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ABSTRACT The pollution of the air constitutes an environmental risk to health, crops, animals, forests

and water. There are several policies for reducing air pollution regarding industry, energy, transportation,

and agriculture. Unfortunately, there is limited monitoring of the air quality in cities and rural areas for

supervising the accomplishment of these policies. Reliable monitoring of air pollutants is, typically, based

on expensive fixed stations, which constitutes a barrier to tackle. This research presents the design, imple-

mentation and evaluation of a small, low-cost, station for monitoring atmospheric pollution. The prototype

registers ozone (O3) and carbon monoxide (CO) using inexpensive sensors. To assure high reliability of the

measurements obtained by the sensors installed in this station, it is proposed a calibration procedure based on

the selection of the best performance analysis of the following machine learning techniques: multiple linear

regression, artificial neural networks, and random forest. Additionally, a decision rule is implemented to

select an optimal combination of sensors for the estimationmodels, while the sample timestamp is considered

as a temporal heuristic at the input of the system, assuming similarities in the daily environmental dynamics.

In order to test the station in a realistic scenario, the calibration and evaluation sets were taken in two different

time frames of one and two months, respectively. The overall process was implemented with reference data

coming from a certified air quality fixed station in the city of Cuenca - Ecuador. Experimental results showed

that the real-time reports of ozone provided by the prototype are quite similar to the fixed station during the

evaluation period, with a resulting correlation of up to r = 0.92 and r = 0.91 in the calibration and evaluation

set, respectively. However, signal drift and aging inCOx sensors diminished the accuracy of carbonmonoxide

calibration models, resulting in lower correlation (r ≤ 0.76) with the evaluation set.

INDEX TERMS Low-cost sensors, neural networks, random forest, pollution, air monitoring, calibration.

I. INTRODUCTION

Air pollution represents a serious risk to health when, con-

sciously or unconsciously, persons expose themselves for

prolonged periods of time while the contaminant levels are

high. According to the World Health Organization (WHO),

there are approximately 4.2 million deaths due to exposure to

air pollution (outdoors), 3.8 million deaths from dirty cook

stoves and fuels per year, and 91% of total population live in

areas that exceed themaximum concentrations allowed by the

WHO [1]–[3]. Moreover, research shows the effect of several

The associate editor coordinating the review of this manuscript and

approving it for publication was Quinn Qiao .

pollutants in human health, such as reduction of intelligence

in kids [4], deterioration of cardiopulmonary health condi-

tions [5], lung cancer [6], low birth weight of children [7].

Although the growth of emissions of some polluting gases has

declined in the last two decades, the annual number of deaths

from this cause keeps growing [8]. The impact is not limited

to the environment and human health; more precisely, it has

a high economic burden (estimated to be 3.0 trillion USD

in 2010) [9]. In fact, it has become the second most important

concern in Europe, after climate change [10]. In conse-

quence, deploying stations to monitor and trace regulated

pollutants has become of real importance for governmental

entities as well as citizens, and several directives establish the
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maximum recommended pollutant concentrations together

with the standards that the air monitoring equipment must

meet [11], [12].

Traditional fixed air quality monitoring (FAM) stations

have several limitations that include high costs of instal-

lation, operation and maintenance, ample mounting space

(∼8 m2), and are inaccessible to the public. These condi-

tions restraint the deployment of real-time monitoring net-

works in urban/rural places, especially in countries with

a marginal public budget to afford at least one of these

terminals. Besides, it is difficult to install such stations in

neighborhoods / sectors of a metropolis to obtain spatial and

temporal information on the concentration of polluting gases.

To meet the requirements of an adequate measurement of

air pollutants, low-cost (<300 USD), portable/small, low-

weightmonitoring stations are being developed [13]–[20] and

Real-Time Affordable Multi-Pollutant (RAMP) monitors are

aimed to fulfill the needs of these new systems [21]–[23].

An ideal RAMP monitor is expected to produce stable

measurements with strong sensitiveness and high selec-

tiveness towards the pollutants of interest. However, low-

cost sensors performance differs from controlled conditions

(i.e. laboratory) to stochastic environments (i.e. urban/rural

areas), as variations occur spatially and temporally [24].

In addition, as described in [25], the measurement error could

also be caused by the sensor internal limitations: non-linear

response, signal drift, dynamic boundaries, systematic errors.

Therefore, actual research efforts are focused on calibration

techniques to mitigate these undesired effects, increasing the

reliability and robustness of low-cost sensors to comply with

data quality criteria in applications requiring accuracy for

regulation purposes or scientific monitoring. In consequence,

air composition sensed by RAMP monitors can’t rely solely

on filtered data from low-cost sensors. Additional environ-

mental information needs to be included in the estimation

model. As result, calibrating methods are required to improve

accuracy, reduce estimation error and unwanted environmen-

tal side effects on sensors, and adjust cross-sensitivity so

as to improve overall estimation. Machine learning tech-

niques such as Multilayer Perceptron (MLP) in Artificial

Neural Networks (ANN), can produce better approximations

than multiple linear regression (MLR) [26], [27]; however,

for some pollutants, hybrid methods combining linear and

non-linear techniques can produce more accurate results

[28], [29]. In addition to hybrid methods, other variants in

machine learning showed to ameliorate the classic ANN,

by including correction factors (temperature (T), relative

humidity (RH)) or temporal information (previous samples)

of the environment with Dynamic Neural Networks (DNN)

[30], [31], utilizing Random Forest (RF) [32], [33], k-Nearest

Neighbors (k-NN) [33], Support Vector Regression (SVR)

[33], [34], or adding Fuzzy Logic for qualitative calibra-

tion [35] and prediction [36].

There are mainly two ways to evaluate the performance of

the RAMP stations. For instance, in a three months experi-

ment, the evaluation procedure may use randomly selected

sub-samples from the whole sampling space, which may

include data generated at the beginning as well as at the end

of the experiment, resulting in a trained model with statistical

assessment that may not include how the performance of the

system is affected over time. A more realistic evaluation of

the system would be for instance, to perform the calibra-

tion within the first month of operation, and measuring the

accuracy during the next two months. This perspective is

of importance because the quality of the information (QoI)

generated by the RAMP monitor diminishes with time.

This research proposes the use of low-cost, portable sta-

tions that offer reliable measurements thanks to calibration

procedures which use estimation models with inputs coming

from different sensors combinations and machine learning

algorithms. In addition, we evaluate our methodology in a dif-

ferent time frame in which the models were trained, in order

to obtain a more realistic perspective of the operational

limitations.

Among the most important pollutants in the atmosphere

are: ozone (O3), carbon monoxide (CO), nitrogen oxides

(NOx), sulfur dioxide (SO2) and particulate matter (PM10,

PM2.5) [3]. However, the proposal described in this article

estimates only the concentration of ozone (in parts per billion

(ppb)) and carbon monoxide (in parts per million ( ppm)).

At a later stage of the project, it is intended to incorporate

more sensors.

The main contributions of this article are:

• A general procedure to build and calibrate a RAMP

monitor.

• A decision rule to select an optimal sensor combina-

tion based on a performance index that considers the

correlation and error from an estimation model and the

reference values.

• A heuristic rule to be included in the estimation model

to increase the correlation and reduce estimation error,

specially in urban deployment with similar environmen-

tal dynamics.

• Quantitative analysis of three calibration methods by

using a customized performance index which combines

spatiotemporal information from the evaluation data

obtained from a certified FAM.

This paper is organized as follows: Section II summarizes

previous research in calibration techniques for air composi-

tion measurement with low-cost gas sensors. Also, several

systems and state-of-the-art methodologies are described.

Section III shows the physical realization and location of

the RAMP monitor. In addition, it presents the official

FAM station that will be used as reference. Section IV

describes the validation methodology and mathematical

tools. Section V presents the calibration procedure: sensors

combination analysis and machine learning-based methodol-

ogy. Section VI presents the overall results of this research,

separating the calibrations and evaluation sets for ozone

and carbon monoxide. Finally, conclusions are drawn in

Section VII, discussing several considerations and future

work.
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TABLE 1. Calibration methods for several target pollutants, including O3 or COx .

II. LITERATURE REVIEW

A. BACKGROUND

The global effects of air pollution have led to the implemen-

tation of control policies with the installation of certified air

monitoring stations that would allow the enforcement of such

protocols. However, a large scale deployment of fixed air

monitoring stations is not feasible due to economic and/or

operational limitations. Subsequently, affordable, automated

and portable stations may provide an alternative solution.

Nonetheless, the typical sensors embedded in the RAMP

monitors (usually electro-chemical or metal-oxide transduc-

ers) are affected by the environmental variations and each

sensor’s limitations [25]. In general, in-situ calibration proce-

dures must include a mechanism to identify what exogenous

parameters should be included in the pollutant estimation

model. The criterion may combine meteorological informa-

tion [32], [42] or introduce heuristics such as timestamps [36]

(see Table 1). As a result, we consider that taking advantage

of the environmental dynamics may improve the accuracy

of the estimations. For this reason, this work proposes a

combination of meteorological information and heuristics,

in addition to a decision rule to find an optimal combination

of sensors for the estimation model.

B. RELATED WORK

As initially stated in the previous section, the reliability of a

RAMP monitor depends on the calibration methods used to

adjust the measurements of low-cost sensors. It is a common

practice for evaluating the quality of the estimation models,

the use of statistical parameters, such as the coefficient of

correlation (r) and the root mean square error (rmse) between

a reference and the actual estimation on an hourly basis. The

reference value is obtained from official fixed air monitoring

(FAM) stations that comply with the recommendations of the

United States Environmental Protection Agency (US EPA)

and/or the Data Quality Objectives (DQO) of the European

Commission.

Several commercial platforms have been used in the past

(Aeroqual and AQmesh) to evaluate estimation models, and

the most common low-cost sensor technology company

seems to be Alphasense (see Table 2). However, there are

almost no evaluations of the MQx family sensors from Han-

wei andWinsen. Such sensors and modules have a lower cost

ranging from 2 to 25 USD, and have been chosen in this

project. In the case of [37], the calibration of multiple ozone

and carbon monoxide sensors in a semi-urban area resulted

in a strong relationship between the values of the reference

station and the RAMP station (with models including temper-

ature corrections, relative humidity and aging of the device).

TABLE 2. Performance in field calibration: O3 estimation.
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The Pearson coefficient in the best case reached 0.97 and

0.82, respectively; however, the cost of the station proposed

by [37] is around 2,000 USD per pollutant (6.6 times the

maximum cost of the station for this project, which could be

expensive for developing countries).

Research platforms sensing ozone and evaluated in the

last four years are presented in Table 2. Similarly, Table 3

shows the correlation between carbon monoxide estimations

and official fixed air monitoring stations in recent systems.

However, the actual accuracy may diminish with time as

the model may not include the signal drift and aging of

the low-cost sensors. Moreover, in some works additional

measurements are used to generate specificmodels for certain

environmental considerations. For instance, [33] evaluates

and compares metal-oxide sensors and electro-chemical sen-

sors with linear and nonlinear regression techniques for ozone

estimation; however, the seasonal appearance of ozone in

summer and meteorological variations may require different

calibration models for other seasons and pollutants, reducing

the accuracy in results from extrapolated values (i.e. lower

temperatures from winter).

TABLE 3. Performance in field calibration: CO estimation.

In the case of [32], a 6-months experiment compared MLR

and RF models to estimate several pollutant concentrations

with multiple RAMP monitors. As result, the RF approach

outperformed the classical MLR. However, the calibration

and evaluation sets were part of the same time frame. More

specifically, the training set may have included data from the

beginning, the middle and the end of experiment, in order

to have enough variations in data which improve the perfor-

mance of models. From our point of view, this evaluation was

not realistic, and may not represent the true performance of

estimation models in the RAMPmonitor in a new time frame,

where other environmental conditions are found. In addition,

a comparison of RF and ANN-MLP would be of importance

for decision making in the calibration process of RAMP

monitors working in real scenarios. Therefore, we analyze

and compare these two methods in this research.

In [42], the calibration of MLR models for O3 and NO2

estimation is implemented with the help of three correction

factors: temperature, humidity and wind-speed. They pro-

pose an environment-adaptive continuous calibration scheme

with a distributed model. Although the proposal is attractive,

the error due to signal drift may be considerable in a net-

work of RAMP monitors with different aging, specially with

metal-oxide COx sensors.

Recent works have shown that including meteorological

and multi-pollutant data in the same system improves the

accuracy of RAMP monitors. In Table 1, several calibration

techniques, mostly based on machine learning algorithms,

include other pollutants information, as well as other vari-

ables such as temperature, humidity, atmospheric pressure

and aging. This is intended to correct cross-sensitivity and

environmental effects on sensors. However, the selection of

the ideal combination of sensors is usually based on a deci-

sion rule that considers a threshold in the coefficient of cor-

relation between the reference and the each sensor [26], [41].

This may not consider the overall performance and the actual

error, more specifically, the rmse. In other cases [32], [37],

the calibration model includes both temperature and humid-

ity, which are directly related and inversely correlated.

However, this may add noise to the calibrated model. As a

result, we suggest that a better way to select the sensor com-

bination would be by considering r and rmse in the decision

rule.

To date, several long-term evaluations have been carried

out in places with relative strong meteorological variations,

resulting in the aggregation of variables for seasonal con-

siderations. Therefore, we propose to perform an experiment

near the Equator, in which the temperature and humidity do

not vary considerably during the year, focusing the project

on selecting an optimal sensor combination and calibration

algorithm that minimizes the estimation error in outdoors

operation.

III. EXPERIMENTAL SYSTEM ARCHITECTURE

This section describes in detail the practical considerations

of the experiment such as geographical location, reference

equipment, hardware components (e.g. sensors, processing

devices and instrumentation) and software packages (e.g.

programming language and libraries) powering the RAMP

monitor. With this setup we have generated the data sets to

evaluate the estimation models as well as the methodology of

heuristics and sensor selection proposed in this work.

The experimental system architecture (see Fig. 1) is com-

posed by three elements: the RAMPmonitor, the FAM station

and a remote displaying/control device. All three devices

have network access. The low-cost air composition mon-

itor integrates IEEE 802.3 and IEEE 802.11 connectivity,

allowing full remote access to upload new calibrated models,

access to the stored data, modify services and routines, and

FIGURE 1. Experimental system architecture.
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FIGURE 2. Architecture of the RAMP monitor.

to test the system response in a real environment. In addition,

the FAM station integrates Ethernet connectivity as well, and

the data can be accessed through a web service. The display-

ing/control device is a computer that receives the information

from the other two elements upon request, and can interact

with the RAMP monitor.

A. RAMP MONITOR

Fig. 2 shows the general scheme of the prototype. This device

combines several off-the-shelf hardware. The description of

the prototype components is detailed below:

• Processing devices. The prototype architecture includes

two single-board computers that receive information

from the sensors using digital communication or through

a serial interface with a data acquisition board (DAQ).

The first monitor is a Raspberry Pi 1 b+ (RPI b+), with

Raspbian Stretch operating system. The second monitor

is anOdroidXU4 (O-XU4), withUbuntuMate operating

system. Both are connected to a MySQL database to

store the information. In addition, a background ser-

vice is executed in each operating system, scheduled to

collect the samples from the sensors once per second.

These two computers are working simultaneously for

redundancy, since we have no physical access to the

location of the RAMP monitor after the installation.

If one device fails, the other may continue storing the

data.

• Data acquisition card. The DAQ uses the Microchip

PIC 18F25k50 microcontroller, which records 4 analog

channels.

• Sensors. The sensors (see Fig. 3) connected to each

computer are shown in the Tables 4 and 5. With the

intention of generating redundancy, several sensors of

the same type have been installed together with other

gas sensors. Having several sensors for different pollu-

tants helps to reduce cross-sensitivity during the calibra-

tion; more specifically, the models may learn to adjust

FIGURE 3. Sensors in the RAMP monitor.

TABLE 4. Monitor - Raspberry Pi 1 b+.

TABLE 5. Monitor - Odroid XU4.

the estimated values of the target pollutant when other

pollutants affect the measurement in the sensor. The

prototype uses three carbon monoxide sensors, two of

them from the Spec Sensors brand (model DGS-CO

968-034, SPEC CO) with digital outputs and values in

the range of 0− 1000 ppm, while the other Hanwei

MQ-7 sensor has an analog readout with an operating

range of 10 − 10,000 ppm and connects to the DAQ.

To estimate the ozone concentration, two Winsen brand

MQ-131 sensors are used, one with plastic hooded (for

low concentrations, range between 0.01 − 1.00 ppm)

connected to the RPI b + and the other with metallic

hooded (for high concentrations, range between 10 −

1000 ppm) connected to the O-XU4. Details on the

operating ranges of each sensor are shown in Table 6.

• Protective case. To protect the electronic components

from environmental conditions, a galvanized metal
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TABLE 6. Operational range of sensors.

protective cover was used. The structure is waterproof,

and the enclosure is open at the bottom to allow the

air to enter the case. The dimensions (length, width and

thickness) are 30 × 22 × 6; cm (Fig. 4).

FIGURE 4. RAMP monitor.

B. REFERENCE STATION

The reference data utilized for the calibration and evalua-

tion of this work was obtained from an official fixed air

quality monitoring station located near by the main square

of the city of Cuenca – Ecuador. This station is owned by

EMOV EP, the municipality entity regulating the mobil-

ity, traffic and transportation. This station has analyzers of

O3,CO,NO2, SO2 and PM2.5. In addition, it measures mete-

orological parameters such as temperature, relative humidity,

wind speed, barometric pressure, solar radiation and precip-

itation. These values are collected, evaluated and published

annually [46]. For the purpose of this research, only the

data from the analyzers of ozone and carbon monoxide are

considered; the other values are not used throughout this

work. The FAM station has an ultraviolet photometry ana-

lyzer of brand/model Teledyne M400E (see Fig. 5) that uses

Beer-Lambert law applied to ultra violet light to estimate the

concentration of ozone in a chamber. The other analyzer is a

Teledyne M300E (see Fig. 6) that measures the concentration

of carbon monoxide with the nondispersive infrared radiation

method. Both of the analyzers comply with the recommenda-

tions of theUSEPAwith equivalentmethod EQOA-0992-087

[47], [48], and are periodically calibrated against reference to

FIGURE 5. Reference monitor for ozone: Teledyne M400E.

FIGURE 6. Reference monitor for carbon monoxide: Teledyne M300E.

maintain its accuracy. The sampling time of the equipment is

1 minute. More information of the FAM station can be found

in [46].

Since the objective is to generate bivariate data sets of

the same environment, the RAMP monitor was positioned

alongside the reference instruments. More specifically, next

to the air duct that connects with the sampling tube of the

FAM station, as shown in Fig 7.

FIGURE 7. Location of RAMP monitor in the FAM station.

Even though the FAM station and the RAMP monitor

measures pollutant concentrations with a period of 1 minute

and 1 second, respectively, this research considers hourly

averages of pollutant concentrations in the evaluation of

the methodology, hereafter. We only use hourly indica-

tors given that several air quality concentration standards
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show the effects scale of Carbon Monoxide on hourly

averages [11], [12].

IV. VALIDATION METHODOLOGY & ANALYSIS

A. DATA MEASUREMENT CAMPAIGN

Data acquisition from the FAM was executed from

July 20th, 2019 to October 17th, 2019. The data stored in

each processing unit in the RAMP monitor was synchro-

nized during the whole experiment. This can be verified by

observing the timestamps and the variations in temperature

and humidity in each processing unit. For instance, Fig. 8

shows the synchronized values obtained from the temperature

and humidity sensors connected to the RPI 1 b+ and Odroid

XU4 during the first 14 days.

FIGURE 8. Synchronized values of temperature (a) and humidity (b) in
each processing unit.

As proposed initially, the data was divided into two sets:

calibration set (CS) and evaluation set (ES). Each set was used

to implement and evaluate the three estimation models: mul-

tiple linear regression, artificial neural network and random

forest.

• Calibration set (CS). The data generated during the first

thirty days of operation was used to calibrate the estima-

tion models. This period includes the summer break at

Cuenca, Ecuador, in which traffic decreases, resulting in

lower pollutant concentrations.

• Evaluation set (ES). The data collected during the next

58 days was used to evaluate the calibrated models: the

last days of August, the month of September and the first

seventeen days of October. Traffic increases in Septem-

ber due to the start of academic period in schools and

universities. In consequence, pollutant concentrations

are usually higher in the beginning of September, which

challenges the performance of models in scenarios with

different dynamics and higher concentrations. In par-

ticular, during July and August 2017 the concentration

of ozone had its peak at ∼40 ppb with 8-hour aver-

ages; however, during September, this pollutant reached

56 ppb [46].

B. STATISTICAL TOOLS

To determine the accuracy of the estimation of pollutant

concentrations, some statistical tools are used in order to

compare this work with previous research, while additional

parameters help to understand the operational considerations

of this work. The statistical analysis of the following sections

uses the reference data (yr ) and the estimated value (ye).

This produces a bivariate set of ordered pairs (yr−i, ye−i) ∀

i = 1, 2, 3, .., n, where n is the sample size. The mean value

of yr and ye are ȳr and ȳe, respectively. The metrics used

throughout document are:

• Coefficient of Correlation (r). It is used to establish a

level of association between the reference value and the

estimated value. The range of the correlation is [−1,1];

higher values of the absolute value of r represents better

calibrated models to resemble the reference. If the cali-

bration algorithm that estimates the concentration of the

pollutants results in a correlation of 1 with the reference,

then the bivariate would be proportional, satisfying the

condition yr−i = kye−i where k ε R.

r = corr(ye, yr ) (1)

r =

∑n
i=1 ye−iyr−i − nȳe−iȳr−i

√

∑n
i=1 y

2
e−i − nȳe

√

∑n
i=1 y

2
r−i − nȳr

(2)

• Bias (be) or Mean Error. The bias error is the average

error from a given set, as in (3):

be =

n
∑

i=1

yr−i − ye−i

n
(3)

• Mean Absolute Error (mae). The mean absolute error is

an indicator of disagreement between yr and ye. This is

obtained with (4).

mae =

n
∑

i=1

|yr−i − ye−i|

n
(4)

• Root Mean Squared Error (rmse). The mean squared

error (mse) is a metric for the goodness of the estimator

that includes the uncertainty of the estimation process.

It is a non-negative value, and it becomes the variance

of the error for unbiased data. However, to use a metric

with the same units of the estimator, the root of the mse

is obtained instead, as presented in (5).

rmse =

√

√

√

√

n
∑

i=1

(yr−i − ye−i)2

n
(5)

• Uncertainty (U ). In order to calculate the margin of the

estimation error, we propose a confidence level of 95%

(α = 0.05). Then, the confidence interval of the error

can be expressed as:

c.i. = be± 1.96σ 2
e (6)

where σe is the standard deviation. Additionally,

the range of operation (OR) is obtained as follows:

OR = max(yr−i) − min(yr−i) (7)
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then, the uncertainty U in percentage is:

U =
max(|be± 1.96σ 2

e |)

OR
× 100% (8)

C. DATA ANALYSIS

The variations of temperature and relative humidity have an

important relationship in the calibration. This is observable in

the correlations of each sensor, analyzed during the first thirty

days of operation, detailed in Table 7. In general, there is a

positive correlation between the sensors and the temperature,

while there is a negative correlation between the sensors and

the relative humidity. For this reason, it is important to intro-

duce the temperature and relative humidity measurements in

the calibrationmodel. During the experiment, the temperature

and humidity oscillated between 7◦C−38◦C and 9%−85%,

respectively. In addition, the methane sensor (MQ-4) was

ignored, since its values were negligible (∼0 during the mea-

suring campaign).

TABLE 7. Coefficient of correlation: sensors vs. temperature & humidity.

The reference values together with the normalized and

unprocessed measurements of the CO sensors (between day

three and four) and O3 (between day seven and eight) are

shown in Figures 9 and 10. It is possible to observe the

temperature pattern embodied in the analog reading of the

sensors. In addition, the strong positive correlation between

temperature and measurement is notable, especially in the

SPEC CO modules with r ∼ 0.90. On the other hand, when

analyzing the cross-correlation between sensors presented

in Table 8, there seems to be an almost insignificant relation

FIGURE 9. Normalized values of carbon monoxide.

FIGURE 10. Normalized values of ozone.

TABLE 8. Coefficient of correlation: between sensors.

between COx sensors. However, when evaluating the corre-

lation during the campaign, such relation increases consider-

ably. This will be shown in the results.

V. CALIBRATION METHODOLOGY

A. SENSOR COMBINATION

In order to find the optimal combination of sensors in the

calibrated model, we propose a decision rule as follows:

• First, we aim to maximize r . This means that the model

with the highest correlation may lead best fit. However,

high correlation doesn’t imply low error. For instance,

this is the case of signal drifting in some sensors due to

aging.

• Second, we expect the model to have the lowest rmse.

The estimation error is aimed to be as low as possible

(minimize rmse).

• Third, the decision rule to select the optimal combina-

tion of sensors involving correlation and the error solves

the maximization problem shown in (9), which will be

the performance index of the model:

Find a set of sensors xj, xk , . . . , xm ∀ j 6= k ≤ n where n

is the number of available sensors, such that:

f (xj, xk , . . . , xm) ⇒ max

(

corr(yr , ye)

rmse(yr , ye)

)

(9)

where f (xj, xk , . . . , xm) is the estimation model,

rmse > 0 and −1 ≤ corr(yr , ye) ≤ 1

As shown in (9), the optimal sensor combination can

be evaluated using a function that has m independent vari-

ables. For simplicity, the function f (xj, xk , . . . , xm) imple-

ments Multiple Linear Regression to evaluate each tuple of
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sensors, and, in general, for any regression model, f becomes

the estimated output such that f (xj, xk , . . . , xm) = ye.

This process (see Fig. 11) uses the calibration set, and

divides it into two subsets: first subset (SSC) contains the

data collected between the 1st and the 15th, and the sec-

ond subset (SSE) consists of the data collected between the

16th and the 30th day. The SSC is used to solve the regression

problem, while the SSE is used for evaluation and calculation

of the performance index. These two subsets are selected to

include the sensor variations due to the aging process during

the first month. For this reason, the SSE evaluation is aim

to find and discard sensors with a negative impact in the

performance for a long term perspective. As a result, after

evaluating all the possible combinations of the sensors and

each performance index, the optimal tuple to estimate ozone

and carbon monoxide concentrations are:

O3 ⇒ (MQ− 131M ,MQ− 131P, SPEC CO,T ) (10)

CO ⇒ (MG− 811,MQ− 7,MQ− 131M ,RH ) (11)

FIGURE 11. Flowchart to find an optimal sensor combination.

The python library used to obtain the model and evaluate

each sensor combination is scikit-learn [49].

In addition to the optimal sensors combination, we pro-

pose to add a heuristic (timestamp) as another input in the

estimation model. It may become useful since we found that

in general, the daily concentrations are very similar between

each other1 (see Fig. 12).

1This approach may be applied in places where the meteorological con-
ditions and seasonality are similar to the conditions present in the city of
Cuenca. Near the Equator, the temperature and humidity do not change
drastically throughout the year.

FIGURE 12. Similarities in daily concentrations of O3 (a) and CO (b).
Week II.

This idea was analyzed by comparing the concentrations

per minute of ozone and carbon monoxide of several days.

In Fig. 13 and Fig. 14, the black dashed line represents the

ideal association between the samples, and it is possible to

observe that relation between the concentrations of several

days is not a perfect line, but it does present a pattern that

could be learned by the estimation model, specially for ozone

concentrations. As a result, temporal information may be

FIGURE 13. Similarities in O3 concentrations between several days.
Week II.

FIGURE 14. Similarities in CO concentrations between several days.
Week II.
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considered as a heuristic to improve accuracy, since higher

concentrations are expected at a certain time of the day. The

heuristic is of importance, specifically for non-linear models

that may learn patterns of daily concentrations on a hourly

basis. This approach may have an important impact, specially

when it is needed to deploy a network of RAMP monitors in

a urban area with similar environmental dynamics. To illus-

trate this concept, let us consider a-priori information of the

pollutant concentrations as in Fig. 15. Two distributions are

shown for each pollutant at different hours; given that higher

concentrations are expected a certain time (11 am and 8 am

for ozone and carbon monoxide, respectively), we include the

time of the day in the estimation model, so it can learn that

higher concentrations are usually related to specific hours of

the day. In other words, if the distributions of the pollutant

concentrations are known on an hourly basis, then it may be

included in the model.

FIGURE 15. The hour of the day is associated with the pollutant
concentrations.

B. CALIBRATION METHODOLOGY

Three calibration methodologies are evaluated: multiple lin-

ear regression, artificial neural networks and random forest.

Each methodology implements 8-fold cross-validation strat-

egy with the data obtained during the first thirty days of

operation, and by using (9) as the decision rule to select the

optimal model. More specifically, the CS is divided in 8 dif-

ferent subsets (12.5 % of CS), and the regression algorithm is

implemented in each subset and evaluated in the remaining

subsets (87.5 % of CS). The resulting models require five

inputs, which are the sensors described in 10 and 11 and the

timestamp. The calibration methodology is the same for both

pollutants of interest.

1) MULTIPLE LINEAR REGRESSION

One of the most used regression models for prediction is

the MLR. Given a set of reference points yr−i points for

i = 1, 2, 3, . . . , n and each point is associated to a set of m

independent variables X = x1−i, x2−i, x3−i, . . . , xm−i. Then,

it is possible to implement a multiple linear function ye−i such

that:

ye−i ∼ yr−i = β0 + βx1−i + βx2−i + . . . + βxm−i+ǫ (12)

where ǫ = random error and β = β0, β1, . . . , βm = constant

coefficients.

In matrix form:

Yr = βX + ǫ (13)

Applying ordinary least squares to Yr , the optimal estimator

of β∗ is:

β∗ = (XTX )−1(XTYr ) + ǫ (14)

Then, the resulting model used to evaluate the performance

index is:

Ye = β∗X + ǫ (15)

2) MULTIPLE LAYER PERCEPTRON

In artificial neural networks (ANN), the MLP is an archi-

tecture composed of three or more layers (see Fig. 16). The

input layer has at least one node, each node representing

a measurement of the environment. In addition, there are

hidden fully interconnected layers with neurons and an output

layer with a single neuron estimating the actual concentration.

The hidden and the output layers are composed of neurons

associated to activation functions. The training algorithm is

the root mean squared propagation (RMSprop) with the least

squares criterion. The configuration for both of the models is

shown in Table 9. The python library used to implement this

architecture is Pytorch [50].

FIGURE 16. MLP-ANN architecture.

3) RANDOM FOREST

This method can be used for classification and regression

problems. It creates subsets from a sampling space, and

produces multiple decision trees to model complex relation-

ships (see Fig. 17). Each decision tree uses environmen-

tal information to estimate the best outcome by averaging
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TABLE 9. Detail of the layers - MLP neural network.

FIGURE 17. RF architecture.

(regression task). In addition, the algorithm is stable and

prevents data over-fitting, however, it might not extrapolate

with the required accuracy if the system presents relative

strong dynamics. Moreover, computational power is com-

promised as the number of expansion trees grows. Both

models (ozone and carbon monoxide) are implemented with

10 trees, and the python library used to evaluate this method is

scikit-learn [49].

VI. RESULTS

The estimation models for ozone and carbon monoxide are

evaluated independently in this section, and the results are

organized as follows:

• First, comparative dispersion plots of reference vs esti-

mation for each calibration method are presented, con-

sidering the CS and ES independently.

• Secondly, the performance metrics: be, mae, rmse and

r are shown. Moreover, modified Taylor diagrams pre-

senting the daily rmse and r corroborate the metrics

from a visual perspective. The diagram shows the per-

formance metrics mapped in a quadrant of the Cartesian

plane: the closer the dots are to the origin, the lower the

value of rmse. Similarly, the closer the diamonds are to

the horizontal axis, the higher the correlation.

• Thirdly, a five-days plot within the evaluation period

show the actual estimation with lower and upper limits

considering 30 % and 25 % of relative uncertainty for

ozone and carbon monoxide, respectively.

As a reference for the values shown in this section, the

US EPA and the Air Quality Index (AQI) model categories

presents the range of ideal pollutant concentrations (8-hour

averages, 1st category - good air quality index) [12]:

O3 < 54 ppb and CO < 4.4 ppm.

A. OZONE ESTIMATION MODELS

From the three estimation models, Fig. 18 (a) shows that RF

has an almost ideal assessment during the calibration process;

however, this ideal behavior vanishes during the evaluation

(see Fig. 18 (b)). In fact, the initial slope (m) of the trending

line of the bivariate data is 0.98 and drops to 0.77 with ES,

and the interception (bo) increases from 0.44 ppb to 4.44 ppb

(see Table 10). This may be seen as an over-trained model;

yet several experiments with various parameters (i.e. different

number of trees) and calibration sets lead to similar results.

It is important to mention that other several experiments

with RF and an unique time frame lead to better and more

consistent results (similar to the methodology and results

described in [32]) with the ES; however, that approach is not

realistic and separated time frames should be used.

FIGURE 18. Trending line in O3 estimation models with CS (a) and ES (b).

TABLE 10. Trending line values - O3 estimation.

On the other hand, more consistent results are found with

theMLP-ANNmodel: the performance in terms of r and rmse

decrease in less than 1.1 % and 1 ppb, respectively. In addi-

tion, the interception of the trending line is at least 37 %

smaller than MLR and RF, resulting in the best estimation

technique. Moreover, with the same method the estimation

error during the two-months evaluation period (ES) resulted

in an overall uncertainty of 16 %; more specifically, for

each sample tuple the estimation error was ≤8.2 ppb with
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FIGURE 19. Modified Taylor diagram for O3 estimation models by using (a) MLR; (b) ANN-MLP; and (c) RF.

95 % of confidence. During the three-months experiment,

the minimum and maximum concentrations of ozone were

3.5 ppb and 55.5 ppb, respectively, which shows a good air

quality at the evaluation place. However, the performance

evaluation is limited to this pollutant concentration range.

The performance metrics are shown in Tables 11 - 14.

In general, ANN-MLP present the best performance during

the evaluation period: lowest be, mae, rmse and highest r .

In despite of good performance with the RF model during the

calibration period, it doesn’t seem to estimate with the same

accuracy under different meteorological conditions.

TABLE 11. Bias error in ppb.

TABLE 12. Mean absolute error in ppb.

TABLE 13. Root mean squared error in ppb.

TABLE 14. Coefficient of correlation.

Even though the daily results of the MLR approach

presented in Fig. 19 (a) are stable during the campaign,

Fig. 19 (b) presents a higher concentration of diamonds in

the lower left side of the modified Taylor diagram for the

ANN-MLRmodel, with the exception of one outlier almost at

the end of the experiment (rmse∼6.2 and r∼0.73). However,

for the rest of the experiment, the performance of the model

with the ES and CS are mixed in the same space. In contrast,

the RF model has a high concentration of diamonds at the

origin (see Fig. 19 (c)) with the CS; yet the performance

decreased at least in 2 ppb starting from the 31st day, cor-

roborating the difference in the effectiveness between two

different time frames for the RF model. Moreover,

An example of the estimation of ozone during days

60 to 65 is shown in Fig. 20. The estimation models are very

close to the reference values of the official FAM, and most

of the estimations are within the upper and lower limits of

relative uncertainty.

FIGURE 20. Experimental results, O3 estimation models and relative
lower and upper uncertainty boundaries.

B. CARBON MONOXIDE ESTIMATION MODELS

In the estimation of Carbon Monoxide, the concentrations

oscillated between 0.00 ppm and 2.83 ppm, and the results

where no significantly different with the ES in the three CO

models of this work. However, several considerations arose

during the training and evaluation process.

The QoI during the training of the models was ideal with

the RF approach; yet, the evaluation demonstrated a different
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FIGURE 21. Trending line in CO estimation models with CS (a) and ES (b).

TABLE 15. Trending line values - CO estimation.

perspective. This can be observed in the scatter plots of

Fig. 21 (a) and (b) together with the values of slope (m) and

interception (bo) of the trending lines shown in Table 15.

It is important to mention that the estimations with the RF

model have a great fit (see Fig 21 (a)) only with the CS.

Then, the data dispersion with the ES (see Fig. 21 (b)) shows

a growing vertical relation in low concentrations of carbon

monoxide, resulting in misleading higher estimations in all

the models. In despite of the dispersion differences between

the estimations with the ES and CS, the slope of the RF

approach has smallest variation between the CS and ES.

On the other hand, even tough the idealm = 1 with the ANN-

MLP approach, there is a vertical shift of the trending line for

this model, resulting in higher values of rmse.

According to the metrics shown in Tables 16 - 19, the best

results in the ES are from the Multiple Linear Regression

model, considering (9) in the three approaches. In addition,

unexpectedly, this model had a lower rmsewith the pass of the

days (see Fig. 22). In contrast, the performance in the ANN-

MLP model decreased as the metal-oxide sensors aged. Sub-

sequently, the two latest months of this experiment resulted in

an overall uncertainty of 16 % in the MLR estimation model

and an error <0.44 ppm with 95 % of confidence.

TABLE 16. Bias error in ppm.

TABLE 17. Mean absolute error in ppm.

TABLE 18. Root mean squared error in ppm.

TABLE 19. Coefficient of correlation.

An important concern of the COx metal-oxide sensors

arose with the signal drift due to aging, harsh environment

and cross-sensitivity. During this experiment, the variations

FIGURE 22. Modified Taylor diagram for CO estimation models by using (a) MLR; (b) ANN-MLP; and (c) RF.
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of such sensors affected the performance, more specifically,

increasing the rmse. This drift can be observed in Fig. 23

with normalized raw data of the MQ7 and MG-811 sensors.

Interestingly, there is a similar behavior in the signal drift,

and the resulting correlation of both of the sensors during the

three-months experiment increased to 0.81 from the initial

value of 0.09 (see Table 8) during the first 30 days. If the aging

model is obtained and introduced in the future estimation

models, then the performance may be more consistent after

the calibration process ends. This is something that will be

considered and evaluated in future research. This is impera-

tive, as the signal drift may increase after the training process.

FIGURE 23. Signal drift in COx sensors.

The signal drift is notable in the estimations from days

45 to 50, shown in Fig. 24. The boundaries of maximum

relative uncertainty are mostly exceeded, specially in concen-

trations <1.5 ppm.

FIGURE 24. Experimental results, CO estimation models and relative
lower and upper uncertainty boundaries.

VII. CONCLUSION

In this research work, the design, construction and evaluation

of a portable station for the measurement of air pollutants has

been proposed. The station uses low-cost sensors, off-the-

shelve single processing units and data acquisition boards.

The two pollutants of interest presented in this investigation

are ozone and carbon monoxide. The station was calibrated

and evaluated with a certified fixed air monitoring station that

was used as the reference terminal, since it complies with the

recommendations of the US EPA. Three calibration models

are compared: multiple linear regression, artificial neural net-

works and random forest. To compensate for the deficiencies

in the measurements of the low-cost sensors, meteorological

variables (humidity and temperature) and a temporal heuristic

(timestamp) were included in the model, and a decision rule

was implemented to find the optimal sensor combination.

The experiment lasted three months, in which different time

frames were used for the calibration and evaluation process.

There was an important impact in the quality of infor-

mation generated by the CO estimation models. The perfor-

mance of metal-oxide sensors seems to be mainly affected by

aging, and this parameter is a strong candidate to be evaluated

in future research to reduce the estimation error and improve

the quality of information. On the other hand, more stable and

consistent results were found with the O3 models, specially

with the neural network model. In contrast, the random forest

approach does not seem a good candidate to operate with the

same accuracy in a time interval different from the training

time frame.

Finally, with the low-cost atmospheric pollution station

presented in this work, a monitoring network can be cre-

ated, reducing the costs of implementation and maintenance,

as well as having portability and capacity to generate qualita-

tive information of the pollutants of interest in the population.

If the information generated from such devices comply with

specific standards for air composition measurement, then it

could be used by governmental entities during the application

of control policies to mitigate air pollution. Other areas of

application may include scientific research where air moni-

toring stations are required to provide accurate measurements

to avoidmisleading results. Thus, this work has several poten-

tial applications aimed to protect the environment, safeguard

human health and support scientific research, as previously

implemented in [51]–[53].
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