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Abstract 

The vehicle routing problem (VRP) is a critical and vital problem in logistics for 

the design of an effective and efficient transportation network, within which the 

capacitated vehicle routing problem (CVRP) has been widely studied for several 

decades due to the practical relevance of logistics operation. However, CVRP with the 

objectives of minimizing the overall travelling distance or the travelling time cannot 

meet the latest requirements of green logistics, which concern more about the 

influence on the environment. This paper studies CVRP from an environmental 

perspective and introduces a new model called environmental vehicle routing problem 

(EVRP) with the aim of reducing the adverse effect on the environment caused by the 

routing of vehicles. In this research, the environmental influence is measured through 

the amount of the emission carbon dioxide, which is a widely acknowledged criteria 

and accounts for the major influence on environment. A hybrid artificial bee colony 

algorithm (ABC) is designed to solve the EVRP model, and the performance of the 

hybrid algorithm is evaluated through comparing with well-known CVRP instances. 

The computational results from numerical experiments suggest that the hybrid ABC 

algorithm outperforms the original ABC algorithm by 5% on average. The 

transformation from CVRP to EVRP can be recognized through the differentiation of 

their corresponding optimal solutions, which provides practical insights for operation 

management in green logistics. 
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1. Introduction 

 Due to increasingly serious environmental deterioration, sustainable development 

is becoming a vital issue facing various enterprises (Akyelken, 2011). Both 

environmental regulations and customer pressures have driven enterprises to adopt 

more environment-friendly operations (Dobers et al., 2013). In the logistics area, 

green logistics has attracted more and more attention as an exemplar of sustainable 

development (Sheu et al., 2005). Environmental issues can affect various logistics 

decisions, such as warehouse location, material sourcing, modal selection, 



transportation management and so on (Suzuki, 2011; Tancrez et al., 2012; Wu and 

Dunn, 1995). Transportation is the largest source of pollution in logistics. For 

example, in Canada, transportation accounted for 27% of greenhouse gas (GHG) 

emission in 2007 (Environment Canada, 2009), and in the United States, the 

transportation sector contributed 28% of national GHG emission (US EPA, 2009). 

Amongst various transportation modes, medium to heavy-duty diesel vehicles account 

for around one-third of GHG emissions from transportation (Elhedhli and Merrick, 

2012). Therefore, more effort should be devoted to handle transportation management 

in logistics with the objective of minimizing the environmental impact (Salimifard et 

al., 2012).  

The vehicle routing problem (VRP) has been extensively studied ever since its 

introduction. The initial idea of the VRP is to deliver a certain amount of goods to a 

set of customers with known demands through a number of vehicles to achieve the 

objective of minimizing cost. VRP plays a pivotal role in the design of distribution 

networks and has also been applied in the agricultural field (Bochtis and Sørensen, 

2010). VRP has been extended to different specific problems, such as Capacitated 

VRP (CVRP) concerning the limited capacity of vehicles, VRP with time windows 

(VRPTW) considering the delivering goods within a time window, multi-depot VRP 

(m-VRP), VRP with simultaneous pick-up and delivery (VRPSPD) and so on. Each of 

these has different objectives, constraints and application backgrounds. Surveys and 

reviews of classical and derived VRP model can be found by Toth and Vigo (2002), 

Golden et al. (2008), and Hoff et al. (2010). Among the various types of VRPs, CVRP 

is the most well-known and practical one and has been extensively studied by 

academic researchers. Traditional VRP is designed with the economic objective of 

minimizing the cost while designing the route and scheduling vehicles. The cost is 

normally represented in the form of travelling distance or time. However, in recent 

years, the objective in solving VRP does not exclusively consider the economic needs.   

In green logistics, the VRP involving environmental issue has also been studied 

from different perspectives by many researchers (Lin et al., 2013). For example, Kara 

et al. (2007) firstly proposed an Energy Minimizing Vehicle Routing Problem 

(EMVRP), considering a new cost function based on distance and the vehicle load. 

However, the cost function was derived more from physical and mechanical analyses, 

which differ from practical situations. Xiao et al. (2012) extended the idea of EMVRP 

and proposed a fuel consumption optimization model for CVRP. In their research, 

they formulated a linear expression between fuel consumption rate and the weight of 

vehicles based on the analysis of past statistical data. Nevertheless, in their research, 

the load of each vehicle was not explicitly represented with the combination of the 

route traversed. In addition, in their numerical experiments, they assumed the 

full-load and empty-load fuel consumption rates as 2 and 1 for simplicity, which is not 

practical for real situations. In numerical experiments, we find that the settings of 

these two parameters can largely affect the construction of the final solution. Thus, in 



this research, we set the parameters in accordance with a practical case study by 

Ubeda et al. (2011), the CO2 emission rate per liter of fuel is 2.61 kg/l in case of the 

diesel oil and the empty-load and full-load fuel consumption rates are as 0.296 and 

0.390 respectively.  

In this research, the emission of CO2 is employed as a measurement to formulate 

an environmental vehicle routing problem (EVRP) model. In contrast to the CVRP, 

the objective of the EVRP is to find the optimal solution with minimum 

environmental impact in terms of minimizing CO2 emissions. For the purpose of 

generalization, the emission of CO2 is determined by the fuel consumption directly, 

either diesel or gasoline. The fuel consumption of one vehicle is subjected to three 

major factors, the travelling distance, the truckload and the travelling speed (Elhedhli 

and Merrick, 2012). Modeling the fuel consumption function depends on the 

transportation strategy. In the fundamental CVRP, we adopt a linear function relating 

fuel consumption and the load of vehicles (Xiao et al., 2012) , wherein the speed is 

assumed to be constant. Apart from the three factors mentioned earlier, other factors 

like road conditions, traffic jams and weather may also affect the fuel consumption. 

Nevertheless, these factors are relatively insignificant, and occur in special cases; 

hence they are not included herein.  

  VRPs can be modeled as combinatorial optimization (CO) problems with 

multiple objectives, constraints and decision variables. Exact methods, such as Linear 

Programming (LP) and Branch-and-Bound (B&B), are becoming less popular for 

solving CO problems, as they are either unable to solve complicated CO problems 

with large numbers of variables or it takes long time to find the solution for CO 

problems (Laporte, 1992). By contrast, meta-heuristic approaches are becoming 

increasingly popular as these approaches are approximate approaches, which suggest 

that they could find satisfactory solutions within an acceptable time instead of finding 

the optimal solution. Swarm intelligence, which was originally inspired by the 

collective behavior of natural insect colonies and animal societies, is a new branch of 

meta-heuristics, comparing with the evolutionary computations (Bonabeau et al., 

1999). Swarm intelligent algorithms use approximate and non-deterministic strategies 

to effectively and efficiently explore and exploit the search space in order to find 

near-optimal solutions (Blum and Li, 2008; Blum and Merkle, 2008). Two essential 

properties, self-organization and division of labor, are necessary and sufficient to 

obtain swarm intelligent behavior. Self-organization relies on four basic properties; 

positive feedback, negative feedback, fluctuations and multiple interactions 

(Bonabeau et al., 1999), while division of labor indicates that different tasks are 

performed simultaneously by specialized individuals, and is believed to be more 

efficient than the sequential task performance by unspecialized individuals (Jeanne, 

1986). The typical example of swarm intelligence is the behavior of bee colonies, 

which derives the introduction of the artificial bee colony (ABC) algorithm by 

Karaboga (2005). Both self-organization and labor division are clearly exemplified in 



ABC algorithm. The framework of ABC algorithm balances the effect of 

diversification and intensification effectively when searching the whole search space, 

which means the exploration of the whole search space and the exploitation of the 

promising area in the search space are well organized. Since the introduction of ABC 

algorithm, it has gained much popularity because of its robust mechanism and easy 

implementation (Akay and Karaboga, 2012; Karaboga et al., 2012). However, until 

now there are few studies of applying ABC algorithm into green logistics. Therefore, 

this research is a pioneering attempt for the integration of swarm intelligence and 

green logistics. Differing from the original ABC algorithm, we introduce a hybrid 

ABC algorithm by incorporating the evolutionary concept of genetic algorithm (GA) 

and the local search algorithm for EVRP. The computational performance of the 

proposed hybrid ABC algorithm is measured in numerical experiments, comparing 

with the original ABC algorithm and GA, which shows that the hybrid ABC algorithm 

outperforms the other two algorithms, and can generate good solutions within 

acceptable computational time. 

 The contribution of this paper is two-fold. First, we introduced a new vehicle 

routing model (EVRP) taking account of the environmental influence. The 

environmental influence in EVRP is identified and quantified in terms of the emission 

of CO2, which is well acknowledged. And the CO2 emission is further computed by 

the fuel consumption, which is determined by various possible factors in 

transportation. In contrast with the CVRP, the proposed EVRP model is rather 

straight-forward and well perceived, without excessive assumptions or constraints and 

can directly inspire practitioners in realizing the importance of green transportation 

management. Second, the proposed hybrid ABC algorithm, which is proven to be 

effective and efficient in solving EVRP, is a pilot attempt of applying swarm 

intelligence into green logistics, which could facilitate the integrated study of green 

logistics and swarm intelligence. Apart from the above two aspects, the comparative 

studies in numerical experiments indicates the transformation of the optimal solutions 

from the situation of shortest travelling distance to the situation of minimum 

environmental influence, and provides practical managerial implications for 

decision-making in green logistics. 

 The rest of this paper is organized as follows. After a brief introduction about 

vehicle routing and environmental influence in section 1, we propose the model 

formulation of EVRP and elaborate on the explicit objectives and constraints in 

section 2. A hybrid ABC algorithm with detailed explanation is proposed in Section 3 

to solve the new EVRP. In section 4, we describe numerical experiments with 

well-acknowledged benchmark instances comparing the performance of the hybrid 

ABC algorithm and the GA algorithm, and analyze the differentiation between the 

optimal solutions for different situation. Finally, the conclusions and further work are 

drawn in section 5.  



2. Environmental vehicle routing model  

2.1 Vehicle routing model 

VRP is normally modeled on a graph, which comprises a set of nodes and the 

associative edges. The set of nodes represent the depot(s) and customers, while the 

edges represent the routes among them. A number of vehicles depart from the depot(s), 

visit customers and return to the depot(s). The number of vehicles needed, the 

allocation of customers for vehicles and the optimal routes for vehicles are three 

intrinsic aspects of VRP. The settings and notations of VRP are described in table 1. 

Table 1. The settings and notations of VRP 

 Notations Meanings 

Graph related 

parameters  

𝐺 = (𝑉,  𝐴) The graph 𝑉 = {0,1,2, ⋯ , 𝑛} The set of nodes in the graph  𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} The set of edges in the graph 𝑑𝑖𝑗 = 𝑑𝑗𝑖  (𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗) The distance between 𝑖 and 𝑗  𝑐𝑖𝑗 = 𝛼 ∗ 𝑑𝑖𝑗 The travelling cost on edge (𝑖, 𝑗) 

Customer-related 

parameter 
𝑟𝑖  (𝑖 = 1,2, ⋯ , 𝑛) The customer demand 

Vehicle-related 

parameter 

𝑄 The vehicle capacity 𝑚 The maximum number of vehicles 

In this research, the scenario of single depot and symmetric network is adopted, 

which means all the vehicles depart from and return to the same depot and the route 

between two nodes contains no directional information. In detail, node 𝑖 = 0 is the 

depot, and the other nodes 𝑖 = 1,2, ⋯ , 𝑛 represent customers. The distance between 

node 𝑖 and node 𝑗 is represented as 𝑑𝑖𝑗 (𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗), and the symmetric network 

indicates that 𝑑𝑖𝑗 = 𝑑𝑗𝑖  (𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗). Customer demand is represented as 𝑟𝑖 (𝑖 =1,2, ⋯ , 𝑛), which is predetermined in this research. 𝑚 vehicles with same load 

capacity 𝑄  are available. The travelling cost between customer 𝑖  and 𝑗  is 

illustrated as 𝑐𝑖𝑗, and treated from a distance perspective as 𝑐𝑖𝑗 = 𝛼 ∗ 𝑑𝑖𝑗, in which 𝛼 is the correlative coefficient depicting the proportion between economic cost and 

travelling distance. The above assumptions and notations are sufficient to construct a 

vehicle routing model with the objective of finding the shortest travelling distance. In 

practical situations, there might be some other constraints for the entities (i.e. depot, 

customers and vehicles), such as multiple depots, uncertain demand and time window 

for customers, and maximum allowed travelling distance for vehicles. 



2.2 Environmental influence 

As we mentioned above, the environmental influence is externalized in terms of 

the CO2 emission. Therefore, the critical issue is to measure the amount of CO2 

emission. In this research, we use 𝑒𝑖𝑗 to denote the amount of CO2 emission when a 

vehicle travels from customer 𝑖 to customer 𝑗, and try to find the optimal routes with 

the least CO2 emission considering the balance between 𝑐𝑖𝑗 and 𝑒𝑖𝑗 . The added 

settings and notations for environmental measurement are provided in table 2. 

Table 2. The settings and notations for environmental measurement 

Parameter Notations Meanings 

CO2 emission 

𝐶𝐸𝑅 The CO2 emission rate 

FCR The fuel consumption rate 𝑒𝑖𝑗 = 𝐶𝐸𝑅 ∗ 𝐹𝐶𝑅 ∗ 𝑑𝑖𝑗 The amount of CO2 emission 

Fuel consumption 

𝜌0 The empty-load 𝐹𝐶𝑅 𝜌∗ The full-load 𝐹𝐶𝑅 𝜌 The 𝐹𝐶𝑅 provided that load is 𝑞 

Vehicle load 

𝑞 The real-time load of vehicle 𝑞𝑖𝑗𝑘 The load of vehicle 𝑘 on edge (𝑖,  𝑗), 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 𝑞0𝑗𝑘 The initial load of vehicle 𝑘 𝑞𝑖0𝑘 The final load of vehicle 𝑘 

 The mechanism of environmental measurement is described in the following. The 

emission of CO2 is caused directly by the consumption of certain type of fuel for 

vehicles. The CO2 emission rate (CER) is relative fixed provided that the type of fuel 

is known, e.g. 2.61 kg/liter in case of the diesel oil. The fuel consumption rate (FCR) 

is determined by the travelling distance and the load of vehicles. In order to calculate 

the FCR, we adapt a linear expression between the fuel consumption and the weight 

of vehicle, and integrate it into our model.  The empty-load and full-load fuel 

consumption rate of vehicles are denoted as 𝜌0  and 𝜌∗  respectively. The fuel 

consumption rate 𝜌 under the load 𝑞 is expressed as follows.  

𝜌(𝑞) = 𝜌0 + 𝜌∗ − 𝜌0𝑄 𝑞 

 When vehicle 𝑘 is travelling from customer 𝑖 to customer 𝑗, the travelling 

distance and the load of vehicle 𝑘 are represented as 𝑑𝑖𝑗 and 𝑞𝑖𝑗𝑘 respectively, thus 

the CO2 emission for vehicle 𝑘 should be represented as follows. 

𝑒𝑖𝑗𝑘 = 𝐶𝐸𝑅 ∗ (𝜌0 + 𝜌∗ − 𝜌0𝑄 𝑞𝑖𝑗𝑘) ∗ 𝑑𝑖𝑗  

2.3 Environmental vehicle routing model 

Based on the fundamental vehicle routing model and the new environmental 



consideration described in the above sections, we can provide the complete 

formulation of the environmental vehicle routing problem (EVRP). Decision variables 

involved in EVRP are defined as follows. 𝑥𝑖𝑗𝑘 is a binary variable, 𝑥𝑖𝑗𝑘 = 1 if node 𝑗 is followed by node 𝑖 in sequence 

by vehicle 𝑘, otherwise 𝑥𝑖𝑗𝑘 = 0.  𝑦𝑖𝑘 is a binary variable, 𝑦𝑖𝑘 = 1 if node 𝑖 is visited by vehicle 𝑘, otherwise 𝑦𝑖𝑘 = 0.  

 The complete formulation of EVRP can be represented as follows. 

 

 min 𝑓1 = ∑ ∑ ∑ 𝛼 ∗ 𝑑𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑘𝑗𝑖  (1) 

 min 𝑓2 = ∑ ∑ ∑ 𝐶𝐸𝑅 ∗ (𝜌0 + 𝜌∗ − 𝜌0𝑄 𝑞𝑖𝑗𝑘) ∗ 𝑑𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑘𝑗𝑖  (2) 

 ∑ 𝑟𝑖𝑦𝑖𝑘𝑛
𝑖=1 ≤ 𝑄, ∀𝑘 (3) 

 ∑ 𝑥0𝑗𝑘𝑚
𝑘=1 ≤ 𝑚, ∀𝑗 (4) 

 ∑ 𝑦𝑖𝑘𝑚
𝑘=1 = 1, ∀𝑖 (5) 

 ∑ 𝑥𝑖𝑗𝑘𝑛
𝑖=0 = 𝑦𝑗𝑘 , ∀𝑗, , 𝑖 ≠ 𝑗, ∀𝑘 (6) 

 ∑ 𝑥𝑖𝑗𝑘𝑛
𝑗=0 = 𝑦𝑖𝑘 , ∀𝑖, 𝑖 ≠ 𝑗, ∀𝑘 (7) 

 𝑞0𝑗𝑘 = ∑ 𝑟𝑖𝑦𝑖𝑘𝑛
𝑖=1 , ∀𝑘, 𝑗 (8) 

 𝑞𝑖0𝑘 = 0, ∀𝑘, 𝑖 (9) 

 𝑞𝑖𝑗𝑘 = 𝑞𝑢𝑖𝑘 − 𝑟𝑖 , (𝑢 → 𝑖 → 𝑗), ∀𝑘 (10) 

 X = (𝑥𝑖𝑗𝑘) ∈ 𝑆, (𝑆 ⊂ 𝑉\{0}) (11) 

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑆𝑖∈𝑆 ≤ |𝑆| − 1 (|𝑆| ≥ 2; 𝑖 ≠ 𝑗; ∀𝑘) (12) 

 𝑥𝑖𝑗𝑘 = 0 𝑜𝑟 1, ∀𝑖, 𝑗, 𝑘 𝑦𝑖𝑘 = 0 𝑜𝑟 1, ∀𝑖, 𝑗, 𝑘 
(13) 

 Objective (1) is designed to calculate the overall cost aiming to find the optimal 

routes with minimum economic cost in terms of shortest distance, while objective (2) 

is to find the optimal routes with minimum environmental cost in terms of the CO2 

emission. Constraint (3) indicates that the cumulative customer requirement in one 

route cannot exceed the maximum capacity of the vehicle. Constraint (4) means the 

number of vehicles used should be less than the predetermined setting 𝑚, because 

some vehicles may be arranged for backup or emergency use. Each customer can only 

be visited and served by one vehicle under constraint (5). Constraints (6) and (7) 



guarantee the connectivity of each sub-route, which means the visiting vehicle, the 

departing vehicle and the serving vehicle for one customer can only be the same one. 

Constraint (8) and (9) describe the initial load and the final load of vehicle 𝑘 

respectively, in which the initial load should equal the cumulative demand of 

customers associated with this vehicle and the final load should be 0. While en route, 

the real-time load of vehicle 𝑘 can be calculated through the deduction of the 

demand of its preceding visited customer from its former load, which is expressed in 

constraint (10) provided that vehicle 𝑘 visits customers 𝑢, 𝑖 and 𝑗 sequentially. 

Constraint (11) and (12) are designated to avoid sub-tours, while the constraint (13) is 

the binary constraint for the decision variables. 

3. Hybrid Artificial Bee Colony algorithm 

The ABC algorithm belongs to the category of swarm intelligence, which mimics 

the intelligent behavior of various species, such as ants, birds, bees. Two common 

distinguishing features of swarm intelligence are self-adjusting and 

rapid-responsiveness. The ABC algorithm imitates the behaviors of honeybees, which 

are divided into three types, scout bees, employed bees and onlooker bees. Different 

types of bees play different roles in the procedure of exploration and exploitation of 

food sources. Food sources are regarded as the solutions to specific problems, while 

the ones with more nectar correspond to better solutions.  

The whole procedure of the ABC algorithm can be described as follows. Scout 

bees are designated to find the initial food sources by carrying out a random search in 

the search space. Subsequently, employed bees are sent out to exploit the found food 

sources, and each employed bee matches one food source. During the procedure of 

exploitation, each employed bee also carries out a neighborhood search and tries to 

find a better food source nearby. If a better food source is found, the employed bee 

would abandon the previous food source and exploit the better one. After the 

completion of the work of all employed bees, they return to the hive and share their 

information of their associated food sources with onlooker bees waiting in the hive 

through a waggle dance. The onlooker bees choose to follow certain employed bees 

and exploit the corresponding food sources probabilistically. This probability is 

affected mainly by the richness of the corresponding food sources. Once an onlooker 

bee chooses to follow an employed bee, it becomes an employed bee and repeats the 

procedure of the employed bees. After certain number of iterations of the procedure of 

exploitation and exploration, one food source may be exhausted. In that case, the 

associated employed bee becomes a scout bee and repeating the procedure of scout 

bees, randomly finding a new food source to replace the abandoned one. The flow 

chart of ABC algorithm is described in figure 1 with four periods confirmed in the 

above description, (1) initialization phase, (2) employed bee phase, (3) onlooker bee 



phase and (4) scout bee phase. 
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Fig. 1. The flow chart of the ABC algorithm 

 Based on the procedures mentioned above, we provide the pseudo code of ABC 

algorithm in table 3, which also contains the explanation of the notations used. The 

ABC algorithm was initially proposed to solve continuous numerical problems 

without constraints; the generation of initial solutions is determined by the intrinsic 

range of each dimensional variable referring to equation (1). The neighbor solution is 

computed through the intersection of the two existing solutions in equation (3); the 

current solution and another randomly chosen solution. Greedy selection is applied in 

each neighborhood search which can facilitate the capability of the intensive search, 

while the abandonment function enhances the capability of the diversified search. 



However, the original ABC algorithm is not appropriate for the EVRP model due to 

the different problem contexts, the discrete variable structures and the irregular search 

space. Apart from that, the required constraints in the proposed model also force the 

changes of original ABC algorithm. Therefore, based on the original ABC algorithm, 

we propose a hybrid ABC algorithm for the EVRP model described in the following 

subsections.  

Table 3. The pseudo code of ABC algorithm 

The pseudo code of ABC algorithm 

Notations Meanings 𝑆𝑁 The number of solutions 𝑙𝑖𝑚𝑖𝑡 The criterion of abandoning a solution 𝑀𝑁𝐼 The predetermined maximum number of iteration 𝑥𝑖 , 𝑖 = 1,2, ⋯ , 𝑆𝑁 The index of individual solution 𝐷 The dimension of individual solution 𝑥𝑖𝑗 , 𝑗 ≤ 𝐷 The 𝑗𝑡ℎ dimension of solution 𝑥𝑖 𝑥𝑢𝑏𝑗 , 𝑥𝑙𝑏𝑗  The upper bound and lower bound of 𝑥𝑖𝑗  𝑓𝑖 The function value of solution 𝑥𝑖 𝑓𝑖𝑡𝑖 The fitness value of solution 𝑥𝑖 𝑝𝑖  The probability of selecting solution 𝑥𝑖 𝑣𝑖 The neighbor solution of solution 𝑥𝑖 𝑡𝑟𝑖𝑎𝑙(𝑥𝑖) The number of iterations in which solution 𝑥𝑖 cannot be improved.  𝜔, 𝜑 Random number, 0 ≤ 𝜔 ≤ 1 and −1 ≤ 𝜑 ≤ 1 

Initialization 

 

(1) Generate the initial solutions 𝑥𝑖 , 𝑖 = 1,2, ⋯ , 𝑆𝑁 randomly 𝑥𝑖𝑗 = 𝑥𝑙𝑏𝑗 + 𝜔(𝑥𝑢𝑏𝑗 − 𝑥𝑙𝑏𝑗 ), ∀𝑗 (1) 

(2) Calculate the fitness of initial solutions 𝑓𝑖𝑡𝑖, ∀𝑖  𝑓𝑖𝑡𝑖 = { 11 + 𝑓𝑖 ,    𝑖𝑓 𝑓𝑖 ≥ 01 + 𝑎𝑏𝑠(𝑓𝑖),    𝑖𝑓 𝑓𝑖 < 0 , ∀𝑖 (2) 

Set iteration = 1 

Repeat 

 

For each employed bee  

 

(1) Carry out neighborhood search for 𝑥𝑖 , ∀𝑖  𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑(𝑥𝑖𝑗 − 𝑥𝑘𝑗), ∀𝑖, 𝑖 ≠ 𝑘 (3) 

(2) Calculate the fitness of neighbor solution through Eq. (2)  

(3) Apply greedy selection between 𝑥𝑖 and 𝑣𝑖  

For each onlooker bee  

 

(1) Calculate the selective probability for each solution 𝑥𝑖 , ∀𝑖  𝑝𝑖 = 𝑓𝑖𝑡𝑖∑ 𝑓𝑖𝑡𝑖𝑆𝑁𝑖=1 , ∀𝑖 (4) 

(2) Select solution 𝑥𝑖 based on correlative 𝑝𝑖 , and become an employed bee  

(3) Execute the employed bee phase again  

If any abandoned solution 𝑡𝑟𝑖𝑎𝑙(𝑥𝑖) > 𝑙𝑖𝑚𝑖𝑡  

 Then replace it with a new solution generated through Eq. (1)  

Find and memorize the best solution so far  

iteration = iteration + 1  



Until iteration = MNI 

3.1 Representation scheme and search space 

Since the ABC algorithm is initially designed for continuous numerical problems, 

the initial solutions are generated by taking into account the lower and upper bounds 

of the dimensional variables of a specific problem. However, in CVRP, all dimensions 

of each solution are related, which means the dimensional variables cannot be 

generated separately. Therefore, we have to consider all dimensional variables 

simultaneously in constituting the solution. After an extensive review of the relevant 

literature, we find two popular representation schemes which are frequently used. The 

first one is expressed as 𝑋 = {𝑋𝑣, 𝑋𝑟}. 𝑋𝑣 and 𝑋𝑟 are the vehicle information and 

route information associated with each customer respectively. 1 ≤ 𝑥𝑣𝑖 ≤ 𝐾 (𝐾 is the 

number of vehicles, 𝑥𝑣𝑖 is the vehicle information of customer 𝑖). 1 ≤ 𝑥𝑟𝑖 ≤ 𝑁 (𝑁 

is the number of customers, 𝑥𝑟𝑖  is the route information of customer 𝑖 ). The 

dimension of solution 𝑋  is 2𝑁  (two times of the number of customers). For 

example,  𝑋𝑣 = {1,2,2,2,2,3,3}  and 𝑋𝑟 = {5,4,3,2,7,1,5} . Due to the random 

generation of 𝑋𝑟, it may have to be re-sorted per vehicle as 𝑋𝑟∗ = {1,3,4,1,2,1,2}. In 

this case, the solution contains three sub-routes, {0,1,0}, {0,4,5,2,3,0} and {0,6,7,0}. 

The second one is stated as a random permutation of customers with multiple 

delimiters, such as 0. Each sub-sequence between two close delimiters is treated as a 

route. The dimension of this scheme is 𝑁 + 𝐾 + 1 . For example, X ={0,1,0,4,5,2,3,0,6,7,0}  indicates exactly the same result as the one in first 

representation scheme. Table 4 illustrates the comparison of the above two 

representation schemes with a simple example of 7 customers. Compared with the 

first scheme, the second one is more intuitive and succinct. Not only because of the 

smaller dimensional scale, the inner generation mechanism of the second scheme can 

significantly decrease the computational complexity. Thus the second scheme is 

chosen. The advantages of the first scheme is that it has the potential to handle VRPs 

with different types of vehicles because the labeled vehicles can be identified  

Table 4. Comparison of two representation schemes 

Customer 1 2 3 4 5 6 7 Solution 

Scheme 1 

Vehicle 𝑋𝑣 1 2 2 2 2 3 3 
Route 1: {0,1,0} 

Route 2: {0,4,5,2,3,0} 

Route 3: {0,6,7,0} 

Route 𝑋𝑟 5 4 3 2 7 1 5 

Updated route 𝑋𝑟∗ 1 3 4 1 2 1 2 

Scheme 2  𝑋 = {0,1,0,4,5,2,3,0,6,7,0} 

 In order to facilitate the process of exploration and exploitation, the search space 

is not restricted into the feasible region only, which means infeasible solutions are 

acceptable in the interim states. The infeasible solutions can be used as intermediate 

solutions to assist the generation of better feasible solutions at next state. In ABC 



algorithm, given the existing solution, when an employed bee carries out a 

neighborhood search in the neighborhood area, it may find one solution from the 

infeasible region. In classical CVRP, when a solution violates the maximum capacity 

constraint, this solution has to be labeled as an infeasible solution. However, in this 

research, we use the evaluation mechanism to handle the tolerance of infeasible 

solutions. For each solution, 𝑥 ∈ X, let 𝑝(𝑥) denote the total violation of capacity 

constraints (Alvarado-Iniesta et al., 2013). Referring to the previous notation, 𝑝(𝑥) 

can be expressed as the following. 

𝑝(𝑥) = ∑ 𝑚𝑎𝑥 {∑ 𝑟𝑖𝑦𝑖𝑘𝑛
𝑖=1 − 𝑄, 0}𝑚

𝑘=1  

As a result, each solution can be evaluated through the evaluation function as 𝑓(𝑥) = 𝑐(𝑥) + 𝛿 ∗ 𝑝(𝑥) . The parameter 𝛿  is self-adjusted, which is gradually 

enlarged with the increase number of iterations. This allows the existence of infeasible 

solutions during the searching process but exclude them at the end. The permission 

and propagation of infeasible solutions during the searching process can substantially 

raise the exploration and exploitation of the search space.  

3.2 Initialization phase 

 In the original ABC algorithm, the initial solutions are randomly generated by 

considering the range of dimensional variables. However, this approach can only be 

used for continuous numerical problems, where the dimensional variables are all real 

numbers and have a certain range. In this research, a simple and efficient mechanism 

to generate initial solutions is introduced by using the representation scheme 

mentioned above. First, we generate a random permutation with a set of customers 

only, and then split this random permutation of customers into various routes, taking 

account of the capacity of the vehicles as described in figure 2. Empty routes are also 

added if necessary to meet the dimensional requirement. Following this mechanism, 

all the initial solutions can be easily generated and guaranteed to be feasible. It can 

speed up the convergence of the solutions to a large extent. The guarantee of feasible 

solutions in the initialization phase does not conflict with the permission and 

propagation of infeasible solutions in the next states. Another improvement in our 

designed hybrid ABC algorithm is that we can run the program multiple times in order 

to evaluate the average performance. However, the initial solutions are only generated 

once in the first iteration. Apart from that, the output of last iteration is used as the 

input of next execution, so the solutions can be continuously improved, which also 

accelerates the speed of convergence.  



 

Fig. 2. The generation of initial solutions 

3.3 Employed bee phase  

The initial solutions are generated repetitively following the approach introduced 

above. Subsequently, employed bees are assigned to exploit the found food sources. 

One employed bee is assigned to exactly one food source, which means the number of 

employed bees is the same as the number of food sources. Given the known food 

source, the corresponding employed bee also tries to search its neighborhood for 

potential better food sources. In the original ABC algorithm, the candidate solution is 

generated through the modification of the current solution by referring to another 

randomly selected solution. However, when the ABC algorithm is applied into CVRP, 

this mechanism does not work efficiently. Many researchers have tried to adapt 

various operators in this procedure to improve the probability of finding better 

solutions, such as the swap operator, the reverse operator, and the insert operator and 

so on (Alvarado-Iniesta et al., 2013; Szeto et al., 2011; Xiao et al., 2012) as described 

in figure 3.  

 
Fig. 3a. Swap operator 

 

Fig. 3b. Reverse operator 



 
Fig. 3c. Insert operator 

 The numerical analysis of the efficiency of swap, reverse and insert operators 

indicates that all of them can assist the evolution of solutions to a certain extent. 

However, these operators all behave using random searching, which cannot fully 

utilize the existing information of the current solution. The well-performed sub-routes 

in the current solution could be easily destroyed by these operators unintentionally. 

Therefore, in this research, we incorporate the crossover concept from the Genetic 

Algorithm (GA) (Prins, 2004) into our ABC algorithm . To better utilize the existing 

information, we choose to use the rule of maximum retention exchange, which is 

illustrated in figure 4. The well-performed sub-route from parent solution 1 is selected 

and reserved in the new solution, while the other parts of this new solution are 

complemented by parent solution 2, following the rule of maximum retention 

exchange. Likewise, the well-performed sub-route from parent solution 2 can also be 

saved and inherited by its child solution. By incorporating this crossover operator, the 

evolution of solutions can be guided in a good direction and the convergence of 

solutions can also be increased.  

 

Fig. 4. Crossover operator 

 Another improvement is the adoption of the local search mechanism to each 

sub-route within the new generated solutions. The approaches of 2-optimization and 

3-optimization, which optimize the provided solution through the exchange of two or 

three elements, are both considered in our research depending on the length of 

corresponding sub-route. Once a new solution is generated, we apply the local search 

operator to all valid sub-routes contained in this solution. Essentially, the above swap, 

reverse, insert and crossover operators are all designed to be applied to the solution 

level, while the local search operator is adapted in the sub-route level. This means the 

local search operator can complement the flaws in the randomness of swap, reverse, 



insert and crossover operators and enhance the efficiency of the intensive search 

around the optimal solution. The efficiency of the local search operator is evaluated 

and analyzed in our numerical experiments.  

3.4 Onlooker bee phase 

 After the completion of the employed bee phase, the employed bees return to the 

hive and share their food information with onlooker bees. The onlooker bees choose 

to follow certain employed bees and exploit their corresponding food sources 

randomly. In the ABC algorithm, the number of onlooker bees is set to be equal to the 

number of employed bees, and the selective probability is computed through the 

roulette wheel mechanism. Therefore, the food sources with large amounts of nectar 

may be selected multiple times, which could promote the propagation of good 

solutions, and intensify the local search and increase the speed of convergence. For 

solution 𝑥𝑖 , let 𝑓𝑖  and 𝑓𝑖𝑡𝑖  denote the total cost and fitness of this solution 

respectively. 𝑓𝑖𝑡𝑖  can be computed using the Eq. (2) from the original ABC 

algorithm, while 𝑝𝑖 is the selective probability of solution 𝑥𝑖 calculated using Eq. 

(4). With the known probability, an onlooker bee chooses to exploit a specific food 

source, and repeats the same procedure as the employed bee phase. 

3.5 Scout bee phase 

 Due to iterative exploitation, the nectar in some food sources is gradually 

consumed and may finally be exhausted. The exhausted food source would be 

abandoned by its corresponding employed bee. In this case, the associated employed 

bee becomes a scout bee, and finds a new food source randomly to replace the 

abandoned one. In the ABC algorithm, each solution is labeled with one trial number. 

If one solution cannot be improved after a certain number of trials, it would be 

abandoned. The procedure is: when a neighborhood search of the current solution is 

conducted and no better solutions are found, the trial number of the current solution is 

increased by 1. However, if a new solution with better fitness is found, it directly 

replaces the current solution and resets the trial number as 0. After each onlooker bee 

phase, the trial numbers of all the solutions will be checked. If the trial number of one 

solution exceeds a predetermined parameter, this solution would be replaced by a new 

generated solution in the scout bee phase. As a result of this supplemental scout bee 

phase, the diversified search ability of the ABC algorithm is strengthened, which 

facilitates the convergence of the solutions to a global optimal one. 



4. Experimental Results 

In the numerical experiment, fifteen benchmark distance-constrained VRP 

instances from Augerat et al. (1995) and four instances from Christofides and Eilon 

(1969) are adopted. The names of instances indicate the category of the associated 

files, the number of nodes on the graph, and the number of vehicles acquired in the 

optimal solutions. For example, instance “A-n32-k5” indicates that this instance is in 

category A with 32 nodes, and 5 vehicles are used in the optimal solution. The 

locations of customers and the depot are provided in a coordinated form. The demand 

of customers and the capacity of vehicles are predetermined in each instance as well.  

The ABC algorithm provides a rather simple swarm-based optimization technique, 

in which only two parameters need to be tuned. The first one is the size of the bee 

colony (CS), which is two times of the number of solutions (SN). The number of 

employed bees and onlooker bees, which equals the number of food sources, is set to 

be half of the bee colony size. The second parameter is the criterion of the 

abandonment of certain solutions (limit). The detailed analysis of parameter SN and 

limit is provided in the following subsection. As for the parameter 𝛿 employed in the 

evaluation function as 𝑓(𝑥) = 𝑐(𝑥) + 𝛿 ∗ 𝑝(𝑥), 𝑥 ∈ 𝑋, since the variance of 𝛿 is 

consistent with the increase of the number of iterations, we calculate 𝛿  by 

multiplying another positive coefficient 𝜏 and the current index of iterations. In this 

case, we set 𝜏 to be 0.1 referring to the setting of the maximum number of iterations. 

The complete parameter settings are provided in table 5. The hybrid ABC algorithm is 

coded in Java with Eclipse IDE, and all tests are performed on a PC with a 2.5GHz 

processor. Each combination of parameters and operators is executed 10 times 

repetitively, and the average value is used to illustrate the computational performance 

in order to provide convincing results.  

Table 5. Parameter settings for numerical experiment 

Settings Explanation 

Instance 

The number of customers is provided in each instance. 

The locations of customers and the depot are provided in coordinate format in each 

instance. 

The customer demands are provided in each instance. 

The vehicle capacity is provided in each instance. 

The full connectivity among all the nodes on the graph is assumed.  

The distance between two nodes, 𝑖(𝑥𝑖 , 𝑦𝑖) and 𝑗(𝑥𝑗 , 𝑦𝑗) , is calculated as 𝑑𝑖𝑗 =√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 

Model 
𝛼 = 1 for the calculation of economic cost in terms of distance 𝐶𝐸𝑅 = 2.61 The CO2 emission rate in terms of the diesel oil 



𝜌0 = 0.296 The empty-load FCR 𝜌∗ = 0.390 The full-load FCR  𝑚 = 2𝑘 The maximum number of vehicle available 𝛿 = 𝜏 ∗ 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 The penalty coefficient  𝜏 = 0.1 

Algorithm 
𝐶𝑆 The size of be colony 𝑙𝑖𝑚𝑖𝑡 The criterion of abandonment of solutions 

4.1 Parameter analysis 

 As we mentioned, the ABC algorithm provides a relatively simple mechanism, in 

which only two parameters need to be tuned, SN and limit. In general, larger size of 

bee colony can initiate more parallel searches simultaneously and facilitate the 

diversified exploration. However, the computational time increases substantially 

because of the size of bee colony, especially when the number of iterations is also 

large. The limit is normally set to be the product of the number of solutions (SN) and 

the number of dimensions (D) as 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐷. However, in this case, D is 

replaced with the number of vehicles (K) in one solution as 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∗ 𝐾, because 

the latter one can promote the diversified exploration of the search space better. 

 The analysis of parameters is conducted with the instance E-n51-k5 first so as to 

find the best combination, which is displayed in figure 5. The results show that the 

setting of colony size (CS) as 10 is not sufficient to acquire a good performance. By 

contrast, the CS setting as 20 is already adequate for an acceptable result; meanwhile 

it costs less time than the CS setting as 40 and 80. Once the CS as 20 is determined, 

we test the performance of the hybrid ABC algorithm with different settings of the 

limit. From the figure 5 it is found that the smaller of the limit, the more diversified of 

the evolution. In this case, we set the limit as SN*K in order to balance the effect of 

diversification and intensification of the evolution procedure. Thus the combination of 

CS as 20 and limit as SN*K is eventually employed solving all the instances. 

 
Fig. 5a. The setting of CS 



 
Fig. 5b. The setting of limit 

4.1 Operator analysis 

In the proposed hybrid ABC algorithm, five operators (i.e. swap operator, reverse 

operator, insert operator, crossover operator and local search operator) are adopted. 

Among them, the swap, reverse and insert operators are frequently used in many 

research studies (Szeto et al., 2011). However, there are no distinguishing strengths 

and weaknesses among them. Different research provides different efficiency analysis 

of these three operators, and most of them are based on specific problems. In this case, 

the above mentioned benchmark instance (i.e. E-n51-k5) is adopted to compare the 

performance of the three operators. We then incorporate the crossover operator and 

local search operator into the procedure of neighborhood search, and constitute a 

hybrid operator by combining all the mentioned operators. The operational 

performances of swap, reverse, insert and hybrid operators are illustrated in figure 6.  

 

Fig. 6. Comparison of different operators 

In the experiment, the reverse operator performs the best with a 9.9% 

improvement over the swap operator and a 4.1% improvement over the insert operator. 



In addition, the insert operator has a 6.0% improvement over the swap operator. The 

swap operator performs the worst when we adopt a single operator in the 

neighborhood search procedure. The results demonstrate that the hybrid operator 

outperforms the other operators. Especially, when the iteration is small, the hybrid 

operator even outperforms the reverse operator by 20%. With the increase in the 

number of iterations, the differentiation of performance is gradually decreased. 

However, the hybrid operator still performs 3% better than reverse operator when the 

number of iterations reaches 500,000. In addition, the results indicate that a single 

operator can hardly drive the evolution of solutions to a satisfactory convergent point. 

Comparatively, the hybrid operator works well due to the better utilization of the 

existing information and the intensive local search by the crossover operator and the 

local search operator collaboratively. 

4.3 Algorithm performance analysis 

Since the inspiration of the hybrid ABC algorithm is from the original ABC 

algorithm and the GA, we need to evaluate the performance of the proposed hybrid 

ABC algorithm through the comparison with the other two. Both the original ABC 

algorithm and the GA are adapted to solve the same instance, i.e. E-n51-k5. The 

parameter settings of GA are as follows. The number of population is 10, which is the 

same as the number of food sources in ABC algorithm. The crossover rate and 

mutation rate are set as 0.9 and 0.1 respectively. ABC algorithm and GA are 

implemented in the same computer using same IDE so as to provide convincing 

comparison, which is illustrated in figure 7. From the result we can see that the 

performance of GA is like the original ABC algorithm, and the proposed hybrid ABC 

algorithm outperforms them distinctly. The reason why the hybrid ABC algorithm is 

over the original ABC algorithm is certainly due to the incorporation of new operators; 

the crossover operator and the local search operator. As for the difference between the 

hybrid ABC algorithm and the GA could be explained by their own inherent 

frameworks. For example, the ABC algorithm comprises four phases, in which the 

neighborhood search could be conducted twice because of the onlooker bees in one 

iteration, while in the GA, the generation of new child population could be only once 

in one loop. 



 

Fig. 7. Comparison of ABC and GA 

4.4 Optimal solution of EVRP 

In this section, we conduct our experiments for two situations; situation one with 

the objective of shortest distance and situation two with the objective of the minimum 

amount of CO2 emission. In order to compare the differentiation of the two optimal 

solutions, we separately calculate the emission of CO2 along with the optimal solution 

in situation one and the travelling distance of environmental optimal solution in 

situation two. Through the analysis of the two situations, it is found that the 

transformation of the optimal solutions from the shortest travelling distance situation 

to the minimum CO2 emission situation is the result of the combination of the two 

factors, travelling distance and load. Even though in the shortest travelling distance 

situation, the amount of CO2 emission varies due to the different travelling direction 

starting from the depot.  

In the formulation of the environmental objective, three parameters should be 

predetermined; the CO2 emission rate per liter of fuel, the fuel consumption rate for 

both empty-load and full-load situations. Numerical experiments indicate that the 

parameter of the empty-load and full-load affects the weighting of distance and load 

directly, which further affects the final optimal solution. Referring to a previous case 

study by Ubeda et al. (2011) CER is set as 2.61, empty-load fuel consumption rate 𝜌0 = 0.296  and full-load fuel consumption rate 𝜌∗ = 0.390 . The results are 

illustrated in table 6. Since the instances are all provided in the symmetric matrix 

format, for a given route, the amount of CO2 emission might be different starting from 

two opposite directions. CO2_min and CO2_max are designed to record the minimum 

and maximum amounts of CO2 emission separately, along with the optimal solution 

for the situation of shortest travelling distance by considering the influence of two 

opposite directions starting from the depot.  



From the results, in the situation of the shortest travelling distance, by re-sorting 

each sub-route within the optimal solution, the amount of CO2 emission could be 

reduced by 2.47% on average. The optimal solution in the situation of minimum CO2 

emission could further achieve 0.25% better, on average, which leads to an increase of 

0.34% in total travelling distance comparing with its counterpart in the first situation. 

In some cases, minimum CO2 emission may have longer distance as CO2 emission 

does not only depend on traveling distance; it is also affected by the load of the 

vehicle and traveling direction. The result from table 6 also indicates that the CO2 

saving from the changes of travelling direction accounts for a large proportion in the 

transformation of the optimal solutions from situation one to situation two, which 

meets our expectation that, in reality, the optimal solutions for two situations should 

not differentiate too much from each other. In practical situations, the factor of the 

travelling distance is much more crucial than the load factor, which explains the slight 

changes from the solution of CO2_min to the environmental optimal solution.  

Table 6. Computational results of numerical experiments 

Instance 

Shortest distance solution 
Minimum CO2 

solution CO2 

saving 

Distance 

increase 
Distance CO2_min CO2_max 

CO2 

saving 
CO2 Distance 

A-n32-k5 787.08 685.38 707.46 -3.12% 682.58 787.81 -0.41% +0.09% 

A-n33-k5 662.11 579.98 594.88 -2.50% 579.20 662.40 -0.13% +0.04% 

A-n34-k5 780.94 685.79 698.46 -1.81% 683.11 790.22 -0.39% +1.19% 

A-n36-k5 802.13 704.01 719.68 -2.18% 702.36 806.17 -0.23% +0.50% 

A-n37-k5 672.47 583.00 605.31 -3.69% 580.69 676.26 -0.40% +0.56% 

A-n38-k5 734.18 642.89 665.35 -3.38% 642.65 735.14 -0.04% +0.13% 

A-n39-k5 828.99 730.20 743.16 -1.74% 727.33 837.07 -0.39% +0.98% 

A-n46-k7 917.91 810.73 825.54 -1.79% 803.73 926.50 -0.86% +0.94% 

A-n48-k7 1074.34 944.29 968.14 -2.46% 944.01 1075.16 -0.03% +0.08% 

B-n31-k5 676.09 585.19 588.83 -0.62% 585.19 676.09 -0.00% +0.00% 

B-n35-k5 956.29 839.60 851.16 -1.36% 838.91 962.24 -0.08% +0.62% 

B-n38-k6 808.70 698.50 726.05 -3.79% 698.50 808.70 -0.00% +0.00% 

B-n39-k5 553.16 484.67 495.37 -2.16% 480.88 553.27 -0.78% +0.02% 

B-n43-k6 746.98 652.50 676.07 -3.49% 651.52 750.41 -0.15% +0.46% 

B-n44-k7 914.96 805.66 825.29 -2.38% 804.94 915.18 -0.09% +0.02% 

E-n22-k4 375.28 325.63 340.34 -4.32% 325.63 375.28 -0.00% +0.00% 

E-n23-k3 568.56 481.50 494.29 -2.59% 479.02 569.75 -0.52% +0.21% 

E-n33-k4 837.67 735.69 750.54 -1.98% 734.88 837.87 -0.11% +0.02% 

E-n51-k5 524.61 464.17 471.26 -1.51% 463.19 527.50 -0.21% +0.55% 

Average  
 

-2.47% 
 

-0.25% +0.34% 

 The instance of E-n51-k5 exemplifies the specific differentiation of two optimal 

solutions in corresponding situations. The best known solution for this instance, with 



the objective of the shortest travelling distance, is 524.61 and contains five sub-routes. 

Each sub-route is bidirectional since the source data is provided in a symmetric matrix. 

Thus we need to calculate the maximum and minimum amount of CO2 emission along 

with the optimal solution of the shortest travelling distance. After that, we apply our 

new EVRP model to this instance. All the results are described in table 7. From the 

results, it is found that the number of routes is the same for both situations. The first, 

second and forth sub-routes are exactly the same. For the third and fifth sub-routes, 

the contained nodes are also the same. However, the sequences are quite different, 

which means even though the overall travelling distance is increased by 0.51%, the 

construction of the sub-routes could be largely changed. Figure 8 shows the 

differentiation of the two optimal solutions.  

Table 7. Optimal results for instance with 50 customer nodes 

 Distance CO2 Optimal solution 

Situation 1 

Shortest distance 
524.61 

(a) 

CO2_max 

471.26 

Route #1: {0 46 5 49 10 39 33 45 15 44 37 12 0} 

Route #2: {0 8 26 31 18 3 36 35 20 22 1 32 0} 

Route #3: {0 38 9 30 34 50 16 21 29 2 11 0} 

Route #4: {0 6 14 25 24 43 7 23 48 27 0} 

Route #5: {0 47 4 17 42 19 40 41 13 18 0} 

(b) 

CO2_min 

464.17 

Route #1: {0 12 37 44 15 45 33 39 10 49 5 46 0} 

Route #2: {0 32 1 22 20 35 36 3 28 31 26 8 0} 

Route #3: {0 11 2 29 21 16 50 34 30 9 38 0} 

Route #4: {0 27 48 23 7 43 24 25 14 6 0} 

Route #5: {0 18 13 41 40 19 42 17 4 47 0} 

Situation 2 

Minimum emission 
527.50 

(c) 

CO2 

463.17 

Route #1: {0 12 37 44 15 45 33 39 10 49 5 46 0} 

Route #2: {0 32 1 22 20 35 36 3 28 31 26 8 0} 

Route #3: {0 11 2 29 21 34 30 9 50 16 38 0} 

Route #4: {0 27 48 23 7 43 24 25 14 6 0} 

Route #5: {0 47 18 13 41 40 19 42 17 4 0} 

 

 

Fig. 8a. Optimal solution of the shortest travelling distance with CO2_max 



 
Fig. 8b. Optimal solution of the shortest travelling distance with CO2_min 

 
Fig. 8c. Optimal solution of the minimum CO2 emission 

5. Conclusions and future works 

This research examines the vehicle routing problem from an environmental 

perspective and proposes a new model of environmental vehicle routing problem 

(EVRP), which meets the latest requirements in practical. The emission of carbon 

dioxide (CO2) is used to measure the environmental impact, alongside way the vehicle 

routing. The emission of CO2 is caused by the consumption of different types of fuel 

or energy, and may also be affected by various factors. In our research, through a 

comprehensive analysis of various factors applied in practical situations, we find two 

factors, the load and the travelling distance of vehicles, are the most common and 

practical factors as opposed to other factors, such as the vehicle speed, road condition, 

weather and traffic. The other factors are nearly impractical and unreasonable to be 

measured because the traffic situations in different cities or regions vary significantly 



from time to time. A new EVRP model was constructed with the objective of 

minimizing the environmental influence by taking these two factors into account. The 

computational results in our numerical experiments indicate that the optimal 

environmental solution is meaningful and could likely be accepted by logistics 

enterprises, even though the overall travelling distance accompanying this solution is 

slightly increased, in contrast with the known shortest distance. In this research, a 

hybrid ABC algorithm was adopted to solve this problem, and was shown to be 

improved in four aspects; new mechanism of initialization, incorporation of new 

operators, more suitable adjustment of parameters and continuous improvement. 

These improvements could either speed up the convergence or promote the 

diversification of the evolution of solutions. Numerical experiments proved that this 

hybrid ABC algorithm outperforms the original ABC significantly.  

 Further research should be conducted in at least two directions. Foremost, we 

could extend the concept of environmental measurement into other VRP variants, 

such as VRPTW, VRP with multiple types of vehicles, VRP with simultaneously 

pick-up and delivery and multi-depot VRP. Different variants of VRP may have 

different considerations in quantifying the environmental influence, and the 

corresponding factors, such as time window and multi-depots, may have varied 

influence on the construction of optimal solutions. Secondly, we could apply this new 

model into practical cases, especially with the actual geographical distribution of 

customers and depots, and accurate information on the fuel consumption of particular 

vehicles in order to test the performance for further improvement.  
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