
I. Crnkovic, V. Gruhn, and M. Book (Eds.): ECSA 2011, LNCS 6903, pp. 147–163, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design and Evaluation of a Process for Identifying
Architecture Patterns in Open Source Software

Klaas-Jan Stol1, Paris Avgeriou2, and Muhammad Ali Babar3

1 Lero—The Irish Software Engineering Research Centre, University of Limerick, Ireland
2 University of Groningen, The Netherlands

3 IT University of Copenhagen, Denmark
klaas-jan.stol@lero.ie, paris@cs.rug.nl, malibaba@itu.dk

Abstract. Architecture patterns have a direct effect (positive or negative) on a
system’s quality attributes (e.g., performance). Therefore, information about
patterns used in a product can provide valuable insights to, e.g., component in-
tegrators who wish to evaluate a software product. Unfortunately, this informa-
tion is often not readily available, in particular for Open Source Software (OSS)
products, which are increasingly used in component-based development. This
paper presents the design and evaluation of a process for Identifying Architec-
ture Patterns in OSS (“IDAPO”). The results of the evaluation suggest that
IDAPO is helpful to identify potentially present patterns, and that a process
framework may provide better opportunities for tailoring to the users’ needs.

Keywords: architecture patterns, quality attributes, open source software,
empirical evaluation, quasi-experiment.

1 Introduction

Architecture patterns (e.g., layers, model-view-controller) are generalized solutions to
recurring system-wide design problems, which describe the main roles of system parti-
tions and their interactions. It is widely recognized that architecture patterns have a
direct effect on a system’s quality attributes (QAs), such as performance and reliability
[1]. Integrating components into a system whose overall QAs are incompatible with
the component’s QAs will hinder the achievement of a system’s quality requirements.
Since architecture patterns are documented solutions with known properties [2], know-
ledge of architecture patterns used in a software component can provide valuable
insights to component integrators about which QAs are supported, and which are hin-
dered. Previously, the use of architecture patterns has been shown to be an effective
and lightweight complementary approach to traditional architecture review methods
(e.g., ATAM [3]) to perform architecture reviews [4].

Unfortunately, this information about architecture patterns used in a component is
often not readily available, in particular for Open Source Software (OSS) products.
OSS products are increasingly used in industry [5], but the quality of products varies
widely. Therefore, it is important that OSS integrators [6] thoroughly evaluate an OSS
product before it is integrated into a system [7]. Documentation of OSS products often

148 K. Stol, P. Avgeriou, and M. Ali Babar

lacks information about their design (including patterns that are used) [8]. The
literature provides little guidance to practitioners who would wish to identify architec-
ture patterns. Existing tools for pattern identification are limited to (object-oriented)
design patterns, such as documented in [9]. The varying granularity of components
(e.g., a class/object as a component versus an executable as a component) makes auto-
mated identification of architecture patterns inherently difficult. Reverse engineering
methods and tools may help to reverse-engineer the architecture, but do not typically
focus on identifying architecture patterns [10].

This lack of guidance on how and where to find architecture patterns in OSS prod-
ucts motivated us to investigate how this task can be supported. In our previous work
[11], we proposed a conceptual process to streamline the task of identifying architec-
ture patterns in OSS. This paper reports on two additional empirical studies that contri-
bute (a) a validation of the process steps and enhancement of our initial process, and
(b) an evaluation of the resulting process. The enhanced process was named IDAPO
(IDentifying Architecture Patterns in OSS, pronounced as “Idaho”).

This paper proceeds as follows. We present background and motivation in Section
2. Section 3 presents the design history as well as validation and enhancement of IDA-
PO. Section 4 presents the design and results of a quasi-experiment to evaluate the
usefulness of IDAPO. We discuss the findings of the experiment in Section 5. Section
6 concludes and provides an outlook to future work.

2 Background and Motivation

Software Architecture, Patterns and Quality Attributes. Software architecture has
been shown to be an important artifact in the software development process [1]. It
constitutes a set of architectural design decisions, such as the use of an architecture
style or pattern. Most software architectures apply one or more architecture patterns
[12]. For instance, architects speak of a ‘layered system’, or a ‘model-view-controller’
architecture. Architecture patterns have a documented effect (positive or negative) on a
system’s quality attributes (QAs) (e.g., performance, reliability) [1, 2, 13]. For in-
stance, a system with layers is likely to be modifiable, as it facilitates a clear separation
of concerns. However, passing large numbers of messages up and down the layer
‘stack’ may cause performance issues [13]. Therefore, one effective way to select OSS
products that support the achievement of the system’s QAs is to acquire sufficient
information of architecture patterns used in those products. Once this information is
available, OSS integrators can use the rich information in the pattern documentation (in
pattern languages such as [2]) about the potential impact of the pattern’s solution on
the system QAs [4].

Use and Evaluation of OSS. Over the last decade, an increasing number of software
developing organizations is integrating OSS products in component-based devel-
opment [5, 7]. However, selecting suitable OSS products is a key challenge [8]. To
address this, researchers and industry have proposed a variety of OSS evaluation and
selection approaches [14]. Typically, these approaches prescribe a list of criteria, such
as the level of activity of the OSS community and the number of open bugs, catego-
rized in some categories (e.g., product, community), on which an OSS product is eva-
luated. The output is a weighted average of the scores for the criteria. The goal of these

 Design and Evaluation of a Process for Identifying Architecture Patterns 149

approaches is to provide practitioners with some guidance on the process of evaluating
an OSS product. However, these approaches typically do not consider the architectural
aspects of a product to assess its impact on a system’s QAs. While the abovementioned
existing approaches may provide valuable information such as the potential support
provided by an OSS product’s community, we argue that those methods could be used
in tandem with appropriate approaches to identify and understand the architecture
patterns used, such as proposed by us. The former assess the maturity of an OSS prod-
uct, while the latter helps understand the impact on system QAs. While knowledge of
architecture patterns is equally important for closed (proprietary) software, we focus
our efforts on OSS, since it has become a viable alternative to commercial off-the-shelf
(COTS) components [15]. Furthermore, due to the closed nature of COTS components,
identifying architecture patterns is virtually impossible for such products.

Pattern Identification. A number of pattern identification techniques and tools have
been proposed [9]. However, these techniques and tools focus on the identification of
design patterns, which may not have a direct impact on the fundamental structure of a
software system [2]. Furthermore, design patterns such as those presented by the Gang of
Four [16], are object-oriented, which assumes that the software is written in an object-
oriented programming language. These techniques and tools, however, do not support
identifying architecture patterns. There are no techniques to automatically identify archi-
tecture patterns from source code, and there are a number of obstacles that prevent this.
Firstly, there are no commonly accepted formalisms for describing components and
connectors between them. Proposed formalisms such as Architecture Description Lan-
guages (ADLs) and the UML have several issues [17]: different ADLs focus on model-
ing different types of systems, and they vary greatly in their expressiveness of software
architecture concepts. These obstacles hinder the reverse engineering of source code into
a formalism that expresses patterns. The use of reverse engineering tools that could sup-
port pattern identification is associated with various challenges [11]. A second obstacle
that hinders automated pattern identification is that patterns may be implemented in ‘a
thousand different ways’ [2], and have to be implemented (and customized) according to
the specific needs at hand. Therefore, we argue that identifying architecture patterns
depends to a large extent on manual techniques. Our proposed process is designed to
support this task. In the remainder of this paper, we use the word ‘pattern’ to refer to
architecture pattern rather than design pattern.

3 Design of the Process

3.1 Design History of IDAPO

We are investigating how practitioners can be guided in the task of identifying archi-
tecture patterns. Fig. 1 shows the three empirical studies we have conducted so far.

Fig. 1. Overview of research activities and research output. Ovals represent research activities;
rectangles represent research outputs.

Initial
process

Enhanced
process

(“IDAPO”)

Identification of
approaches and

challenges

Validation of steps and
process enhancement

Evaluation of
usefulness of process

Presented in EASE 2010 Presented in this paper

Results of
experiment

150 K. Stol, P. Avgeriou, and M. Ali Babar

Previously, we have reported an initial study in which we identified approaches and
challenges of 23 master’s students that had performed a pattern-identification task in
the context of master’s courses on Software Architecture and Software Patterns [11].
Based on these findings, we suggested a systematic approach to identify patterns, and
presented an initial process definition to support practitioners in this task. As shown in
Fig. 1, the current paper reports two additional empirical studies that we conducted.
The first (presented in Section 3.2) aimed at validating the process steps and enhancing
the process; the second (presented in Section 4) aimed at empirically evaluating the
usefulness of our enhanced process (IDAPO) through a quasi-experiment.

3.2 Process Steps Validation and Process Enhancement

In [11] we presented an initial version of a process to support the task of identifying
architecture patterns in OSS. In order to validate the different steps of the initial
process and enhance the process, we invited all 12 enrolled students who had per-
formed a pattern identification assignment in the context of a master’s course on Soft-
ware Patterns (at the University of Groningen) for a semi-structured interview. Ten
students chose to participate. We did not show the participants our initial process in
order to prevent getting only confirmatory answers. Instead, we asked the students
about the steps taken, their usefulness, what information they had been looking for,
obstacles they had encountered, and their “lessons learned”, i.e., what steps they would
and would not take again.

We digitally recorded the interviews with the participants’ consent. Dutch students
were interviewed in their native language. The other students were interviewed in
English. The interviews lasted 60 minutes on average. All interviews were transcribed
verbatim by the interviewer. The Dutch transcriptions were translated into English to
allow the other researchers to participate in the data analysis. The data were analyzed
using qualitative data analysis techniques [18]. We systematically extracted informa-
tion about the steps that the students had taken and recorded them in a spreadsheet. We
compared the steps to the activities of our initial process presented in [11]. We focused
primarily on the steps that students had considered to be useful; for instance, many
students considered the use of reverse engineering tools to be a waste of time.

We found that the steps taken by the students mostly corroborated the activities of
our initial process. We also found reason to make a number of changes based on new
insights gathered from the 10 interviews. While Fig. 2 presents the enhanced process in
more detail, in this section we briefly summarize the changes made. We realized that
an incremental accumulation of information, such as type and domain of the product as
well as implementation technologies used, could be a useful way to identify potentially
used patterns, which we refer to as candidate patterns. Therefore, we swapped the
order of steps (4, 5) with steps (2, 3) in the initial version presented in [11]. A second
change we made was to enrich the process with a data flow between the steps, which
describes the different pieces of information that can be gathered as a user follows the
steps as well as which steps use this information. Thirdly, we used the Business
Process Modeling Language (BPMN) to define the process to replace the UML activity
diagram notation we used before. This allowed us to more clearly express the different
steps of the process. Section 3.3 presents the enhanced process that we named IDAPO.

 Design and Evaluation of a Process for Identifying Architecture Patterns 151

3.3 IDAPO: A Process for Identifying Architecture Patterns in OSS

A key feature of IDAPO is the idea of incremental accumulation of information. In each
step, information regarding the use of patterns in a product is acquired. By systematically
recording information about the product’s characteristics, a practitioner is encouraged to
make details of the product under investigation explicit, which helps the practitioner’s
analytical thought process. To formalize this idea in IDAPO, we added a ‘data flow’ to
the process, to suggest what information is generated and needed for each step. The re-
sulting definition of IDAPO is shown in Fig. 2 in BPMN. In BPMN, rounded rectangles
represent activities; normal lines represent control flow (sequence of steps), whereas
dotted lines represented data flow (which indicate input and output to the various activi-
ties). The OSS community is represented by a separate pool. In BPMN, a pool represents
an organization and is used to border process participants (the default pool is implicit).
For more details of BPMN, see [19]. The remainder of this section describes the process
steps in more detail; step numbers are enclosed in parentheses.

Fig. 2. IDAPO: a process for identifying architecture patterns in OSS

The first step is to (1) identify the type of software and its domain. Knowledge of
the type and domain of the software may provide hints about the use of certain pat-
terns. For instance, an instant messenger product is likely to use the client-server pat-
tern. Step two is to (2) identify technologies used for implementation. If, for instance,
CORBA (Common Object Request Broker Architecture) was used, it may be useful to
look for the broker pattern. If the process user has insufficient knowledge of technolo-
gies, it is advisable to (3) study those technologies, which may help in understanding
how the system under scrutiny was implemented. Based on the information gathered in
previous steps, (4) candidate patterns may be identified (i.e., potentially present
patterns) and listed. After identifying candidate patterns, (5) the patterns literature
(e.g. [2]) can be studied to learn more details about those patterns, which will help in
recognizing and asserting that the patterns are, in fact, present. The next step is to (6)
study project documentation, from which insights into the system’s architecture,

1. Identify
type and
domain

4. Identify
candidate
patterns

5. Read
patterns
literature

2. Identify
used

technologies

3. Study
used

technologies

6. Study
documentation

8. Study
components
& connectors

11. Get feedback
from community

9. Identify
patterns and

variants

12. Register
pattern
usage

10. Validate
identified
patterns

Community

Patterns
repository

Patterns literature
Identified
patterns

Yes

Used
technologies

Yes

No

No

Components
& connectors

Source code

Documentation

Type and
domain info

Candidate patterns

Sufficient
insight

into C&C?

Sufficient knowledge
of technologies?

No

No response/
time outYes

Feedback

Validated
patterns

Does community
agree?

List of patterns
and participants

List of main components

7. Study
source code

Exception:
Insufficient
Docum’ion
available

152 K. Stol, P. Avgeriou, and M. Ali Babar

components and connectors may be gathered (note that the documentation could also
be consulted in previous steps). After identifying candidate patterns and studying
project documentation, the next step is to (7) study the source code and crosscheck
with the findings of the documentation. It is important to gain insight into the various
(8) components and connectors in the system under investigation, since this will help
to identify which patterns have been used in the system. Once sufficient information is
gathered through studying documentation, source code and components and connec-
tors, the actual (9) pattern matching and identification activity starts. This involves
comparing the structure and behavior of the pattern to the product’s structure. After
identification, it is important to (10) validate the identified patterns to make sure
they have been correctly identified. One way to do this is through peer-review by oth-
ers (e.g., colleagues). Findings may also be presented to the community for feedback.
While the (11) community may be contacted earlier to ask for information, our expe-
rience has shown that providing some input is more likely to result in a reply. Once
identified patterns have been confirmed, the (12) patterns should be registered in a
patterns repository for later use by others. A few researchers have proposed such repo-
sitories for patterns [20] or architectures in general [21]. Over time, the patterns reposi-
tory will be populated with information of many systems, which we envisage to be a
valuable tool for others in understanding the architecture of OSS products.

4 Evaluation of the Process: A Quasi-Experiment

Following the call by Falessi et al. [22] to perform empirical evaluation of new tech-
niques to improve the state of practice in software architecture, we decided to empiri-
cally evaluate the usefulness of IDAPO by means of an experiment [23]. We measure
usefulness in terms of the number of patterns that are identified. This section is
structured following the reporting guidelines for experiments in [24].

4.1 Experiment Goals and Hypotheses

We defined three goals for this experiment. Firstly, we are interested in whether using
IDAPO helps to identify more patterns. We argue that the task of correctly identifying
architecture patterns depends on practitioners’ expertise and experience; if IDAPO
results in more identified patterns, this expertise is important to assess their correct-
ness. However, not all practitioners have extensive expertise to draw from. In order to
be able to more precisely evaluate the usefulness of IDAPO, our second goal was to
measure the output in terms of two standard measures: precision and recall [25].
Thirdly, we wanted to investigate to what extent IDAPO supports the identification of
candidate patterns based on information gathered in the first three steps. To investigate
these goals, we defined six hypotheses, which we discuss next.

To address the first goal, we decided to simply count the number of identified pat-
terns, disregarding whether the patterns are correct or not. IDAPO describes the steps
to take, and the information required to identify patterns. Hence the first hypothesis:

H01: Using IDAPO does not change the number of identified patterns.
For all hypotheses, we imply a comparison to the number of patterns identified

when not using IDAPO.

 Design and Evaluation of a Process for Identifying Architecture Patterns 153

Besides looking at the number of identified patterns tested in H01, it is also useful to
use standard measures based on a confusion matrix, namely precision and recall [25].
Precision is defined as the fraction of patterns correctly identified of the total number
of identified patterns, i.e., true positives ÷ (true positives + false positives). Recall is
defined as the fraction of correctly identified patterns of the total number of correct
patterns present, i.e., true positives ÷ (true positives + false negatives). Hence, we
defined hypotheses H02 and H03.

H02: Using IDAPO does not change the precision of identified patterns
H03: Using IDAPO does not change the recall of identified patterns.
As mentioned in Section 3.2, the process emphasizes a step-wise, incremental ap-

proach to gather information in a systematic way. In particular, we are interested in the
candidate patterns based on the first few steps of the process. In order to test this idea,
we defined hypothesis H04:

H04: Using IDAPO does not change the number of candidate patterns.
Likewise, we decided to also test precision and recall rates for the candidate

 patterns; Hence, we defined to H05 and H06:
H05: Using IDAPO does not change the precision of candidate patterns.
H06: Using IDAPO does not change the recall of candidate patterns.
For each hypothesis, we imply an alternative hypothesis Han (n=1 to 6) that states

that the use of IDAPO does result in a higher number of (candidate) patterns.

4.2 Participants and Training

We invited 24 master’s students who were enrolled in a course on Software Patterns at
the University of Groningen, to participate in our experiment. Participation was not
compulsory, but students were advised to participate, as one of the upcoming course
assignments would also be to identify patterns in an OSS product in order to perform a
pattern-based architecture review [4]; our embedded study with the students was there-
fore integrated with the course [26]. Fourteen students chose to participate. Table 1
presents demographic information of the participants.

Table 1. Participants of the experiment

Group ID Age Work experience Degrees Nationality
Control

P1 24 3½ years, developer B. (CS) Netherlands
P2 27 — B. (AIM) Greece
P3 28 ¼ year, developer B. (CS) Argentina
P4 28 — B. (BI, CS) Netherlands
P5 25 1 year, web developer B. (CS) Greece
P6 29 5 years, developer B. (CS); M. (Psy) Belgium
P7 25 — B. (BI) South Africa

Treat-
ment

P8 27 2 years, developer B. (CS) Netherlands
P9 25 1 year, web developer B. (CS) South Africa
P10 23 2 years, web developer B. (CS) Netherlands
P11 24 5 years, OSS developer B. (CS) Netherlands
P12 25 2 years, web developer B. (CS) Spain
P13 22 — — Netherlands
P14 21 — B. (CS) Netherlands

154 K. Stol, P. Avgeriou, and M. Ali Babar

Section 4.4 discusses the assignment procedure to the groups. The average age of
the control group was almost 24, whereas the average age of the treatment group was
approximately 26½. Note that work experience should be interpreted as part-time jobs.
One participant (P11) actively contributed to a small OSS project. All but one partici-
pant (P13) had finished a bachelor’s (B) degree in computer science (CS), bio-
informatics (BI) or applied informatics and multimedia (AIM). One participant (P6)
also had a master’s (M) degree in psychology (Psy). Most of them had varying levels
of expertise in different topics, as listed in Table 2, e.g., three participants assessed
themselves as having advanced knowledge of software engineering.

When we conducted the experiment, the students had attended six 2-hour lectures of
the 8-week course on Software Patterns. All students also had followed a course on
Software Architecture. The data presented in Tables 1 and 2 were gathered through a
pre-study questionnaire the day before the experiment.

Table 2. Participants’ self-assessed levels of expertise

Topic None Beginner Intermediate Advanced Expert
Software engineering 0 5 6 3 0
Software architecture 0 6 7 1 0
“Gang of Four” design patterns 3 5 5 1 0
Architectural patterns 0 10 4 0 0
Development process of OSS 5 5 4 0 0
Experience w. integrating COTS 4 3 4 2 1

4.3 Task and Materials

The task given to the participants was to identify as many architectural patterns in a
specified OSS project as possible: the JBoss application server. We selected JBoss for
three reasons. Firstly, it is an industry-strength system (no ‘toy’ project), which is
widely used in industry. Secondly, we expected that the participants would be able to
find sufficient information about this product in the limited available time, since it is
well known and extensive documentation is available. Thirdly, we already had insight
into the architectural patterns used in this product, which we would need as a marking
scheme for assessing the number of correctly identified patterns as well as the preci-
sion and recall. Participants in both groups were handed out the assignment form. The
treatment group was given two additional instruments: (1) our process as shown in Fig.
1 accompanied by a description of each step; and (2) a simple spreadsheet template to
record information found in each step. Additionally, the participants had access to the
five volumes of the Pattern-Oriented Software Architecture (POSA) series of books
(e.g., [2]), which list various software patterns.

4.4 Experiment Design

The experiment design was a between-subjects design, to compare results from a con-
trol group and a treatment group. Based on our previous experience in conducting
research with students, we expected that the participants would have varying levels of
experience and expertise. Since this would have constituted a threat to the outcome of
the experiment, we decided to non-randomly assign participants to the control and
treatment groups. Hence, this experiment was a quasi-experiment [27, 28]. Eight

 Design and Evaluation of a Process for Identifying Architecture Patterns 155

participants had indicated to have other course obligations in either the morning or
afternoon of the day of the experiment; based on this information, three participants
were assigned to the control group, and five were assigned to the treatment group.
Based on the information about work experience gathered in the pre-study question-
naire, we assigned the remaining six students, resulting in two equally sized and ap-
proximately equivalent groups (see Table 1).

The treatment, or independent variable manipulated by this study is the reference
process, with one treatment: IDAPO is provided, and one control: IDAPO is not pro-
vided. The dependent variable is the number of architecture patterns identified by the
participants using and not using the process.

4.5 Experiment Procedure

We conducted the experiment in two sessions. The control group performed the task in
the morning session, and the treatment group (provided with IDAPO) was invited for
the afternoon session. This order ensured that the control group did not see IDAPO (to
prevent the diffusion or imitation of treatment threat [29]). In both sessions, the re-
searcher gave a brief introduction (15 min) to explain the background and motivation
of identifying patterns. For the treatment group, the researcher also explained the dif-
ferent steps of IDAPO. Both groups were given two hours for this task. One participant
in the control group had to leave 30 minutes early due to other course obligations (P1).
After the two hours, participants were asked to fill out a post-study questionnaire; we
used separate post-questionnaires for the two groups, as only the treatment group could
be asked about their experiences with IDAPO.

4.6 Analysis and Results

4.6.1 Establishing a Set of Trusted Patterns
In order to be able to determine precision and recall measures, we need to compare the
findings to a certain set of “correct” patterns of which we are confident that they are
present in the product. In order to establish such a trusted subset of patterns, we used
three different sources. Firstly, we used a research report that presents an analysis of the
JBoss architecture (v.2.2.4, 2002) [30]. Secondly, we used a technical report (from 2005)
that reports on the architecture recovery of JBoss [31]. Thirdly, we used a report from a
previous group that had identified patterns in JBoss in the context of the 2009 edition of
the Software Patterns course (mentioned in [11]); one of its authors had extensive profes-
sional experience as an administrator of JBoss. Table 3 lists patterns identified
by the different sources, as well the patterns that we decided to include in the trusted
subset.

We made this selection based on the reports, which described the patterns and their
location in JBoss, as well as our level of confidence that we had in the presence of
these patterns. During our selection, we also considered that the different sources have
studied different versions of JBoss. We could not find sufficient justification to include
the Pipes-Filters and the Factory patterns. The column ‘Trusted’ indicates which pat-
terns are included in the trusted subset. We listed all patterns identified (for both con-
trol and treatment group) in a spreadsheet. In order to calculate precision and control
measures, we counted only those patterns that were listed in the trusted list (Table 3).

156 K. Stol, P. Avgeriou, and M. Ali Babar

Table 3. Derivation of a trusted subset of patterns

Pattern Liu Salehie et al. Report 2009 Trusted
Microkernel Yes Yes Yes Yes
Layers Yes Yes - Yes
Pipes & Filters Yes - - -
Broker Yes - Yes Yes
Dynamic proxy Yes - Yes Yes
Proxy Yes Yes - Yes
Interceptor Yes Yes Yes Yes
Client/server - - Yes Yes
Active repository - - Yes Yes
Factory - - Yes -

4.6.2 Descriptive Statistics
Table 4 presents the descriptive statistics of the results. We counted the number of
identified patterns of the control and treatment group as a whole. The first three col-
umns list the results when counting all patterns, disregarding their correctness; column
1 lists the total number of patterns of the control group (18); column 2 lists the total
number of candidate patterns identified by the treatment group (‘T. candid.’, 36), and
column 3 lists the total number of identified patterns (as output of step 9 in the process,
see Fig. 2) listed by the treatment group (‘T. final’, 16).

Table 4. Number of patterns per group, mean and standard deviation. Columns 1-3 consider all
patterns identified; columns 4-6 only consider the trusted patterns.

 Counting all patterns Counting trusted patterns only
(1) Contr. (2) T. candid. (3) T. final (4) Contr. (5) T. candid. (6) T. final

Total 18 36 16 10 21 10
Mean 2.6 5.1 2.3 1.4 3.0 1.4
Std. dev 2.1 2.3 2.4 0.9 1.1 1.8

Columns 4-6 show the results similarly as column 1-3, but only taking the trusted
patterns into account (resulting in 10, 21 and 10 patterns, respectively). When counting
trusted patterns only, there is no difference between the control group and the final
results of the treatment group. The treatment group as a whole identified 21 candidate
patterns, which suggests the treatment group was on the right track. Fig. 3 shows box-
plot diagrams for the results presented in columns 1-6.

Fig. 3. Distribution of numbers of identified patterns by the control group, treatment group
(candidate and final). Boxplots 1-3: counting all patterns, corresponding to columns 1-3 in
Table 9. Boxplots 4-6: trusted patterns only (corresponding to columns 4-6 in Table 4).

654321

N
u
m
b
e
r

o
f

p
a
t
t
e
r
n
s

10

8

6

4

2

0

 Design and Evaluation of a Process for Identifying Architecture Patterns 157

Table 5 presents the mean and standard deviation values of the precision and recall
rates, calculated for the control group and the treatment group. For the latter, we cal-
culated precision and recall both for the candidate results and the final results. Table 5
shows that the average precision of the control group is 0.56 with an average recall of
only 0.18. This suggests that about half of the control group’s patterns are correct, but
that (on average) less than 20% of the trusted patterns were identified. The candidate
results of the treatment group score better, with a precision of 0.62 at a recall rate of
0.37, suggesting that (on average) the treatment group identified more correct candi-
date patterns. However, when looking at the final results of the treatment group preci-
sion is only 0.30 at a recall of 0.18, worse than the control group. The relative high
values for the standard deviations of precision (0.35) and recall (0.23) for the treat-
ment group’s final results suggest a large variation among participants. We found that
three participants in the treatment group did not list any “final” patterns (as opposed
to one participant in the control group).

Table 5. Precision and recall for control, treatment candidate and treatment final results

 Control Treatment

Precision Recall
Candidate patterns Final

Precision Recall Precision Recall
Mean 0.56 0.18 0.62 0.38 0.30 0.18
Std. dev. 0.32 0.11 0.21 0.13 0.35 0.23

4.6.3 Results of Statistical Analysis
We performed statistical analyses on the number of identified patterns and the calcu-
lated precision and recall rates to test the six hypotheses. The assumptions underlying
parametric tests such as the t-test were not fulfilled [32], since the data contained out-
liers and we could not assume that the data have a normal distribution. Therefore, we
decided to use the Mann-Whitney U test, which is a non-parametric alternative to the t-
test for two independent samples [32]. Table 6 lists the p-values for each of the six
hypotheses. The columns ‘Candidate’ and ‘Trusted’ indicate whether the hypotheses
consider the candidate patterns (of the treatment group) and whether only trusted pat-
terns were counted, respectively. We reject a hypothesis if the p-value is less than the
significance level of α=0.05. We used SPSS version 18 for all statistical tests.

Table 6. Hypotheses and resulting p-values of the Mann-Whitney U test

Hyp. Variable Candidate Trusted P-value Decision
H01 Number of identified patterns No No 0.435 Retain H01
H02 Precision of identified patterns No Yes 0.324 Retain H02
H03 Recall of identified patterns No Yes 0.597 Retain H03
H04 Number of candidate patterns Yes No 0.051 Retain H04
H05 Precision of candidate patterns Yes Yes 0.555 Retain H05
H06 Recall of candidate patterns. Yes Yes 0.026 Reject H06

Table 6 shows that we could not find compelling evidence to reject hypotheses H01-
H05 (all p-values > α=0.05). In other words, there was not sufficient evidence to con-

158 K. Stol, P. Avgeriou, and M. Ali Babar

clude that using IDAPO resulted in a higher number of identified patterns (H01), a
higher precision of identified patterns (H02), a higher recall of identified patterns (H03),
a higher number of candidate patterns (H04), and a higher precision of candidate pat-
terns (H05). With respect to H04, we found that there is some evidence (p=0.051) that
using IDAPO results in a higher number of candidate patterns, but since the p-value is
smaller than our significance level (α=0.05) we do not reject H04. On the other hand,
we found evidence (p=0.026 < 0.05) to reject hypothesis H06 (‘using IDAPO does not
change the recall of candidate patterns’). Together, these results suggest that IDAPO
helps to improve the recall of candidate patterns.

4.6.4 Results of Post-study Questionnaires
The post-study questionnaire questions were rated using a five-point Likert scale, rang-
ing from Totally Disagree (TD), to Disagree (D), Neutral (N), Agree (A) and Totally
Agree (TA).

Results of Treatment Group. Table 7 presents the results for the treatment group.
Numbers indicate the number of participants that gave a certain rating, e.g., two sub-
jects answered ‘Neutral’ on question T1.

Table 7. Post-study questionnaire results for the treatment group. High scores are highlighted

ID Question TD D N A TA
T1 I followed the process step by step in the order prescribed. 1 1 2 1 2
T2 Identifying the type and domain of the software is helpful. 0 1 2 2 2
T3 Identifying the used technologies is helpful to identify patterns. 0 1 1 1 4
T4 The process helped me to identify patterns that I wouldn’t have

found otherwise.
0 4 2 1 0

T5 The suggested order of steps in the process made sense. 0 2 2 1 2
T6 Storing information per step in the spreadsheet was useful. 0 2 2 1 2

Table 7 shows that the degree to which the subjects followed IDAPO varied (T1).
This suggests that participants disliked the process rigid order of steps, and would like
to have more flexibility. The results for T2 suggest that most subjects agree that identi-
fying the type and domain of the software is helpful. The results show that identifying
used technologies (T3) was considered to be very helpful. Most participants did not
think that IDAPO helped to identify patterns that could not have been identified other-
wise (T4). Two participants were undecided, and only one participant agreed. Partici-
pants were divided on whether the order of IDAPO’s steps was sensible (T5). Also,
participants were equally divided on whether storing information per step in a spread-
sheet was useful (T6).

We also gathered results from a few open questions. Some suggestions were:

- A spreadsheet was not considered suitable to record intermediate information;
- The process should be made less sequential;
- After identifying type and domain, always read documentation to learn about

components and used technologies.

The main challenges encountered by the treatment group were:

 Design and Evaluation of a Process for Identifying Architecture Patterns 159

- To find the right documentation and information;
- Lack of time to read source code, and also to identify patterns;
- Unfamiliarity with JBoss.

Results of Control Group. Table 8 lists the questions and the scores for the control
group. The results for C1 show that most participants either disagreed or were unde-
cided on whether they knew what steps to take to identify architecture patterns. Only
one participant indicated he knew what approach to take. This confirms our assertion
that there is a need to provide some guidance in this task. The second question (C2)
was to find out whether participants found sufficient information to identify patterns.
Again, most participants indicated disagreement or neutrality. This suggests that, in
general, there is a need to identify useful sources of information.

Table 8. Post-study questionnaire results for the control group

ID Question TD D N A TA
C1 I knew what steps to take to perform the assignment. 0 2 4 1 0
C2 I found sufficient information to identify patterns. 1 2 2 2 0

We also asked the participants for suggestions for improvement as well as chal-
lenges encountered. Some suggestions included:

- Use of a debugger to trace the execution to find relations among components;
- Search for images of the architecture that may lead to useful sources.

The main challenges encountered by the control group were:

- Unfamiliarity with JBoss; getting to know the system;
- Studying the source code is like finding a needle in a haystack;
- Finding the right information; inconsistent documentation; pattern naming is

inconsistent (e.g. a ‘proxy’ component implementing the ‘dispatcher’ pattern)

5 Discussion

In this section we interpret the findings from the experiment, the post-study question-
naires and discuss implications for further research. The overall motivation for the
development of IDAPO was to provide guidance to practitioners in identifying archi-
tecture patterns in an OSS product. While we did not find evidence that the use of
IDAPO helped to identify more architecture patterns than the control group who did
not use IDAPO, the results showed some modest advantages. The results of the expe-
riment suggest that the use of IDAPO helped to identify more candidate patterns that
were considered correct (based on a set of “trusted patterns” derived in subsection
4.6.1). This means that many potentially present patterns identified based on informa-
tion about the product’s type, domain and used technologies (steps 1 and 2 in Fig. 2)
turned out to be correct. Questions T2 and T3 in Table 7 confirm that participants con-
sidered these to be useful steps. These results suggest that IDAPO is helpful to identify
candidate patterns. The use of IDAPO also helped to improve the recall of the candi-
date patterns, which indicates that compared to the control group, a larger number (on
average) of correct patterns were recovered.

160 K. Stol, P. Avgeriou, and M. Ali Babar

On the other hand, when considering only the final results of the treatment group,
we did not find any evidence that the use of IDAPO resulted in more identified patterns
than the control group (H01), nor in a higher precision (H02) or recall (H03). This sug-
gests that, while IDAPO helps to identify candidate patterns, the process does not pro-
vide sufficient guidance to assess that the patterns are in fact present. Questions T1, T4
and T5 in Table 7 seem to confirm this; participants did not follow the steps in the
suggested order (T1), participants did not think that IDAPO exclusively helped to
identify certain patterns (T4), and participants were divided on whether the order of
steps made sense (T5). Based on these observations as well as the results of the post-
study questionnaires of both the control and treatment groups, we point out the strong
points of IDAPO as well as points for improvement. IDAPO is useful for guidance, but
should not be prescriptive. Rather, a process framework seems to be more appropriate,
from which a user can select appropriate activities to derive a process that is tailored to
the context and needs of the user. This also allows prioritizing tasks in case that time is
limited. Furthermore, it is important to investigate ways that a user can get familiar
with a system more quickly as well as approaches to find appropriate documentation
and information. Better ways to record intermediate information that support the user
to manage this information and draw appropriate conclusions should be investigated.
The use of tools (e.g., debuggers) could provide additional ways to acquire more in-
formation of a system’s structure. Through our interviews we found that the use of
tools was often not very helpful; therefore, we emphasize that it is important to under-
stand how tools can provide support and what type of information can be acquired.

5.1 Threats to Validity

Conclusion Validity. The number of subjects is a threat to conclusion validity. Four-
teen subjects were willing to participate in our experiment, which were divided into
two groups (control, treatment) of seven. However, we did not intend to make conclu-
sive statements based on this single experiment only. Rather, our results should be
considered exploratory and help us to gain insights in the usefulness of IDAPO.
Construct validity. There are a few limitations to construct validity. Firstly, we li-
mited the total time for identifying patterns to two hours. This limitation has a direct
effect on the amount of work that can be done, and therefore on the number of patterns
that can be identified. Participants of the treatment group may have had to spend rela-
tively much time on understanding the steps of IDAPO. However, we chose to limit
the time duration in order to be able to recruit a sufficient number of subjects; as the
time duration of an experiment increases, fewer participants will be willing to partici-
pate. Internal validity. We discuss a number of threats to internal validity, which is
concerned with the degree to which a change of the dependent variable can be ascribed
to a change of the independent variable. The first is instrumentation: the process de-
scription and diagram of IDAPO may not have been easy to understand by the treat-
ment group. Though we explained the process to the treatment group, participants may
not have fully understood the steps to take. Another instrumentation threat is our mark-
ing scheme for assessing “correct” patterns. This instrument (discussed in subsection
4.6.1) was used to perform calculations of precision and recall. Our conclusions de-
pend on the extent to which we correctly confirmed the patterns. We derived this
trusted subset of patterns based on three independent sources. However, the three re-

 Design and Evaluation of a Process for Identifying Architecture Patterns 161

ports do not fully agree on the patterns. In order to decide which patterns to include in
the trusted subset, we have (a) studied the description of how the patterns were imple-
mented, thereby assessing the credibility of the description and the pattern’s usage, and
(b) attempted to find additional information through web searches in order to be able to
confirm them. It is noteworthy that the patterns listed by the three sources that we
could not confirm (and therefore were not included in the trusted subset) were not
identified by either group. Besides this, JBoss may contain patterns that have not been
listed by any of the three reports, which means that these are not included in our trusted
subset. The second threat is that of selection: the control and treatment groups may not
be as equivalent as we intended in terms of work experience and knowledge of related
topics (see Table 1). Furthermore, the average age in the control group was 2.5 years
higher (26½) than the average age in the treatment group (almost 24); this difference
suggests that the control group has a few more years of experience in the field of soft-
ware engineering. This could have negatively biased the results of the treatment group,
which strengthens the decision to reject hypothesis H06. External validity. Threats to
external validity are those that may limit the applicability of the results to industry
practices. The use of master’s students as subjects is an important factor that deserves
attention, and has been discussed in the literature [26, 33, 34]. We do not consider the
use of students to be a major threat, since it is not yet a common practice in industry to
identify patterns in an OSS product. Some researchers mention that students are suita-
ble to be used to evaluate new techniques [35]. Furthermore, since the participants
were master’s students (rather than undergraduates), they can be considered to be ‘no-
vice’ professionals. A potential threat to external validity is that a treatment is applied
on a ‘toy’ problem. However, we selected the JBoss application server for this experi-
ment, which is an industrial-strength software product.

6 Conclusion and Future Work

In this paper we present and evaluate IDAPO: a process that provides guidance to
practitioners who wish to identify architecture patterns in an OSS product. The process
design is based on empirically identified steps. We have conducted a quasi-experiment
to empirically evaluate IDAPO. We found evidence that the first few steps of IDAPO
are particularly helpful to identify candidate patterns (potentially present in the prod-
uct). We believe that IDAPO can be a valuable contribution to the toolkit of practition-
ers who need to evaluate OSS products. However, the results also suggested that the
other steps of IDAPO could be improved. We believe that the process steps should
become more flexible, and become part of a process framework, which can be tailored
to the user’s needs. Furthermore, it would be valuable to investigate how IDAPO can
support identification of architectural tactics, such as documented in [1]. Tactics sup-
port the achievement of quality attributes and can therefore provide valuable insights
similar to the information conveyed by patterns.

Acknowledgments. This work is partially funded by IRCSET under grant no.
RS/2008/134 and by Science Foundation Ireland grant 03/CE2/I303_1 to Lero.

162 K. Stol, P. Avgeriou, and M. Ali Babar

References

[1] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

[2] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented
Software Architecture - A System of Patterns. J. Wiley and Sons Ltd., Chichester (1996)

[3] Kazman, R., Klein, M., Barbacci, M., Longstaff, T.: The Architecture Tradeoff Analysis
Method. In: ICECCS, pp. 68–78 (1998)

[4] Harrison, N.B., Avgeriou, P.: Pattern-Based Architecture Reviews. IEEE Software (2011)
(in Press)

[5] Hauge, Ø., Ayala, C., Conradi, R.: Adoption of Open Source Software in Software-
Intensive Organizations - A Systematic Literature Review. Inf. Softw. Technol. 52(11),
1133–1154 (2010)

[6] Hauge, Ø., Sørensen, C.-F., Røsdal, A.: Surveying Industrial Roles in Open Source Soft-
ware Development. In: Int’l Conf. on Open Source Systems, pp. 259–264 (2007)

[7] Ruffin, C., Ebert, C.: Using open source software in product development: A primer.
IEEE Software 21(1), 82–86 (2004)

[8] Stol, K., Ali Babar, M.: Challenges in Using Open Source Software in Product Develop-
ment: A Review of the Literature. In: 3rd FLOSS Workshop, ICSE 2010, pp. 17–22
(2010)

[9] Dong, J., Zhao, Y., Peng, T.: Architecture and Design Pattern Discovery Techniques - A
Review. In: Int. Conf. Softw. Eng. Research and Practice, pp. 621–627 (2007)

[10] Tonella, P., Torchiano, M., du Bois, B., Tarja, S.: Empirical studies in reverse engineer-
ing: state of the art and future trends. Empir. Software Eng. 12(5) (2007)

[11] Stol, K., Avgeriou, P., Ali Babar, M.: Identifying Architectural Patterns Used in Open
Source Software: Approaches and Challenges. In: EASE, Keele, UK (2010)

[12] Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discpline.
Prentice-Hall Inc., Englewood Cliffs (1996)

[13] Harrison, N.B., Avgeriou, P.: Leveraging Architecture Patterns to Satisfy Quality
Attributes. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 263–270. Springer,
Heidelberg (2007)

[14] Stol, K., Ali Babar, M.: A Comparison Framework for Open Source Software Evaluation
Methods. In: Int’l Conf. on Open Source Systems, pp. 389–394 (2010)

[15] Fitzgerald, B.: The transformation of open source software. MISQ 30(3) (2006)
[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
[17] Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software

architecture description languages. Trans. Softw. Eng. 26(1), 70–93 (2000)
[18] Seaman, C.B.: Qualitative methods in empirical studies of software engineering. Trans.

Softw. Eng. 25(4), 557–572 (1999)
[19] White, S.A.: Introduction to BPMN, BPTrends (July 2004)
[20] van Heesch, U.:

http://www.cs.rug.nl/search/ArchPatn/OpenPatternRepository
[21] Booch, G.: http://www.handbookofsoftwarearchitecture.com (accessed

December 5, 2010)
[22] Falessi, D., Ali Babar, M., Cantone, G., Kruchten, P.: Applying empirical software engi-

neering to software architecture: challenges and lessons learned. Empir. Software
Eng. 15(3), 250–276 (2010)

 Design and Evaluation of a Process for Identifying Architecture Patterns 163

[23] Wohlin, C., Höst, M., Henningsson, K.: Empirical Methods and Studies in Software En-
gineering. LNCS, pp. 145–165 (2008)

[24] Jedlitschka, A., Pfahl, D.: Reporting Guidelines for Controlled Experiments in Software
Engineering. In: ISESE, pp. 95–104 (2005)

[25] Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)
[26] Carver, J.C., Jaccheri, L., Morasca, S., Shull, F.: A checklist for integrating student em-

pirical studies with research and teaching goals. Empir. Software Eng. 15(1) (2010)
[27] Kampenes, V.B., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A Systematic Review of Qua-

si-Experiments in Software Engineering. Inf. Softw. Technol. 51(1), 71–82 (2007)
[28] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., el Emam,

K., Rosenberg, J.: Preliminary guidelines for empirical research in software engineering.
Trans. Softw. Eng. 28(8), 721–734 (2002)

[29] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering: An Introduction. Kluwer Academic, Dordrecht (2000)

[30] Liu, J.: Research Project: An Analysis of JBoss Architecture,
http://www.huihoo.org/jboss/jboss.html (accessed March 2, 2011)

[31] Salehie, M., Li, S., Tahvildari, L.: ’Architectural Recovery of JBoss Application Server’,
Tech. Report no. UW-E&CE#2005-02, University of Waterloo (2005),
http://stargroup.uwaterloo.ca/~s7li/publications/ieee_papers
/uw-tr-1.pdf

[32] Hollander, M., Wolfe, D.A.: Nonparametric statistical methods, 2nd edn. John Wiley &
Sons, Inc., Chichester (1999)

[33] Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects—A Comparative Study of
Students and Professionals in Lead-Time Impact Assessment. Empir. Software Eng. 5(3),
201–214 (2000)

[34] Svahnberg, M., Aurum, A.K., Wohlin, C.: Using Students as Subjects – An Empirical
Evaluation. In: ESEM, Kaiserslautern, Germany, pp. 288–290 (2008)

[35] Berander, P.: Using students as subjects in requirements prioritization. In: ISESE (2004)

	Design and Evaluation of a Process for Identifying Architecture Patterns in Open Source Software
	Introduction
	Background and Motivation
	Design of the Process
	Design History of IDAPO
	Process Steps Validation and Process Enhancement
	IDAPO: A Process for Identifying Architecture Patterns in OSS

	Evaluation of the Process: A Quasi-Experiment
	Experiment Goals and Hypotheses
	Participants and Training
	Task and Materials
	Experiment Design
	Experiment Procedure
	Analysis and Results

	Discussion
	Threats to Validity

	Conclusion and Future Work
	References

