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Abstract

This contribution presents a decentralized architecture
for a Grid-wide fairshare scheduling system and demon-
strates its potential in a simulated environment. The sys-
tem, which preserves local site autonomy, enforces locally
and globally scoped share policies, allowing local resource
capacity as well as global Grid capacity to be logically di-
vided across different groups of users. The policy model is
hierarchical and subpolicy definition can be delegated so
that, e.g., a VO that has been granted a resource share can
partition its share across its projects, which in turn can di-
vide their shares between project members.

There is no need for a central coordinator as policies are
enforced collectively by the resource schedulers. Each local
scheduler adopts a Grid-wide view on utilization in order to
steer local resource utilization to not only maintain local re-
source shares but also to contribute to maintaining global
shares across the entire set of Grid resources. Share en-
forcement is addressed by an algorithm that calculates sim-
ple priority values, thus simplifying integration with local
schedulers, which can remain unaware of the hierarchical
share policy structure.

1. Introduction

In order to achieve fairness among Virtual Organiza-
tion (VO) [6] members and efficient use of provisioned re-
sources, it is important to be able to coordinate the utiliza-
tion of aggregate Grid capacity so that each user group re-
ceives its expected Quality of Service (QoS) level.

We propose a decentralized system that enforces fair-
share policies on a Grid-wide scale, without sacrificing the
autonomy of participating sites, whose administrators retain
ultimate control over their resources. The proposed system
allows VO allocation authorities to declare share policies
dividing the aggregate VO capacity between its members.

These share policies are then collectively enforced by the
VO resources to achieve fairness on a global scale.

The share policy model is hierarchical in that shares
can be recursively subdivided to form a tree of shares
and subshares. A policy may contain remote policy refer-
ences, which allows “mounting” of remote policy subtrees,
thereby enabling resource owners to delegate subpolicy def-
inition to different allocation authorities. This mechanism
also provides VO authorities with a means to distribute VO
policies and hence coordinate VO resources to enforce the
same subpolicy across the entire VO.

Typically, a resource owner divides the local resource
capacity between local users and different VOs, granting
each a resource share. This “resource slicing” essentially
results in smaller (virtual) resources being reserved to dif-
ferent user groups. Further partitioning of a VO share is
accomplished by referencing a remote VO subpolicy, estab-
lishing how aggregate VO capacity should be divided across
VO projects and users. This globally scoped VO policy is
then enforced jointly by all VO resources to achieve VO-
wide fairness.

We employ an enforcement mechanism that we refer
to as decentralized Grid-wide fairshare scheduling, where
local resource schedulers collectively enforce hierarchical
share policies by scheduling with a Grid-wide view on uti-
lization in order to steer local resource utilization to not
only maintain local resource shares but also to contribute
to maintaining global shares across the VO’s entire set of
Grid resources.

Our framework constitutes a tool that gives both resource
owners and allocation authorities fine-grained control over
their sharing arrangements. We believe that this approach
captures the essence of Grid computing – global resource
sharing that is subject to local resource policies governing
what resources are shared, between what parties resources
are shared and to what extent resources are shared [6].

The rest of the paper is organized as follows: Section 2
describes how fairshare scheduling can be carried out on a
Grid-wide scale. Section 3 presents a system framework
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that enforces the share policies through a simple priority
calculation algorithm, outlined in Section 4. Simulation
results are presented in Section 5 and Section 6 describes
some related work. Finally, Section 7 concludes the paper.

2. Grid-wide fairshare scheduling

The fairshare scheduling [9] technique logically divides
the computing capacity of a resource among its users, grant-
ing each user a target share representing the portion of deliv-
ered resource utilization that the user is entitled to. Schedul-
ing is then performed by adjusting job priorities according
to job owners’ historical resource usage, in order to steer
resource utilization towards the target shares. Typically, the
target shares are specified in fairshare policies by the local
resource administrator. The scheduler takes the target share
and the historical usage of the job submitter into account
when calculating job priorities.

We extend on the fairshare scheduling technique and ap-
ply it on a Grid-wide scale. Conceptually, such an extension
is quite natural since users tend to view a Grid as a single,
although distributed, computing resource and usage is of-
ten accounted for on the Grid as a whole. Our extension
adopts a hierarchical view on fairshare policies, effectively
enabling both local and global capacity to be subdivided
across an arbitrary number of policy levels. Hence, our
technique provides local resource administrators as well as
VO allocation authorities with greater control over resource
utilization, allowing them to make strong claims regarding
the QoS-level each group of users can expect.

Share policies can be applied with different scope:

• local policy shares only apply to local resource capac-
ity. Such policies are stipulated by the resource owner
and enforcement of these policies is carried out by the
resource itself to achieve local fairness.

• global policy shares apply to the entire Grid/VO ca-
pacity. Such policies are typically provided by higher-
level authorities (e.g., VO allocation authorities). The
resource schedulers enforce these policies in a col-
lective effort where each local resource schedules to
achieve global fairness using global usage data.

Hence, global policy enforcement is carried out in a de-
centralized manner, without the need for a central coordina-
tor.

Share policies are hierarchically structured into a share
tree where shares may be recursively subdivided into a
number of sub-shares, each granted a portion of the par-
ent share. A policy may also reference remote subpolicies,
which leads to a delegation-based policy definition model
where resource owners typically define a VO share that ref-
erences/mounts the policy subtree of the VO allocation au-

thority. The VO authority could in turn delegate the defini-
tion of each project policy, further dividing the project share
among its members, to the project’s Principal Investigator.

As an example, consider a resource owner that defines a
share policy as follows:

• VO-A is granted a 50% share of the local resource ca-
pacity. This policy entry references a global subpolicy
provided by VO-A’s allocation authority, which fur-
ther divides the VO-A share so that each of VO-A’s
four projects P-A1, P-A2, P-A3, and P-A4 is granted
a quarter of VO-A’s share. The P-A1 project share
is then split equally between project members U-A11
and U-A12.

• A 25% share of the resource is allocated to VO-B. The
remote subpolicy of VO-B, which is mounted at this
policy entry, further divides the VO-B share between
three projects in a 60:30:10 ratio.

• 25% of the resource capacity is allocated to local (non-
Grid) projects. Unlike the global subpolicies of VO-
A and VO-B, which apply to the capacity of all VO-
provisioned resources, the local projects are only allo-
cated a share of this particular resource.

The resulting policy is illustrated in Figure 1, which
shows how the local resource capacity is divided between
VO-A, VO-B and the local projects. It also demonstrates
how the VO-A and VO-B shares reference global subpoli-
cies, that apply to the aggregate capacity of all VO re-
sources.

Local (resource) share

Remote global (Grid) share

Resource

VO-A

P-A2P-A1

VO-B

U-A11

P-A3 P-B1 P-B2

U-A12

50%

25%50%

P-A4

Local

25%

25% 25% 25% 25%

50%

P-B3

10%30%60%

Figure 1. A local policy that references global
subpolicies for two VOs.

In order to enforce this policy, the local resource sched-
uler strives to steer local resource utilization to:

• Maintain the local shares allocated to VO-A, VO-B,
and local projects on this resource.

• Contribute to maintaining the Grid-wide shares allo-
cated to the VO-A and VO-B sub-projects across the
entire set of resources available to VO-A and VO-B,
respectively.
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Notably, share policies can be applied at different lev-
els of granularity. In this example, user-level shares are
only enforced within project P-A1 and there is no fairshare
scheduling between local resource projects even though
they, as a group, will be scheduled towards 25% of the local
resource capacity.

In summary, local as well as aggregate Grid capacity
is partitioned across groups of users by declaring locally
and/or globally scoped share policies that are collectively
enforced by the resources, which schedule with a Grid-wide
view on utilization. The importance of Grid-wide usage
data must be emphasized. Scheduling based on local us-
age data alone often fails to achieve global fairness. This
is the case, e.g., when a user’s workload is not evenly dis-
tributed across the Grid resources, as will be shown in the
simulations.

3. System design

The share policy represents the ideal utilization of local
and Grid-wide resource capacity. It defines target shares
that the scheduling framework strives to maintain.

The hierarchical policy model is extensible, allowing an
arbitrary number of policy levels as well as inclusion of new
entity types. The root entry represents the total resource ca-
pacity, with an implicit 100% share. Each child entry repre-
sents the share allotted to a particular user group, specified
as a percentage of the parent share. An entry contains the
entity name (e.g. VO-A), type (e.g. VO), target share (e.g.
50%), usage data source, and a set of child policy entries.

The scope of a policy share is determined by its usage
data source, which points to utilization data that the sched-
uler uses to determine the target share deviation of the en-
try. For global policies, the usage data source will refer to
a service publishing Grid-wide utilization data, such as the
logging service of the SweGrid Accounting System (SGAS)
[14], whereas the usage data source of a local policy typi-
cally refers to a local usage database. The resource admin-
istrator may configure a protocol-specific collector for each
type of usage data source. Note that the utilization met-
ric does not need to be based on pure CPU-time but could,
e.g, also account for the performance differences of differ-
ent Grid resources.

Figure 2 shows the policy illustrated in Figure 1. Note,
in particular, that the actual utilization corresponding to lo-
cally scoped policy entries will be determined from a local
database, whereas the usage pertaining to VO policy entries
is retrieved from global usage data services. Global subpoli-
cies, such as those for VO-A and VO-B, are mounted in the
local policy by specifying the addresses of policy provider
services. The resource owner can configure policy fetchers
that periodically follow policy references and incorporate
them in the runtime policy.

<policy-entry type="resource" name="Cluster">
  <usage-source at="jdbc:mysql://localhost/usage"/>
  <child-entries> 
    <policy-entry type="VO" name="VO-A" share="50">
      <policy-reference>
        <at>http://vo-a.org/policy-provider</at>
      </policy-reference>
    </policy-entry>
    <policy-entry type="VO" name="VO-B" share="25">
      <policy-reference>
        <at>http://vo-b.org/policy-provider</at>
      </policy-reference>
    </policy-entry>
    <policy-entry type="local" name="Local" share="25"/>
  </child-entries>
</policy-entry>

<usage-source at="http://swegrid.se/vo-a/usage"/>
<child-entries>
  <policy-entry type="project" name="P-A1" share="25">
    <child-entries>
      <policy-entry type="user" name="U-A11" share="50"/>
      <policy-entry type="user" name="U-A12" share="50"/>
    </child-entries>
  </policy-entry>
  <policy-entry type="project" name="P-A2" share="25"/>
  <policy-entry type="project" name="P-A3" share="25"/>
  <policy-entry type="project" name="P-A4" share="25"/>
</child-entries>

<usage-source at="http://swegrid.se/vo-b/usage"/>
<child-entries>
  <policy-entry type="project" name="P-B1" share="60"/>
  <policy-entry type="project" name="P-B2" share="30"/>
  <policy-entry type="project" name="P-B3" share="10"/>
</child-entries>

Local resource policy

VO-A subpolicy

VO-B subpolicy

Figure 2. A resource policy that references
global subpolicies for two VOs.

3.1. Scheduler integration

Figure 3 illustrates how our Grid-wide fairshare schedul-
ing framework can be integrated with the local scheduler as
a fairshare priority factor callout.

A job that is submitted to the resource is first received by
the local workload manager, e.g., the Globus jobmanager
[5] or the NorduGrid ARC Grid Manager [11], which may
interact with an accounting system before granting the job
access. A Grid accounting system [14, 15, 4] is a good com-
plement to the soft share enforcement model of the schedul-
ing framework, as it can provide hard usage limits by en-
forcing resource quotas.

The job is then handed over to the local scheduler, which
calculates job priorities. During this process, the scheduler
makes a callout to our scheduling framework in order to
get the fairshare priority factor for the job. The Grid-wide
fairshare scheduling framework calculates a job priority by
comparing the actual usage of the submitter to the target
share specified in the policy. The relative contribution of the
fairshare factor on the overall job priority value can be con-
trolled by adjusting a fairshare factor weight in the sched-
uler configuration.
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Figure 3. Framework components (shaded).
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3.2. Framework components

The framework has four major responsibilities:

• Manage locally and globally scoped share policies.

• Map incoming jobs to the correct policy entry.

• Collect and manage usage histories for policy entries.

• Calculate job priorities based on target share deviation.

There are two main framework components – the policy
engine, serving as the integration point with the local sched-
uler, and the runtime policy tree, which manages the target
shares and collects usage data for policy entities.

Policy engine. The policy engine is a customizable compo-
nent that calculates a fairshare priority factor for each job
based on the target share and actual usage of the job sub-
mitter. The simple priority values produced by the policy
engine (described in Section 4) allows the framework to be
easily integrated with regular schedulers that are unaware
of the hierarchical share policy structure. The policy engine
can be replaced by custom implementations to integrate new
schedulers or to meet the specific needs of a particular re-
source owner. The behavior of the engine is configurable
and allows, like the fairshare parameters in Maui [10], the
priority calculation to be customized in terms of usage his-
tory length (number of considered time-windows), history
granularity (the duration of each window) and usage history
aging (controlling the decaying impact of old usage data).

In order to calculate a fairshare priority, the policy engine
needs information about the target share and actual usage of
the job submitter. To acquire such information, the policy
engine passes the job down the runtime policy tree, which
maps job submitter credentials to their corresponding policy
entities and gathers usage data about each entity.

Runtime policy tree. Each entity in the policy tree has a
corresponding runtime policy entry, responsible for gather-
ing historical usage data about its entity.

When a runtime policy entry receives a job, it collects
information about its usage relative to the parent, using the
usage data source of the parent. If a child entry is found that
corresponds to the job submitter, the job is passed on to that
child. The job then travels down the tree until it reaches a
leaf node or until it cannot be mapped to a child entry.

The root-to-leaf ordered sequence of policy entities that
a job passes on its way down the runtime policy tree builds
a target deviation tuple, where each tuple element holds the
difference in percentage between the target share and the
actual share (i.e., the target deviation) for the policy entity
it represents. The target deviation tuple serves as input to
the share enforcement algorithm.

4. Share enforcement algorithm

The share enforcement algorithm, which may be re-
placed by custom implementations, is used by the policy
engine to calculate a fairshare priority factor for each job.
It strives to schedule jobs for the least favored policy entry,
which can be found in a top-down policy tree traversal by
selecting the entry that is farthest from receiving its target
share at each tree level.

This procedure can be expressed in terms of the target
deviation tuple, defined previously. By keeping the target
deviation tuples of all jobs lexicographically ordered, a job
tuple belonging to the least favored policy entity is located
at the end of the list.

By adding 100 to each target deviation tuple element
(which span from -100% to +100%), the tuple elements can
be viewed as digits in a base 200 number. Hence, rather
than handling tuples we can simplify the algorithm to work
with decimal numbers by converting the base 200 number
formed by a target deviation tuple to its corresponding deci-
mal representation. This way, the underlying scheduler only
needs to deal with simple decimal priority values.

The algorithm uses the following notation:

• policy = the runtime policy tree

• deviation = the job’s target deviation tuple repre-
sented as a root-to-leaf ordered array

• deviation[i] = the target share deviation (in percent)
of the i-th tuple element

After receiving the target deviation tuple for a job, the
job priority calculation is carried out as follows1:

d := depth(policy)
deviation[i] := 0,∀i ∈ {length(deviation) + 1, . . . , d}
priority :=

∑d
i=1(deviation[i] + 100) · 200d−i

The second step of the above algorithm simply pads the
target deviation tuple to assure that all tuples contain the
same number of elements. Picking the job with the highest
priority value now corresponds to scheduling a job for the
least favored policy entity.

The described algorithm has the following properties:

• It produces a single (“flat”) priority value for each job.

• It performs top-down enforcement of policy shares.

• It isolates subgroups.

Subgroup isolation means that the target deviation of
policy entries only affects the scheduling order among jobs

1For clarity, the presented algorithm is somewhat simplified, since
multi-window usage histories need to be aggregated into a single utiliza-
tion metric.
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belonging to sibling entries in the policy tree. In our previ-
ous example, the target deviation of P-A1 only impacts the
internal ordering of VO-A jobs, whereas it does not affect
the scheduling order between VO-A and VO-B jobs.

5. Simulations

In this section we present a simulation-based evaluation
of our framework. The simulations demonstrate the poten-
tial of Grid-wide fairshare scheduling, evaluate the accuracy
of different usage history approaches and show basic prop-
erties of the hierarchical share enforcement algorithm.

5.1. Simulation setup

All simulations were carried out using GridSim [2], a
Java-based, discrete-event Grid simulation toolkit. We have
implemented the architecture outlined in Figure 3 by writ-
ing our own resource scheduler as an extension of the Al-
locPolicy GridSim class. Our simulation scheduler, which
schedules in a manner similar to Maui [8], makes a callout
to our scheduling framework policy engine for each queued
job during a scheduling iteration. The policy engine then
calculates a priority factor for the job based on the job sub-
mitter’s deviation from its target share, as outlined in Sec-
tion 4. Whenever a new job can be started, the scheduler
selects the job with highest fairshare priority.

We simulate a SweGrid-like [17] Grid environment with
six 100-CPU resources, all enforcing the same usage pol-
icy – illustrated in Figure 4. The first policy-level has lo-
cal scope, granting VO-A 30% of the resource capacity and
VO-B 70%. VO-A and VO-B both have global subpolicies
to further divide their shares among projects (P-A1, P-A2,
P-A3 and P-B1, P-B2, respectively). Project P-B1’s share
is also divided across its member users (U-B11, U-B12 and
U-B13).

Resource

VO-A

P-A2P-A1

VO-B

U-B11

P-A3 P-B1 P-B2

U-B12 U-B13

55% 30% 15%

60% 40%50% 20%30%

70%30%

Figure 4. Simulation policy target shares.

Resource schedulers always have an up-to-date view on
local usage data, whereas they maintain a locally cached
view on global usage data that is refreshed once per minute.

For the simulations, only a single usage history window is
considered.

Each project/user contend for resources with a workload
consisting of a stream of single-CPU jobs (which is the
common case in Grid environments) that require an aver-
age wallclock runtime of one hour with a uniform varia-
tion of 40%. In order to maintain contention for resources
users must always have a sufficient number of jobs eligi-
ble for scheduling. Hence, users submit a new job every
15 seconds. Each job is sent to a resource selected by a
resource broker. Unless stated otherwise, users employ a
random broker that sends jobs to each resource with equal
probability. We also show what happens when users do not
distribute their jobs evenly across the resources and when
users do not attempt to utilize their full share.

We distinguish three different approaches for the
scheduling framework to collect usage data. These are:

• Historical usage – only accounts for completed jobs.

• Active usage – includes both completed jobs and the
elapsed time of currently running jobs.

• Predictive usage – includes completed jobs and the re-
quested wallclock time for each currently running job.

All jobs are submitted with a requested wallclock time that
is uniformly overestimated by 20%–40%, as is commonly
the case according to [8]. For enforcing local policies, re-
sources always consider local, active usage. For global pol-
icy enforcement, using global usage data, we evaluate the
other approaches as well.

The effectiveness of the framework can be evaluated by
comparing each entity’s actual utilization share to its tar-
get share (shown in Figure 4). The actual utilization share,
which we refer to as aggregated utilization, is the total,
Grid-wide, utilization delivered to an entity since simula-
tion start, represented as a percentage of the parent entity’s
utilization share.

5.2. Simulation results

Grid-wide fairshare scheduling correctness. Figure 5
shows the aggregated utilization of both VOs over time.
This first level of the policy (local VO-A and VO-B shares
of each resource) is only enforced using local usage data,
and it shows close to identical numbers in all our simula-
tions.

If we turn to global policies, Figure 6 shows how the
Grid capacity utilized by VO-A is divided between VO-A
projects over time, when resources schedule based on his-
torical usage data. In Figure 7, we can see how VO-B uti-
lization is spread over its sub-projects and, finally, Figure
8 illustrates how project P-B1’s share is divided among its
users.
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Figure 5. VO-A and VO-B actual shares of to-
tal capacity.

It is clear from the figures, when comparing the actual
utilization shares to those of the target policy (Figure 4), that
the actual shares converge to the target shares at all policy
levels in the long term. The actual utilization shares of the
user groups fluctuate as the resources compensate lagging
job submitters in an attempt to maintain the global shares.
The target shares of deep-lying policy entries (e.g., P-B1’s
user shares) represent smaller absolute shares. This causes
target share convergence to be slower for such entries since
jobs belonging to these policy entries are scheduled less fre-
quently and their target deviation is hence compensated for
at a lower pace.

Comparing usage data approaches. The utilization of P-
B1 during a similar scenario as in Figure 8, but this time
scheduling based on active and predictive usage data can
be seen in Figure 9 and Figure 10, respectively. In sum-
mary, the predictive usage data approach, which converges
very quickly towards the target shares, produces the best
scheduling accuracy.

Compared to active and predictive usage data schedul-
ing, historical scheduling shows rather slow convergence to-
wards the target shares. In particular, numbers tend to fluc-
tuate a lot. This is an effect of overcompensation. What typ-
ically happens is that several new jobs are scheduled within
a short period of time, which may cause too many jobs to
be started for the least favored project. The active usage
approach, and in particular the predictive usage approach,
mitigate the overcompensation effect as they also account
for the current and the (predicted) future usage of recently
started jobs, respectively.

In summary, not limiting the view on utilization to his-
torical data about completed jobs, but also taking the active
usage of running jobs into account or even trying to predict
the future usage of running jobs, can result in a significant
improvement of the scheduling accuracy. Simulations show
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Figure 6. VO-A project shares considering
historical usage data.
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historical usage data.
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Figure 8. Project P-B1 user shares consider-
ing historical usage data.
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that the predictive usage data approach performs well even
when usage data is refreshed less frequently (e.g., every
5 minutes). To allow more than historical scheduling, in-
formation about active jobs, including their requested wall-
clock times, and submitter credentials need to be published
by the resources.

Fluctuations tend to be quite large early on in most sim-
ulations. One reason for this is that early jobs give a greater
relative contribution to the total utilization. Another reason
is the first-come-first-served treatment of arriving jobs on
empty machines. Until the resource job queues fill up, all
jobs will be started immediately as there is no contention
for resources. Hence, projects with a small target share may
receive a disproportionately large fraction of resources in
the beginning of a simulation.
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Figure 9. Project P-B1 user shares consider-
ing active usage data.
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Figure 10. Project P-B1 user shares consid-
ering predictive usage data.

Imbalanced workloads. We will now consider a scenario
in which project P-A2 and P-A3 only submit jobs to three of
the six available resources. Such scenarios could, e.g., arise
in situations where a user has very specific memory require-
ments that are only satisfied by a subset of resources. Of
course, P-A2 and P-A3 will only reach half of their shares
using the local usage data approach. This fact is illustrated
in Figure 11, which is included for the sake of completeness
and comparison. Notably, P-A1 is here given the shares
not utilized by P-A2 and P-A3, as the schedulers strive to
maintain the share allocated to VO-A. This is an effect of
subgroup isolation and is further discussed below.

However, the workload imbalance is compensated for
when we take global usage data into account. With a global
view on utilization, the restricted entities are still able to
reach their target shares, as illustrated in Figure 12. Here, it
is obvious that P-A2 and P-A3 obtain their allotted 30% and
20 % shares, despite the fact that they are only submitting
jobs to half of the available resources.
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Figure 11. VO-A shares with local usage data
and imbalanced P-A2 and P-A3 workloads.
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Figure 12. VO-A shares with global usage
data and imbalanced P-A2 and P-A3 work-
loads.
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To summarize, local scheduling (with local usage data
only) does not cope well with imbalanced job distribution.
If an entity only submits jobs to a fraction of the resources
it will receive no more than that fraction of its share. Hence,
local fairshare scheduling (only using local usage data) by
itself does not achieve global fairness. By taking global
resource utilization into account, the scheduling framework
can compensate for job distribution imbalance.

Subgroup isolation. The algorithm presented in Section
4 performs subgroup isolation in the sense that policy sub-
trees are protected from each other. This means that the
share of an idle entity becomes available to its active sib-
lings. Other entities in the policy tree will not be affected.

Figure 13 shows how U-B12 runs out of work early in
the simulation, causing its share to be evenly divided among
its two active siblings, U-B11 and U-B13. By looking at
the diagram it is clear that U-B12’s share (30%) has been
evenly divided across its two siblings, each given an addi-
tional 15% of the project share. As illustrated in Figure 14,
P-B1 still receives its allotted share of Grid resources, de-
spite U-B12’s lack of activity. Note that these simulations
make use of predictive usage data in order to make effects
more easily observable, which also explains why the curves
are smoother than in Figure 7.

6. Related work

Early work on fairshare scheduling was presented in [9],
which mainly investigates fairshare scheduling in a single-
CPU mainframe environment. It also introduces the notion
of hierarchical shares.

Maui [10] is a policy-driven scheduler that determines
when and where submitted jobs should be run on a com-
puter cluster. Maui, which interfaces with several common
resource managers, e.g. the Portable Batch System [12], can
be customized along several policy dimensions to fine-tune
its scheduling behavior. Different scheduling policies (such
as fairshare, queue time and QoS-levels) are represented by
priority factors and each factor is assigned a weight to con-
trol its impact on overall scheduling. Based on these factors
and weights, the priority value for each job is calculated as
a weighted sum. Maui performs fairshare scheduling, but it
does not schedule to achieve global fairness and it is limited
to single-level policies.

Sun Grid Engine (SGE) [16] is a resource manager that
coordinates access to computers within an enterprise (re-
ferred to as a Campus Grid). Just like our framework, SGE
enforces hierarchical share tree policies, but does this on a
single-site basis, whereas our policies are Grid/VO-wide.

Grid accounting systems, such as SGAS [14], DGAS
[7], Gold [13], and GridBank [1], provide a coarse-grained
mechanism for achieving utilization fairness among Grid

participants. Typically, each project is assigned a Grid-wide
CPU-time allocation. Projects pay for their resource con-
sumption with their allocations and may be denied resource
access when their allocations have been spent. Our ap-
proach represents a softer mechanism that steers utilization
towards pre-determined shares by means of adjusting job
priorities, while the quota enforcement model of accounting
systems can provide hard usage limits. These two mech-
anisms are, however, not mutually exclusive – they could
be combined, as mentioned in Section 3. Furthermore, for
purposes of maintaining an audit trail, most accounting sys-
tems provide some resource usage logging service, which
constitutes a natural usage data source for our scheduling
framework.
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Figure 13. P-B1 user utilization when U-B12
is idle.
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Figure 14. Total VO-B project utilization when
U-B12 is idle.

CPU sharing in Grid environments is also addressed by
[3] but they attack the problem using a slightly different ap-
proach. In essence, a two-level policy is established that is
enforced in two stages. Resource owners grant shares of
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local resources to VOs using local policies. In global poli-
cies, VOs can divide the aggregated VO resources among
projects (groups) within the VO. These two-level policies
are then enforced in two steps. First, job submissions are in-
tercepted by a central VO policy enforcement point (PEP).
The VO-PEP acts as a global scheduler that determines
what job to run, when to run it, and what site to submit it to.
The VO-PEP strives to achieve fairness among VO projects.
The site then schedules jobs locally to achieve fairness be-
tween VOs. Our approaches mainly differ in that they en-
force flat policies in a hierarchy of enforcement points (VO-
PEPs and resources), whereas we enforce hierarchical poli-
cies in a flat enforcement structure (resources).

7 Conclusion and future work

We have presented a framework that performs fairshare
scheduling on a Grid-wide scale and demonstrated its po-
tential through simulations. The contribution of our pro-
posed scheduling framework is fourfold:

(i) It enforces long-term shares of total Grid/VO capacity.

(ii) It enforces policies in a decentralized manner.

(iii) It manages and enforces hierarchical shares.

(iv) It includes a top-down policy enforcement algorithm
that calculates simple priority values, allowing the
framework to be plugged into regular “flat” schedulers.

Through simulations we were able to establish the fol-
lowing properties of our Grid-wide fairshare scheduling
framework:

• Given sufficient user workload, Grid-wide fairshare
scheduling delivers target shares in the long term.

• Scheduling with a Grid-wide view on usage data de-
livers target shares even if some users only utilize a
subset of available resources.

• Not only using historical data of completed jobs, but
also accounting for the usage of active jobs and/or
trying to predict future usage drastically improves
scheduling accuracy.

• The share enforcement algorithm performs subgroup
isolation, so that the remaining part of an underutilized
share is evenly divided among sibling policy entries.

As part of our future work we intend to implement a
prototype of our Grid-wide fairshare scheduling framework
that we will integrate with the Maui scheduler as a fairshare
priority factor callout, as suggested in Figure 3. This would
allow us to evaluate our framework in a more realistic envi-
ronment, also taking the effects of other priority factors into
account.
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We are grateful to Åke Sandgren for technical support re-
garding the Maui scheduler and to Mats Nylén for sharing
his experiences on fairshare (and non-fairshare) schedulers
in traditional supercomputer systems. We also thank Jo-
han Tordsson for fruitful discussions. Financial support has
been received from the Swedish Research Council (VR) un-
der contract 343-2003-953.

References

[1] A. Barmouta and R. Buyya. A Grid Accounting Services
Architecture (GASA) for distributed systems sharing and in-
tegration. In IPDPS’03, France, 2003.

[2] R. Buyya and M. Murshed. GridSim: A Toolkit for the Mod-
eling and Simulation of Distributed Resource Management
and Scheduling for Grid Computing. ArXiv Computer Sci-
ence e-prints, pages 3019–+, Mar. 2002.

[3] C. Dumitrescu and I. Foster. Usage policy-based cpu sharing
in virtual organizations. In GRID ’04, pages 53–60, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[4] E. Elmroth, P. Gardfjäll, O. Mulmo, and T. Sandholm. An
OGSA-based bank service for Grid accounting systems.
In State-of-the-art in Scientific Computing, Lecture Notes
in Computer Science, 10 pages, Berlin, 2005 (accepted).
Springer-Verlag.

[5] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Int. J. Supercomput. Appl., 11(2):115–
128, 1997.

[6] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Inter-
national Journal of High Performance Computing Applica-
tions, 15(3):200 – 222, 2001.

[7] Guarise, A. and Piro, R. and Werbrouck, A. DataGrid Ac-
counting System - Architecture - v1.0. EU DataGrid, 2003.

[8] D. B. Jackson, Q. Snell, and M. J. Clement. Core Algorithms
of the Maui Scheduler. In JSSPP ’01: Revised Papers from
the 7th International Workshop on Job Scheduling Strategies
for Parallel Processing, pages 87–102, London, UK, 2001.
Springer-Verlag.

[9] J. Kay and P. Lauder. A fair share scheduler. Commun. ACM,
31(1):44–55, 1988.

[10] Maui Cluster Scheduler, April 2005.
http://www.clusterresources.com/products/maui/.

[11] NorduGrid. http://www.nordugrid.org, April 2005.
[12] OpenPBS, April 2005. http://www.openpbs.org/.
[13] S. Jackson. The Gold Accounting and Allocation Manager,

2005. http://sss.scl.ameslab.gov/gold.shtml.
[14] T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and

O. Mulmo. An OGSA-based accounting system for alloca-
tion enforcement across HPC centers. In ICSOC’04, pages
279–288, USA, 2004. ACM.

[15] SGAS Project Page, April 2005. http://www.sgas.se.
[16] Sun Microsystems. Grid Engine Project Home, April 2005.

http://gridengine.sunsource.net/.
[17] SweGrid, April 2005. http://www.swegrid.se.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05) 
0-7695-2448-6/05 $20.00 © 2005 IEEE 


