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Summary
In vaccine research, immune biomarkers that can reliably predict a vaccine’s effect on the clinical
endpoint (i.e., surrogate markers) are important tools for guiding vaccine development. This paper
addresses issues on optimizing two-phase sampling study design for evaluating surrogate markers
in a principal surrogate framework, motivated by the design of a future HIV vaccine trial. To
address the problem of missing potential outcomes in a standard trial design, novel trial designs
have been proposed that utilize baseline predictors of the immune response biomarker(s) and/or
augment the trial by vaccinating uninfected placebo recipients at the end of the trial and measuring
their immune biomarkers. However, inefficient use of the augmented information can lead to
counterintuitive results on the precision of estimation. To remedy this problem, we propose a
pseudo-score type estimator suitable for the augmented design and characterize its asymptotic
properties. This estimator has superior performance compared with existing estimators and allows
calculation of analytical variances useful for guiding study design. Based on the new estimator we
investigate in detail the problem of optimizing the sampling scheme of a biomarker in a vaccine
efficacy trial for efficiently estimating its surrogate effect, as characterized by the vaccine efficacy
curve (a causal effect predictiveness curve) and by the predicted overall vaccine efficacy using the
biomarker.
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1. Introduction
Development of effective vaccines for preventing infectious diseases such as HIV/AIDS is a
challenging task due to the complexity of the human immune system. In a randomized trial,
identification of immune biomarkers measured after immunization that are associated with a
vaccine’s protective effect can be very useful in guiding the vaccine’s development (Plotkin,
2010). The research in this manuscript is motivated by the need to evaluate immune
responses as potential surrogate markers for HIV infection in HIV vaccine efficacy trials
now being planned. Among various frameworks proposed for evaluating surrogate markers
in biomedical research (Joffe and Greene, 2009; Buyse et al., 2000; Burzykowski et al.,

© 0000 The Society for the Study of Evolution. All rights reserved.
*yhuang@fhcrc.org.

NIH Public Access
Author Manuscript
Biometrics. Author manuscript; available in PMC 2013 July 17.

Published in final edited form as:
Biometrics. 2013 June ; 69(2): 301–309. doi:10.1111/biom.12014.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2005; Lin et al., 1997; Freedman et al., 1992; Li et al., 2010, 2011; Prentice, 1989; Daniels
and Hughes, 1997; Robins and Greenland, 1992), we use the principal surrogate framework
(Frangakis and Rubin, 2002), which is particularly advantageous for the motivating HIV
application as has been discussed in previous work including Gilbert et al. (2011b).

Study design and characteristics play an important role in principal surrogate evaluation.
Principal surrogate estimands are defined conditional on an individual’s potential biomarker
values given vaccine or placebo, and thus are generally not identifiable from observed data
in standard randomized trial designs. Gilbert and Hudgens (2008), Wolfson and Gilbert
(2010) and others have focused on the special case, common in HIV vaccine trials, where
there is no variability in the immune biomarker values of placebo recipients. In this setting
estimands of surrogate effects are defined conditional on vaccine-induced immune responses
only. Two of such estimands we focus on in this paper are the vaccine efficacy curve (also
called the “principal effect” curve (Frangakis and Rubin, 2002) or the “causal effect
predictiveness” curve (Gilbert and Hudgens, 2008)) and the predicted overall vaccine
efficacy. However, even in this relatively simple setting, these principal surrogate estimands
of interest remain nonidentifiable in standard vaccine trials.

Realizing the limitation of a standard trial design for immune surrogate evaluation,
Follmann (2006) proposed two ways to enhance the study design using baseline
immunogenicity predictors (BIPs) and an approach he termed “closeout placebo
vaccination” (CPV). The BIP strategy develops an imputation model for unobserved
immune biomarkers based on the observed relationship between baseline covariates and
biomarker values. However, this approach only identifies th principal surrogate estimands
under strong, untestable assumptions made on the risk model (Gilbert and Hudgens, 2008).
A more direct solution for the missing data problem is CPV, which augments the design by
vaccinating uninfected placebo recipients at the end of the trial and measuring their
subsequent biomarker values. The values are then treated as if they had been recorded from
subjects assigned to vaccine at the beginning of the trial (Follmann, 2006). Under certain
assumptions such as equal early clinical risk and time constancy as will be detailed in the
paper, the inclusion of the CPV component allows nonparametric estimation of disease risks
under each assignment of vaccine or placebo, which makes the evaluation of risk model
assumptions possible.

Despite its appealing potential to increase identifiability, little research has been done to
ascertain the gains in estimation efficiency which may be possible using CPV. What
estimation method to use in this novel design and how to optimize the sampling of immune
biomarkers for better efficiency in evaluating their surrogate effects are important questions
remaining to be addressed and are the major focus of this paper. The research for this paper
was motivated by the planning of a future HIV vaccine efficacy trial in South Africa,
detailed in Gilbert et al. (2011a), where the primary objective is to evaluate the vaccine
efficacy to prevent HIV infection of multiple prime-boost vaccine regimens versus a shared
placebo group, with assessment of immune surrogates as a secondary objective. The CPV
design was examined for its capacity in immune surrogates evaluation in the trial planning.
As we will show later in Section 2.2, the additional information generated by the augmented
component, if not used efficiently, can lead to counter-intuitive results regarding the
estimation precision. We propose and investigate a pseudo-score type estimator particularly
suitable for the augmented design. Based on this estimator we investigate in detail the
problem of optimizing the biomarker sampling scheme to efficiently estimate surrogate
effects in HIV vaccine trials. Beyond vaccine trials this research has application to surrogate
endpoint evaluation in general clinical trials for which an augmented design akin to CPV is
feasible.
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In Section 2, we introduce the setting for evaluating principal surrogates, describe the utility
of the vaccine efficacy curve and the predicted overall vaccine efficacy for quantifying
surrogate effects in HIV vaccine trials, and briefly review problems in applying existing
estimation methods to the augmented design. We then propose a new estimator as a solution
for the augmented design and examine its asymptotic properties. In Section 3, we evaluate
the finite-sample performance of the proposed estimator and compare its performance with
alternative estimators. In Section 4 we study optimal sampling schemes for estimating
principal surrogate effects in the motivating HIV application using the proposed estimator.
Finally we end the paper with a discussion.

2. Method
We consider a two-arm randomized trial. Let Z be the binary treatment indicator, 0 for
placebo and 1 for active treatment (vaccination). Let W be baseline covariates such as
demographics and laboratory measurements. We focus on discrete W in this manuscript, but
note that the methods we describe can be generalized to accommodate continuous W by
incorporating nonparametric smoothing techniques. Let S be the candidate surrogate of
interest measured on the continuous scale at fixed time τ after randomization. Here we
consider a univariate marker, but the estimation method we propose could be easily
extended to allow for more than one marker. Let Y denote the binary clinical endpoint of
interest, 0 for non-diseased and 1 for diseased. Acknowledging the possibility that Y occurs
before S is measured, let Yτ be the indicator of whether disease develops before τ. S is only
measurable if Yτ = 0; if Yτ = 1, then S is undefined. We further incorporate the potential
outcomes framework. Let S(z), Yτ(z), Y(z) be the corresponding potential outcomes under
treatment assignment z, for z = 0, 1. If Yτ(z) = 1, S(z) is undefined and we set S(z) = *. We
also consider a possible CPV component. At the end of the trial followup period, some
fraction of placebo recipients who are uninfected at study closeout are vaccinated and the
immune biomarker Sc at time τ after vaccination is measured; the proportion of the
uninfected placebo recipients selected for closeout vaccination can range from 0 to 1.

Following the notation in Follmann (2006), we call the design with no CPV the BIP-only
design (the design with baseline predictors W only), and the design with non-zero CPV
component the BIP + CPV design. The setting we consider is a two-phase sampling design.
In the first phase, information about Y, Z, and W are collected for every trial participant. In
the second phase, S(1) or Sc is measured in a subcohort of study participants selected
according to a random mechanism. We let δ to indicate the availability of S(1) or Sc.

Frangakis and Rubin (2002) proposed characterizing the principal surrogate effect of a
marker based on comparison between the risk of Y(1) and Y(0) conditional on S(1) and
S(0). In HIV vaccine trials, only subjects without previous infection with the pathogen under
study are enrolled such that S(0) = 0; the characterization of surrogate value simplifies to
comparison between risk(0){S(1)} = P{Y(0) = 1|S(1), Yτ(0) = Yτ(1) = 0} and risk(1){S(1)} =
P{Y(1) = 1|S(1), Yτ(0) = Yτ(1) = 0}, namely the marginal causal effect predictiveness curve
(CEP) as proposed in Gilbert and Hudgens (2008) with CEP{S(1)} = h [risk(1){S(1)},
risk(0){S(1)}] for a pre-specified contrast function h.

For a rare disease like HIV, one natural choice of CEP function is the vaccine efficacy (VE)
as a function of S(1):

(1)
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the percent reduction in infection rate for the subgroup of vaccine recipients with immune
response S(1) compared to if they had not been vaccinated. The vaccine efficacy curve
(curve of VE(s) versus s) tells us the range of vaccine efficacies we can achieve with respect
to HIV infection corresponding to varying levels of vaccine-induced immune response. For
a desired vaccine efficacy level, the corresponding immune response level helps set the
target for refining the vaccine in follow-up phase I/II studies. A useful surrogate will have
strong effect modification in the sense of large variability in VE{S(1)} and thus there is
potential to achieve a large vaccine efficacy by increasing the immune responses. Examples
of vaccine efficacy curves for two biomarkers with the same S(1) distribution are displayed
in Figure 1(a) with the steeper curve (marker 1) corresponding to a more useful surrogate. In
general, the x-coordinates of these curves can be brought to the same scale through a
cumulative distribution function (CDF) transformation to facilitate comparison between
curves.

After we refine a vaccine to achieve certain immune response levels in phase I/II trials, the
next step is to determine whether the refined vaccine has large enough predicted vaccine
efficacy in a future licensure trial, based on the change in immune responses we observe in
phase I/II studies through the refinement. The quality of this prediction depends on the
surrogacy of the biomarker identified in the current trial as well as the ‘bridging’ assumption
regarding the relationship between the vaccine effect on immune response and the vaccine
effect on infection rate. For example, suppose the risk of HIV infection given S(1) and Z in
the current trial can be modeled with risk(1){S(1)} = Φ{β0 + β1Z + β2S(1) + β3ZS(1)} with
Φ the CDF of N(0,1), and the refined vaccine leads to a location-shift Δ in immune response
distribution relative to the original vaccine. For a valid bridging surrogate, Follmann (2006)
models the HIV infection rate conditional on S(1), the immune response induced by the
original vaccine, and the treatment assignment Znew in the future trial with risk(zNew){S(1)}
= Φ [β0 + β1Znew + β2S(1) + β3{S(1) + Δ}Znew]. Then the predicted overall efficacy of the
refined vaccine on Y is

(2)

with F{S(1)} the distribution of S(1). This model will be used later in our simulation studies
and study design. In Figure 1(b), we show the curves of VEnew(Δ) as a function of Δ
corresponding to the same two markers whose vaccine efficacy curves are displayed in
Figure 1(a). Note that the same location shift in the better surrogate marker (marker 1)
corresponds to a higher predicted overall vaccine efficacy.

We next consider the estimation of VE{S(1)} and VENew(Δ), by first estimating the disease
risk conditional on S(1) and Z. We make the following assumptions.

2.1 Identifiability Assumptions
(A1) SUTVA and Consistency: {S(1), S(0), Yτ(1), Yτ(0), Y(1), Y(0)} of one subject

is independent of the treatment assignments of other subjects, and given the
treatment a subject actually received, a subject’s potential outcomes equal the
observed outcomes.

(A2) Ignorable Treatment Assignments: Z ⊥ W, S(1), S(0), Yτ(1), Yτ(0), Y(1), Y(0).

(A3) Equal Early Clinical Risk : Yτ(1) = Yτ(0) for all subjects.

Huang et al. Page 4

Biometrics. Author manuscript; available in PMC 2013 July 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Assumptions (A1)–(A3) have been made in earlier literature (Gilbert and
Hudgens, 2008; Hudgens and Gilbert, 2009; Huang and Gilbert, 2011).
Basically, (A1) is plausible in trials where participants do not interact with one
another and (A2) is ensured by randomization. As discussed in Wolfson and
Gilbert (2010), (A3) is plausible if relatively few clinical events happen before
the biomarker is measured. (A3) implies that the risk of Y conditional on Z = z,
W, S(1), S(0) and Yτ(0) = Yτ(1) = 0 can be identified based on the subset of
subjects assigned Z = z who are observed to have the marker measured at time τ
(i.e., Yτ = 0), with additional identifiability assumptions needed as given below.
Henceforth we simplify the notation and drop the conditioning of all
probabilities on Yτ(1) = Yτ(0) = Y τ = 0.

Motivated by the design of HIV vaccine trials where S(0) = 0 for all subjects, we
focus on risk models conditional on S(1) only, which is the one most relevant to
vaccine development. In general when S(0) varies, risk conditional on S(1) has
the interpretation of risk conditional on S(1) and S(0) averaged over the
conditional distribution of S(0) and is still useful for vaccine development
(Wolfson and Gilbert, 2010). Next, in assumption (A4) we posit generalized
linear models for risk conditional on Z, S(1), and W.

(A4) The risk of Y conditional on Z, S(1) and W can be modeled with a parametric
function: risk(z) {S(1), W} ≡ P{Y(z) = 1|S(1), W} = g {β; S(1), Z, W}, with g a
pre-specified link function and β a finite-dimensional parameter.

Based on the standard trial design, (A1)–(A4) and the observed data identify
risk(0) and risk(1). But since S(1) is unobserved for all subjects in the placebo
arm (Z = 0), one cannot fully test the appropriateness of the model assumption
(A4) as pointed out in Gilbert and Hudgens (2008). This issue is resolved with
the addition of the CPV component, together with the assumptions (A5) and
(A6) below.

(A5) Time-constancy of immune response: For uninfected placebo recipients, S(1) =
Strue + U1, and Sc = S true + U2, for some underlying S true and i.i.d.
measurement error U1, U2.

(A6) No placebo subjects uninfected at closeout have an infection over the next τ
time-units. Under (A5) and (A6), Sc can be used to substitute S(1) for these
subjects sampled in CPV. The addition of the CPV component makes (A4) fully
testable by allowing non-parametric estimation of the risk model, as sketched in
Web Supplementary Appendix A. Henceforth we simplify the notation and use
S to indicate a measurement of vaccine-induced immune response which can be
obtained either during standard trial period or during CPV. Let N be the number
of trial participants. The observed data are N iid copies Oi = (Zi, Wi, δi, δiSi, Yi)
′, i = 1, ···, N. Finally, we state two assumptions about the sampling probability
of S (either S(1) or Sc) required for validity of the pseudo-score estimators
described later in Section 2.3.

(A7) ∫ P(δ = 1|y, Z, W)dy > 0 for every Z, W level.

(A8) ∫ P(δ = 1|y, z, W )dydz > 0 for every W level.

2.2 Existing Methods and the Motivating Example
Under the two-phase sampling design described above, the vaccine-induced immune
response S is missing at random (MAR) because it is determined completely by design. The
MAR assumption allows identification of the risk model in (A4) based on observed
likelihood
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(3)

where F(S|Z, W) is the CDF of S conditional on Z, W.

Earlier work for identifying risk model parameters in evaluating principal surrogate markers
was based on an estimated likelihood approach (Pepe and Fleming, 1991) that maximizes an
estimated version of the likelihood (3). Specifically, estimation is performed in two steps. In
the first step, F(S|Z, W) is estimated; and then in the second step, its estimator F̂(S|Z, W) is
substituted into (3) and β is estimated as the maximizer of the resulting estimated likelihood.
Approaches to estimating F(S|Z, W) vary along the spectrum from nonparametric to
parametric (Gilbert and Hudgens, 2008; Qin et al., 2008; Hudgens and Gilbert, 2009; Huang
and Gilbert, 2011). These methods work for both the BIP-only and the BIP+CPV designs.
For both designs, the estimation in the first step is achieved using vaccine recipients with S
measured given that F(S|Z = 1, W) = F(S|Z = 0, W) = F(S|W) as ensured by the
randomization assumption (A2). When sampling of S depends on other phase-I variables
such as the response Y, inverse probability weighting (IPW) (Horvitz and Thompson, 1952)
can be implemented to correct for biased sampling (Gilbert et al., 2011a; Huang and Gilbert,
2011). Note that in a BIP+CPV design, even if all CPV samples contribute a full conditional
likelihood term P(Y|Z, W, S) to the estimated likelihood, they cannot be used for estimating
F(S|W). The fact that all infected placebo recipients have zero sampling probability for S
prevents the application of IPW to the whole S sample in estimating F(S|W).

In our motivating design of the South Africa HIV vaccine trial, Gilbert et al. (2011a)
considered incorporating the CPV component into the trial design and examined power for
detecting principal surrogates using a parametric estimated likelihood approach. They
examined two-phase case-control sampling using either a BIP-only or a BIP+CPV design
where cases and controls were sampled at 1:5 ratio within the vaccine arm and controls ten
times that of the number of cases in placebo arm were included in CPV. A surprising finding
was that in some scenarios where W had a strong correlation with S, the BIP-only design
was more powerful than the BIP+CPV design for testing an interaction effect between S and
Z (Table 7 of Gilbert et al. (2011a)).

Here we investigate in further detail this seemingly counter-intuitive result of decreased
efficiency caused by adding the CPV component. We compare variances of the risk model
parameter estimators between the BIP-only design and the BIP+CPV design with varying
ratios of CPV sampling. As shown in Web Supplementary Figure 1, the efficiency loss of
the BIP+CPV design relative to the BIP-only design becomes more severe as the proportion
of uninfected placebo recipients selected for closeout vaccination increases. In contrast, as
also shown in Web Supplementary Figure 1, if we enter the ‘true’ F(S|W) into the observed
likelihood (3), then the BIP+CPV design is more efficient than the BIP-only design and the
efficiency gain increases in general with a higher CPV sampling fraction, as expected. These
results suggest that the decreased efficiency caused by CPV sampling is due to the fact that
two different sets of “validation data” are used in the two steps of the estimated likelihood
procedure: the CPV component is included in the validation set in maximizing the likelihood
but not in the estimation of the conditional distribution of S. This will be further
demonstrated in Section 3.

To use the CPV component more efficiently, we need an estimation method that removes
the incompatibility in the use of validation sets as present in the estimated likelihood
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methods. In the next section, we propose a pseudo-score type estimator as a solution,
building upon the original work by Chatterjee et al. (2003).

2.3 The Pseudo-Score Estimator for Principal Surrogates Evaluation
The score equation of the observed likelihood (3) is

(4)

with Uβ(Y|S, Z, W) = ∂log P(Y|S, Z, W)/∂β. Equation (4) can be further written into the
following parsimonious form incorporating the randomization assumption (A2)

(5)

According to Bayes’ theorem, we have

(6)

Substituting the right hand side of (6) for its left hand side into (5) we arrive at a pseudo-
score

(7)

We propose to estimate the pseudo-score (7) by first estimating the distribution of S
conditional on W based on S measured in the second phase sample, and then estimating the
sampling probability of S conditional on S and W. The latter can be estimated as the
sampling probability of S conditional on all covariates and Y together averaged over the
joint distribution of Y and Z conditional on S and W. That is, P(δ = 1|S, W) = ∫∫ P(δ = 1|y,
z, S, W)P(y, z|S, W)dydz = ∫∫ P(δ = 1|y, z, W)P(y|S, z, W)P(z)dydz. The corresponding
pseudo-score estimator is defined as the solution to (7). Note this proposed estimator is an
extended version of an original pseudo-score estimator proposed by Chatterjee et al. (2003).
We call the original pseudo-score estimator the PSO estimator and the proposed new
estimator the PSN estimator. Both estimators transforms the task of estimating the
conditional distribution of S in the population into the task of estimating the conditional
distribution of S in the sample; PSN requires estimation of F(S|W, δ = 1) while PSO
requires estimation of F(S|W, Z, δ = 1) (details provided in Web Supplementary Appendix
B). Note that both PSN and PSO allow incorporation of the CPV component into estimation
of the distribution of S conditional on W or Z and W, and can be applied to a design with
non-zero CPV component. The PSO estimator does not, however, apply to a BIP-only
design since F(S|Z = 0, W, δ = 1) is undefined. In other words, given that risk(z)(S, W) > 0
almost surely, validity of PSO requires the sampling probability of S being greater than zero
for every Z, S, W level (assumption (A7)); in contrast, the PSN relaxes this requirement to
the weaker requirement (A8) that the sampling probability of S exceeds zero for every S, W
level and hence is applicable to both the BIP-only and the BIP+CPV designs.
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To obtain the PSN estimator, for each unique value w of W, we estimate F(s|w, δ = 1)
empirically with Σδi=1I(Si ≤ s, Wi = w)/Σδi=1I(Wi = w). An Expectation-Maximization (EM)
algorithm can be employed to estimate the risk model parameters β:

I. Start with an initial value of β;

II. For a subject i with δi = 1, use its observed data. For a subject with δi = 0, construct
a set of filled-in data with length equal to the number of observations in VWi, where
VWi is the set of validation subjects with δ = 1 and W = Wi. Specifically, for each j
∈ VWi, we construct a new observation {Yi, Sj, Zi, Wi}.

III. For each filled-in observation {Yi, Sj, Zi, Wi}, j ∈ VWi, calculate an associated
weight,

which is an estimate of the density of Sj conditional on Yi, Zi, Wi, where

, with P̂(δ = 1|y, z, Wi) a
consistent estimate of P(δ = 1|y, z, Wi) and P̂(y|Sj, z, Wi) obtained based on the
current β estimate.

IV. Fit a weighted GLM to the augmented dataset and obtain a new estimate of β.

V. Repeat steps (II) to (IV) until convergence.

Suppose the sampling probability of S conditional on Y, Z, and W can be modeled with P(δ
= 1|Y, Z, W) = π(Y, Z, W; α) for some parameter α. We substitute α with its maximum
likelihood estimator (MLE) α̂ to obtain P̂(δ = 1|y, z, w) for computing the pseudo-score (7).
For example, in the simulation studies described next where the sampling probability of S
depends on Y and Z only, we apply a saturated model for the sampling probability of S with
π = {π(Y, Z)} = {π(0, 0), π(0, 1), π(1, 0), π(1, 1)}, such that MLE of π(y, z) equals the
observed sampling fractions in the category defined by Y = y and Z = z. Under regularity
conditions specified in Web Supplementary Appendix C, the PSN estimator β̂ can be shown
to be consistent and asymptotically normally distributed. Theorem 1 in Web Supplementary
Appendix C describes the asymptotic distribution of β̂ with a proof sketched. In our
simulation and design studies, we consider a risk model P{Y = 1|S(1), Z, W} = Φ{β0 + β1Z
+ β2S(1) + β3S(1)Z}. Based on risk model parameter estimators β̂0, β̂1, β̂2, β̂3, we estimate

VE{S(1)} with , and estimate

VENew(Δ) with  with pre-

specified F(s1). Asymptotic normality of  and  follow from Theorem 1.
Their asymptotic variances can be derived based on the Delta method:

 and

.

3. Simulation Study
In this section, we evaluate the finite-sample performance of the PSN estimator and compare
it with the estimated likelihood estimator (EL) (Gilbert et al., 2011a). In addition, we study
two other alternatives: the original pseudo-score estimator PSO, and a variant pseudo-score
estimator (PSV) where we transform the task of estimating F(S|W) into the task of
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estimating F(S|W, Z = 1, δ = 1). Details about the derivation of PSV are provided in Web
Supplementary Appendix B. PSV is included as the closest pseudo-score analogue of EL
from the perspective that both estimators include the CPV component in the validation set
for likelihood maximization but not for estimation of the conditional distribution of S.

Our simulation settings are chosen to reflect the characteristics of a typical HIV vaccine
trial. We simulate S from a normal distribution with mean 3 and variance 1, and simulate a
categorical W with four levels derived from discretizing a normal variable correlated with S
(with correlation ρ = 0.5) by quartiles. We assume a probit risk model of the binary outcome
Y conditional on S, Z and W : P(Y = 1|S, Z, W) = Φ(β0 + β1Z + β2S + β3SZ). The risk
model parameters are chosen such that the probability of infection is 0.12 and 0.06 in the Z
= 0 and Z = 1 arms, respectively.

Consider a two-phase sampling design. In phase 1, N = 4, 000 subjects are randomized in a
1:1 ratio to vaccine (Z = 1) and placebo (Z = 0). In this phase, W, Z, and Y are observed. In
phase 2, stratified Bernoulli sampling of S is conducted as follows: All cases (infected) in
the vaccine arm have S measured, and a portion of controls (uninfected) in the vaccine arm
or placebo arm (the CPV component) have S measured. The performance of different
estimators are compared as a function of two study design parameters: γV, the average ratio
of sampled controls to cases in the vaccine arm; and γP, the average ratio of sampled
controls in the placebo arm to cases in the vaccine arm. For each scenario, results are based
on 5,000 Monte-Carlo simulations. Note that EL, PSN, and PSV apply to both the BIP-only
and the BIP+CPV designs, whereas PSO applies only to the BIP+CPV design. When using
EL, PSN or PSV, we can think of the BIP-only design as a special case of the BIP+CPV
design with γP = 0, and PSN and PSV are equivalent when γP = 0. We evaluate
performance for estimating β0, β1, β2, β3, estimating VE{S(1)} using formulae (1) for S(1)
corresponding to the 90th percentile of the distribution, and estimating VENew(Δ) using
formulae (2) with F{S(1)} specified to be N(3,1) for a Δ value corresponding to VENew(Δ)
= 0.75.

First, we present efficiency of the proposed PSN estimator relative to the EL estimator for
various combinations of γV and γP (Table 1). The PSN estimator in general is more
efficient than the EL estimator for either the BIP-only (γP = 0) or the BIP+CPV (γP > 0)
design. In particular, dramatic efficiency gains can be achieved when γP is equal to or larger
than γV.

We then evaluate the finite-sample performance of the proposed PSN estimator. For
different γV and γP values, Table 2 provides bias, standard deviation, and coverage of 95%
Wald confidence intervals based on asymptotic variance estimates. The PSN estimator has
minimal biases in all settings. A larger number of S sampled in particular among vaccinees
leads to smaller variance. The 95% Wald confidence intervals based on standard error
estimates from analytical formulas have accurate coverage in general.

For comparison among various alternative estimators, Web Supplementary Figure 2 shows
the empirical variance of β3 estimators as a function of γV using a BIP-only or a BIP+CPV
design (with γP = 10). The patterns for estimating other quantities are fairly similar and
results are omitted. Corresponding results as a function of γP when γV is fixed at 5 are
displayed in Web Supplementary Figure 3. When γV is small compared to γP, the EL and
PSV estimators based on BIP+CPV can have much larger variance compared to EL based
on BIP-only. These two estimators are the only ones with differential use of the CPV
component between the two steps of estimation, consistent with our conjecture about the
reason for efficiency loss observed with EL in the BIP+CPV design. This issue is fixed by
using PSN or PSO. Based on PSN, for example, increasing the sampling rate of the CPV
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component (i.e. increasing γP) can lead to a substantial efficiency gain (up to 16% in our
setting) compared to the BIP-only design (Supplementary Figure 2(b)). Also PSN can have a
substantial efficiency gain relative to PSO in a BIP+CPV design (up to 15% in our setting in
Supplementary Figures 2(b),3(b)).

4. Optimal two-phase biomarker sampling design for estimating the vaccine
efficacy curve and predicting the population-average vaccine efficacy

In practice, given limited resources for measuring immune biomarkers, an important
decision is how to best allocate resources to maximize efficiency in estimating surrogate
effects. In this section, we use the PSN estimator to help determine the optimal two-phase
sampling scheme for efficient estimation of VE{S(1)} and VEnew(Δ). Again consider a two-
phase sampling setting where S is randomly sampled from infected vaccinees, uninfected
vaccinees or uninfected placebo recipients (the CPV component) separately. For a rare
disease like HIV infection, typically we sample all infected vaccinees available in the trial.
The question is then how to divide the sampling of uninfected subjects between the vaccine
and placebo arms given a fixed overall case-control sampling ratio. In other words how to
choose γV and γP when their sum is bounded from above. The asymptotic variances for the
PSN estimator derived in Section 2.3 can be used to guide the sampling design.

Before examining the sampling under fixed cost, we first examine the efficiency change
when varying one of γV and γP while holding the other constant. In Web Supplementary
Figure 4(a), we explore the efficiency gain for estimating various quantities as γV increases
relative to γV = 1, holding γP = 0, using the same numerical setting as in Section 3.
Corresponding results for increasing γP with γV fixed at 1 are shown in Web
Supplementary Figure 4(b). Relative to the BIP-only design with 1:1 case-control sampling
ratio, further increases in γV have larger impact on estimating the main effect of Z(β1) and
the interaction between Z and S(1) (β3) compared to the intercept (β0) and the main effect of
S(1) (β2). The impact on estimating VE{S(1)} and VEnew(Δ) is in-between. When fixing γV
= 1 but increasing the sampling of the CPV component, the pattern is reversed: increases in
γP have largest impact on estimating β0 and β2.

Moreover, given fixed cost for marker sampling, defined as Cost ≡ γV + γP, we evaluate the
efficiency of study designs with various allocations of γV and γP. Figure 2 shows the
asymptotic efficiency relative to the design with equal γV and γP. The pattern is similar
when Cost is fixed at different levels. In general, a design with larger γP is more efficient
for estimating β0 and β2, whereas a design with larger γV is optimal for estimating β1, β3,
VE{S(1)} and VEnew(Δ). The last two quantities are of clinical interest and most relevant in
guiding our study design.

Finally, we examined the impact of the strength of the baseline predictor W in terms of its
correlation with S on the optimal sampling scheme. Given Cost = 5 and for various linear
correlations ρ, Figure 3 shows the asymptotic efficiency of different designs relative to the
design with equal γV and γP for estimating VE(S) and VEnew(Δ). For each measure, it
appears that the optimal γV tends to increase with increased correlation. In other words,
when the baseline predictor is highly predictive of the biomarker, less efficiency is gained
by incorporating information from CPV.

5. Discussion
In this paper we investigated an estimation procedure and sampling scheme for evaluating
surrogate markers in an augmented vaccine trial design (the CPV design) where uninfected
placebo recipients are vaccinated at study closeout and have their immune responses
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measured. Motivated by the observation that incorporating closeout vaccination data into
existing estimation procedures results in increased estimation error, we proposed a new
pseudo-score type estimator appropriate for the CPV design. Besides providing a more
efficient use of the augmented data, a contribution of our research to the surrogate marker
problem is the derivation of an analytic variance estimator which was not achieved with
existing estimated likelihood-based methods where inference relies solely on bootstrap
resampling. Compared to the original pseudo-score estimator in the literature, our proposed
estimator is more efficient since it exploits the marker-treatment independence intrinsic in
randomized trials. It can also be applied to both standard and augmented trial designs.

The asymptotic variance developed for the proposed estimator is valuable for guiding the
immune biomarker sampling scheme. We examined the question of optimally dividing
biomarker samples between the CPV component and the uninfected vaccinees for efficient
estimation of the vaccine efficacy curve and the predicted overall vaccine effect, given fixed
total cost of measuring immune responses. In practice, there are other costs researchers will
want to take into consideration, e.g., the additional cost of vaccination and follow-up
associated with the CPV component. The example in this paper based on equal cost between
uninfected vaccine and placebo recipients can be easily extended to allow for different costs
between the two kinds of samples. At the same time, because the BIP+CPV design provides
a way to test the modeling assumption (A4) that is unverifiable from the BIP-only design, in
practice one might prefer to collect ample samples from both the vaccine and placebo arms
to ensure model testing ability, as long as the sacrifice in efficiency compared to the optimal
scheme is relatively small. All these considerations should be evaluated on a case-by-case
basis. The examples studied in this manuscript suggest that a design that samples slightly
larger numbers of uninfected vaccinees than placebo recipients are preferred for estimating
the vaccine efficacy curve and predicting the vaccine’s overall effect on HIV infection.

The model we studied in this manuscript is the risk conditional on treatment Z, baseline
covariate W, and the potential biomarker value given assignment to vaccine S(1). This is
equivalent to the model which further conditions on the potential biomarker value given
assignment to placebo S(0), for the case where S(0) is constant as in our motivating HIV
application. In cases where subjects have had previous exposure to similar pathogens such
that S(0) has variability, baseline biomarker measures might be used to substitute for S(0)
under a time-constancy assumption that biomarkers measured at baseline reflect the
biomarker value that would have been measured at time τ, if assigned to placebo. The
technique we used in this manuscript can then be directly applied by treating S(0) as a part
of W. This generalization implies the method has potential broad applicability for surrogate
endpoint evaluation in many types of clinical trials.

The pseudo-score estimator derived in this manuscript applies when the baseline predictor
W is available from every trial participant. Future research is warranted to extend the
estimator to more general setting where a subset of W is sampled from the trial cohort and to
evaluate the sampling scheme of W with respect to the efficiency of estimation.

Finally, the essence of our proposed modification of the pseudo-score estimator in
randomized trials has a much more general implication in the modeling and estimation of
disease risk. Since baseline covariates included for adjustment in the risk model are not
always strongly correlated with the immune biomarker to be useful for its prediction,
implementation of some model selection for a parsimonious subset of W’s in predicting the
vaccine-induced immune response S(1) could potentially increase efficiency. This is
currently under investigation.
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Figure 1.
(a) Vaccine efficacy curves: VE{S(1)} versus S(1). The grey horizontal line is the vaccine
efficacy in the population defined as 1 − P(Y = 1|Z = 1)/P(Y = 1|Z = 0). (b) Plot of
VEnew(Δ) versus Δ (the location shift in immune response for the refined vaccine versus
original vaccine), under the assumption that P [Y = 1|Z = z, S(1) = s] = Φ(β0 + β1z + β2s +
β3sz) and P[Y = 1|Znew = z, S(1) = s] = Φ {β0 + β1 + β2s + β3(s + Δ)}.
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Figure 2.
Efficiency of estimators for various designs as γV varies from 1 to Cost − 1 relative to the
design with γV = γP, given fixed Cost = γV + γP, for (a) Cost = 5 and (b) Cost = 10, given ρ
= 0.5. Relative Efficiency presented is equal to (variance at γV = γP = Cost/2)/(variance at
various γV and γP = Cost − γV).
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Figure 3.
Efficiency of estimators for various designs as γV varies from 1 to Cost−1 relative to the
design with γV = γP, given fixed Cost = γV + γP = 5 for different linear correlations ρ, for
estimating (a) VE{S(1)} and (b) VENew(Δ). Relative Efficiency presented is equal to
(variance at γV = γP = Cost/2)/(variance at various γV and γP = Cost − γV ).
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