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Evidence-centered design (ECD) is a comprehensive framework for describing the 
conceptual, computational and inferential elements of educational assessment.  I t 
emphasizes the importance of articulating inferences one wants to make and the evidence 
needed to support those inferences. At first blush, ECD and educational data mining 
(EDM) might seem in conflict: structuring situations to evoke particular kinds of 
evidence, versus discovering meaningful patterns in available data. However, a dialectic 
between the two stances increases understanding and improves practice. We first 
introduce ECD and relate its elements to the broad range of digital inputs relevant to 
modern assessment. We then discuss the relation between EDM and psychometric 
activities in educational assessment. We illustrate points with examples from the Cisco 
Networking Academy, a g lobal program in which information technology is taught 
through a blended program of face-to-face classroom instruction, an online curriculum, 
and online assessments.  
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1. INTRODUCTION  
Data mining is the process of extracting patterns from large data sets, for 

purposes that include systems enhancement and scientific discovery [Witten and 

Frank 1999]. Educational data mining (EDM) in particular aims to provide 

insights into instructional practices and student learning, often using data from 

assessments and learning experiences, both formal and informal [Romero et al. 

2011]. Applying exploratory methods to existing data seems to contrast with 

forward-design process of developing assessments.  

This paper explores the productive dialectic that can be developed between 

EDM and principled assessment design as seen from the perspective of evidence-

centered design (ECD) [Almond et al. 2002; Mislevy et al. 2003]. We f irst 

present an overview of ECD, with an eye toward complex assessments. We then 

discuss the relationship between psychometric and EDM activities in assessment, 

and use the ECD perspective to highlight productive connections between EDM 

and assessment.   

Points are illustrated with brief examples from the literature and from our own 

work with the Cisco Networking Academy (CNA) 

[www.cisco.com/web/learning/netacad/index.html; see also Rupp et al. this 

issue]. The CNA is a global program in which beginning computer network 

engineering and ICT literacy is taught through a blended program of face-to-face 

classroom instruction, an online curriculum, and online assessments. Courses are 

delivered at high schools, 2- and 3-year community college and technical 

schools, and 4-year colleges and universities. Since its inception in 1997, the 

CNA has grown to reach a diverse population of about a million students each 

year in more than 165 countries [Murnane et al. 2002; Levy and Murnane 2004]. 

Behrens et al. [2005] discuss the framework that drives the ongoing assessment 

activity from which our illustrations are drawn. 

2. ASSESSMENT, ECD, AND PSYCHOMETRICS 

Most familiar applications of educational assessment are framed in what we will 

call the standard assessment paradigm. Data from each student are sparse, 
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typically discrete responses to perhaps 30 to 80 test items. The items are 

predefined. The target of inference is a student’s level of proficiency in a domain 

framed in trait or behaviorist psychology and defined operationally by the items. 

Learning during the course of assessment is assumed to be negligible. We can 

view the standard assessment paradigm as a subspace of assessment viewed more 

broadly, where any or all of the familiar constraints could be relaxed: continuous 

performances in interactive environments, for example; richer data that 

encompass many aspects of activity at any level of detail; interest in multiple 

aspects of proficiency, evoked in different combinations in different situations; 

learning may occur, and may indeed be an aim of the experience.   

By definition, psychometrics is measuring educational and psychological 

constructs. Psychometrics in educational testing has focused mainly on da ta 

produced in the standard assessment paradigm. Much progress in test theory has 

been made “by treating the study of the relationship between responses to a set of 

test items and a hypothesized trait (or traits) of an individual as a problem of 

statistical inference” [Lewis 1986, p. 11 ]. Probabilistic test theory models allow 

an analyst to characterize the informational value of data about students in a 

probabilistic framework, and to use data from different tasks to draw inferences 

in terms of the same proficiencies. These are powerful inferential tools for 

practical work in assessment.   

The challenge for educational assessment is to jointly harness EDM 

capabilities to deal with the richer data environment in which we can now carry 

out assessment, and the inferential strengths of psychometric methods that have 

evolved for inference with data from the standard assessment paradigm.   

The way forward is an assessment framework that encompasses both 

perspectives, and supports the design and analysis of both familiar assessments 

and new ones that take advantage of technological advances to move beyond the 

standard assessment paradigm. Such a f ramework would embrace concepts and 

methods from EDM as well as from existing psychometrics. Recent work in 

assessment provides a suitable foundation.  One line of progress is the conception 
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of assessment as argument [Cronbach 1980, 1988; Kane 1992, 2006; Messick 

1989, 1994].  Another is the integration of psychometric modeling, assessment 

design, and cognitive theory [Embretson 1985; Pellegrino et al. 2001; Tatsuoka 

1983]. ECD builds on t his research to provide a framework for analyzing and 

carrying out assessment design and implementation. We will use it to bring out 

productive and natural roles of EDM in the assessment enterprise. 

3. EVIDENCE-CENTERED DESIGN 
Assessment in the standard assessment paradigm is thought of just in terms of the 

highly scripted circumstances in which students solve constrained tasks, usually 

answering verbal questions, and results that simply accumulate independent item 

scores. The ECD framework neither requires nor implies this limited view of 

assessment. It is flexible enough to describe a wide range of activities and goals 

associated with assessment as co nceived more broadly, including familiar tests 

but accommodating the informal assessment activities of instructors interacting 

with students in the classroom, students working through open-ended simulation 

tasks [Frezzo et al. 2009; Mislevy 2011; Williamson et al. 2004], multi-student 

interactions in role playing or simulated situations [Shute 2011], and game-based 

assessments [Behrens et al. 2007; Mislevy et al. in press].     

ECD emphasizes the specification of the logic of assessment, or the 

evidentiary argument [Embretson 1983].  Messick [1994] describes the structure 

of an assessment argument as follows: 

A construct-centered approach would begin by asking what complex of 
knowledge, skills, or other attributes should be assessed, presumably 
because they are tied to explicit or implicit objectives of instruction or 
are otherwise valued by society.  Next, what behaviors or performances 
should reveal those constructs, and what tasks or situations should elicit 
those behaviors?  Thus, the nature of the construct guides the selection or 
construction of relevant tasks as w ell as the rational development of 
construct-based scoring criteria and rubrics.  (p. 16) 

 
ECD formalizes this structure with an explicit framework for designing and 

implementing assessments. The following section sketches the key concepts and 

representations. At a given point in time, for some practical assessment purpose, 
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one can use ECD to design the components of an operational assessment. Design 

is practical, and it is provisional as well.  Especially with more complex forms of 

assessment, we expect our understanding of the nature of proficiency to improve 

as we explore patterns in data from a given form of the assessment [Behrens et al. 

2012].  Bringing EDM tools to bear on the data at any given point in time can 

thus lead to deeper understanding and improvements for assessment design and 

analysis in the next version of the assessment.   

3.1 Assessment Components and ECD 

Figure 1 distinguishes five ECD “layers” at which different types of thinking and 

activity occur in the development and operation of assessment systems [Mislevy 

and Riconscente 2005, 2006].  
 

 
 

Fig. 1. Layers in the evidence-centered assessment design framework. 
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Each layer contains components, processes and representations that are 

appropriate for the kinds of activities that take place in that layer (see Mislevy et 

al. 2010 o n the central role of representations in ECD). Formal object models 

[Rumbaugh et al. 1991] have been implemented in the Portal design system 

[Almond et al. 2003; Steinberg et al. 2005] and the Principled Assessment Design 

for Inquiry (PADI) design system [Riconscente et al. 2005]. Although the figure 

might suggest a l inear design and implementation process, iterative feedback 

loops are essential to successful designs. In the second part of the paper we will 

discuss critical roles that EDM can play in iterative design in assessment. 

Table I summarizes how the assessment layers play out in classroom 

instruction, standardized accountability assessment, and interactive diagnostic 

computer systems.  T he terminology for the layers and their components that 

appears in the table will be developed as we describe the layers in turn. 
 

Table I. Summary of Layers of the ECD Framework and Conceptualization of 

Activity from the ECD Perspective for Three Kinds of Assessment 

ECD Layer Epistemic 
Focus 

Classroom 
Instruction 

Standardized 
Accountability 

Measure 

Tutoring 
System 

 

Attend to 
specific 

strengths and 
errors while 
managing 

administrative 
requirements. 

Broad 
inference from 
wide sample of 
performance. 

Inference 
regarding 
specific 

functional 
states of 
students’ 

knowledge and 
skill and 
providing 

experiences to 
improve them. 

Domain 
Analysis 

Understand 
proficiencies, 
conditions of 
use, practices, 

representations, 
standards, 

activities, etc. in 
the targeted 

domain. 

Teacher’s 
background 
studies of 

learning and of 
the curricular 

goals. 

Common texts 
associated with 

curriculum; 
ongoing 
scientific 

activity feeding 
in to standards 
and practices. 

Cognitive task 
analysis; 
protocol 
analysis; 
literature 
related to 
domain. 

          (continued)  
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ECD Layer Epistemic 
Focus 

Classroom 
Instruction 

Standardized 
Accountability 

Measure 

Tutoring 
System 

Domain 
Modeling 

What are 
relationships 

among 
proficiencies, 

task situations, 
and 

performance in 
such situations; 

What is 
important for 
the purpose(s) 

of the 
assessment? 

Teacher’s 
mental model 
of curriculum 
elements & 

dependencies, 
and situations 
for learning 

about students’ 
proficiencies. 

 

Standards 
documents and 

assessment 
frameworks; 

e.g., Common 
Core State 
Standards, 
National 
Science 

Education 
Standards. 

Specifications 
of production 
rules and their 
combinations. 
Relationship 

of 
performances 
& products to 

production 
rules. 

Conceptual 
Assessment 
Framework 

(CAF) 

What are the 
linkages 

between tasks & 
evidence about 

proficiency; i.e., 
what are 

schemas for 
tasks, 

procedures to 
capture and 
evaluation 

performance? 

SM: Aspects 
of student 

performances 
worth tracking. 
TMs: Informal 

catalog of 
kinds of tasks 

for 
administrative 
ease as well as 
verisimilitude 

to natural tasks 
(e.g., writing). 
EM: Theory of 

what good 
performance 
looks like, to 

be applied on-
the-fly. 

MM: Add up 
individual 
items and 

grades. Weight 
differentially if 

desired. 

SM: Core 
dimensions of 

proficiency 
aligned with 
standards. 

TM: Schemas 
for tasks to 

evince 
correctness of 
procedure or 
knowledge. 

EM: Evaluation 
procedures for 
task types (e.g., 

right/wrong, 
partial credit, 

scoring 
rubrics). 

MM: Models 
that maximize 
precision of 

latent variable 
estimate and 
efficiency of 

delivery. 

SM: 
Specification of 

target 
proficiencies– 

production 
rules or 

aggregates of 
them needed to 
guide students’ 

activity. 
TM: 

Specification of 
features of 

tasks 
appropriate for 

different 
aspects of the 

learning 
progression. 

EM: Procedures 
to evaluate 
features of 

performances 
and/or 

products. MM: 
Fine-grained 

model such as 
Bayes net or 

cognitive 
diagnosis 

model. 
          (continued)  



 
18              Journal of Educational Data Mining, Article 2, Volume 4, No 1, October 2012  

ECD Layer Epistemic 
Focus 

Classroom 
Instruction 

Standardized 
Accountability 

Measure 

Tutoring 
System 

Assessment 
Implementation 

Based on 
existing 

knowledge, 
data, and 

specifications 
from above, 
create the 

elements needed 
for the 

assessment. 

Create items 
for quizzes and 
tests. Establish 

grade book. 
Adjust tests to 
match changes 

in curricula. 

Author specific 
tasks; develop 
scoring keys or 

rubrics; 
calibrate IRT 

model; 
Assemble 
forms to 

optimize Test 
Information 

Function. (can 
cycle with field 

tests and 
calibration 
samples) 

Build rules into 
interactive 
system, for 
managing 

information for 
inference and 

instruction 
choices (e.g., 
Bayes nets, 

updating rules 
based on 

learning theory)  
Observe in pilot 

phases and 
modify rules 
and system 
responses. 

Assessment 
Delivery 

Create or co-opt 
circumstances 

to obtain 
relevant 

evidence. 

Observe work 
on classroom 

assignments & 
behavior. 

Update mental 
and grading 

models. Check 
grades against 

overall 
impression or 

specific 
activity 

performance. 
Iterate between 

global and 
diagnostic 

levels. 

Deliver 
common 
activities 
(items), 

perhaps with 
limited 

customization 
such as 

computerized 
adaptive testing 
for efficiency.  

Paper and 
pencil or 

computer based 
delivery. 

Ongoing 
interaction of 
students and 

computer 
system, with 

cycles of 
presentation, 

student activity, 
evaluation, 

feedback and 
adaptation of 

learning 
situation. 

Post Assessment 
Delivery 

Communicate 
inferences and 
implications 

Report card. 
Ongoing 
verbal 

feedback. 

Performance 
report typically 

in relation to 
performance of 

others 

Estimates of 
proficiency and 

reporting of 
particular error 

patterns and 
progress. 

 

Notes. Within the CAF: SM = student model; EM = evidence model; MM = 
measurement model. 
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3.1.1 Domain Analysis Layer. The first layer of the ECD framework is 

domain analysis. Domain analysis marshals beliefs, representations, and modes 

of discourse for the target domain. This can include best practices, research 

findings, practitioners’ experiences, expert-novice studies, and historical or 

sociological framings of a set  of knowledge and skills. Understanding the 

epistemic frame of a domain [Shaffer 2006] helps a designer avoid confusing the 

mastery of isolated tasks with functional mastery of work in a domain. It is not 

simply “the content” of the domain that matters but how people think with that 

content, what they do, and the situations in which they do it.    

3.1.2 Domain Modeling Layer. The second layer of the ECD framework is 

domain modeling.  Assessment developers organize insights about the domain 

from domain analysis into the form of assessment arguments, in representations 

that more formally reflect the structure of the Messick quote. They articulate 

structures and dependencies in knowledge, skills and attributes in the domain, 

and the relationships of these capabilities to situations and activities. Useful 

representations include standards formulations, scope and sequences in 

curriculum, concept maps [DiCerbo 2007], hierarchies of skill dependencies or 

progressions, Toulmin diagrams, and assessment design patterns.  

Specifically, Toulmin diagrams for assessment arguments map out the 

relationships among proficiencies, performances, features of work, and features 

of task situations [Mislevy 2006]. Design patterns sketch out a design space for 

task authors, with options and examples that draw on research and experience 

with a certain kind of proficiency [Liu and Haertel 2011]. For example, Mislevy 

et al. [2009] describe a suite of design patterns that help designers create tasks to 

assess model-based reasoning. The conceptualizations in domain modeling that 

ground the design of operational assessments can be continually extended and 

refined as knowledge is acquired in prototypes, field trials, and analyses of 

operational data. 
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3.1.3 The Conceptual Assessment Framework Layer. The CAF lays out more 

formal specifications for the operational elements of an assessment. Designers 

combine domain information with information about goals, constraints, and 

logistics to create a blueprint for an assessment, in terms of psychometric 

models, specifications for evaluating students’ work, schemas for tasks, and, in 

technology-based assessments, specifications of the interactions that will be 

supported. The CAF thus provides structures that bridge work from the domain 

analysis and domain modeling phases and the actual objects and processes that 

will constitute the operational assessment, which are the processes described in 

assessment delivery layer. 

The CAF comprises models (as noted above, software-engineering object 

models in the sense of Rumbaugh et al. 1991) whose objects and specifications 

provide the blueprint for tasks, evaluation procedures, and statistical models and 

delivery and operation of the assessment.  The following paragraphs describe the 

central CAF models depicted in Figure 2. 

 

 
 

Fig. 2. The central models of the conceptual assessment framework. 

 

A task model is a set of assumptions and structures describing task and 

environment features. Key design elements include the specification of the 

cognitive artifacts and affordances needed to support the student’s activity and 

the forms in which students’ performances will be captured (i.e., work products), 

such as the sequence of steps in an investigation or the final solution of a design 

problem. The variables in task models play key roles in assessment arguments, 

task design, and psychometric models [Mislevy et al. 1999].  

Evidence Model(s)
Task Model(s)

1. xxxxxxxx   2. xxxxxxxx
3. xxxxxxxx   4. xxxxxxxx
5. xxxxxxxx   6. xxxxxxxx

Student Model
Stat model Evidence

rules
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The student model contains variables for expressing claims about targeted 

aspects of students’ knowledge and skills, at a grainsize and nature that suits the 

purpose of the assessment. That is, the student model consists of the variables 

and the structure of those variables in the psychometric model used to synthesize 

information about aspects of students’ proficiencies. It formalizes the aspects of 

the capabilities identified in the domain model that will be incorporated into the 

inferential logic of the operational assessment.   

The evidence model bridges the student model and the task model.  It consists 

of two components: the evaluation component (i.e., evidence identification 

component) provides the rationale and specifications for how to identify and 

evaluate the salient aspects of work products, which will be expressed as values 

of observable variables. Data that will be generated in the evaluation component 

are synthesized across tasks in the measurement model component (i.e., evidence 

accumulation component). The simplest measurement models contain summed 

scores of salient features of a performance such as t he number or percentage 

correct score. More complicated measurement models such as models from item 

response theory (IRT) [e.g., de Ayala 2009; Hambleton and Swaminathan 1985; 

Lord 1980; Reckase 2009], diagnostic classification models (DCMs) [e.g., Rupp 

et al. 2010], and Bayesian networks (BNs) [e.g., Levy and Mislevy 2004] include 

formal latent variables. For example, BNs extend the concept maps used in 

domain analysis to support probabilistic inference [Jensen 1996], such as 

modeling student skill levels on learning progressions [West et al. 2010]. 

Although the statistics behind BNs can be complex, the graphical displays that 

represent the statistics are more accessible to task designers, teachers, and 

students [DiCerbo 2009]. 

It is in the CAF, and specifically in the student model and measurement 

model component of the evidence model, that the previously mentioned two 

insights of psychometrics in the standard assessment paradigm are implemented - 

characterizing the weight of evidence in a formal probability model, and enabling 

for evidence from different tasks to be synthesized in terms of evidence about the 
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same latent variables for student proficiencies.  These ideas are so central to the 

interplay between psychometrics and EDM that we will devote a section to them 

after the survey of the ECD framework.  

 As other articles in this special issue demonstrate, simulation and game-based 

assessments are a developing frontier of assessment [see also Rupp et al. 2010; 

Shute 2011].  T his is especially the case f or the evaluation and measurement 

components of the evidence model. As we noted above, most of the existing 

practices and the language of measurement evolved for tests consisting of 

discrete, pre-packaged, tasks with just a few bits of data. Measurement 

researchers are extending the evidentiary reasoning principles that underlie 

familiar test theory for this kind of data to the new environment of the “digital 

ocean” of data [DiCerbo and Behrens 2012; Junker 2011]. It is these rich, 

complex, and interactive contexts in which EDM will be most valuable. 

3.1.4 Assessment Implementation Layer. The fourth layer of the ECD 

framework is the assessment implementation layer. In this layer, assessment 

practitioners create functioning realizations of the models articulated in the CAF. 

Field test data are used to check model fit and to estimate parameters of the 

operational system. The data structures of tasks and parameters are in the forms 

specified in the CAF models. Some tasks may be omitted from subsequent 

consideration because of unexpected interactions with student characteristics, 

misinterpretation, or other functional issues.    

Assessment implementation interacts with other ECD layers at this point, in 

two directions: moving down the layers, toward operation, the data from field 

tests are used to tune and parameterize tasks and scoring algorithms. Moving 

back up the layers, unanticipated results and new discoveries can lead to 

improvements in the CAF models, further back up to new forms for the elements 

of assessment arguments, or even further back to fundamental advances in 

understanding of the domain. The logic of these iterations is similar in many 

respects to the iterative logic of exploratory data analysis [Tukey 1977; Behrens 

1997; Behrens et al. in press]. As in EDM and exploratory statistical analysis, 
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there is a stance of skepticism, and “multiple-working hypotheses” are iteratively 

reduced through detailed data display, model fit analysis and sensitivity analysis. 

3.1.5 Assessment Delivery Layer. The fifth layer of the ECD framework is the 

assessment delivery layer. In this layer, students interact with tasks, their 

performances are evaluated, and feedback and reports are produced. Almond et 

al. [2002] lay out a four-process delivery architecture / four-process model that 

can be used to describe delivery processes and associated infrastructure 

components for assessments that range from computer-based testing procedures, 

paper-and-pencil tests, informal classroom tests, tutoring systems, and one-to-one 

tutoring interactions. The processes are thus defined in terms of activities and 

information, and could be carried out by computers or humans or some 

combination, and the architecture is indifferent to the implementation.  Behrens 

et al. [2008] show how the logic and the structure of this architecture can be 

extended to games.   

Figure 3 shows the principle processes and their interconnections. Next to 

each process are additional symbols indicating relevant data types available in 

complex systems. The activity selection process creates an appropriate task or 

activity, or selects one in light of what is known about the student. The 

presentation process interacts with the student and captures work products. The 

evidence identification process is variously called response processing, feature 

identification, or task-level scoring. This process evaluates work products by 

methods specified in the evaluation component of the evidence model. This 

process sends values of observable variables to the evidence accumulation 

process, or test-level scoring, which uses the measurement models to summarize 

evidence about the student model variables and produce score reports.   
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Fig. 3. High-level view of the four-process delivery architecture. 



 
25              Journal of Educational Data Mining, Article 2, Volume 4, No 1, October 2012               

When an assessment is operating, the processes pass messages in a pattern 

determined by the test’s usage - different patterns of scoring, student interaction, 

and reporting are employed for formative tests, interactive simulations, and 

batched tests for state-level surveys, for example. The messages are data objects 

(e.g., parameters, stimulus materials) or are produced by the student or other 

processes in data structures (e.g., work products, values of observable variables) 

specified in the CAF [see Almond et al. 2002, for details on the relationships, and 

Almond et al. 2001, for simple worked-through examples]. 

Both evidence identification and evidence accumulation are fertile grounds 

for EDM. For evidence identification, the challenge is finding, combining, and 

characterizing salient bits of information as features of often-complex work 

products. This activity does not need to be limited to simple matching but can 

come from a broad range of symbolic or statistical computations [Williamson et 

al. 2006]. Automated scoring of spoken responses, for example, can consist of 

multiple stages, from acoustic analysis, to extraction of features using natural 

language processing, to statistical combinations of features to produce scores for 

various aspects of the performance [Bejar 2010]. For evidence accumulation, the 

challenge is determining useful ways of combining, interpreting, and drawing 

inferences from these features. Discoveries feed back as i mprovements to the 

evidence model in the CAF. Insights into what is important to observe give us 

better ideas on how to evoke evidence and produce work products, which feed 

back to the CAF as improved task models.  

Distinguishing the processes of a delivery system brings to light conceptually 

distinct activities in assessment that are obscured in multiple choice testing. 

Standard practice tightly binds the presentation format (multiple-choice items), 

work products (mark an option), evidence identification (matching the marked 

option with the key), and evidence accumulation (count the number of correct 

responses). The articulated architecture emphasizes that the purpose of the 

presentation activity is to elicit a work product that could be a simple choice, but 
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could be a complex result such as an essay, activity log, or complex outcome 

found in the business world (proposal, spreadsheet, or video). 

The interaction among the four processes for a fixed-form paper-and-pencil 

multiple-choice test is a single trip around the cycle if both the content and 

ordering of tasks is fixed. In a computer-adaptive test that maximizes information 

about each student individually, the cycle around all four processes occurs for 

each item: an item is presented and the work product, namely the response, is 

obtained. Evidence identification evaluates its correctness and passes the result to 

evidence accumulation. Evidence accumulation updates belief about the student’s 

proficiency, using for example an IRT model. This information is passed to 

activity selection, which selects the next item to be most informative, in light of 

responses up to this point [Wainer et al. 2000; van der Linden and Glas 2010].   

A simulation-based task can require many interactions among the processes. 

Frezzo et al. [2009] describe the interplay among the four processes in the 

context of the CNA's simulation-based Packet Tracer Skills-Based Assessment 

[see also Rupp et al., this issue]. Activity selection is currently done largely 

outside the simulation system, although in the articulated architecture this can be 

changed with minimal changes to the other processes. In the presentation 

process, the simulation and visualization affordances of the Packet Tracer tool 

allow for presenting tasks that include a broad range of networking devices and 

protocols. A variable manager allows for the random, or otherwise algorithmic, 

generation of specific values of features in the environment from lists or numeric 

ranges. Next, in order to evaluate the work products, Packet Tracer provides task 

authors with a comprehensive list of network states, lets them select which low-

level work product features to use in scoring, then allows them to craft scoring 

rules to apply to these features to create observables.  

Note that observable variables need not be answers to discrete, pre-packaged 

questions, but rather identification of salient features in recurring situations 

within a continuous flow of performance. For example, using an ECD 

framework, DiCerbo and Behrens [2012] argue that as daily activity becomes 

increasingly digital the separation of activity for assessment or non-assessment 
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purposes can be reduced since digital environments are often naturally 

instrumented to collect work products unobtrusively.  When considering digital 

work products, the assessment designer is faced with the challenge of encoding 

features of the work product into observations that can be synthesized in the 

evidence accumulation process. This is leverage point for EDM because it 

concerns pattern recognition and dimension reduction.   

Consider for example, Theodoridis and Koutroumbas’s [1999] generic pattern 

recognition process shown as Figure 4.  
 

 
 
Fig. 4. (a) Pattern recognition process as described in Theodoridis and Koutroumbas [1999]. (b) Corollary 

to scoring and inference process as described in the ECD literature. 

 

Its steps can be related to the delivery processes of the ECD framework. Output 

from the sensor in this model is equivalent to the work product produced by the 

presentation process. Feature generation is concerned with the creation of 

variables that can be used to describe aspects of the data, corresponding to 

observable variables in ECD. Feature selection is concerned with determining 

which observable values are useful for the evidence accumulation process (or 

perhaps task level or diagnostic feedback as well). Classifier design corresponds 

to the measurement model / psychometrics for classifying students or measuring 

proficiency. 

ECD provides a flexible and abstracted understanding of assessment data and 

its relationship to the evidentiary assessment argument, and advances in 

technology provide new opportunities to link work products to inferences about 
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 human states through evidence identification and accumulation. However, in 

many cases t here is weak or little theory that can relate variations in complex 

work product data (e.g., logs, videos, transcripts of group interactions) and 

inferences regarding student states, so methods for pattern extraction and other 

EDM approaches will be needed. 

4. PSYCHOMETRICS AND DATA MINING 

The psychometric paradigm has been the dominant analysis framework for 

educational assessment for more than a century, although mainly with the sparse 

data (at the level of each student) that characterized the standard assessment 

paradigm. The new field of EDM seeks to improve ways of learning and 

assessing that are beyond the reach of established analytic practice. This section 

brings out some essential similarities and differences in the approaches. 

4.1 The Ontology and Epistemology of Psychometrics 

The view that underlies ECD is that assessment is not simply about producing 

scores but about obtaining evidence about aspects of students’ proficiencies, and 

characterizing the meaning and the value of that evidence [Mislevy 1994]. 

Psychometricians use particular kinds of statistical models to quantify these 

arguments, based on the relevant forms and patterns in data. The two key insights 

mentioned earlier are (a) characterizing the value of evidence about students’ 

proficiencies in a probabilistic framework and (b) using latent variable models to 

synthesize evidence from different collections of tasks in a c ommon 

interpretative frame.  

The central insight in characterizing evidence is this: there is a difference 

between what we observe and what we really want to make inferences about, and 

the features of the observational situation impact the quality of our inferences. 

Classical test theory (CTT) [Gullikson 1961] uses standard errors of 

measurement and reliability indices to characterize the accuracy of students’ test 

scores. CTT machinery enables researchers to design tests and compare 

alternative scoring approaches to improve their work [Cronbach et al. 1972].                             
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The meaning of test scores remains closely bound to the particular items that 

make up a given test, however. Except in special cases, there is no 

straightforward way to relate performance on one set of test items to another. 

Latent variable psychometric models incorporate an additional insight: we can 

model the capabilities of people and the features of tasks in ways that enable us 

to draw inferences about people from different observational situations. Latent 

variable models posit probability distributions for patterns in observed variables 

as functions of unobservable (i.e., latent) variables that characterize students’ 

knowledge, skills, strategy repertoires, misconceptions, degree of automaticity, 

or other cognitively relevant aspects of their capabilities.  

The variables in such as model are specified in the student model in the CAF 

of the ECD framework. They are persistent in the sense that they are posited to 

influence performance across some domain of tasks where the set of 

proficiencies they characterize is relevant, and performance in any of the tasks 

provides evidence about these student model variables. Exactly how performance 

in each task depends on the student model variables is specified in the 

measurement models of the CAF. This structure allows a stable frame of 

interpretation across task situations that may differ markedly on the surface. It 

becomes possible to assemble psychometric models for different situations 

according to the features of the situations [Rupp 2002]. 

As with CTT, a latent-variable modeling framework  provides a quantitative 

basis for operational matters as such planning test configurations, calculating the 

accuracy and reliability of measurement, figuring out how many tasks or raters 

we need to be sufficiently sure about the appropriateness of decisions based on 

test scores, or monitoring the quality of large-scale assessment systems. These 

models can also be applied to new kinds of testing processes, such as simulation-

based tasks and game-based assessments [Mayrath et al. 2012]. Rupp et al. [this 

issue] employ DCMs and BNs for CNA's simulation-based Packet Tracer Skills-

Based Assessment. 

Although both psychometric models and many EDM models are statistical 

models, there are distinguishing characteristics of psychometric models and the 
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way they are used. First is the psychological construal of the latent variables in 

psychometric models. Their interpretation may be cast in terms of behavioral, 

trait, information-processing, or sociocultural psychology [Mislevy 2006], but in 

all cases they effect some view of aspects of students’ capabilities. The 

information in patterns of data is synthesized as evidence to characterize students 

in terms of their standing on these latent variables in the student model.   

Second, the nature and grainsize of these student model variables is shaped by 

the purpose of the assessment. Is the purpose to provide broad feedback about 

students’ general level of proficiency? A psychometric model with few variables, 

perhaps even an IRT model with a single latent variable for overall proficiency in 

the domain [Lord 1980] and cast in trait theory, might suffice. Is the purpose of 

the assessment to provide diagnostic information to guide instruction? A more 

detailed DCM [Rupp et al. 2010] cast in an information-processing cognitive 

perspective will be better suited. Is the purpose to characterize knowledge and 

strategy use in interactive problem solutions? A modular BN approach with 

models assembled on t he fly [Shute et al. 2009] that draws on a  situative 

psychological perspective can be pressed into service. The aim is not simply to 

discover and model patterns in data; it is to model those patterns that are relevant 

to specific, practical, educational purposes, in terms that directly inform those 

purposes. 

Third is the explicit mathematical separation of observed score variables from 

latent student model variables. As noted above, the probability distributions of 

score variables are modeled as a function of student model variables. More 

important technically is that the observed variables - which may be 

characteristics of patterns across lower-level data features - from a given task 

situation are modeled as conditionally independent of data variables from other 

task situations. When such a m odel fits data from some domain of tasks 

satisfactorily, the underlying patterns in performance that are manifest in 

different raw data in different task situations can be modeled in terms of the same 

variables in a student model that can be used with different tasks for different 

students or at different time points.  
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Computer-adaptive tests use this idea with IRT, so that students get different 

items, harder or easier, based on how well they are doing [van der Linden and 

Glas 2010; Wainer et al. 2000]. Cognitive diagnostic tests use different tasks 

based on the same cognitive features for teaching and testing mathematics skills 

[Leighton and Gierl 2007]. Iseli et al. [2010], Shute et al. [2009], and VanLehn 

[2008] use the idea to build BNs on the fly in game-based and simulation-based 

assessments to harvest evidence about students’ skills from the unique situations, 

as agents recognize cognitively-relevant features of the situations.   

In sum, we note that the patterns in data transcend the particulars in which 

they were gathered, in ways that we can talk about in terms of students’ 

capabilities, which we implement as student model variables and organize in 

ways tuned to their purpose. Having the latent variables in the student model as 

the organizing framework allows us to carry out coherent interpretations of 

evidence from a task with one set of surface features to other tasks that may be 

quite different on the surface. The machinery of probability-based inference in 

the evidence accumulation process is used to synthesize information from diverse 

tasks in the form of evidence about student capabilities, and quantifies the 

strength of that evidence. Psychometric models can do these things to the extent 

that the different situations display the pervasive patterns at a more fundamental 

level, because they reflect fundamental aspects of the ways students think, learn, 

and interact with the world. 

4.2 Is Educational Data Mining Psychometrics? 

The preceding section described key ideas of the latent variable models that 

represent advanced application of psychometrics in educational assessment, 

primarily under the standard assessment paradigm. How does EDM relate to 

these ideas? 

We stated earlier that there is a broad range of analytic needs in assessment, 

ranging from support of domain analysis of text, feature extraction of complex 

logs, and methods for inferring connections among assessment activities 

[Behrens et al. 2012]. Many of these activities are not addressed by traditional 
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psychometric models. Nor are they meant to be; the majority of psychometric 

activity under the standard assessment paradigm has focused on t he evidence 

accumulation process, assuming other processes are sufficiently well prescribed 

by the multiple-choice and ordered score categories of the standard assessment 

paradigm.   

Using EDM techniques to detect relevant patterns in lower-level raw data is 

not psychometrics in terms of the key ideas outlined above, but it is it 

undertaking foundational work for broad psychometric modeling; this is feature 

generation and feature selection in Figure 4. Such patterns that are grist for 

defining the observed score variables (i.e., evidence identification, in terms of the 

four-process delivery system architecture) serve as input to psychometric models. 

EDM techniques are ways for discovering or iteratively refining data variables 

from complex performances.  

As examples, Kerr and Chung [this issue] conducted exploratory cluster 

analyses to identify salient features of student performance in an educational 

video game targeting rational number addition, and Hershkovitz and Nachmias 

[2010] used learnograms to identify variables indicative of student motivation 

from logs of student activities in an online learning system for Hebrew 

vocabulary. What is missing from this EDM work from the perspective of 

psychometrics, though, is the dependence of these variables on the latent 

variables.  

Obtaining summary measures of aspects of students’ performance in a 

particular complex task and taking the scores at face value does not incorporate 

the probabilistic contribution of psychometrics. There may indeed be valuable 

information about the performance and about the student, but there is no 

characterization of the evidentiary value of the evidence or of its meaning outside 

the framework of the particular task.  

We can, however, incorporate the key psychometric idea of quantifying the 

value of evidence by using replicate tasks or internal measures of variability such 

as jackknife standard errors [Mosteller and Tukey 1977]. For example, Beck 

[2005] introduced engagement tracing based on response times, and presented 



33              Journal of Educational Data Mining, Article 2, Volume 4, No 1, October 2012  

reliability evidence for the use of response times to multiple-choice cloze 

questions based on split-half methods. The machinery is in place to experiment 

with alternative scoring methods or data capturing procedures to improve the 

value of the evidence from these particular task situations.   

An EDM model that includes latent variables which are posited to account for 

observable score variables through conditional probability distributions, yet 

remains bound to a particular task or set of tasks, is very close to the spirit of 

latent variable psychometrics. The final step is whether the same student model 

comprising these latent variables can be used to model performance on different 

tasks in the domain - even ones that appear idiosyncratically in games or 

simulations, when recognizable by virtue of their salient features as instances of 

classes of recurring situations.  

For example, Arroyo et al. [2010] used BNs with latent variables to model 

unknown student attitudes and goals (e.g., fear of being wrong, wanting a 

challenge) in a w eb-based tutoring systems for high school mathematics. The 

extent to which the interpretations of latent variables representing the student 

attitudes and goals are restricted to the particular tasks in the system or are 

generalizable to other high school mathematics tasks - or their attitudes with 

respect to other academic domains - is unclear. Absent empirical studies, the 

argument for generalizability of the interpretations of the latent variables rests on 

one of design, drawing strength from a principled approach to design and the 

coherence among the domain analysis, domain modeling, CAF, assessment 

implementation, and assessment delivery layers of the assessment design and 

implementation process. 

4.3 Data Mining as a Reaction to Perceived Limitations of Psychometrics 

The evidentiary reasoning insights of psychometrics are quite powerful for 

familiar kinds of assessments. A century of experience and research and an 

armamentarium of models and techniques exist for modeling data that consist of 

item scores and judges’ ratings of performances. Far less guidance is available 

for modeling the kinds of work that can now be routinely captured in digital 
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environments: every key stroke and time stamp in the log of an open-ended 

troubleshooting task in a simulation environment, for example, or the real-time 

interactions of hundreds of players in an online game, or continuous physical 

monitoring of students as well as their actions, or step-by-step task solutions 

from thousands of students on hundreds of problems in intelligent tutoring 

environments as their proficiencies grow over the course of study.   

With a few exceptions [see, e.g., Ramsay 1982, o n the psychometrics of 

functions as data] there simply are not many tools on the traditional psychometric 

shelf to make sense of the complex forms of data that are becoming quite routine. 

On the whole, however, the historically coarse-grained and sparse nature of 

assessment data has led to a greater focus on not only these kinds of data, but 

higher-level psychological constructs. This stands in contrast to more detailed, 

richer, and interactive data and finer-grained modeling of students’ processes and 

strategies. It is thus natural to adapt machinery from other fields that deal with 

masses of data, such as physics, biology, meteorology, intelligence analysis, and 

computational linguistics, to bear on educational problems. We would argue that 

we can improve assessment practice by integrating concepts and machinery from 

the psychometric tradition and the EDM tradition, integrated within the broad 

assessment perspective reflected in ECD. 

4.4 Leverage Points for Educational Data Mining 

There are three particular leverage points for EDM with respect to 

psychometric modeling. They concern (1) the modeling of student proficiencies 

(i.e., the latent variable characterization of aspects of students’ capabilities), (2) 

understanding salient patterns in raw feature data required for evidence 

identification, and (3) understanding relationships between features of evolving 

situations and students’ proficiency-driven actions within those situations.  We 

can categorize them by the three main models in the CAF. 

4.4.1 Student Models. These are the latent variable models, the semantics of 

which refer to aspects of students’ capabilities as they might apply across 

different situations, in terms that can be applied to model probabilities across 
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different situations. The constituent statistical variables need not look at all like 

familiar test scores.  

Gitomer and Yamamoto’s [1991] model for understanding logic gate 

problems, for example, was a DCM with student model variables for 

understanding basic operations and common misconceptions that students might 

hold. The model could be used both for isolated problems and for reasoning 

within larger simulation tasks. Mislevy and Gitomer’s [1996] model for 

hydraulics troubleshooting was a BN, with variables for troubleshooting 

strategies and knowledge of subsystems.  

The design objective is to discover, develop, and refine student models that 

are at once consistent with the data, substantively meaningful, and practically 

useful for the job at hand. What should the variables be? How many, what is their 

nature, are there relationships among them such as prerequisition or conjunction? 

Methods from EDM that can be brought to bear on these questions include self 

organizing maps [Pirrone et al. 2003], association rule mining [Garcia et al. 

2010], sequential pattern analysis [Zhou et al. 2010], and process mining [Trcka 

et al. 2010]. There is a clear overlap between such EDM models and 

psychometric models including factor analysis, latent class analysis, cluster 

analysis, and BNs as they are used to address this challenge. 

4.4.2 Evidence Models. This is perhaps the focus of most interest in mining 

massive data from complex performances, especially in interactive digital 

environments. There is not a lot of experience in psychometrics for this kind of 

data, and it is exactly such data that many EDM techniques have been designed 

to explore. It is easy to amass rich and voluminous bodies of low-level data, 

mouse clicks, cursor moves, sense-pad movements, and so on, and choices and 

actions in simulated environments. Each of these bits of data, however, is bound 

to the conditions under which it was produced, and does not by itself convey its 

meaning in any larger sense. We seek relevance to knowledge, skill, strategy, 

reaction to a situation, or some other situatively and psychologically relevant 

understanding of the action. We want to be able to identify data patterns that 

recur across unique situations, as they arise from patterns of thinking or acting 
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that students assemble to act in situations. It is this level of patterns of thinking 

and acting we want to address in instruction and evaluation, and therefore want to 

express in terms of student model variables.  

The following examples illustrate techniques that assessment researchers have 

used along with domain theory to discover data patterns that evidence 

psychological patterns: 

 

1. In troubleshooting, using logic rules to identify action sequences in space-

splitting situations as consistent with space-splitting, serial elimination, 

remove-and-replace, redundant, and irrelevant [Mislevy and Gitomer, 1996].   

2. In evaluating speaking skills in a language testing, using supervised neural 

networks to identify phonemes, then words, in acoustic streams [Bernstein 

1999].   

3. In marksmanship training, using graphical analysis to identify and correlate 

patterns of breathing and trigger break timing [Chung et al. 2011]. 

4. In an epidemiology simulation, using unsupervised neural networks to 

discover patterns of systematic and haphazard sequencing of tests [Hurst et 

al. 1997]. 

 

We note that it is not the data patterns in and of themselves that matter in 

assessment, but how data patterns provide evidence of capabilities that are 

relevant to the purpose of the assessment. Just having gigabytes of keystrokes 

and mouseclicks is not sufficient for claiming one has good evidence for a 

particular purpose. In fact, the process of discovering and using data patterns is 

iterative, in that we capture data (based on c urrent understanding), identify 

salient higher-level features (that we can use these operationally), and continue 

mining lower level data and using our insights to improve the design of situations 

for students to act in and features of their performances to capture and interpret.   

For example, as noted earlier, Kerr and Chung [this issue] report on cluster 

analyses of attempts in an educational video game in which it was found that, in 

some cases, students successfully completed the levels of the game (i.e., solved 
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tasks) using strategies other than the intended strategy. Importantly, such 

alternative solution strategies that worked in early levels (easier tasks) were 

ineffective on later levels (harder tasks). With this finding, the designers of the 

game (assessment) can reorder or redesign game levels (tasks) so that such 

strategies do not yield a solution. 

4.4.3 Task Models. Although data mining of features of situations is entwined 

with data mining of features of performance, we break it out separately here 

because it has been until recently a neglected area in psychometrics. As noted 

previously, the key point is that students’ actions make sense only in terms of the 

situations they are in. This insight was easy to slide over with standard tests, 

because tasks were fabricated by expert test developers, who knew what features 

to build into them to evoke what kinds of evidence of knowledge and skill. It was 

enough for a psychometrician to know simply that the features were there, and 

she had only to focus on performance data, say right or wrong answers. The 

problem of how situation features determine the meaning of performance features 

cannot be avoided in continuous, evolving, and digitally mediated performance 

tasks such as in games and simulations. 

These performance tasks may include fixed-form work products, such as 

interim reports and final solutions that can be modeled using modest extensions 

of familiar psychometric techniques. But the moment-by-moment situations that 

students act in, and from which the bulk of data may be obtained, arise 

idiosyncratically from students’ performances and the system’s responses to 

them. It is necessary to recognize recurring and substantively salient features of 

situations, so that salient features of performance in those situations can be 

recognized and evaluated.   

The preceding example of identifying space-splitting situations in hydraulics 

troubleshooting was of this character in that it was necessary to parse not only the 

state of the aircraft system but also the information that could be known to the 

student from his earlier actions. Similarly, examples in language testing are 

dyads of speech acts in conversations. A historical example is computer chess, 

where the challenge is to be able to characterize positions in terms of features 
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such as pawn structure and phase of game. An automated evaluation scheme 

must be able to characterize strength of positions in order to compare them 

before and after sequences of possible moves. In other words, one can’t make 

sense of a move without jointly making sense of situation [Bleicher et al. 2010]. 

4.5 Additional Leverage Points for Data Mining in Assessment 

In addition to the traditional emphasis on the analysis of work products and 

the psychometric touch points discussed above, we consider how EDM can 

provide opportunities to improve assessment practice in earlier layers of the ECD 

framework, namely the domain analysis and domain modeling layers that have 

traditionally been viewed as prior to modeling and analysis activity; recall that 

Table 2 provides a summary of the possible applications discussed above as well 

as in this section. 

4.5.1 Domain Analysis. For the educational data miner, including domain 

analysis into the assessment framework means that the increasingly available 

corpora of information available in digital form and related techniques for 

information extraction and knowledge management from extant text can be used 

to improve assessment in new ways [Behrens et al. 2012]. They can be used to 

inform understandings of how ideas are represented and used in practice, to 

inform not only curriculum and instruction, but to continually shape assessment 

activity. Consider for example that knowledge management in the social sciences 

remains largely a manual task for researchers. New techniques of mining 

scientific publications can help inform scientists about emerging concepts or data 

in ways that can likewise help assessment developers track such changes. 

4.5.2 Domain Modeling. Here again we see a valuable and emerging role for 

the data miner. Behrens et al. [2012], for example, discuss the emerging use of 

the data-mining approaches of semantic web technologies (e.g., the Achievement 

Standards Network) to articulate component relationships between standards 

across different educational systems - typically at the country level - and content 

associated with those standards or other standards whose relationship can be 

implied via machine induction over the Resource Description Framework space.   
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This type of hierarchy or relational analysis combined with natural language 

processing (NLP) [Manning and Schütze 1999] possibilities available for use in 

domain analysis may lead to important insights into the interconnection of 

different types of concepts, standards and assessment activities.   

In previous sections we discussed the role of EDM for improving 

psychometric aspects of the CAF (i.e., the student and evidence models) with 

implications for assessment delivery. We think that as the conceptualization of 

assessment continues to broaden to include the end-to-end operationalization of 

assessment even more opportunities for EDM in assessment will arise. For 

example, in the area of task generation, schemes based on new approaches such 

as crowd sourcing are evolving that will require new tracking and connections of 

data. Likewise, as reporting of assessment results continues to move to on-line 

formats, the data available from the use of the reports and inferences about their 

design and communicative value may become part of the standard domain for 

educational data analysis and EDM. 

5. CONCLUSION 
ECD is a comprehensive framework for describing and understanding assessment 

activities. This paper has discussed the central components and logical features of 

ECD, highlighting the evidentiary focus in obtaining, interpreting, and explaining 

data. We discussed the role of generalization and latent variables in assessment 

thought and how psychometric models support this conceptualization. EDM is an 

emerging technology that provides important insights in several layers in the 

ECD framework if applied within an integrated assessment design and 

implementation endeavor, and can broaden the reach of computational activity to 

refine and automate assessment. 

Key to the understanding of this interplay is that though ECD stresses the 

importance of a priori clarity in the evidentiary arguments that drive design and 

development of assessment, this clarity is likewise informed by insights from a 

posteriori analysis. For example, the development of a networking skill 

performance assessment system in the CNA included the specification of scoring 
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rules based on detailed expert analysis and student protocol analysis constructed 

from an ECD framework [Williamson et al. 2004].   

However, post hoc analysis of log data using NLP algorithms revealed that 

the empirical log data was not consistent with the theoretical model implied in 

the scoring rules [DeMark and Behrens 2004]. The interplay of data and scoring 

theory is especially important in new domains where there may be an absence of 

theory concerning the observable representations of expertise to inform evidence 

model specification. In short, assessment design and development needs BOTH 

rigorous evidential logic AND data analytic insight to support the overall 

evidentiary logic. 

We maintain that EDM, like all data analysis [Behrens and Smith 1996], is 

best practiced in concert with, rather than isolated from, a theoretical or 

substantive layer that involve choices or interpretations made by researchers 

based on purpose or focus of the assessment. Scholars operating within the EDM 

tradition have advocated as much in applications such as association rule mining 

[Garcia et al. 2010], sequential pattern analysis [Zhou et al. 2010], cluster 

analyses of students [Amershi and Conati 2010] and observations [Hershkovitz 

and Nachmias 2010], and latent variable modeling with BNs [Pardos et al. 2010].  

We have no doubt that some interpretation will come from novel or surprising 

findings when data are analyzed - in this way, EDM represents a way to realize 

the illuminative goals of exploratory data analysis [Tukey 1977; Behrens 1997; 

Behrens et al. in press].  

However, we add that assessments will be well served if, as much as possible, 

interpretative aspects are built in a priori through principled assessment design 

and a posteriori through empirical results. In sum, good EDM in assessment 

contexts is best viewed in terms of evidentiary reasoning using the lens of ECD. 

Such a perspective offers (a) a prescriptive approach for assessment design that 

builds the validity argument concurrently with the assessment, and (b) a 

framework for recognizing new findings from data analysis and process for 

refining assessments.  
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In the current era of rapid technological change and the resulting dramatic 

impact on a ssessment, new forms of presentation and work product data are 

being called upon for use in assessment inference. This sea-change highlights the 

limitations of fixed-response paradigms, and invites the use of EDM to inform 

the evidence identification process and feed appropriate information to the 

psychometric (or deterministic) evidence accumulation processes. New types of 

log files, interactional data streams, and other rich work products require both 

psycho-social theory and theory generation based on data analysis. 

Finally, we emphasize that EDM should not be limited to either just the 

outputs of scoring processes or just the work products as the inputs to scoring 

processes. Evolutions in the understanding and practice of assessment call for a 

broader range of concepts and method to be applied consistently with the notion 

of a broader assessment perspective. Assessment design, development, delivery, 

and maintenance processes are complex and increasingly digital. Continued 

evolution of EDM techniques for understanding the structure of data that affects 

assessment design, the tracking of tasks over time and differential performance, 

variations in the task attributes that may be overlooked by hu man coders, and 

many other artifacts of assessment are increasingly digital and likely to benefit 

from the application of EDM techniques. 
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