
Design and Evaluation of Algorithms for Mapping

and Scheduling of Virtual Network Functions

Rashid Mijumbi∗, Joan Serrat∗, Juan-Luis Gorricho∗, Niels Bouten‡, Filip De Turck‡ and Steven Davy†

∗Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
‡Ghent University − iMinds, B-9050 Gent, Belgium

†Telecommunications Software and Systems Group, Waterford Institute of Technology, Ireland

Abstract—Network function virtualization has received atten-
tion from both academia and industry as an important shift in
the deployment of telecommunication networks and services. It is
being proposed as a path towards cost efficiency, reduced time-
to-markets, and enhanced innovativeness in telecommunication
service provisioning. However, efficiently running virtualized
services is not trivial as, among other initialization steps, it
requires first mapping virtual networks onto physical networks,
and thereafter mapping and scheduling virtual functions onto
the virtual networks. This paper formulates the online virtual
function mapping and scheduling problem and proposes a set
of algorithms for solving it. Our main objective is to propose
simple algorithms that may be used as a basis for future work
in this area. To this end, we propose three greedy algorithms
and a tabu search-based heuristic. We carry out evaluations
of these algorithms considering parameters such as successful
service mappings, total service processing times, revenue, cost
etc, under varying network conditions. Simulations show that the
tabu search-based algorithm performs only slightly better than
the best greedy algorithm.

Keywords—Network function virtualization, mapping, schedul-
ing, placement, chaining, tabu search, resource allocation.

I. INTRODUCTION

Telecommunication services are currently based on net-
work operators having physical proprietary devices and equip-
ment for each service. As the requirements of users for more
diverse and new (short-lived) services increase, it means that
operators must correspondingly and continuously purchase,
store and operate new physical equipment, which does not
only require high and rapidly changing skills for technicians
operating and managing these equipment, but also leads to
increased capital expenditures for operators for purchasing,
storing and maintaining such equipment. Therefore, telecom-
munications service providers must find ways of building
dynamic virtualized networks with application and content
awareness so they can deliver new and innovative services
to subscribers, who are changing how they use connectivity
services [1].

Network Function Virtualization (NFV) [2] has been pro-
posed as a way to address these problems by leveraging
virtualization technology to consolidate many network equip-
ment types onto high volume servers, switches and storage,
which could be located in datacentres, network nodes and in
end user premises. It allows for the decoupling of physical
network equipment from the services or functions that run on
them, such that a given service can be decomposed into a
set of virtual network functions (VNFs), which could then be
implemented in software that can run on one or more industry

standard physical nodes. The VNFs may then be relocated and
instantiated in different network locations (for example aimed
at introduction of a service targeting customers in a given
geographical location) without necessarily requiring purchase
and installation of new hardware.

In Figures 1 and 2, we show an example of the changes that
may be achieved by NFV. Fig. 1 shows a typical (current) im-
plementation of a customer premises equipment (CPE) which
is made up of the functions: Dynamic Host Configuration Pro-
tocol (DHCP), Network Address Translation (NAT), routing,
Universal Plug and Play (UPnP), Firewall, Modem, radio and
switching. In this example, a single service (the CPE) is made
up of eight functions. These functions may have precedence
requirements, for example, it may be required to perform
firewall functions before NAT. Currently, it is necessary to have
these functions in a physical device located at the premises of
each of the customers 1 and 2. The CPEs are then aggregated
by the Broadband Remote Access Server (BRAS) that connects
to the ISP. This way, if there is a need to make changes to
the CPE, say, by adding, removing or updating a function, it
may be necessary for a technician from the ISP to individually
talk to or go to each of the customers. It may even require a
complete change in the device in case of additions. This is not
only expensive (operationally) for the ISPs, but also for the
customers.

In Figure 2, we show a possible implementation based on
NFV in which some of the functions of the CPE are transferred
to a shared infrastructure at the ISP, which could also be a
datacentre. This makes the changes described above easier
since, for example, updating the DHCP for all customers would
only involve changes at the ISP or in a datacentre. In the same
way, adding another function such as parental controls for all
or a subset of customers can be done at once. In addition to
saving on operational costs for the ISP, this potentially leads
to cheaper CPEs if considered on a large scale.

One of the objectives of NFV is to achieve fast, scalable,
on-demand and dynamic composition of network functions to
a service. However, since a network service requires a number
of VNFs, achieving a NFV environment raises two questions;
(1) how to define and implement network services, and (2) how
to efficiently map and schedule the VNFs of a given service
onto a physical network. The European Telecommunications
Standards Institute (ETSI) through its NFV technologies group
is partnering with network operators and equipment vendors
to promote the NFV approach and are currently progressing
with regard to the first question above. Specifically, they have
already defined the NFV problem [3], some use cases [4] and
a reference framework and architecture [5].

UPnP

Radio

UPnP

Radio

CPE 1

CPE 2

Server

BRAS

ISP

Fig. 1. Current CPE Implementations

Radio

CPE 1

Server

BRAS

ISP

Radio

CPE 2

UPnP

vRouter

vNAT

vFirewall

vUPnP

Radio

CPE 3

Fig. 2. Possible Implementation with NFV

However, the second question i.e. mapping and scheduling
has received little attention. As networks become bigger and
more dynamic, and user service requirements change more
often, it will not be possible for network operators to manually
map and schedule particular VNFs of a given service onto
specific physical machines1. As noted in [2], automation is
paramount to the success of NFV. This calls for, among other
things, algorithms that are able to perform the mapping of
VNFs onto the possible physical nodes. These algorithms
should be able to accept an online and dynamic nature of
network services, and must ensure that physical hardware
resources are used efficiently. The success of NFV will depend,
in part, on the existence and performance of algorithms that
determine where, and how the VNFs are instantiated [6].

In this paper, we start by formulating the problem of online
mapping and scheduling of VNFs, and then propose algorithms
for its solution. In particular, we propose three algorithms
that perform the mapping and scheduling of VNFs based on
a greedy criterion such as available buffer capacity for the
node or the processing time of a given VNF on the possible
nodes. The algorithms perform both mapping and scheduling
at the same time (one-shot), i.e. at the mapping of each VNF,
it is also scheduled for processing. In addition, we propose a
local search algorithm based on tabu search (TS) [7]. The TS
algorithm starts by creating an initial solution randomly, which
is iteratively improved by searching for better solutions in its
neighborhood.

To the best of our knowledge, this is the first attempt to
formulate the problem of online mapping and scheduling of
VNFs, and to propose and evaluate algorithms for the same
purpose. Given the important role that NFV might play in
the future of the Telecommunications industry we hope that
our proposals will be important as bench marks for other
researchers or for implementations in this regard.

The rest of this paper is organized as follows: Section II
presents a formal description of the mapping and scheduling
problem. In Sections III and IV, we describe the proposed
greedy and tabu search algorithms respectively. The algorithms

1This paper uses the terms node and machine synonymously.

are evaluated in Section V, the related work discussed in
Section VI, and the paper concluded in Section VII.

II. PROBLEM DESCRIPTION

The problem of allocating physical resources in NFV is
illustrated in Fig. 3, and can be split into two parts: (1)
embedding/mapping virtual machines (VMs) onto physical
machines which is known as VDCE [8], and is related to
VNE [9]. Both these problems (VNE and VDCE) are well
studied and are therefore out of the scope of this paper. The
rest of this paper considers that we have virtual nodes already
mapped onto physical nodes. (2) mapping and scheduling of
VNFs onto the created virtual nodes. We refer to this problem
as network function mapping and scheduling (NFMS), and is
the focus of this paper. For the NFMS problem, there are many
possibilities for resource sharing. One of them is that for each
VNF, a dedicated VM is used. However, considering a service
made up of multiple functions e.g. 8 functions for the CPE
in Fig. 1 means that each customer (or CPE) would require 8
dedicated VMs. This would clearly not be feasible as physical
resources would easily be depleted, and would be wasteful of
resources since most functions are “light” and can therefore
be processed by a single VM, say, by containers within the
VM. What we consider in this paper is the resource sharing
approach that allows for a given VM to process multiple VNFs,
one after another (possibly) from a queue.

Therefore, NFMS consists of a need to process network
services online (each service is created and embedded as its
need arises) using a set N = {1, ..., n} of n virtual network
nodes. N represents all the virtual nodes created/mapped on
all the physical nodes. Any given network service S is made
up of a sequence F = {1, ...,m} of m VNFs, where the
function 1 ≤ i ≤ m must be processed on a set N(i) ⊆ N of
nodes. The functions {1, ...,m} must be processed one after
the other in the specified sequence, and each virtual node can
process at most one function at a time. The processing time
for function i on node j ∈ N(i) is ρij > 0, where 1 ≤ j ≤ n,
and while being processed or in the queue for processing, a
function i utilizes a buffer δi from the node onto which it is
mapped. The different function processing times on each node

Virtual Machines

V
ir

tu
a

l
F

u
n

c
ti

o
n

s

Service Request

Fig. 3. Network Function Mapping and Scheduling Problem

may also capture function setup times, a given function may
require different setup times on different nodes. At any point,
a given node j has available buffer size Bj . For each node-
function combination, we define a binary variable βi,j which
takes a value of 1 if node j is able to process function i and
0 otherwise.

The problem then involves choosing for each VNF i a
virtual node j ∈ N(i) and a completion time ti when its
processing will be completed2. We also define a deadline tl
for processing a given service. The processing of the last
function in the service must be completed by this time, or the
service request is rejected. The deadline can be used to define
processing priority for services, e.g. those service that require
real time processing may have a deadline that only takes into
consideration their processing and precedence requirements on
the different virtual nodes, and zero waiting.

Finally, for each virtual node j, we define the expected
completion time πj of the last function queued for processing
on the node, and for each service, we define an arrival time ta,
which is the time when the request for mapping and scheduling
the service is received by the physical network.

The NFMS problem can be considered to consist of two
parts: deciding onto which virtual nodes each VNF should be
mapped (the mapping problem), and for each node, deciding
the order in which the mapped VNFs should be processed (the
scheduling problem.). It is in general possible to solve these
two problem in two separate steps, such that VNFs are first
mapped to nodes and then scheduled.

A. Mapping and Scheduling Example

1) Function Mapping: As an example, in Figs. 4 - 7, we
show two services S1 and S2, being mapped and scheduled on
a virtual network. In Fig. 4, the network is represented showing
the different VNF processing capabilities of each node. Con-
sider that at a time T1 a service S1 arrives with the request
for mapping with functions {f8 → f2 → f3 → f6 → f5}. At

2The time ts at which the processing of the function i on node j starts can
then be derived from ts = ti − ρij .

this point, it is possible that S1 would be mapped as shown
in Fig. 5. It can be observed that in such a mapping the node
n1 is hosting the functions f8 and f3. Similarly, assuming
that after some time another service request S2 with functions
{f6 → f8 → f4} arrives, the mapping shown in Fig. 6 may be
achieved. At this point, two services are simultaneously being
processed by the virtual nodes. It can be noted that while the
function f8 could be processed at node n1 as well, it may be
better to use node n7 for S2 to avoid a long queue at n1.

2) Function Scheduling: Finally, using hypothetical pro-
cessing times, in Fig. 7, we represent the possible scheduling
of the function processing at each node. The processing of S1

begins immediately on its arrival at T1 at node n1. There after,
each of the successive functions has to wait until its preceding
function has been processed before its processing can com-
mence. The processing of S1 ends when its last function has
been processed at T8. Therefore, the total processing time (flow

time) of S1 would be given by
(

T8 − T1

)

, and is equivalent

to the summation of the processing times of the functions at
the various nodes.

However, for illustration purposes, consider that S2 arrives
at T4. As can be observed, since its first service is mapped onto
node n5 which already has a scheduled function from the first
service, the commencement of the processing of S2 has to wait
until the completion of function f6 from S1 at time T6. This
delay (T6−T4) in commencing the processing of S2 increases
its total processing time, and may ultimately lead to inefficient
resource utilization since S2 will occupy the virtual nodes for
a longer time than it would have without this kind of delay. We
should note that this is a direct consequence of the mapping
step, since for example, if we had mapped the function f6 of
S2 onto n3 (which also has the capacity to process it), then we
would have avoided this extra delay on scheduling. Therefore
for efficient resource utilization, the mapping and scheduling
steps should have some form of coordination.

B. Function Timing Restrictions

As illustrated in Section II-A2, while the processing of a
service transits from one function to the next, there may be
some delay. There are three mutually exclusive possibilities:
(1) immediately after processing a function, the proceeding
function is started (for example, in Fig. 7 for S1, the processing
of function f2 commences immediately after that of f8), (2) a
function (either initial or proceeding) has to wait for the start
of its schedule (In Fig. 7, for S2, assuming that f8 had been
mapped onto n6 instead of n7, then after the processing of f6 at
time T7, f8 would have had to wait until the node is available.),
and (3) the node to which a proceeding function is scheduled
has to starve while waiting for the preceding function to be
completed (for example, in Fig. 7, node n2 starves for the time
T9 − T4 waiting to start processing f4. An efficient NFMS
algorithm needs to be able to use such timing gaps and delays
to ensure both efficient resource utilization and short service
processing times.

C. Mapping and Scheduling Objectives

In NFMS, there may be many objectives such as minimiz-
ing flow time, cost and revenue.

Node 𝑛2
Node 𝑛3 Node 𝑛4

Node 𝑛5
Node 𝑛6

Node 𝑛7
𝑓2

𝑓3

𝑓6 𝑓5
𝑓8 𝑓4

𝑓8
𝑓8𝑓7

𝑓5 𝑓1 𝑓1𝑓6
Node 𝑛1

Fig. 4. Network with node capabilities

Service Request

Node 𝑛2
Node 𝑛3 Node 𝑛4

Node 𝑛5
Node 𝑛6

Node 𝑛7
𝑓2

𝑓3

𝑓6 𝑓5

𝑆1 = { }

𝑆1 = { 𝑓8, 𝑓2, 𝑓3 , 𝑓6 , 𝑓5}

𝑓8 𝑓4
𝑓8

𝑓8𝑓7
𝑓5 𝑓1 𝑓1

𝑆1 = { 𝑓8, 𝑓2, 𝑓3 , 𝑓6 , 𝑓5}

𝑓6
Node 𝑛1

8

2

3

6
5

Fig. 5. After mapping of service 1

Service Request

Node 𝑛2
Node 𝑛3 Node 𝑛4

Node 𝑛5
Node 𝑛6

Node 𝑛7
𝑓2

𝑓3

𝑓6 𝑓5

𝑆1 = { }

𝑆1 = { 𝑓8, 𝑓2, 𝑓3 , 𝑓6 , 𝑓5}

𝑓8 𝑓4
𝑓8

𝑓8𝑓7
𝑓5 𝑓1 𝑓1

𝑆2 = { 𝑓6, 𝑓8, 𝑓4}

𝑓6
Node 𝑛1

8

2

3

6
5

𝑆2 = { }

𝑆2 = { 𝑓6, 𝑓8, 𝑓4}

6

8

4

Fig. 6. After mapping of service 2

𝑛1 𝜌81 𝜌31𝑛2 𝜌31𝑛3𝑛4 𝜌24𝑛5 𝜌65 𝜌65𝑛6 𝜌56𝑛7 𝜌87

Time Gap for 𝑛1

Arrival time

(𝑡𝑎) of 𝑆1 Arrival of 𝑆2 Earliest Possible

Start of 𝑆2Time Gap for 𝑆2
Time

Completion time (𝑡𝑥) of last

queued function for 𝑛5 𝑡𝑖 for 𝑆1 𝑡𝑖 for 𝑆2

𝑇1 𝑇2 𝑇3 𝑇4 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10𝑇5
Fig. 7. Function Scheduling

1) Flowtime: We define the flow time of a service as the
difference between when the processing of the last function
of a service is completed and when the service arrived. The
flow time is a measure of two parameters. On one hand it is a
measure of how efficiently resources are being utilized (since
a high flow time would mean that a given service occupies the
network for extended periods leading to among other things
high network loading and hence high power consumption.)
while on the other hand it could be used a measure of quality
of service if it is associated to the delay of processing a given
service. Minimizing flow time means that an average service is
processed quickly, at the expense of the largest service taking
a long time.

2) Revenue: The revenue R can be defined as the income
from the total amount of physical network resources that are
utilized by a given mapping and scheduling. It includes the
buffer requirements for each function of the service on the
node where it is mapped, as well as their processing times.
We represent it mathematically in (1).

R =

m
∑

i=1

δi +

m
∑

i=1

n
∑

j=1

Υij × ρij (1)

where Υij is a binary variable which is 1 if a function i is
mapped on node j and zero otherwise.

3) Cost: In addition, we can define the cost C as the
total amount of physical network resources (both time and
buffer) that are utilized by a given mapping and scheduling.
In particular, the cost is defined as in equation (2).

C = θ

m
∑

i=1

δi + ̺
(

ti − ta

)

(2)

where θ and ̺ are constants aimed at scaling the costs of
buffer and time resources in relation to the revenue. These
constants are set as θ = ̺ = 0.2 in this paper. The difference
between revenue and cost is in the fact that the revenue only
consists of the actual processing times of the functions, while
the cost also involves those time gaps that are left unused
due to functions waiting for their assigned nodes to become
available.

III. GREEDY FUNCTION MAPPING AND SCHEDULING

In this Section, we propose three greedy function mapping
and scheduling algorithms. The first algorithm, Greedy Fast
Processing (GFP), is based on functions being mapped to those
nodes that offer the best processing times. The second, Greedy
Best Availability (GBA) is based on functions being mapped
to those nodes whose current function queue has the earliest
completion time. Finally, the Greedy Least Loaded (GLL)

algorithm is based on functions being mapped to the node
with the highest available buffer capacity. While all these three
variations have the potential to minimize the flow time of the
mapped service, anyone of them may be used with a specific
objective. For example, if services are billed based on the time
they spend while being processed, then it may be cheaper to
map functions to nodes that process them faster. On the other
hand, if the billing is directly proportional the total time the
function or service will spend queued for processing or if it
is required to perform the processing as early as possible or
to balance the actual loading of the network, then it might
be better to use GLL. Balancing the load of the substrate
network could lead to a better acceptance ratio for service as it
was proved for the embedding of virtual networks in network
virtualization environments [10]. A combination of these two
parameters e.g linear may also be used. Finally, the GBA may
be used in case it is required that the service spends the least
amount of time in a queue.

The algorithms perform as follows: On arrival of a service
request, the functions of the service are mapped and scheduled
sequentially i.e. the first is mapped and scheduled, then the
next one etc. For each function i, all the nodes N(i) ⊆ N
that have the capacity to process it are determined. These
nodes are then ranked based on the greedy criterion, i.e.
least loading for GLL, lowest processing times for GFP and
shortest virtual node queues for GBA. Then the node with
the best rank is chosen for the mapping, and the function is
scheduled for processing at the end of the node queue. The
actual processing start time is based on both the node being
available (completing the processing of previously queued
functions), and the the processing of the preceding function (if
applicable) being complete. It should also follow all the other
constraints as stated in Section II. For example, assuming that
the node with the best processing time does not have enough
buffer resources for the function being considered, then the
second best node is chosen as the one with the best rank.
In addition, at each scheduling step, the completion of the
processing is determined to ensure that it is within the deadline
for the service. The failure of a mapping or scheduling can
happen anytime during algorithm run time. For example, it
is possible that while mapping the last function of a service,
the completion time exceeds the deadline, or that the function
has no candidate node (due to all candidate nodes being
fully loaded). In this case, the service request is rejected, and
all resources allocated to other functions in the service are
rolled back. In algorithm 1, we show the psuedocode for these
algorithms.

IV. TABU SEARCH-BASED NFMS

A. Tabu Search (TS)

TS is a metaheuristic search method based on local (neigh-
borhood) search methods used for mathematical optimization
[11]. Local search [12] takes a potential solution Z to a
problem and checks its immediate neighbors N(Z) in the hope
of finding an improved solution Z ′. The solutions in N(Z) are
expected to be similar to Z except for one or two minor details.
However, local search methods have a tendency to become
stuck in sub-optimal regions or on plateaus where many
solutions are equally fit. TS enhances the performance of local
search by relaxing its basic rule. First, at each step, worsening
moves can be accepted if no improving move is available

Algorithm 1 Greedy Function Mapping(S, N , T)

1: Start
2: Backup Substrate Network State
3: for Function i ∈ S do
4: Initialise: Capable Node Set N ′ = ∅
5: if (i = 1) then
6: ti−1 = ta
7: end if
8: for Node j ∈ N do
9: te = ρij +max(πj , ti−1)

10: if
(

(βij == 1) ∧ (Bj ≥ δi)∧ (te ≤ tl)
)

then

11: N ′ = N ′ ⊎ n
12: end if
13: end for
14: if N ′ ≡ ∅ then
15: Mapping and Scheduling Failed
16: Reset Substrate Network Status
17: return
18: end if
19: Sort N ′ according to T
20: Select the top node j∗ from N ′

21: Map the function i onto j∗

22: Set ti = max(πj , ti−1)
23: Update Bj , πj , and ti−1

24: end for
25: Mapping and Scheduling Completed
26: End

(like when the search is stuck at a strict local mimimum). In
addition, TS uses memory structures that describe the visited
solutions or user-provided sets of rules. If a potential solution
has been previously visited within a certain short-term period
or if it has violated a rule, it is marked as “tabu” (forbidden)
so that the algorithm does not consider moving to that solution
repeatedly. A move like this is called a tabu move. However,
when a tabu move has a sufficiently attractive evaluation where
it would result in a solution better than any visited so far,
then its tabu classification may be overridden. A condition
that allows such an override to occur is called an aspiration
criterion [7].

B. Proposed TS Algorithm

In order to design a TS algorithm, five major components
must be determined: the initial solution, the neighborhood
solutions, tabu list, aspiration criterion and stopping condition.
In what follows, we discuss these aspects with respect the
proposed algorithm.

1) Initial solution: We start by determining an initial
solution Z0. This is determined randomly. It is achieved in two
steps: First, for each function i in the service to be mapped,
a candidate virtual machine j which meets the requirements
described in Section II is randomly chosen from the set
N(i) ⊆ N . Then, starting with the first one, the functions
are scheduled onto the virtual machines where they have been
mapped, taking into consideration all the function and machine
timing restrictions as described in Section II-B. The current
solution Z is then set as Z0.

2) Neighborhood Solutions: In order to find another solu-
tion Z ′ which is better than the current solution Z, we need

to evaluate solutions N(Z) in the neighborhood of Z. To
this end, we should first define N(Z). Ideally, all solutions
that involve moving each function from one virtual machine
to another could produce a different solution. However, this
would lead to a big search space. Therefore, we restrict the
neighborhood to be based on changes in the mapping of the
function with the biggest preceeding time gap. In other words,
we evaluate the time gaps between each function. This is the
time between the completion of a preceeding function and the
start of processing of the current function. The function f ′ with
the biggest time gap is chosen as a candidate for migrating.
This way, N(Z) involves all possible solutions which would
result from migrating f ′ from its current virtual node to another
virtual node which has the required capabilities to process it. If
there is no candidate virtual machine for f ′, the function with
the next biggest time gap is chosen for migration. After the
migration, then the scheduling of all the proceeding functions
is evaluated to ensure that the flow time is minimum and its
according to the restrictions in Section II-B.

3) Tabu List: If a function i has been moved from virtual
machine j1 to virtual machine j2, we declare it as tabu to move
this function back to j1 during the next m− 1 iterations. The
reason for using m− 1 is to give a chance for the remaining
m− 1 functions in a service to be moved before the function
under consideration can be returned back to its original virtual
machine. It is also tabu to choose a solution with a higher flow
time than the best known solution. Therefore, the tabu in this
paper is recorded in short-term memory as a 2-tupple T (i, j1).

4) Aspiration criterion: We allow for aspiration in which
the criterion is to allow a tabu move if it results in a solution
with a lower flow time than that of the best known solution
Z∗, since this would imply that the solution that results from
moving f back to j1 has not been previously visited. In
addition, if all available moves are classified as tabu due to
having a higher flow time than the best known solution, then
we determine and select a “least tabu” move, which is the
move with lowest flow time of all the tabu moves.

5) Stopping condition: Finally, we have defined two criteria
which determine when the algorithm stops: (1) if after m
consecutive iterations without an improvement in the flow
time, (2) no feasible solution in the neighborhood of solution
Z for all functions.

The psuedocode for the proposed solution is shown in
algorithm 2. An initial solution is determined in line 1, and if
we are successful in getting an initial solution, the initialization
step in line 6 sets this as the current solution Z, and as the best
known solution Z∗. We also initialize the tabu list Tl as empty.
The while loop starting at line 8 will continue searching for
a solution until the stopping condition is met. In lines 10 to
14, the neighborhood solutions are checked to eliminate those
which are tabu. The solution with the lowest flow time is then
chosen in Line 15, and the counters in the tabu list are updated
in line 17. If the candidate solution has a lower flow time than
the current best (line 18), and its features are added to the tabu
list (line 19) and it is set as the new best (line 20).

Algorithm 2 Tabu Search-based NFMS(S, N)

1: Determine Initial Solution Z0

2: if Z0 notPossible then
3: Mapping and Scheduling Failed
4: return
5: end if
6: Initialize: Z = Z0, Z∗ = Z0, Tl = ∅
7: Determine function f to move and neighborhood N(Z)
8: while StopConditionNotMet() do
9: solutionSet = ∅

10: for sCandidate ∈ N(Z) do
11: if sCandidate doesNotViolate Tl then
12: solutionSet = solutionSet ⊎ sCandidate
13: end if
14: end for
15: sCandidate = BestF lowT ime(solutionSet)
16: Z = sCandidate
17: updateTabuList(Tl)
18: if FlowTime(sCandidate) < FlowTime(S∗) then
19: addNewTabu(Tl, f, getNode(f), getSize(S))
20: Z∗ = sCandidate
21: end if
22: end while
23: return Z∗

V. EVALUATIONS

A. Simulation Environment

To evaluate our algorithms, we have implemented a discrete
event simulator in Java. In these evaluations, the services to
be mapped and scheduled arrive one at a time following a
Poisson distribution. We defined 10 different network functions
with unique labels 1 − 10. Any given service is created as a
combination of one or more of these functions. The service
arrival rate is 1 service in every 5 time units, and any service
utilizes a given node resources until it has been processed
by the corresponding node. Unless stated otherwise, the main
parameters used in these simulations for creating the virtual
nodes and services are chosen randomly following a uniform
distribution with minimum and maximum values shown in
Table I. Each simulation involves services arriving, being
mapped and scheduled (or rejected in case the constraints
cannot be met), and departing after being processed. Simu-
lations are carried out for 1,500 service arrivals. The choice
of these simulation parameters as well as their distribution are
motivated by simulations and evaluations of a well studied and
related virtual network embedding problem [13].

B. Compared Algorithms

Since we are not aware of any online mapping and schedul-
ing proposals for network functions, we have only compared
the performance of our proposed algorithms. The codes in
Table II are used to represent each of the algorithms.

C. Simulation Results

The results of the simulations are shown in Figures 8 - 11.
In what follows we discuss these results.

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000 1250 1500

A
cc

e
p

ta
n

ce
 R

a
ti

o

Service Arrivals

GFP GLL TS GBA

Fig. 8. Service Acceptance Ratio

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 250 500 750 1000 1250 1500

T
im

e
 G

a
p

s

Service Arrivals

GFP GLL TS GBA

Fig. 9. Average Time Gaps

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 250 500 750 1000 1250 1500

F
lo

w
 T

im
e

Service Arrivals

GFP GLL TS GBA

Fig. 10. Average Flow Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 250 500 750 1000 1250 1500

Q
u

e
u

e
 L

e
n

g
th

M
il

li
o

n
s

Service Arrivals

GFP GLL TS GBA

Fig. 11. Queue Length

0

50

100

150

200

250

300

350

400

450

500

0 250 500 750 1000 1250 1500

T
o

ta
l
C

o
s
t

T
h

o
u

s
a

n
d

s

Service Arrivals

GFP GLL TS GBA

Fig. 12. Total Cost

0

200

400

600

800

1000

1200

1400

1600

0 250 500 750 1000 1250 1500

T
o

ta
l
R

e
v
e

n
u

e
T

h
o

u
s
a

n
d

s

Service Arrivals

GFP GLL TS GBA

Fig. 13. Total Revenue

TABLE I. SIMULATION PARAMETER RANGES

Parameter Minimum Maximum

Number of nodes 50 50

Node buffer capacity 75 100

Function processed by each node 1 7

Function processing times 15 30

Function buffer demand 7.5 10

Number of functions per service 5 10

Service processing deadline 5000 10000

TABLE II. EVALUATED ALGORITHMS

Code Function Mapping and Scheduling Algorithm

GFP Greedy mapping with bias towards Fast Processing

GLL Greedy mapping with bias towards Least Loaded

GBA Greedy mapping with bias towards Best Availability

TS Tabu Search-based Network Function Mapping and Scheduling

1) Acceptance ratio: Fig. 8 shows the variation of service
acceptance ratio with service arrivals. The acceptance ratio is
defined as the proportion of the total service requests that are
accepted by the network. It is a measure of how efficiently
the algorithm uses network resources for accepting service
requests. As can be noted from the figure, GBA performs
significantly better than the other greedy algorithms GFP
and GLL, while TS performs only slightly better than GBA.
The reason why GBA performs well could be attributed to
ensuring that services are mapped to nodes which have earlier
availability. This ensures that the total time that the service (or
any of its functions) takes waiting in a queue for processing
is minimized, which does not only avoid holding up resources
which could be used by other services, but also ensures that
the flow time is within the service requirements. The fact
that TS performs better than GBA could be due to the fact
that unlike GBA, TS has a chance to iteratively improve the
solution. But since the evaluation of new solutions for TS
is based on shortest flow time (just like the greedy criterion

in GBA), we can observe that the difference in performance
for these two algorithms is small. Finally, we observe that
the greedy approach, which is biased towards favoring using
nodes that are least loaded (GLL), performs better than GFP,
which is based on favoring nodes with the best processing
capacities. This can be attributed to the fact that least loaded
nodes are likely to have shorter queues, which implies that
services mapped onto such nodes get processed earlier, and
hence they do not occupy the node resources for longer periods
which could possibly lead to rejecting service requests.

2) Average Time Gaps and Flow Time: Figs 9 and 10
show average time gaps and flow time respectively. The time
gaps for a given service are determined by summing all
those times from when the service arrives when none of its
constituent functions is being processed. The average time
gaps are determined by averaging the cumulative time gaps
of all successfully mapped and scheduled services. Similarly,
the flow time is determined as the total time that a given
service spends in the network while any of its function is being
processed or waiting to be processed. In the same way, values
shown in 10 are average values taking into consideration the
total successfully mapped and scheduled services. It can be
observed that GFP has a considerably higher value of time
gaps compared to the other algorithms. This could be attributed
to always trying to map a given function to the node that
processes it faster. This means that a node that has the least
processing time for a given function is likely to always be
over loaded, causing a longer queue at such a node, which
implies that other functions for the same service should wait
for such a function. This is contrary to GLL, for example,
which specifically ensures that functions are mapped to those
nodes with the lowest loading, which ultimately reduces the
waiting times of their executions and hence the time gaps.
The reason that TS and GBA perform better than GLL can
be attributed to the fact the former algorithms are specifically
formulated with the objective of minimizing the flow time.
This gives these algorithms an edge in reducing the time gaps,

since we could have a scenario where a given node is lightly
loaded in terms of buffer/storage utilization, but only because
the mapped functions do not require a lot of buffer resources,
but take a long time to process. In this way, a function may
actually be mapped onto a node where it may have to wait
longer, even though this node is not highly loaded. For these
reasons, we observe that the actual flow times shown in Fig.
10 have a similar profile as the time gaps in Fig. 9.

3) Node Queue Length: Figure 11 shows the cumulative
queue length for all the nodes in the network. We define
the queue length of a given network as the total completion
time of processing all the functions queued at all its nodes.
Subsequent values involve accumulating these values for each
accepted service. As expected, we observe that the queue sizes
increase as the network accepts more services. In addition, at
the beginning, we have a profile similar to that in figures 9
and 10 where GBA and TS perform better than GFP and GLL.
Once more this can be explained by the differences in the time
gaps from all the algorithms. However, we also observe that as
the number of arriving requests increases, the queue of GFP
starts increasing at a lower rate, and so does that of GLL.
Towards the end of the simulation (1500 service requests), all
the four queue are almost comparable, and increase at the same
rate. The reason for this could be that at that point, the queues
have grown to the maximum sizes that could be permitted by
the processing deadlines of each arriving service, hence all
services that would make the queues grow higher than these
levels are rejected.

4) Cost and Revenue: Figures 12 and 13 show the mapping
and scheduling costs as defined in Section II-C. The values
shown are cumulative, implying that after every successful
mapping and scheduling, both the cost and revenues are
determined using equations (2) and (1) respectively, and then
added to values from the previous accepted service. It can be
observed from 12 that TS has the lowest cost while GFP the
highest, and that these costs increase at almost the same rate
for all algorithms. Once more, the reason for the differences in
these costs is due to the differences in waiting times. What is
worth noting is that even with the lowest cumulative cost, TS
has the highest acceptance ratio, implying that its average cost
per accepted service is much lower. Looking at the cumulative
revenue profiles in Fig. 13 shows a profile similar to that of
the acceptance ratio in Fig. 8, where the more services that
are accepted, the higher the revenue. An algorithm that has
a higher acceptance ratio is likely to have a high revenue
in the long run, which would lead to better profitability for
infrastructure providers.

VI. RELATED WORK

A. Virtual Network Embedding

The mapping of VNFs is related to both virtual network
embedding (VNE) [9] and virtual data center embedding
(VDCE) [8]. In both of these problems, it is required to map
virtual resource requests to physical infrastructures in such
a way that a given physical node may only map a single
virtual node from the same virtual resource request (one-to-one
mapping). However, as shown in Fig. 3, the NFMS problem
has a third additional dimension of network functions on top
of the virtual machines. Moreover, in the mapping of VNFs,

a given virtual node may map more than one function from
the same service if it is able to process them (possibility of
many-to-one mapping). Therefore, the problem involves not
only the mapping of virtual machines onto physical machines,
but also VNFs onto the virtual machines. It also involves
the scheduling of these functions so as to ensure that their
timing and precedence requirements are met. Virtual network
embedding does not have this requirement.

B. Real-time Scheduling

The function scheduling part of our proposal is related
to real-time scheduling [14]. Real-time scheduling algorithms
may be classified as either being offline [15], [16] or online
[14], [17]. Static algorithms allocate jobs to processors assum-
ing that all jobs are available to start processing at the same
time, while online scheduling is intended for applications in
which the jobs or tasks which may unexpectedly arrive [14].
In this context, we can compare the mapping and scheduling
of VNFs to the classical flexible job shop scheduling problem
(FJSP) [18]. The FJSP deals with need to determine a sched-
ule of jobs that have pre-specified operation sequences in a
multi-machine environment. While the FJSP is well studied
with approaches ranging from meta-heuristics, and artificial
intelligence-based approaches [19] almost all approaches in
this regard concentrate on the offline problem, in which it is
assumed that all the jobs to be scheduled are available at the
same time [20]. However, to benefit from the full potential of
NFV, it is necessary to allow for an environment where the
need to create services appears when there is need. The online
scheduling problem is more difficult since we need to consider
the arrival times of the requests and there are more possibilities
of inefficient resource utilization due to time gaps created by
earlier mappings and schedules.

C. NFV Frameworks and Architectures

There have already been a number of frameworks and
architectures proposed for NFV. These include [2] which is
a non-proprietary white paper authored by network operators
to outline the benefits, enablers and challenges for NFV, [3]
an Internet draft that discusses the problem space of NFV and
[5] a reference architecture and a framework to enforce service
function chaining with minimum requirements on the physical
topology of the network. In addition, Clayman et al. [21]
describe an architecture that uses an orchestrator to monitor
the utilization of infrastructure resources so as to place virtual
routers according to policies set by the infrastructure provider,
while DROP [22] proposes a distributed paradigm for NFV
through the integration of software defined network [23] and
information technology (IT) platforms. T-NOVA [24] outlines
an architecture, which allows operators to deploy VNFs and
offer them to their customers, as value-added services. All
these approaches do not address the mapping and scheduling
aspects of NFV.

D. Network Function Mapping and Scheduling

The authors in [6] present and evaluate a formal model
for resource allocation of VNFs within NFV environments,
called VNF placement. However, they do not consider the
fact that network functions have precedence constraints, hence
they consider the problem as a mapping one, similar to VNE.

Similarly, [25] formulates the problem assuming that nodes
have unlimited buffer/storage space to store network functions
as they wait for forwarding it to the next node in the sequence.
The authors only formulate the problem without solving it.
Finally, [26] proposes an algorithm for finding the placement
of the VNFs and chaining them together considering the
limited network resources and requirements of the functions.
All these proposals consider the offline problem in which all
the service requirements are known at the same time.

VII. CONCLUSION

In this paper, we have formally defined the problem of
mapping and scheduling functions in a NFV environment. We
have proposed a set of greedy algorithms and tabu search-based
heuristic. We have evaluated different aspects of our algorithms
including acceptance ratio, cost and revenue and discussed the
advantages and disadvantages of each of them. We have noted
that while the tabu search-based algorithm performs better
than the greedy ones, its superiority with respect to the best
greedy algorithm is not significant. It is our opinion that these
algorithms can be used as a starting point for future algorithms.

However, the algorithms proposed in this paper do not
consider the links between physical/virtual nodes, and con-
sequently, the link delays for transferring a given function
from one node to another (for processing of the proceeding
function) are considered to be negligible. It would be inter-
esting to evaluate the effect of link delays. The algorithms
considered in this paper are also static in that after the initial
mapping and scheduling, the functions are not migrated with
changing network conditions. Finally, while these algorithms
are simple and therefore represent a good starting point, it is
necessary to formulate more efficient algorithms, say based
on mathematical optimization, so as to act as benchmarks for
future performance evaluations.

ACKNOWLEDGMENT

This work is partly funded by FLAMINGO, a Network
of Excellence project (318488) supported by the European
Commission under its Seventh Framework Programme, and
project TEC2012-38574-C02-02 from Ministerio de Economia
y Competitividad.

REFERENCES

[1] F. Yue, “Network Functions Virtualization - Everything Old Is New
Again. Techinical White Paper,” F5 Networks, Inc., Tech. Rep., Febru-
ary 2014.

[2] R. Guerzoni, “Network Functions Virtualisation: An Introduction, Ben-
efits, Enablers, Challenges and Call for Action. Introductory white
paper,” in SDN and OpenFlow World Congress, June 2012.

[3] W. Xu, Y. Jiang, and C. Zhou, “Problem Statement of Network
Functions Virtualization Model. Internet-Draft, draft-xjz-nfv-model-
problem-statement-00,” Active Internet-Draft, IETF Secretariat, Tech.
Rep., September 2013.

[4] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Z. Cao,
Q. Sun, and C. Pham, “Service Function Chaining (SFC) Use Cases.
Internet-Draft draft-liu-sfc-use-cases-05,” Active Internet-Draft, IETF
Secretariat, Tech. Rep., April 2014.

[5] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, J. Guichard, and
C. Pignataro, “Service Function Chaining: Framework and Architecture.
Internet-Draft draft-boucadairsfc-framework-02,” Active Internet-Draft,
IETF Secretariat, Tech. Rep., February 2014.

[6] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement
of Virtualized Network Functions,” in 1st IEEE International Workshop

on Management of SDN and NFV Systems., November 2014.

[7] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[8] M. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-
benedetti Granville, and R. Boutaba, “On tackling virtual data center
embedding problem,” in IFIP/IEEE International Symposium on Inte-

grated Network Management (IM 2013), May 2013, pp. 177–184.

[9] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tu-

torials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[10] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206 –219,
feb. 2012.

[11] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers & Operations Research, vol. 13, no. 5, pp.
533 – 549, 1986, applications of Integer Programming.

[12] W. Michiels, E. Aarts, and J. Korst, Theoretical Aspects of Local Search

(Monographs in Theoretical Computer Science. An EATCS Series).
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[13] R. Mijumbi, J. Serrat, and J. L. Gorricho, “Self-managed resources
in network virtualisation environments,” Ph.D. dissertation, Universitat
Politecnica de Catalunya, 2014, uRL: http://www.maps.upc.edu/rashid/
files/Rashid PhD Dissertation.pdf.

[14] M. Hu and B. Veeravalli, “Dynamic scheduling of hybrid real-time
tasks on clusters,” Computers, IEEE Transactions on, vol. 63, no. 12,
pp. 2988–2997, Dec 2014.

[15] J. Xu and D. Parnas, “Scheduling processes with release times, dead-
lines, precedence and exclusion relations,” Software Engineering, IEEE

Transactions on, vol. 16, no. 3, pp. 360–369, Mar 1990.

[16] K. Ramamritham, “Allocation and scheduling of precedence-related
periodic tasks,” Parallel and Distributed Systems, IEEE Transactions

on, vol. 6, no. 4, pp. 412–420, Apr 1995.

[17] K. Ramamritham, J. Stankovic, and P.-F. Shiah, “Efficient scheduling al-
gorithms for real-time multiprocessor systems,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 1, no. 2, pp. 184–194, Apr 1990.

[18] U. K. Chakraborty, Ed., Computational Intelligence in Flow Shop

and Job Shop Scheduling, ser. Studies in Computational Intelligence.
Berlin: Springer, 2009, vol. 230.

[19] V. Roshanaei, A. Azab, and H. ElMaraghy, “Mathematical modelling
and a meta-heuristic for flexible job shop scheduling,” International

Journal of Production Research, vol. 51, no. 20, pp. 6247–6274, 2013.

[20] G.-J. Chang, “On-line job shop scheduling with transfer time in
supply chain,” in Automation and Logistics, 2008. ICAL 2008. IEEE

International Conference on, Sept 2008, pp. 284–289.

[21] S. Clayman, E. Mainiy, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in Proceedings of the

IEEE/IFIP Network Operations and Management Symposium (NOMS),
ser. NOMS2014, 2014, pp. 1–9.

[22] R. Bolla, C. Lombardo, R. Bruschi, and S. Mangialardi, “Dropv2:
energy efficiency through network function virtualization,” Network,

IEEE, vol. 28, no. 2, pp. 26–32, March 2014.

[23] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, S. Latre, and
F. D. Turck, “Dynamic resource management in sdn-based virtualized
networks,” in IEEE International Workshop on Management of SDN

and NFV Systems, November 2014.

[24] G. Xilouris, E. Trouva, F. Lobillo, J. Soares, J. Carapinha, M. McGrath,
G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, and
A. Kourtis, “T-nova: A marketplace for virtualized network functions,”
in Networks and Communications (EuCNC), 2014 European Conference

on, June 2014, pp. 1–5.

[25] J. Ferrer Riera, E. Escalona, J. Batalle, E. Grasa, and J. Garcia-
Espin, “Virtual network function scheduling: Concept and challenges,”
in Smart Communications in Network Technologies (SaCoNeT), 2014

International Conference on, June 2014, pp. 1–5.

[26] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE 3rd International Conference on

Cloud Networking (CloudNet), Oct 2014, pp. 7–13.

