorithm was used to estimate the 
overall importance of features. To validate the subset of 
selected features and the RFE model overfitting, we used a 
5- and 10-fold cross-validation test. We use the RFE 
algorithm to extract 64 features from the IoT-DS-2 dataset. 
Our suggested feature selection technique utilizes the feature 
significance, and coefficient attributes to determine the 
relevance of each feature and then eliminates the least 
important item from the current collection of features. IoT-
DS-2 was chosen as the feature selection dataset because it 
contains malicious data from all the other datasets. We used 
the same set of 64 features in CNN1D, CNN2D, and CNN3D 
for BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, 
IoT-23, IoT-DS-1, and IoT-DS-2 datasets.
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TABLE II 
BOT-IOT DATASET INSTANCES 

No Category Subcategory With Redundancy Without Redundancy 

0 Normal Normal 105202 77511 

1 DoS                 HTTP 34057 33392 

 TCP 19111830 8264448 

 UDP 37881485 9122245 

2 DDoS HTTP 51934 50709 

 TCP 15975894 8410058 

 UDP 21049846 9738949 

3 Scan OS Fingerprinting 350093 35675 

 Service Scanning 1481465 221276 

4 Data Theft  Data Exfiltration 5003 4944 

 Keylogging 1387 1313 

Total 96048196 35960520 

 
TABLE III 

IOT NETWORK INTRUSION DATASET INSTANCES 

No Category Subcategory With Redundancy Without Redundancy 

0 Normal Normal 40073 39851 

1 DoS                 DoS-Synflooding 59391 59391 

2 MITM  MITM ARP Spoofing 35377 32909 

3 Mirai               
  

Mirai-Ackflooding 55124 41998 

 Mirai-HTTP Flooding  55818 43008 

 Mirai-Host Brute force 121181 112990 

 Mirai-UDP Flooding  183554 168975 

4 Scan                Scan Host Port 22192 21240 

 Scan Port OS  53073 50882 

Total 625783 571244 

TABLE IV 
MQTT-IOT-IDS2020 DATASET INSTANCES 

No Category With Redundancy Without Redundancy 

0 Normal    334318 167159 

1 MQTT_Bruteforce     2002780 2001972 

2 Scan-A                31245 29276 

3 Scan-U               33404 27843 

5 Sparta              1252259 1217198 

Total  3654006 3443448 

TABLE V 
IOT-23 DATASET INSTANCES 

No Category With Redundancy Without Redundancy 

0 Normal 4313776 4253672 

1 Attack 1716778 1699608 

2 Mirai 756 756 

3 File Download 8035 7707 

4 HeartBeat 12895 12648 

5 C&C 23981 20612 

6 Torii 33858 24492 

7 Port Scan 65944863 2999999 

8 DDoS 20768988 4619869 

9 Okiru 13718252 12908506 

Total  106542182 26547869 
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TABLE VI 
IOT-DS-1 DATASET CLASSES 

No Category BoT-IoT IoT Net-ID MQTT Total 

0 Normal 77511 ------------ 167159 244670 
1 DDoS 17420085 ------------ ------------ 17420085 
2 DoS ------------ 59391 ------------ 59391 
3 MITM ARP Spoofing ------------ 32909 ------------ 32909 
4 MQTT Bruteforce ------------ ------------ 2001972 2001972 
5 Mirai ------------ 366971 ------------ 366971 
6 OS Scan 35675 ------------ ------------ 35675 
7 Port Scan ------------ ------------ 57119 57119 
8 Sparta ------------ ------------ 1217198 1217198 
9 Theft 6257 ------------ ------------ 6257 

Total    21442247 

 
TABLE VII 

IOT-DS-2 DATASET CLASSES 

No Category                      BoT-IoT IoT Net-ID MQTT IoT-23 Total 

0 Normal ------------ ------------ ----------- 4253672 4253672 
1 DDoS 17420085 ------------ ----------- ----------- 17420085 
2 DoS ------------ 59391 ----------- ------------ 59391 
3 MITM ARP Spoofing ------------ 32909 ----------- ------------ 32909 
4 Mirai ------------ 366971 ----------- ------------- 366971 
5 MQTT Bruteforce ------------ ------------ 2001972 ------------ 2001972 
6 Sparta ------------ ------------ 1217198 ------------ 1217198 
7 Theft 6257 ------------ ----------- ------------ 6257 
8 Attack ------------ ------------ ----------- 1699608 1699608 
9 C&C ------------ ------------ ----------- 20612 20612 

10 File Download ------------ ------------ ----------- 7707 7707 
11 HeartBeat ------------ ------------ ----------- 12648 12648 
12 Okiru ------------ ------------ ----------- 12908506 12908506 
13 OS Scan 35675 ------------ ----------- ------------ 35675 
14 Port Scan ------------ ------------ ----------- 2999999 2999999 
15 Torii ------------ ------------ ----------- 24492 24492 

Total     43067702 

TABLE VIII. 
DATASET INSTANCES AND NUMBER OF CLASSES 

Dataset Dataset Name Instances Classes 

BoT-IoT BoT-IoT 35960520 4 

IoT NI IoT Network Intrusion Dataset 571244 5 

MQTT MQTT-IoT-IDS2020 Dataset 3443448 5 

IoT-23 IoT-23 Dataset 26547869 10 

IoT-DS-1 BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020 21442247 10 

IoT-DS-2 BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23 43067702 17 

V. EVALUATION RESULTS 

A. ANALYSIS OF RESULTS 
The multiclass and binary CNN models are validated using 
the accuracy, precision, recall, and F1 score. Accuracy is 
expressed as the proportion of accurately identified samples 
to the total number of samples. Precision is measured by the 
ratio of appropriately classified items to the total TP (True 
Positive) and FP (False Positive). The recall value is 

determined by calculating the overall amount of TP 
measurements by the total number of TP and FN (False 
Negative). Finally, the F1 score is computed as the weighted 
average of precision and recall. Additionally, we also 
calculate TPR, TNR, FPR, and FNR. Where TPR (True 
Positive Rate) refers to the number of abnormal items that 
test positive, the TNR (True Negative Rate) is the number of 
normal samples that are found to be negative, the number of 
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normal samples that test positive is known as the FPR (False 
Positive Rate), and FNR (False Negative Rate) is the number 
of abnormal samples that test negative. 
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The CNN model accuracy and loss were measured for both 
the training and validation sets at each epoch value. It allows 
us to assess if the model has been sufficiently learned to 
differentiate between various anomalies and how many data 
points in the validation set have been correctly identified. 
The loss function is perhaps the most important aspect of 
neural networks. The gradients are calculated using the loss 

function, and the gradient is used to update the neural 
network biases, increasing or decreasing the neural network 
weights. TensorFlow has a variety of loss functions that can 
be used to accomplish a variety of tasks. In this paper, we 
used adam optimizer and applied a sparse categorically 
cross-entropy loss function. Fig. 10 shows the loss of the 
CNN model during training and validation. The logarithmic 
loss function measures the total deviation for each test within 
the training set. The average loss for training 0.05, while the 
testing loss measured 0.0007. When the validation loss does 
not reduce for a certain number of iterations, the early 
stopping technique will end the training process to reduce the 
over-fitting problem. We trained the CNN model using a 100 
epoch, a batch size of 128, and patience of 5 iterations. The 
loss function and accuracy plot are inversely related, as seen 
in Fig. 10. The average accuracy was 99.20 for training, 
99.30 for validation, and 99.90 for testing using the BoT-IoT 
dataset. The accuracy did not improve with 200 and 500 
epochs and 10 iterations of patience. Consequently, 
operating a model over a large number of epochs results in 
overfitting the training data.

  

FIGURE 10. Performance of Multiclass CNN1D Model in Training and Validation 

C. MULTICLASS CLASSIFICATION 

The multiclass classification was used to categorize the 
dataset as normal network traffic or any attack described in 
Tables II to VII. Fig. 10 presents the multiclass classification 
model efficiency during training and validation in terms of 
loss and accuracy. It is found on the function curves; the 
accuracy and loss values have inverse functions. Overfitting 
is reduced due to the early stopping strategy with patience of 
5 iterations. The training and validation processes take less 
than 100 epochs to complete. The loss of training and 
validation dropped slowly up to 100 epochs. This evidence 
confirms that these models would correctly categorize 
various cyber-attacks present in the datasets or real IoT 
networks. The effectiveness of the multiclass CNN model is 
then accomplished utilizing BoT-IoT, IoT Network 
Intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1, and IoT-
DS-2 datasets. The BoT-IoT dataset consists of three attack 
categories and a normal category.  The performance of CNN 
models using the BoT-IoT dataset is presented in Table IX (a). 
All CNN models produce high accuracy over four classes. 

The detection rate for Normal, DoS, Scan, and Theft was 
99.90%, 99.96%, 99.91%, and 98.10%. Overall, FNR was 
0.67 %, and FPR was 0.05 %. 

The IoT Network Intrusion dataset consists of five classes. 
The CNN model performance for the IoT Network Intrusion 
dataset is presented in Table IX (b). The detection rate for 
the Normal class is 99.63%, while the detection rate for the 
DoS class is 99.94%. The detection rates for Mirai, MITM, 
and Scan were 97.85%, 88.23%, and 93.30%. The detection 
rate for Mirai, MITM, and Scan classes was not high as 
Normal and DoS classes. There are five classes in the 
MQTT-IoT-IDS2020 dataset. Table IX (c) shows that the 
MQTT-IoT-IDS2020 dataset achieved a high detection rate 
for the Normal class and all malicious classes. Normal, Scan, 
and Sparta classes correctly detected. The only 
misclassification occurred in the MQTT brute force attack 
class, resulting in an FNR of 1.48 %. The CNN model 
capacity to classify larger multiclass datasets was evaluated 
by merging the BoT-IoT, IoT Network Intrusion, and 
MQTT-IoT-IDS2020 datasets. 
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The new IoT-DS-1 consists of 9 attack classes and a 
normal class. The findings of CNN models on the IoT-DS-1 
dataset are summarized in Table X. All CNN models 
obtained a high detection score for Normal, DDoS, DoS, 
MQTT_BF, OS Scan, Sparta, and Theft classes. On the other 
hand, malicious classes MITM, Mirai, and Port scan belong 
to the IoT Network Intrusion dataset with a high 
misclassification ratio. Next, we illustrate the CNN model 
efficiency using the IoT-23 dataset, which comprises a 
normal class and nine malicious classes. Normal, Attack, 
Mirai, C&C, Torii, Portscan, DDoS, and Okiru had a 
detection rate greater than 99.70%. While the detection rate 
for FileDownload 98.29% and the detection rate for 
Heartbeat 97.60%. In comparison to IoT-DS-1, the proposed 
model performs better on the IoT-23 dataset. The findings of 
CNN models on the IoT-23 dataset are shown in Table XI.  

Finally, the CNN model capability for larger multiclass 
classification was evaluated. In Table XII, we present the 
results of CNN models using the IoT-DS-2 dataset. The 
proposed IoT-DS-2 dataset consists of a normal class and 15 
attack classes. The Normal class has a detection score of 
99.98%. DDoS, Okiru, Portscan, Torii achieved a detection 
rate of ~100%. The detection rate for DoS, Mirai, MQTT-
BF, Sparta, Theft, Attack, and OS scan measured greater or 
equal to 99.60%. The lowest detection rate was measured for 
MITM. A summary of the multiclass classification TPR, 
TNR, FPR, and FNR is presented in Table XIII. 

Next, we used transfer learning for multiclass 
classification for BoT-IoT, IoT Network Intrusion, MQTT-

IoT-IDS2020, IoT-23, and IoT-DS-1. This was performed 
using a pre-train model using the IoT-DS-2 dataset for the 
CNN1D, CNN2D, and CNN3D models. We chose a batch 
size of 128 across all datasets for regular multiclass 
classification; however, this batch size does not perform well 
for transfer learning multiclass classification models. Several 
experiments were carried out to determine the most 
appropriate batch size to use. Batch sizes of 32 and 64 work 
well for transfer learning models. Table XIV summarizes the 
average accuracy, precision, recall, and F1 score for regular 
multiclass classification, whereas Table XV summarizes the 
average accuracy, precision, recall, and F1 score for transfer 
learning multiclass classification.  

The CNN1D and CNN2D models perform better than 
CNN3D. These models achieved approximately the same 
detection rate as normal multiclass classification models. 
The CNN3D model has a relatively high error rate 
throughout training, validation, and testing. The CNN3D 
model detection rate is insufficient since it has very high FPR 
and FNR rates. In addition, it has a lower detection rate for 
the normal class compared to other malicious classes. We 
conclude from our study that CNN1D and CNN2D are more 
effective at detecting anomalies in multiclass classification. 
These models are also better at detecting anomalies in 
transfer learning multiclass classification. This research 
shows that the proposed model will help create an effective 
network intrusion detection system with a high detection rate 
for IoT networks. 

TABLE IX 
MULTICLASS CLASSIFICATION BoT-IoT, IoT NETWORK INTRUSION, AND MQTT-IoT-IDS2020 DATASETS 

Model  CNN1D CNN2D CNN3D 

Class Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score 

(a)  BOT-IOT DATASET 

Normal 99.96 99.90 99.53 99.71 99.96 99.88 99.62 99.75 99.95 99.86 99.46 99.66 

DoS 99.97 99.96 99.99 99.98 99.97 99.97 99.99 99.98 99.97 99.96 99.99 99.98 

Scan 99.98 99.91 99.92 99.92 99.97 99.90 99.91 99.91 99.95 99.76 99.88 99.82 

Theft 99.99 98.10 96.26 97.17 99.99 100.00 91.82 95.74 99.99 96.83 76.73 85.61 

(b) IOT NETWORK INTRUSION DATASET 

Normal 99.86 99.47 98.48 98.97 99.86 99.47 98.48 98.97 99.82 99.63 97.76 98.69 

DoS 99.99 99.97 99.90 99.94 99.99 99.97 99.90 99.94 99.98 99.94 99.90 99.92 

Mirai 97.77 98.44 98.09 98.27 97.77 98.44 98.09 98.27 97.27 97.85 97.92 97.89 

MITM 98.80 90.61 87.90 89.24 98.80 90.61 87.90 89.24 98.43 88.23 83.53 85.82 

Scan 98.69 93.18 96.71 94.91 98.69 93.18 96.71 94.91 98.65 93.30 96.19 94.72 

(c) MQTT-IOT-IDS2020 DATASET 

Normal 99.93 98.87 99.72 99.29 99.93 98.85 99.73 99.29 99.93 98.52 100.00 99.26 

MQTT-BF 99.93 99.98 99.91 99.94 99.93 99.98 99.90 99.94 99.93 100.00 99.88 99.94 

Scan-A 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Scan-U 100.00 100.00 99.97 99.99 100.00 100.00 99.97 99.99 100.00 100.00 99.98 99.99 

Sparta 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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TABLE X 
MULTI CLASS CLASSIFICATION IoT-DS-1 (BoT-IoT, IoT NETWORK INTRUSION AND MQTT-IoT-IDS2020 DATASETS) 

Model  
CNN1D CNN2D CNN3D 

Class N Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score 

Normal 99.92 99.57 99.43 99.50 99.93 99.65 99.54 99.60 99.94 99.72 99.52 99.62 

DDoS 99.96 99.95 99.97 99.96 99.98 99.97 99.99 99.98 99.98 99.96 99.99 99.98 

DoS 99.97 99.07 99.50 99.29 99.98 99.80 99.15 99.47 99.97 99.50 99.25 99.38 

MITM 99.23 53.37 94.55 68.23 99.58 76.40 75.18 75.78 99.56 74.06 76.38 75.21 

MQTT-BF 99.99 99.95 99.87 99.91 99.99 99.99 99.79 99.89 99.99 99.99 99.80 99.89 

Mirai 99.01 99.37 91.12 95.07 99.40 96.72 97.62 97.17 99.39 96.91 97.30 97.10 

OS Scan 99.95 99.85 99.81 99.83 99.95 99.80 99.87 99.83 99.94 99.80 99.85 99.82 

Port Scan 99.60 76.09 89.84 82.40 99.74 90.66 83.82 87.10 99.74 90.17 84.18 87.07 

Sparta 99.99 99.91 99.96 99.93 99.98 99.82 99.99 99.90 99.99 99.85 99.99 99.92 

Theft 100.00 99.89 99.89 99.89 99.99 99.95 99.31 99.63 100.00 99.89 99.68 99.79 

TABLE XI 
MULTI CLASS CLASSIFICATION IoT-23 

Model  CNN1D CNN2D CNN3D 

Class N Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score 

Normal 99.97 99.99 99.91 99.95 99.98 99.96 99.96 99.96 99.92 99.83 99.89 99.86 

DDoS 99.99 99.98 99.98 99.98 99.99 99.96 99.98 99.97 99.99 99.95 99.98 99.97 

Attack 100.00 100.00 100.00 100.00 100.00 99.55 100.00 99.77 100.00 99.55 100.00 99.77 

Mirai 99.99 98.29 99.57 98.93 99.99 99.34 99.09 99.21 99.99 99.34 99.05 99.19 

File Download 99.98 97.60 99.81 98.69 99.92 90.38 99.15 94.56 99.92 89.77 99.15 94.23 

HeartBeat 99.99 99.69 99.85 99.77 99.93 99.63 94.56 97.03 99.87 98.18 91.36 94.65 

C&C 99.99 99.98 99.98 99.98 99.99 99.96 99.96 99.96 99.99 99.97 99.97 99.97 

Torii 100.00 99.99 100.00 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 

Port Scan 99.99 99.999 99.99 99.99 100.00 100.00 100.00 100.00 99.99 99.99 99.99 99.99 

Okiru 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.000 99.99 100.00 99.99 

TABLE XII 
MULTI CLASS CLASSIFICATION IoT-DS-2 (BoT-IoT, IoT NETWORK INTRUSION AND MQTT-IoT -IDS2020, IoT-23 DATASETS) 

Model  CNN1D CNN2D CNN3D 

Class N Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score 

Normal 99.97 99.98 99.82 99.90 99.81 99.21 99.57 99.39 99.79 99.10 99.57 99.33 

DDoS 99.99 99.99 99.99 99.99 99.96 99.94 99.91 99.93 99.95 99.89 99.92 99.90 

DoS 99.99 99.63 99.53 99.58 99.96 99.80 97.57 98.67 99.96 99.68 97.72 98.69 

MITM 99.76 76.46 97.06 85.54 99.55 67.57 72.39 69.89 99.50 69.20 55.06 61.33 

Mirai 99.76 99.60 96.67 98.12 99.51 96.33 96.08 96.20 99.47 95.12 96.81 95.96 

MQTT-BF 99.99 99.85 99.78 99.82 99.93 99.99 98.12 99.05 99.99 99.95 99.67 99.81 

Sparta 99.98 99.77 99.86 99.82 99.88 98.46 99.44 98.95 99.94 99.32 99.63 99.48 

Theft 99.99 99.68 99.60 99.64 99.98 99.42 96.21 97.79 99.98 99.45 96.68 98.05 

Attack 99.99 99.84 100.00 99.92 99.99 99.27 100.00 99.64 99.99 99.91 99.83 99.87 

C&C 99.99 99.54 99.90 99.71 99.80 96.74 90.59 93.57 99.80 97.57 90.43 93.87 

File Download 99.99 98.82 99.75 99.28 99.99 99.12 98.49 98.80 99.99 98.13 99.26 98.69 

HeartBeat 99.99 98.95 99.89 99.41 99.89 91.16 97.61 94.28 99.90 91.08 99.17 94.95 

Okiru 100.00 100.00 100.00 100.00 100.00 100.00 99.99 99.99 100.00 99.99 100.00 99.99 

OS Scan 99.99 99.98 99.96 99.97 99.92 99.55 99.61 99.58 99.88 99.30 99.45 99.38 

Port Scan 99.99 100.00 99.99 99.99 99.99 100.00 99.99 99.99 99.99 99.99 99.99 99.99 

Torii 100.00 100.00 99.98 99.99 99.99 99.98 99.98 99.98 99.99 99.97 99.92 99.94 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3094024, IEEE Access

 

VOLUME XX, 2017 9 

TABLE XIII 
AVERAGE MULTICLASS CLASSIFICATION TPR, TNR, FPR, FNR 

                         Model 
CNN1D CNN2D CNN3D 

Dataset 
TPR TNR FPR FNR TPR TNR FPR FNR TPR TNR FPR FNR 

BoT-IoT 99.33 99.94 0.06 0.67 99.35 99.95 0.05 0.65 99.00 99.92 0.08 1.00 

IoT Network Intrusion 96.94 99.24 0.76 3.06 96.22 99.11 0.89 3.78 95.06 98.88 1.12 4.94 

MQTT-IoT-IDS2020 98.60 99.93 0.07 1.40 98.60 99.93 0.07 1.40 98.52 99.90 0.10 1.48 

IoT-23 99.88 99.95 0.05 0.12 99.68 99.86 0.14 0.32 99.47 99.77 0.23 0.53 

IoT-DS-1 97.39 99.88 0.12 2.61 95.42 99.92 0.08 4.58 95.60 99.92 0.08 4.60 

IoT-DS-2 99.49 99.98 0.02 0.51 96.60 99.94 0.06 3.40 95.84 99.94 0.06 4.16 

TABLE XIV 
AVERAGE MULTICLASS CLASSIFICATION ACCURACY, PRECISION, RECALL, AND F1SCORE 

                         Model 
CNN1D CNN2D CNN3D 

Dataset 
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score 

BoT-IoT 99.97 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.94 99.92 99.92 99.92 

IoT Network Intrusion 97.76 97.80 97.76 97.78 97.55 97.56 97.55 97.55 97.08 97.07 97.08 97.07 

MQTT-IoT-IDS2020 99.93 99.92 99.93 99.92 99.93 99.93 99.93 99.93 99.92 99.90 99.91 99.90 

IoT-23 99.96 99.97 99.96 99.96 99.90 99.91 99.90 99.90 99.84 99.85 99.84 99.84 

IoT-DS-1 98.80 99.16 98.80 98.98 99.26 99.20 99.18 99.19 99.25 99.16 99.15 99.15 

IoT-DS-2 99.70 99.74 99.70 99.72 99.43 99.42 99.43 99.42 99.07 99.03 99.07 99.05 

TABLE XV 
AVERAGE MULTICLASS CLASSIFICATION ACCURACY, PRECISION, RECALL, AND F1SCORE USING TRANSFER LEARNING 

                         Model 
CNN1D CNN2D CNN3D 

Dataset 
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score 

BoT-IoT 99.30 99.26 99.20 99.23 98.60 98.56 98.57 98.56 98.13 98.10 98.09 98.10 

IoT Network Intrusion 86.28 88.84 86.28 87.54 86.79 87.51 86.79 87.14 82.20 81.80 82.00 81.90 

MQTT-IoT-IDS2020 99.92 99.90 99.92 99.91 99.93 99.93 99.93 99.93 96.10 96.21 96.08 95.19 

IoT-23 99.62 99.61 99.62 99.61 99.60 99.60 99.58 99.59 86.00 87.45 86.00 82.60 

IoT-DS-1 97.72 97.43 97.72 97.57 98.90 98.80 98.75 98.77 86.41 88.00 87.00 87.50 

B. BINARY CLASS CLASSIFICATION 

The proposed binary CNN model classification accuracy, 
precision, recall, and F1 score were assessed using the BoT-
IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23, 
IoT-DS-1, and IoT-DS-2 datasets. The same set of features 
were used for binary CNN1D, CNN2D, and CNN3D models. 
The binary classification assigns the dataset instance to one 
category: normal network traffic or malicious network 
traffic. We evaluate and conduct experiments on each dataset 
mentioned in Table VIII. Fig. 11 shows the accuracy, 
precision, recall, and F1 score for binary classification using 
CNN1D and IoT-DS-2 dataset. The minimum detection rate 
for binary classification was 99.79% for the Theft class. The 
evaluation metrics for binary classification (Min, Max, Std 
Dev, Avg) for BoT-IoT, IoT Network Intrusion, MQTT-IoT-
IDS2020, IoT-23, IoT-DS-1, and IoT-DS-2 datasets using 
CNN1D are presented in Table XVI.  

The binary classification was performed using a transfer 
learning approach. The binary CNN model took less time to 
train and validate compared to multiclass classification. The 
use of a pre-train model further reduces the training time for 

binary classification. Early stopping and dynamic learning 
rates monitor the number of training epochs and increase 
adam optimization process efficiency during training. The 
IoT-DS-2 pre-trained model was used for binary 
classification of BoT-IoT, IoT Network Intrusion, MQTT-
IoT-IDS2020, IoT-23, and IoT-DS-1 datasets. The IoT-DS-2 
pre-train model was chosen because it contains all the attacks 
and normal network traffic from the BoT-IoT, IoT Network 
Intrusion, MQTT-IoT-IDS2020, IoT-23, and IoT-DS-1 
datasets. The Binary CNN model has high accuracy, 
precision, recall, and F1 score with a small number of 
incorrectly classified instances. Attackers may use various 
options of the same or other resources to configure the attack. 
Additionally, several sophisticated attackers can employ 
evasion mechanisms. However, identical header fields inside 
the packets may be used to accomplish the same attack 
objective. Consequently, the dataset network traffic indicates 
authentic hacker activities, illustrating the proposed model 
generalizability [61]. In terms of runtime, the CNN model 
took between 10 and 20 minutes to complete each binary 
classification's training, validation, and testing process.
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FIGURE 11. Binary Classification Performance Metrics CNN1D Model for IoT-DS-2 Using Transfer Learning 

TABLE XVI 
BINARY CLASSIFICATION (MIN, MAX, STD DEV, AVG) USING TRANSFER LEARNING 

Dataset Metrics Min  Max Std Dev Avg 

BoT-IoT Accuracy  99.81 99.95 0.0600 99.90 

Precision  99.60 99.85 0.1315 99.75 

Recall 99.60 100.00 0.1780 99.85 

F1Score  99.60 99.90 0.1328 99.80 

IoT Network Intrusion Accuracy  99.95 100 0.0263 99.98 

Precision  99.95 100 0.0222 99.98 

Recall 99.95 99.99 0.0200 99.98 

F1Score  99.95 99.95 0.0210 99.98 

MQTT-IoT-IDS2020 Accuracy  99.99 100 0 99.99 

Precision  99.98 100 0 99.99 

Recall 99.99 100 0 99.99 

F1Score  99.99 100 0 99.99 

IoT-23 Accuracy  99.82 100 0.0560 99.98 

Precision  99.60 100 0.1580 99.90 

Recall 99.90 100 0.4456 99.98 

F1Score  99.80 100 0.0870 99.93 

IoT-DS-1 Accuracy  99.75 100 0.1085 99.90 

Precision  99.75 100 0.1085 99.90 

Recall 99.75 100 0.1052 99.89 

F1Score  99.75 100 0.1079 99.90 

IoT-DS-2 Accuracy  99.85 100 0.0505 99.96 

Precision  99.79 100 0.0756 99.95 

Recall 99.95 100 0.0309 99.98 

F1Score  99.85 100 0.0512 99.97 
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VI DISCUSSION AND COMPARISON RESULTS 

In this section, the results of CNN models are compared to 
previous results from other research studies. Our proposed 
models were significantly more effective at identifying 
anomalies in IoT networks. The research mentioned in this 
article investigated the possibility of utilizing a 
convolutional neural network to solve anomaly detection in 
IoT networks. We investigated various convolutional neural 
network's abilities to detect and classify anomalies in IoT 
networks. Furthermore, we evaluated different convolutional 
neural network's capacity to detect and classify anomalies in 
IoT networks via binary and multiclass classification through 
transfer learning. An input layer, four blocks of 
convolutional layers, a fully connected dense layer, and an 
output layer make up the model we used in this article.  Our 
proposed architecture is implemented using CNN1D, 
CNN2D, and CNN3D models. The BoT-IoT, IoT Network 
Intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1, and IoT-
DS-2 datasets are used to evaluate the CNN model's 
performance. Several experiments were conducted with the 
primary objective of classifying attack categories using 
binary and multiclass classification. 

The concept of transfer learning is being used to 
implement a pre-train multiclass CNN paradigm for binary 
and multiclass classification. Ge et al. [61] utilized transfer 
learning to create a representation for high-dimensional 
categorical features. To the best of our knowledge, a transfer 
learning approach was never used for anomaly detection 
where a pre-train multiclass model can be reused binary and 
multiclass anomaly detection. Initially, we used the transfer 
learning technique for binary classification. We choose a 
pre-train multiclass classification model that was trained on 
the IoT-DS-2 dataset. One reason to select transfer learning 
for binary is to keep consistency for the binary classification 
among different datasets. The second reason is to reduce the 
complexity and run time of binary classification. 
Convolution layers were excluded from training during the 
binary classification training process, but the dense and 
output layers are used. The transfer learning technique 
considerably reduces the time required for training, 
validation, and testing in binary classification. Mohammad 
et al. [15] propose a CNN-based anomaly detection model to 
demonstrate binary and multiclass classification. The 
detection rate of their proposed was not satisfactory for 
binary and multiclass classification. The binary classification 
model achieved an accuracy of 97.17% for normal and 
abnormal classes. The binary classification of our proposed 
model is compared to the previously proposed models in 
Table XVII. Numerous recent advancements in deep 
learning technologies demonstrate their ability to identify 
patterns through various research fields. We consider four, 
five, ten, and sixteen categories of IoT network traffic in 
multiclass classification. Several publications in the 
literature focused exclusively on binary classification while 
developing a deep learning model for anomaly detection. 
Many of these publications use accuracy as a metric of 
performance for assessing their model. However, we used 
many performance metrics and a large number of malicious 

categories. The multiclass classification is divided into small 
category datasets, consisting of up to five classes. The 
medium dataset consists of up to ten classes, and large 
datasets consist of up to sixteen classes. The outcome of the 
proposed model multiclass classification TPR, TNR, FPR, 
and FNR for six datasets is presented in Table XIII. The 
proposed model multiclass classification average accuracy, 
precision, recall, and F1 score are shown in Table XIV. 

TABLE XVII 

BINARY CLASSIFICATION 

MODEL  MODEL ACCURACY PRECISION RECALL F1SCORE 

[15] CNN 97.17 97.00 97.00 97.00 

[33] CNN 86.95 86.95 86.95 86.95 

[44] CNN 99.24 ------- ------- ------- 

Proposed 

Model 

CNN1D 99.96 99.90 99.95 99.93 

CNN2D 99.98 99.95 99.96 99.96 

CNN3D 99.98 99.96 99.95 99.95 

TABLE XVIII 

MULTICLASS CLASSIFICATION 

Article MODEL  ACCURACY PRECISION RECALL F1 SCORE 

[15] CNN 98.43 98.00 98.00 98.00 

[19] C-LSTM-AE 99.62 98.78 97.20 97.98 

[33] CNN 86.95 89.56 87.25 88.41 

[58] CNN 98.02 97.71 98.39 98.05 

[9] CNN 98.37 ------- ------- ------- 

[55] CNN 95.86 ------- ------- ------- 

[23] CNN 97.34 ------- ------- ------- 

[54] CNN 92.53 ------- ------- ------- 

[56] C-CMU 99.20 85.40 99.92 91.80 

[11] FFN 98.09 98.88 98.88 98.88 

[61] FFN 99.79 99.79 99.79 99.79 

[62] SNN 98.73 99.17 98.36 98.77 

Proposed 

Model 

CNN1D 99.97 99.95 99.95 99.95 

CNN2D 99.95 99.95 99.95 99.95 

CNN3D 99.94 99.92 99.92 99.92 

The multiclass classification results of the CNN models 
are compared to those mentioned previously in other 
research articles. Many of these articles are only concerned 
with the suggested model's accuracy. Table XVIII presents 
our proposed model's accuracy, precision, recall, F1 score, 
and other models for multiclass classification analysis. As 
seen in Table XVIII, our proposed CNN models are more 
accurate than other deep learning models. Ge et al. [61] build 
a multiclass classification model using feed-forward neural 
networks with embedding layers. They used the BoT-IoT 
dataset for their model validation. In certain attack classes, 
their model performed well, but in others, the model 
performed poorly. Our proposed model accuracy, precision, 
recall, and F1 score exceed other deep learning models. 
However, a few research papers developed an intrusion 
detection deep learning algorithm using multiclass 
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classification. We use multiclass classification to classify 
IoT network traffic into four, five, ten, and sixteen 
categories. Our proposed CNN models outperform all other 
implementations in all datasets included in this study: BoT-
IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23, 
IoT-DS-1, and IoT-DS-2. In comparison to the CNN3D 
model, the CNN1D and CNN2D models perform better. 
CNN3D requires twice as much time to train as CNN1D or 
CNN2D models. In addition, the CNN3D model needed a 
large number of epochs for its convergence. The CNN1D 
model was the most accurate in terms of detection rate and 
required the least amount of training time. 

VII. CONCLUSION AND FUTURE WORK 

Deep learning approaches have demonstrated their capacity 
to classify anomalies in many fields of research correctly. 
However, intruders employ novel and innovative techniques 
to launch cyber-attacks. While significant attempts to track 
and distinguish these attacks continue to occur in multiple 
ways in collaboration with other potential attacks such as 
DDoS and Botnets attacks. This article proposes and 
develops an anomaly detection model for IoT networks using 
a convolutional neural network to detect and classify binary 
and multiclass anomalies. We provide a technique for 
detecting anomalous activity in IoT networks by generating 
a new dataset from an existing one. This method was used to 
create four IoT datasets, which were then combined to 
increase the number of attack categories. We use the BoT-
IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23, 
IoT-DS-1, and IoT-DS-2 intrusion detection datasets to 
validate our proposed convolutional neural network model. 
We classify a variety of anomalies using 1D, 2D, 3D 
convolutional neural network models. 

Furthermore, we use the transfer learning principle to build 
multiclass and binary classification models. Our proposed 
binary and multiclass classification models showed high 
accuracy, precision, recall, and F1 score compared to 
existing classification strategies and recent deep learning 
implementations. The minimum detection rate of the 
CNN1D model 99.74%, CNN2D model 99.42%, CNN3D 
99.03% for BoT-IoT, MQTT-IoT-IDS2020, IoT-23, and 
IoT-DS-2 datasets. This study findings indicate that the 
suggested model will aid in the development of an efficient 
anomaly-based intrusion detection system for IoT networks 
that has both a high detection rate and a low false alarm rate. 

For future work, we plan to investigate further anomaly 
detection using various deep learning methods, like FFN and 
RNN, GAN, and contrast the findings to those obtained using 
a deep convolutional neural network model. 
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