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Abstract

Background: Adiponectin, a fat tissue-derived adipokine, exhibits beneficial effects against insulin resistance,

cardiovascular disease, inflammatory conditions, and cancer. Circulating adiponectin levels are decreased in obese

individuals, and this feature correlates with increased risk of developing several metabolic, immunological and

neoplastic diseases. Thus, pharmacological replacement of adiponectin might prove clinically beneficial, especially

for the obese patient population. At present, adiponectin-based therapeutics are not available, partly due to yet

unclear structure/function relationships of the cytokine and difficulties in converting the full size adiponectin

protein into a viable drug.

Results: We aimed to generate adiponectin-based short peptide that can mimic adiponectin action and be

suitable for preclinical and clinical development as a cancer therapeutic. Using a panel of 66 overlapping 10 amino

acid-long peptides covering the entire adiponectin globular domain (residues 105-254), we identified the 149-166

region as the adiponectin active site. Three-dimensional modeling of the active site and functional screening of

additional 330 peptide analogs covering this region resulted in the development of a lead peptidomimetic, ADP

355 (H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH2). In several adiponectin receptor-positive cancer cell lines,

ADP 355 restricted proliferation in a dose-dependent manner at 100 nM-10 μM concentrations (exceeding the

effects of 50 ng/mL globular adiponectin). Furthermore, ADP 355 modulated several key signaling pathways (AMPK,

Akt, STAT3, ERK1/2) in an adiponectin-like manner. siRNA knockdown experiments suggested that ADP 355 effects

can be transmitted through both adiponectin receptors, with a greater contribution of AdipoR1. In vivo,

intraperitoneal administration of 1 mg/kg/day ADP 355 for 28 days suppressed the growth of orthotopic human

breast cancer xenografts by ~31%. The peptide displayed excellent stability (at least 30 min) in mouse blood or

serum and did not induce gross toxic effects at 5-50 mg/kg bolus doses in normal CBA/J mice.

Conclusions: ADP 355 is a first-in-class adiponectin receptor agonist. Its biological activity, superior stability in

biological fluids as well as acceptable toxicity profile indicate that the peptidomimetic represents a true lead

compound for pharmaceutical development to replace low adiponectin levels in cancer and other malignancies.

Background
Adiponectin is a relatively large (244 amino acid) cyto-

kine normally produced by the fat tissue and found in

human serum at concentrations of 2-20 μg/mL [1-5].

Circulating adiponectin levels are inversely correlated

with body mass index (BMI) [6]. Adiponectin is

considered a protective hormone exhibiting beneficial

effects against insulin resistance, cardiovascular disease,

inflammatory conditions, and cancer [5-11].

Adiponectin circulates in trimeric, hexameric, and

higher order complexes [12]. The C-terminal half of

protein representing the globular domain (gAd) exhibits

potent metabolic effects in various tissues [13-15]. Two

adiponectin receptors have been identified, AdipoR1 and

AdipoR2. Both receptors are 7-channel integral mem-

brane proteins containing an N-terminal intracellular
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portion and a C-terminal extracellular-transmembrane

domain [16,17]. AdipoR1 is a high-affinity receptor for

gAd and a low affinity receptor for the full-size ligand

[18]. AdipoR1 has 4 very short extracellular domains

composed of 13, 6, 11 and 16 residues, respectively [17].

The major intracellular signal induced by adiponectin

is the energy-sensing AMP-activated protein kinase

(AMPK) pathway [13,19]. However, some adiponectin-

dependent effects appear to be AMPK-independent [20].

In addition, adiponectin can modulate in a tissue con-

text-dependent manner several other signaling effectors,

such as extracellular-signal-regulated kinases 1 and 2

(ERK1/2), p38 kinase, peroxisome proliferator-activated

receptor-a (PPARa), stress-responsive c-Jun N-terminal

kinase (JNK), Wnt receptor, nitric oxide (NO), signal

transducer and activator of transcription 3 (STAT3) fac-

tor, nuclear factor-�B (NF-�B), and ceramide [19-29].

Targeted disruption experiments suggested that Adi-

poR1 transmits signals mainly through AMPK, while

AdipoR2 acts through PPARa-related pathways [19].

Recent evidence implicated adiponectin in the preven-

tion of cancer [4,30,31]. Epidemiological studies found

an inverse correlation between adiponectin and the risk

of developing several obesity-related malignancies,

including cancers of the breast, endometrium, colon,

and prostate [7,32-34]. The best-documented associa-

tions in breast cancer show that adiponectin levels are

reduced in cancer patients vs. controls [34-36], and low

adiponectin levels correlate with more aggressive tumors

and higher frequency of lymph node metastasis [10,37].

In agreement with this, in vitro studies demonstrated

that adiponectin or its globular form can inhibit the

proliferation of breast, colorectal and prostate cancer

cells [1,26,38-44].

Depending on the experimental model, cytostatic/

apoptotic effects of adiponectin can be associated with

an increased activation of AMPK, reduced ERK1/2 sig-

naling [40], inhibition of the Akt kinase and glycogen

synthase kinase/b-catenin pathway [45], and/or

enhanced expression of Bax and p53 pro-apoptotic

genes [44]. In addition, adiponectin can also reduce can-

cer cell migration and invasion [46]. In animal models,

adiponectin suppresses the growth of T47D and MDA-

MB-231 breast cancer xenografts, and in some cases,

inhibits tumor neoangiogenesis [45,47].

The adiponectin receptors, AdipoR1 and AdipoR2,

have been detected in human breast cancer specimens,

but not clearly associated with other biomarkers

[26,48-50]. AdipoR1 appears to play a more definite role

in breast cancer, as adiponectin-dependent antiprolifera-

tive effects are abolished by siRNA knockdown of this

receptor [1,51]. However, in colon cancer cells, both

AdipoR1 and AdipoR2 can transmit cytostatic effects

[52]. While data on AdipoR1/2 expression in other

malignancies are limited, the receptors have been found

in normal colon and colon cancer tissue [53] as well as

in gastrointestinal stromal tumors [54].

Although some anti-diabetic drugs (e.g., metformin, a

biguanide) [55-57] as well as caloric restriction [58,59]

can partially mimic adiponectin action and induce

AMPK signaling in cancer tissues, specific and selective

compounds targeting AdipoR still await development.

At present, adiponectin-based therapeutics are not avail-

able, partly due to difficulties in converting the full size

adiponectin protein into a viable drug. Here we report

on the design and initial preclinical development of adi-

ponectin-based peptide compounds acting as AdipoR

agonists in cancer cells.

Methods
Initial model building

The three-dimensional (3D) structure of the globular

domain (residues 105-254) of human adiponectin was

obtained with the YASARA molecular modeling package

(Ver. 10.10.29) [60]. The hm_build.mcr macro of the

YASARA package with default parameters, except the

maximum oligomerization state set to one, was used to

build the model. YASARA identified a protein with pro-

tein databank (PDB) [61] i.d. 1C3H, which corresponds

to a murine isoform of adiponectin, as a sole template.

The model was subjected to further refinement using

the md_refine.mcr macro of YASARA and to 1 ns con-

stant temperature (300 K) and pressure (1 bar) molecu-

lar dynamics (MD) simulations using the AMBER03

force field. Simulation parameters were kept at the

values defined by the macro. The structure of the pro-

tein was simulated in an 8 × 8 × 8 nm rectangular box

with periodic boundaries and endcapping with an N-

acetyl protecting group to preserve the electronic struc-

ture of the backbone. The box containing the protein

was filled with 8390 water molecules, 48 Cl- and 53 Na+

ions. The final structure from the simulation was used

as a starting parameter to structure calculations of pep-

tide 25 and its derivative, ADP 355.

Detailed molecular dynamics simulations of peptides

MD simulations were performed with the GROMACS

4.0.7 software package [62] using the OPLS-AA/L force

field [63]. Peptides were solvated with 2457 water mole-

cules and one chloride ion to neutralize the charge of

the system. The solvated structures were energy mini-

mized by the steepest descent method. Simulations ran

for 500 ps at 300 K. At 500.5 ns the simulations contin-

ued at 1 bar pressure by coupling the system to external

heat and pressure bath. Snapshots of the trajectories

were saved at every 0.1 ns. The first 0.5 ns point was

considered as equilibration period and was not used for

subsequent analysis. A reaction-field correction was
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used for long-range electrostatic interactions, and an

energy dispersion correction was implemented. Trajec-

tories were submitted to cluster analysis using the GRO-

MOS method [64]. Peptide conformations were

examined using the middle structure of the largest clus-

ter and using the DSSP program [65]. The root-mean-

square deviation (RMSD) of the backbone of the peptide

structures was calculated using the g_rms utility of

GROMACS.

Peptide array

A panel of 66 overlapping peptides, each 10 amino acid-

long, covering the entire globular domain of the human

adiponectin protein was synthesized on a b-alanine deri-

vatized cleavable cellulose membrane [66]. Each conse-

cutive peptide was shifted by 2 residues along the

sequence. Another panel of 330 peptides representing

analogs of the 66 original peptides was assembled on

the same membrane support. In these 10-residue-long

overlapping peptides, residues 1, 4, 7 and 10 of the first

array were replaced with non-natural amino acids. The

substituting amino acids were norvaline for aliphatic

residues, D-asparagine for residues with amide-side

chain, D-serine for hydroxy-amino acids, D-lysine for

cationic residues and 1-amino cyclopentane carboxylic

acid for aromatic residues and proline. All peptide

sequences are listed in Additional file 1.

The peptides were assembled by Fmoc-synthesis tech-

niques [67], individually cut from the solid support and

cleaved from the cellulose membrane by using 2% aqu-

eous triethyl amine overnight [68]. Peptides 23-27 and

their modified analogs were purified by reversed-phase

high performance liquid chromatography (RP-HPLC)

and characterized by matrix-assisted laser desorption/

ionization mass spectroscopy (MALDI-MS).

Synthesis and purification of individual peptides

The adiponectin-based peptide 25, a six-residue middle

fragment of peptide 25, and peptidomimetic ADP 355 as

well as biotin-labeled analogs of the AdipoR1 extracellu-

lar loops were synthesized on the solid-phase by using a

CEM Liberty microwave-assisted peptide synthesizer

and utilizing Fmoc-chemistry [67]. Biotin was coupled

to the peptide while still attached the solid-phase car-

rier. After cleavage with 95% aqueous trifluoroacetic

acid (TFA) containing 2% thioanisole, the peptides were

purified by RP-HPLC. MALDI-MS verified the high pur-

ity of the peptide preparations. After purification, ADP

355 was lyophilized twice from 2% aqueous acetic acid

solution prior to cellular efficacy studies.

Screening of AdipoR1/peptide binding

The 66 unmodified adiponectin array peptides were

individually dried down to wells of an ELISA plate, and

tested for binding to biotin-labeled linear synthetic mod-

els of the 4 extracellular loops of AdipoR1. The recep-

tor/peptide interaction was detected by horseradish-

peroxidase conjugated streptavidin.

In vitro screening of adiponectin-based peptides

Biological activity of the peptides was first assessed

using MCF-7 breast cancer cells that are known to

express AdipoR1 [38]. MCF-7 cell line was obtained

from ATCC (Manassas, VA) and routinely grown in

DMEM:F12 plus 5% calf serum (Cellgro Mediatech,

Manassas, VA) at 37°C, 5% CO2. For screening experi-

ments, MCF-7 cells were plated in 24-well plates at the

concentration of 30,000 cells/well. After 12 h of culture

in the growth medium, the cells were synchronized in

serum-free medium (SFM) (DMEM:F12 supplemented

with 0.42 g/mL bovine serum albumin, 1 mM FeSO4

and 2 mM L-glutamine) for 24 h, and then shifted back

to the full growth medium containing either gAd (Phoe-

nix Secretomics, Burlingame, CA) at 50 ng/mL, indivi-

dual peptides, or no test compounds. After 24 h, the

cells were counted under the microscope with trypan-

blue exclusion. Each experiment was performed in tripli-

cate and repeated at least three times.

The array-extracted peptides (1, 2, 3, 19, 20, 21, 22,

23, 24, 26, 27, 28, 29, 30, 31, 37, 55, 56, 57, 58, 59, 60)

solubilized at 65°C for 30 min were tested at an approxi-

mate concentration of 8-50 ng/mL. In addition, the fol-

lowing peptides: 22 (and its modifications 88, 154, 220,

286, 352), 23 (and its modifications 89, 155, 221, 287,

353), 24 (and its modifications 90, 156, 222, 288, 353),

25 (and its modifications 91, 157, 223, 289 and 355), 26

(and its modifications 92, 158, 224, 290, 356), 27 (and

its modifications 93, 159, 225, 291, 357), 28, 29, 30 were

further purified by RP-HPLC and screened together

with the individually synthesized adiponectin peptides at

the exact concentration of 50 ng/mL.

Cell growth experiments

The effects of the lead active peptide 355 (ADP 335) on

cell proliferation were tested in breast cancer cell lines

(MCF-7, MDA-MB-231) and in glioblastoma cells

(LN18), all obtained from ATCC and routinely cultured

as described previously [69-71]. The peptide was tested

at 10 pM-100 μM concentrations under conditions

described above under peptide screening.

Detection of AdipoR1 and AdipoR2 and signaling analysis

AdipoR1 and AdipoR2 were detected by Western immu-

noblotting (WB) using 100 μg of total proteins isolated

from growing cell cultures, as described by us previously

[72,73] using goat polyclonal AdipoR1 M18 Ab and goat

polyclonal AdipoR2 C12 Ab (Santa Cruz Biotechnology,

Santa Cruz, CA).
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Signaling analysis was performed using MCF-7 and

MDA-MB-231 breast cancer cells and LN18 glioblas-

toma cells. The cells at 70-80% confluence were shifted

to SFM for 24 h, then SFM was removed, the cultures

were washed 2 x with PBS, placed in normal growth

medium for 1 h, and then treated with ADP 355 at 100

nM (MCF-7 cells) or 10 μM (MDA-MB-231 and LN 18

cells) for 0-60 min, while gAd at 50 ng/mL was applied

for 60 min only. Untreated cells were used as negative

control. After the treatment, the cells were lysed, as pre-

viously described [72,73] and 100 μg of proteins were

analyzed by WB for the expression of phosphorylated

(p) and total forms of several signaling molecules. The

following primary Abs from Cell Signaling (Danvers,

MA) were used: 1) pAMPKa (T172) D79.5E rabbit mAb

1: 750; 2) total AMPKa rabbit mAb 1:1000; 3) p44/42

MAPK (T202/Y204) rabbit mAb 1:1000; 4) total 44/42

MAP kinase rabbit mAb 1:1000; 5) pSTAT3 (Y705)

D3A7 rabbit mAb 1: 500; 6) total STAT3 79D7 rabbit

mAb 1:2000; 7) pAkt (Ser 473) rabbit mAb 1:1000; 8)

total Akt rabbit mAb 1:1000. Protein loading was veri-

fied by evaluating the expression of a constitutive

enzyme glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) using 6C51 mAbs 1:1000 (Santa Cruz). The

following secondary Abs (Santa Cruz) were used where

appropriate: 1) donkey anti-goat IgG-HRP; 2) goat anti-

mouse IgG-HRP; 3) goat anti-rabbit IgG-HRP, all

applied at 1:1000 dilution. The intensity of specific pro-

tein bands was quantified by the ImageJ software (dis-

tributed by the National Institutes of Health, Bethesda,

USA). The ratio of phosphorylated to total levels was

calculated for each protein, and expressed as % change

vs. untreated controls (taken as 100%).

siRNA experiments

MCF-7 cells expressing approximately equal levels of

AdipoR1 and AdipoR2 were used to assess the contribu-

tion of each receptor in the response to ADP355. Adi-

poR1 and AdipoR2 siRNA as well scrambled siRNA

were purchased from Santa Cruz Biotechnology. Dilu-

tion of siRNA reagents and transfection of cells was per-

formed following the manufacturer’s protocol. For

growth experiments, the cells were plated in 24-well

plates at 50 × 104 cells/well and transfected with 5 μl of

10 μM stock siRNA. For WB, the cells were grown in

60 mm plates at 5 × 105 cells/plate and transfected with

15 μl of 10 μM stock siRNA. The cells were processed

for WB or treated with ADP355 at 48 h following

transfection.

Peptide stability in mouse blood and mouse serum

Sixty μg of ADP 355 were dissolved in 100 μL water,

and 10 μL aliquots were mixed with 100 μL of freshly

drawn mouse blood. After 30 min of incubation at 37°C,

blood cells were centrifuged at 10,000 × g. Fifty μL

serum was mixed with 50 μL phosphate buffered saline

pH 6.8 (PBS), and serum proteins were precipitated by

addition of 45 μL aqueous 15% trichloroacetic acid

(TCA) for 10 min at 4°C. After centrifugation at 12,000

× g, the supernatant was neutralized with 0.1 M aqu-

eous sodium hydroxide and 0.5 μL of this solution was

mixed with 0.5 μL a-cyano-4-hydroxycinnamic acid (4

mg/mL in 60% aqueous acetonitrile containing 0.1%

TFA) as matrix on a sample plate. Analysis was per-

formed using a MALDI time-of-flight tandem mass

spectrometer (MALDI-TOF/TOF-MS, 4700 proteomic

analyzer, Applied Biosystems, Weiterstadt, Germany).

Additionally, the neutralized supernatant was loaded on

a Jupiter C18 RP-HPLC column (4.6 mm internal dia-

meter, 150 mm length, 5 μm particle size, 30 nm pore

size) previously calibrated with known amounts of ADP

355 dissolved in PBS. Absorbance was measured at 214

nm.

ADP 355 was also incubated at 37°C with 25% aqu-

eous mouse serum at a final concentration of 150 μg/

mL. After 0, 15, 30, 60, 120, and 240 min, 95 μL ali-

quots were mixed with 25 μL 15% aqueous TCA and

were incubated for 10 min at 4°C. Sample analysis fol-

lowed the protocols described above.

In vivo activity of ADP 355 in an orthotopic xenograft

breast cancer model

Ten 8-week-old female immunocompromised (scid)

mice (genetic background CB17/Icr) were anesthetized

to allow the implantation of 2.5 × 106 MCF-7 cells into

the two inguinal mammary glands. When tumors were

palpable in all animals (34 days after cell transplanta-

tion), the mice were divided into 2 groups containing

animals with comparable tumor sizes. One group of 5

mice was treated daily with 1 mg/kg peptide ADP 355

intraperitoneally (ip), while the other group of 5 mice

reminded untreated. After 28 days of treatment, the ani-

mals were killed by CO2 inhalation, and tumors were

carefully removed, photographed and weighed. All verte-

brate animals of this study were maintained and handled

in accordance with the recommendations of the Guide-

lines for the Care and Use of Laboratory Animals and

were approved by the Animal Care Committee of Sem-

melweis University (permission No.:399/003/2005).

In vivo toxicity

ADP 355 was injected into 4 groups of three 10-12 week

old female CBA/J mice. Bolus ip doses were administered

at 5 mg/kg, 10 mg/kg, 25 mg/kg or 50 mg/kg in sterile sal-

ine and the animals were observed for signs of systemic

toxicity (tremor, head tilt, reduced activity and squinting)

for 4 days. On day 5, the mice were sacrificed by CO2

inhalation. The potential peptide elimination organs: the
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livers, spleens and kidneys were removed and weighed. All

procedures for vertebrate animal experiments were

approved by the Animal Health and Food Control Com-

mittee of Budapest, protocol number 399/033/2005.

Results
Identification of the active site of adiponectin protein

The peptides extracted from the array were tested for

cytostatic activity in adiponectin sensitive MCF-7 cells

[38]. In control experiments, we used gAd at 50 ng/mL,

a concentration that induced maximal growth inhibition

in our dose response experiments in MCF-7 cells (data

not shown) and has previously been described as cyto-

static in breast cancer cells [1]. Peptides 23-27 at 50 ng/

mL inhibited MCF-7 cell proliferation by 19-26% rela-

tive to untreated controls, while other peptides, either

flanking this domain or distant, were ineffective or pro-

duced only minimal (3% or less) cytostatic effects (Fig-

ure 1A and Additional file 1). gAd restricted MCF-7 cell

growth by ~18% (Figure 1A).

The sequence covered by the active peptides 23-27 is:

H-Lys-Phe-His-Cys-Asn-Ile-Pro-Gly-Leu-Tyr-Tyr-Phe-

Ala-Tyr-His-Ile-Thr-Val-NH2, and this fragment corre-

sponds to amino acids 149-166 of human adiponectin

protein (Table 1).

According to the currently most accepted model, the

globular domain of human adiponectin is a b-barrel-

type structure where the b-sheets are connected with ω-

loops. The identified active peptides are located on the

loop-b-sheet region of the protein (Figure 1B). While

approximately half of the sequence, covering peptides 26

and 27, is located inside the trimer bundle, the N-term-

inal region falls slightly outside the trimer boundaries.

The side-chains of the C-terminal 2/3 of the identified

active site are facing outside (Figure 1B). The center of

the active peptides has homology only with spastin,

immunoglobulin and complement proteins according to

a BLAST homology search.

Identification of minimal adiponectin active site and

development of its pharmacologically improved analogs

Next, we generated multiple analogs of peptides 23-27

in order to identify the minimal adiponectin active site

as well as introduce chemical modifications improving

peptide activity and stability. The activities of all analogs

at 50 ng/mL were determined relative to the effects of

50 ng/mL gAd (Table 1).

While peptide 25 was fully active in cell growth inhibi-

tion assays, its center 6 residue-long fragment 157-162 did

not exhibit any biological activity. Therefore, we generated

and tested several longer, 10-residue peptides encompass-

ing the 149-166 adiponectin stretch. We attempted to

identify residues in this region that could be freely

replaced with non-natural amino acid analogs in order to

improve pharmacological properties of the lead peptides.

Biological assays identified a highly active short site: Ile-

Pro-Gly-Leu-Tyr-Tyr-Phe-Ala, and further structure-func-

tion analysis indicated that conservative substitutions in

the minimal active site can be introduced at Gly 155 and

Tyr 158 residues, without compromising biological activ-

ity. Additions of non-natural amino acids at N- and C-ter-

mini were envisioned to provide stability against

exopeptidase cleavage in vitro and in vivo (Table 1).

Identification of ADP 355 as an optimal adiponectin

receptor agonist

Biological screening of the analogs of the minimal adi-

ponectin active site resulted in the identification of a

peptidomimetic ADP 355 (H-DAsn-Ile-Pro-Nva-Leu-

Tyr-DSer-Phe-Ala-DSer-NH2) as the most promising

adiponectin receptor agonist. The compound is based

on the precursor peptide 25 and contains the minimal

active site with allowed modifications (Table 1).

Figure 1 Identification of the active site of adiponectin. A)

Effects of adiponectin fragments encompassing the active site on

the growth of MCF7 cells. The activity of the entire globular domain

of adiponectin (gAd) is included for comparison. The data are

averages from 3 different assays and represent average results +/-

SE and were analyzed by Student t-test, p < 0.05. The sequences of

all tested peptides are listed in Additional file 1. B) High-resolution

structure of the adiponectin monomer with the peptide 25 and

active site amino acid side-chains colored. Conservative

substitutions of residues marked in green could be made without

loss of biological activity; residues marked with red could not be

substituted.
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ADP 355 inhibits the growth of AdipoR1/AdipoR2-positive

cancer cell lines

In a preliminary, qualitative study, we examined the

interaction of peptide 25 to biotin-labeled fragments of

the 4 AdipoR1 extracellular loops. The peptide bound

the first extracellular loop of AdipoR1, but not other

loops (data not shown). BLAST analysis identified an

86% homology between the first loops of AdipoR1 and

AdipoR2, suggesting that ADP 355 potentially can inter-

act with both receptors.

Dose-dependent effects of ADP 355 were tested in dif-

ferent cancer cells lines expressing AdipoR1 and Adi-

poR2. The highest levels of AdipoR1 were found in

MCF-7 cells, while the receptor was less abundant in

MDA-MB-231 and LN18 cells (Figure 2A). On the

other hand, AdipoR2 was undetectable in MDA-MB-231

cells, and expressed at intermediate and high levels in

LN18 and MCF-7 cells, respectively. Preliminary experi-

ments suggested that all cell lines are sensitive to gAd,

and the maximal growth inhibition can be achieved with

gAd at 50-100 ng/mL (data not shown).

In all cell lines, ADP 355 restricted normal cell growth in

a dose-dependent manner. In MCF-7 cells, the best growth

inhibition was achieved with ADP 355 at 100 nM-10 μM,

while 10 pM-10 nM concentrations were less effective (Fig-

ure 2B). In MDA-MB-231 and LN 18 cells, the maximal

growth inhibition was noted at 10 μM. In all cell lines,

ADP 355 at maximal effective doses produced greater cyto-

static effects then gAd at 50 ng/mL (Figure 2B).

Effects of AdipoR1 or AdipoR2 downregulation on

ADP355 activity

To assess the contribution of AdipoR1 and AdipoR2 in

mediating ADP 355 effects, we selectively downregulated

the expression of each receptor in MCF-7 cells using

siRNA technology. The decrease of AdipoR1 by ~60%

reduced ADP 355 activity by 52%, while downregulation

of AdipoR2 by 90% diminished ADP 355 effects by 20%

(Figure 3 and Additional file 2). These results suggested

that the peptide can transmit signals through both

receptors, but the majority of activity was mediated

through AdipoR1. Of note, AdipoR2-negative MDA-

MB-231 cells exhibited sensitivity to gAd and ADP355,

suggesting that AdipoR1 was sufficient to activate the

response.

ADP 355 differentially modulates AdipoR signaling

pathways

We examined the effects of ADP 355 on different adipo-

nectin signaling pathways in MCF-7, MDA-MB-231, and

LN18 cells (Figure 4 and Additional file 3). The peptide

was used at concentrations that produced maximal cyto-

static effects and the treatment was carried out for 0-60

min.

Remarkably, depending on cell line, ADP 355 exerted

differential signaling effects. In MCF-7 cells, the peptide

increased the phosphorylation of AMPK at 15 and 30

min and decreased ERK1/2 phosphorylation at 30-60

min. ADP 355 did not significantly affect the activation

of Akt in these cells, but it increased the phosphoryla-

tion of STAT3 at 15-60 min (Figure 4 and Additional

file 3). In MDA-MB-231 cells, the major pathway

affected by ADP 355 was ERK1/2, which was measur-

ably inhibited at 15-60 min of treatment. The peptide

transiently increased STAT3 phosphorylation at 15 and

30 min. In MDA-MB-231 cells, ADP 355 did not stimu-

late AMPK activation, while Akt phosphorylation was

moderately activated at 30-60 min. In LN18 cells, ADP

355 decreased STAT3 phosphorylation at 15-60 min

and dramatically downregulated total levels of Akt at

15-60 min. However, the peptide did not significantly

affect AMPK in these cells. In all cell lines, gAd

Table 1 Summary of structure-function analysis of adiponectin fragments

Original Peptide (aa number
in adiponectin)

Cytostatic Activity of Original Peptide
vs. gAd (% Increase)

Sequence Modifications of
Original Peptide

Cytostatic Activity of Modified
Peptides vs. gAd (% Increase)

ADP 23
(149-158)

17 Lys-Phe-His-Cys-Asn-Ile-Pro-
Gly-Leu-Tyr * * # *

0-61

ADP 24
(151-160)

39 His-Cys-Asn-Ile-Pro-Gly-Leu-
Tyr-Tyr-Phe # # # #

0-40

ADP 25
(153-162)

11 Asn-Ile-Pro-Gly-Leu-Tyr-Tyr-
Phe-Ala-Tyr * * * *

21-126

ADP 26
(155-164)

33 Pro-Gly-Leu-Tyr-Tyr-Phe-Ala-
Tyr-His-Ile # # # #

0-33

ADP 27
(157-155)

33 Leu-Tyr-Tyr-Phe-Ala-Tyr-His-Ile-
Thr-Val # # * #

0-66

Proposed minimal active site: Ile-Pro-Gly-Leu-Tyr-Tyr-Phe-Ala

Conservative substitutions allowed (bolded): X-Ile-Pro-Gly-Leu-Tyr-Tyr-Phe-Ala-X

The cytostatic activity of original and modified peptides was evaluated in MCF-7 cells, as described in Methods and was calculated relative to the activity of gAd

(baseline). Underlined amino acids indicate the residues where conservative modifications were made. Replaceable residues are marked with * and non-

replaceable residues are marked with #. X, non-natural amino acid.
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Figure 2 Effects of ADP 355 on the growth of cancer cells in vitro. A) Expression of AdipoR1 (49 kDa) and AdipoR2 (44 kDa) in MCF-7, MDA-

MB-231 and LN18 cells was examined by WB, as described in Methods. B) Cytostatic activity of ADP 355 at 10-100 μM was assessed in MCF-7,

MDA-MB-231, and LN18 cancer cell lines, as described in Methods. Bars represent % growth inhibition relative to untreated cells +/- SE.
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regulated signaling pathways similar to ADP 355, how-

ever its effects were usually less pronounced (Figure 4

and Additional file 3).

ADP 355 exhibits superior stability in mouse serum and

blood

Calculating from the degradation rate measured in 25%

aqueous serum [74], ADP 355 had a 75 min half-life in

mouse serum (data not shown). In whole mouse blood,

the peptide was present even after 30 min without

noticeable degradation (Figure 5).

ADP 355 inhibits the growth of MCF-7 xenografts in

immunocompromised mice

The efficacy of ADP355 was assessed in MCF-7 orthoto-

pic xenograft model. The peptidomimetic was injected

ip into scid mice carrying palpable MCF-7 xenografts at

a 1 mg/kg/day dose. After 28 days of treatment, the

mice were sacrificed and tumors removed. Due to varia-

bility in tumor sizes, the largest and smallest lesions

from each group were excluded from the evaluation.

Figure 6 shows the remaining 6 tumor lesions (from 3

animals in each group). The total tumor weight in

untreated animals was 10.27 g (average tumor weights

per mice: 2.56 g, 1,51 g and 1.07 g), and in ADP 355-

treated animals 7.10 g (average tumor weights per mice:

1.38 g, 1.36 g and 0.81 g). Thus, ADP 355 therapy

reduced established tumor growth by 31% (statistically

significant, p < 0.05), relative to untreated controls.

Preliminary assessment of ADP 355 toxicity in vivo

Healthy mice receiving up to 50 mg/kg peptide ADP

355 ip showed no signs of systemic toxicity. Four days

after peptide administration the potential peptide elimi-

nation organs were removed and weighed. While the

spleens of treated and untreated animals were identical

in size, the kidney and liver weights were slightly

increased in treated mice relative to total body weight at

the highest dose of 50 mg/kg (Table 2). Since peptide

drugs undergo renal and hepatic clearance [69], an

increase of the elimination organ size might indicate the

active metabolic processes. In addition, AdipoR1/2, as

physiological targets of adiponectin, are found in the

liver, and might respond to agonist treatment [75].

However, these limited toxic effects were not observed

below the 10 mg/kg dose, a magnitude higher than the

therapy dose, identifying ADP 355 as a safe treatment

option.

Discussion
Numerous epidemiological and experimental studies

provided evidence linking obesity to an increased risk of

developing different malignancies, including breast, col-

orectal, prostate and endometrial cancers [76-79]. In

addition, calorie-rich diet has been shown to induce

inflammatory responses in microglia cells, which poten-

tially can promote development of brain neoplasms

[80,81].

In obese individuals, especially in those with high visc-

eral fat content, adiponectin levels are low [11]. Accord-

ing to epidemiological studies, low adiponectin levels

are associated with elevated cancer risk and develop-

ment of more aggressive neoplasms [4,11,48]. How

exactly adiponectin might prevent or restrict cancer is

yet not clear. The relevant mechanisms could involve

activation of intracellular metabolic changes similar to

those produced by calorie restriction, i.e., stimulation of

intracellular signals, such as AMPK, and inhibition of

abnormal growth and survival pathways [11]. Thus,

pharmacological activation of adiponectin signaling in

obese individuals that are refractory to lifestyle modifi-

cations could help to restore beneficial pathways nor-

mally controlled by this adipokine.

However, development of the whole adiponectin pro-

tein as a drug is difficult because of the extreme insolu-

bility of the C-terminal globular domain and its larger

peptide fragments. In addition, until now, the adiponec-

tin active site has not been mapped. Consequently, we

attempted to generate small peptides that would pro-

duce biological effects similar or superior to that of

Figure 3 Effects of siRNA-mediated downregulation of AdipoR1

or AdipoR2 on ADP 355 activity. The expression of AdipoR1,

AdipoR2, and control protein GAPDH were assessed by WB in

control (C) cells (transfection medium only), cells treated with

scrambled siRNA (Sc siRNA), siRNA targeting AdipoR1, or siRNA

targeting AdipoR2, as described in Methods. The relative levels of

AdipoR1 and AdipoR2 proteins were calculated by densitometry

scanning, as described in Methods, and are provided in Additional

file 2. The relative % of growth inhibition upon ADP 355 treatment

in cells with different levels of AdipoR1 and AdipoR2 vs. untreated

cells is shown in the lower panel table.
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gAd, but would be suitable for pharmaceutical

modifications.

First, using peptide arrays and biological screening

assays, we mapped the adiponectin active site to amino

acids 149-166 within the globular domain of the whole

adipokine (Figure 1A). In parallel experiments, we found

that peptides covering the active site displayed high affi-

nity to an extended version of the AdipoR1 loop 1

(sequence: Arg-Pro-Asn-Met-Tyr-Fen-Met-Ale-Pro-Leu-

Gln-Glu-Lys-Val-Val) that shares 86% homology with

the loop 1 in AdipoR2. Further modifications of the

active site, followed by structure-function screening

resulted in the development of the lead peptidomimetic,

ADP 355, as optimal AdipoR agonist.

The identified active site of adiponectin can be charac-

terized as a turn region followed by a b-pleated sheet

fragment (Figure 1B). When removed from the protein

environment, MD studies indicated that the isolated

native peptide 25 loses the b-pleated sheet character

and forms a series of turns (Figure 7). During MD simu-

lations, the initial turn- b-sheet structures of both pep-

tide 25 and ADP 355 peptides were substantially

changed and showed high flexibility. The backbone

RMSD values fluctuated with high frequency between

0.1 and 0.7 mm. However, in the case of ADP 355, from

80 ns to 250 ns, the RMSD remained around 0.6 nm,

indicting that the peptidomimetic folded into a more

stable conformation characterized by a hairpin incorpor-

ating almost the entire peptide. In the cluster analysis,

the most populated cluster of the peptidomimetic con-

tained more than twice as many structures as the native

fragment (31.6% vs 12.4%). If the dominant b-hairpin

structure is indeed the active conformation, the signifi-

cantly increased population of this conformer can

explain the improved in vitro activity of ADP 355 rela-

tive to that of its precursor peptide 25.

Functional assays with ADP 355 demonstrated that the

peptide restricts cancer cell proliferation in a dose-

Figure 4 Effects of ADP 355 on intracellular cell signaling in cancer cells. The effects of ADP 355 on signaling pathways in MCF-7, MDA-

MB-231, and LN18 cells at 0-60 min of treatment were studied by WB, as described in Methods. The expression of GAPDH was used as

determination of protein loading. The relative levels of phosphorylated/total proteins were calculated by densitometry scanning, as described in

Methods, and are provided in Additional file 3.
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dependent manner at 100 nM-10 μM concentrations. In

all studied cell lines, this growth inhibition was superior to

that obtained with gAd (Figure 2B). Cytostatic activity of

ADP 355 is in agreement with several other reports

showing similar effects of adiponectin or gAd in cancer

models [26,44,45,51,55,82,83]. However, some studies

failed to demonstrate any anti-neoplastic activity of this

adipokine [54]. These discrepancies likely reflect differ-

ences in experimental design as well as cell context,

including differential levels of AdipoR1/2 and signaling

proteins. Indeed, our work clearly suggests that the levels

of AdipoR1 and AdipoR2 vary among cell lines. Some pre-

vious reports suggested that cytostatic effects of adiponec-

tin in breast cancer cells are primarily mediated through

AdipoR1 [51], and our results with AdipoR2-negative cells

and AdipoR2-knockdown cells confirm this notion.

Our signaling studies further confirmed that cell

response to adiponectin or its derivatives may be cell-

specific. We demonstrated that cytostatic effects ADP

355 coincided with the modulation of specific adiponec-

tin signals that have been associated with growth or sur-

vival control, i.e., AMPK, Akt, ERK1/2, and STAT3.

Interestingly, the major metabolic adiponectin pathway–

AMPK was transiently induced only in MCF-7 cells,

while in MDA-MB-231 and LN18 cells, the peptide or

gAd did not have any effects (Figure 4).

In MCF-7 cells, ADP 355, but not gAd, decreased

ERK1/2 signaling. STAT3 was activated in this cell line

Figure 5 Stability of ADP 355 in whole mouse blood. The peptide stability was assessed in whole mouse blood after 30 min of incubation

by mass spectroscopy as described in Methods. The only peptide-originated peaks are at 1109 and 1131 M/z, representing the unmodified

peptide and its sodium adduct.

Figure 6 Anti-tumor ADP 355 activity in vivo. Orthotopic MCF-7

xenografts were established as described in Methods. After 34 days,

5 mice were treated with ADP 355 at 1 mg/kg/day dose, and 5

mice remained untreated. After 28 days, the mice were sacrificed

and the lesions removed. Due to variability in tumor sizes, the

largest and smallest lesions from each group were excluded from

the evaluation. The excised, middle-sized lesions, from 3 treated and

3 untreated mice are shown.
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by both ADP 355 and gAd. In MDA-MB-231 cells, like

in MCF-7 cells, ADP 355 decreased ERK1/2 activation

and transiently increased STAT3 signaling. In both

breast cancer cell lines, ADP 355 did not affect the

major growth/survival Akt pathway. In contrast, ADP

355 and gAd significantly inhibited Akt and STAT3 sig-

nals in LN18 cells. Interestingly, the effects on Akt con-

cerned total levels of the enzyme, suggesting that ADP

355 might affect its turnover.

Published data on adiponectin signaling in cancer cells

seem to support the notion that the cytokine might

induce different signaling pathways in different cell

lines. For instance, in many cancer cell lines (breast

MCF-7, MDA-MB-231, T47D; colorectal HT-29,

CaCO2, SW480; prostate PC3) adiponectin activated

AMPK [26,40,54,55]. On the other hand, adiponectin

either reduced or did not affect ERK1/2 in MCF-7 or

MDA-MB-231 cells, but stimulated the pathway in

some colorectal cancer cell lines [1,40,54]. Akt was

inhibited by adiponectin in MDA-MB-231 breast cancer

cells, but activated in prostate cancer cells LNCaP

[82,84]. The upregulation of AMPK and reduction of

Akt in response to adiponectin in MDA-MB-231 cells

[82] is in contrast with our study and might be related

to significantly lower gAd and ADP 355 concentrations

used in our experiments, while high doses used by Kim

et al. were toxic in our system. Consistent with our

results, moderate STAT3 stimulation by adiponectin

was noted in MDA-MB-231 cells, while the transcrip-

tion factor was inhibited in DU145 prostate cancer cells

[1,25]. These differences, in part, could reflect variable

experimental settings, such as baseline growth condi-

tions, adiponectin reagents used as well as treatment

timing and dosage.

To further assess the efficacy of ADP 355, we carried

out a preliminary in vivo study. In scid mice carrying

MCF-7 orthotopic xenografts, ADP 355 treatment

reduced the growth of established tumors by ~31%, vali-

dating AdipoR as a target for breast cancer therapy.

Conclusions
Here we report on the design and development of a

first-in-class AdipoR agonist. AdipoR agonists are

viewed as future drugs to treat multiple diseases related

to obesity and insulin resistance. The biological activity

of our novel ADP 355, including its in vivo efficacy, its

superior stability in biological fluids, as well as accepta-

ble toxicity profile and low production costs indicate

that the peptidomimetic represents a true lead com-

pound for ensuing pharmaceutical development.

Additional material

Additional file 1: Sequences of tested adiponectin-derived peptides.

Designation and amino acid sequences of tested adiponectin-derived

peptides.

Additional file 2: Quantification of AdipoR1 and AdipoR2 amounts.

Densitometry quantification of AdipoR1 and AdipoR2 levels following

targeted siRNA knockdown experiments.

Additional file 3: Quantification of signaling pathways in ADP 355-

treated cancer cells. Densitometry quantification of pAMPK/AMPK,

pSTAT3/STAT3, pAkt/Akt, pERK 1/2/ERK1/2 levels in MCF-7, MDA-MB-231,

and LN18 cells treated with gAd or ADP 355.
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Table 2 Toxicity analysis of ADP 355

Peptide dose (bolus ip) Liver weight (g); relative to total weight (%) Spleen weight (g) Kidney weight (g); relative to total weight (%)

Untreated 0.98; 0.054 0.07 0.29; 0.015

5 mg/kg 1.02; 0.054 0.07 0.30; 0.016

10 mg/kg 1.09; 0.059 0.06 0.29; 0.016

25 mg/kg 1.24; 0.059 0.07 0.35; 0.017

50 mg/kg 1.07; 0.062 0.07 0.31; 0.017

CBA/J mice were treated with ADP 355 and toxicity parameters were assessed as described in Methods.

Figure 7 ADP 355 energy analysis . Representative energy

minimized structures of peptide 25 (red) and ADP 355 (purple)

overlaid to the conformation of the 153-162 sequence found in

adiponectin protein (grey).
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