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ABSTRACT
Pre-execution is a promising latency tolerance technique
that uses one or more helper threads running in spare hard-
ware contexts ahead of the main computation to trigger
long-latency memory operations early, hence absorbing their
latency on behalf of the main computation. This paper in-
vestigates a source-to-source C compiler for extracting pre-
execution thread code automatically, thus relieving the pro-
grammer or hardware from this onerous task. At the heart
of our compiler are three algorithms. First, program slic-
ing removes non-critical code for computing cache-missing
memory references, reducing pre-execution overhead. Sec-
ond, prefetch conversion replaces blocking memory refer-
ences with non-blocking prefetch instructions to minimize
pre-execution thread stalls. Finally, threading scheme se-
lection chooses the best scheme for initiating pre-execution
threads, speculatively parallelizing loops to generate thread-
level parallelism when necessary for latency tolerance. We
prototyped our algorithms using the Stanford University In-
termediate Format (SUIF) framework and a publicly avail-
able program slicer, called Unravel [13], and we evaluated
our compiler on a detailed architectural simulator of an SMT
processor. Our results show compiler-based pre-execution
improves the performance of 9 out of 13 applications, re-
ducing execution time by 22.7%. Across all 13 applications,
our technique delivers an average speedup of 17.0%. These
performance gains are achieved fully automatically on con-
ventional SMT hardware, with only minimal modifications
to support pre-execution threads.

1. INTRODUCTION
Processor performance continues to be limited by long-

latency memory operations. In the past, researchers have
studied prefetching [5, 16] to tolerate memory latency, but
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these techniques are ineffective for irregular memory access
patterns common in many important applications. Recently,
a more general latency tolerance technique has been pro-
posed, called pre-execution [1, 6, 7, 11, 12, 20, 23]. Pre-
execution uses idle execution resources, for example spare
hardware contexts in a simultaneous multithreading (SMT)
processor [22], to run one or more helper threads in front
of the main computation. Such pre-execution threads are
purely speculative, and their instructions are never commit-
ted into the main computation. Instead, the pre-execution
threads run code designed to trigger cache misses. As long
as the pre-execution threads execute far enough in front of
the main thread, they effectively hide the latency of the
cache misses so that the main thread experiences signifi-
cantly fewer memory stalls.

A critical component of pre-execution is the construc-
tion of the pre-execution thread code, a task that can be
performed either in software or in hardware. Software-
controlled pre-execution extracts code for pre-execution from
source code [12] or compiled binaries [7, 11, 20, 23] using off-
line analysis techniques. This approach reduces hardware
complexity since the hardware is not involved in thread con-
struction. In addition, off-line analysis can examine large
regions of code, and can exploit information about pro-
gram structure to aid in constructing effective pre-execution
threads. In contrast, hardware-controlled pre-execution [1,
6] extracts code for pre-execution from dynamic instruction
traces using trace-processing hardware. This approach is
transparent, requiring no programmer or compiler interven-
tion, and can examine runtime information in an on-line
fashion.

Despite significant interest in pre-execution recently, there
has been very little work on compiler support in this area.
Without a compiler, the applicability of software-controlled
pre-execution is limited. Generating pre-execution thread
code is labor intensive and prone to human error. Even
if programmers are willing to create pre-execution code by
hand, doing so would reduce code maintainability since mod-
ifications to application code would require rewriting pre-
execution code as well. Consequently, manual instrumenta-
tion of software-controlled pre-execution is viable only when
a large programming effort can be justified. In contrast,
compiler support would enable pre-execution for all pro-
grams. Pre-execution compilers can also potentially bene-
fit hardware-controlled pre-execution by providing compile-
time information to assist hardware thread construction, re-
ducing hardware complexity.
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Figure 1: Overview of compiler-based pre-execution. Profiling identifies cache-missing memory references (bold faced

code) and a potential pre-execution region (shaded code). Program slicing analysis identifies non-critical code and

opportunities for prefetch conversion. Loop analysis selects a thread initiation scheme. Finally, pre-execution thread

source code is generated by cloning and applying optimizations.

This paper presents the design, implementation, and eval-
uation of a source-to-source C compiler for pre-execution.
To our knowledge, this is the first source-level compiler to
automate pre-execution. Guided by profile information, our
compiler extracts pre-execution thread code from applica-
tion code via static analysis. At the heart of our compiler
are three algorithms: program slicing, prefetch conversion,
and threading scheme selection. These algorithms enhance
the ability of the pre-execution threads to get ahead of the
main thread, thus triggering cache misses sufficiently early
to overlap their latency.

To demonstrate their feasibility, we prototype our algo-
rithms using the Stanford University Intermediate Format
(SUIF) framework, and a publicly available program slicer,
called Unravel. Using our prototype, we conduct an ex-
perimental evaluation of compiler-based pre-execution on a
detailed architectural simulator of an SMT processor. Our
results show compiler-based pre-execution improves the per-
formance of 9 out of 13 applications, providing a 22.7% re-
duction in execution time on average. Across all 13 applica-
tions, our technique delivers an average speedup of 17.0%.
These performance gains are achieved fully automatically
on conventional SMT hardware, with only minimal modifi-
cations to support pre-execution threads.

The rest of this paper is organized as follows. Section 2
presents an overview of our compiler-based pre-execution
technique. Next, Sections 3 and 4 present our algorithms
for generating pre-execution code. Then, Section 5 discusses
several implementation issues, and Section 6 presents our
results. Finally, Section 7 concludes the paper.

2. COMPILER-BASED PRE-EXECUTION

2.1 Overview
Compiler-based pre-execution consists of several steps, as

illustrated in Figure 1. First, we gather cache-miss and
loop iteration count profiles. Our compiler uses the cache-
miss profiles to identify frequent cache-missing memory ref-
erences, as well as the loops that contain them. We refer
to each identified loop as a potential pre-execution region
which defines the scope for pre-executing the cache misses
within the loop. For example, the reference B[A[i]] in the
main program of Figure 1 is a frequent cache-missing mem-

ory reference, and the shaded loop defines a potential pre-
execution region for the reference. Notice a pre-execution
region spans multiple procedures whenever loops call pro-
cedures containing cache misses. In Figure 1, the memory
reference C[A[i]] in the bar procedure also cache misses
frequently, and is included in the pre-execution region since
bar is called from the same loop.

After cache-miss and loop iteration count profiles have
been acquired, our compiler performs a series of analyses.
First, program slicing identifies non-critical code for com-
puting the cache-missing memory references. Program slic-
ing also identifies cache-missing memory references that can
be converted into prefetches. Second, our compiler deter-
mines the set of pre-execution regions to instrument, and
then selects a pre-execution thread initiation scheme for each
region. We propose three schemes: Serial, DoAll, and
DoAcross. The last two schemes use speculative loop par-
allelization to initiate multiple pre-execution threads. Our
compiler performs induction variable analysis, and uses pro-
gram slicing information and loop iteration count profiles to
select the best scheme for each pre-execution region.

Finally, pre-execution source code is generated by cloning
each pre-execution region, including both the loop and called
procedures. Program slicing and prefetch conversion opti-
mizations are applied to the cloned code, and thread initia-
tion code is inserted into the main program according to the
selected thread initiation scheme. Figure 1 illustrates these
steps.

2.2 Speculative Pre-Execution Model
As in previous pre-execution techniques [6, 7, 11, 12, 20,

23], we use a Simultaneous Multithreading (SMT) processor
to run pre-execution threads alongside the main thread. We
assume pre-execution threads run speculatively, using tech-
niques previously proposed to support speculation. In par-
ticular, our SMT processor ensures that 1. results computed
by pre-execution threads are never integrated into the main
thread, 2. exceptions signaled in pre-execution contexts ter-
minate the faulting pre-execution thread but do not disrupt
main-thread execution, and 3. kill instructions executed
by the main thread (shown in Figure 1) terminate active
and possibly incorrect pre-execution threads after the main
thread leaves a pre-execution region.



Hardware support for speculation significantly relaxes the
correctness assurances required from our compiler. Because
pre-execution threads share memory with the main thread,
our compiler must guarantee pre-execution code never writes
to main thread data structures. We perform store removal
to eliminate memory side effects. However, aside from re-
moving memory side effects, there are no other correctness
considerations for pre-execution code. Although many of the
compiler optimizations described in Section 2.1 are not legal
or safe under all circumstances, our compiler can apply them
aggressively due to the speculation hardware support, per-
mitting our compiler to make performance tradeoffs freely.

2.3 Related Work
Liao et al [11] was the first to automate software-based

pre-execution. Their approach uses a post-pass compiler
tool to instrument pre-execution thread code into program
binaries. In contrast, we propose a source-to-source compiler
to instrument pre-execution at the source-code level. Be-
cause our instrumentation is itself source code, it is portable
and can be easily compiled onto multiple targets. Further-
more, our approach permits compiler designers to focus their
efforts on a single tool since improved compiler algorithms
benefit all platforms automatically. Binary instrumentation,
on the other hand, must be performed separately for each
binary, sacrificing portability and requiring designers to re-
target the analysis tools for each platform. The advantage
of binary analyzers, however, is that they can optimize pro-
grams even when source code is not available.

Several researchers have developed pre-execution tech-
niques for SMT machines. Our work is closest to Luk’s
Software-Controlled Pre-Execution [12]. Luk proposes sev-
eral schemes for instrumenting pre-execution into source
code, and applies them by hand on several applications to
study their effectiveness. Our approach also involves source-
level transformations, but our work focuses on performing
transformations using compiler algorithms. Another differ-
ence is that Luk’s pre-execution threads and main thread
execute the same code. We generate separate code for pre-
execution threads; hence, our pre-execution code optimiza-
tions cannot possibly affect main thread correctness, per-
mitting more aggressive optimizations.

Speculative Precomputation (SP) [7] and Data-Driven
Multithreading (DDMT) [20] analyze instruction traces
to extract minimal sequences of data-dependent instruc-
tions, or backward slices [24], to pre-execute cache-missing
loads. Our algorithms are analogous to SP’s and DDMT’s
algorithms. For example, our program slicer performs
the source-level equivalent of backward slicing, and our
DoAcross parallelization scheme (see Section 4.1) is simi-
lar to SP’s chaining triggers. Compared to SP and DDMT,
however, our algorithms are more suitable for compiler im-
plementation. Because the SP and DDMT pre-execution
models involve instruction-level analysis, they are natu-
ral targets for binary analyzers (in fact, Liao’s post-pass
tool [11] is based on the SP model).

Execution-Based Prediction (EBP) [23] is another binary-
level pre-execution technique similar to SP and DDMT,
but extracts pre-execution code directly from program bi-
naries rather than instruction traces. EBP’s optimizations,
like ours, are not strictly correct, and rely on speculation
hardware support to preserve integrity of the computation.
In addition to pre-executing cache misses, both EBP and

DDMT also pre-execute branches, and DDMT allows inte-
gration of partial computations into the main thread. We
consider pre-executing cache misses only.

In addition, there are several other related techniques.
Dynamic Speculative Precomputation [6] and Dependence
Graph Precomputation [1] not only perform pre-execution,
but extract pre-execution code using trace-processing hard-
ware. Slipstream Processors [21] use a speculative compute
engine to automatically get ahead of the main processor
for pre-execution and fault tolerance. Dependence-Based
Prefetching [19] proposes an early form of pre-execution for
pointer-chasing memory references. Simultaneous Subordi-
nate Microthreading [4] and Assisted Execution [9] intro-
duced the notion of helper threads, and Runahead process-
ing [10] was the first to demonstrate execution-based data
prefetching.

Finally, our work leverages several previous compiler tech-
niques. Significant work exists in the area of program
slicing–a good survey of this area appears in [2]. Previ-
ous work has investigated slicing in the context of soft-
ware debugging, testing, parallelization, and maintenance.
We apply program slicing to optimize pre-execution code.
In addition, conventional parallelizing compilers have tradi-
tionally exploited two forms of loop-level parallelism: doall
and doacross [8, 17]. Using existing analyses [18], our com-
piler also parallelizes these loop types; however, compared
to conventional parallelizing compilers, we can apply par-
allelization more aggressively since the code our compiler
generates is executed only speculatively.

3. PROGRAM SLICING
Pre-execution threads need only execute the critical com-

putations leading up to cache-missing memory references;
all other computations can be removed or “sliced away,” al-
lowing pre-execution threads to run more efficiently. Previ-
ous pre-execution techniques perform slicing on instruction
traces or binaries [7, 11, 20, 23]. In Sections 3.1 and 3.2, we
describe program slicing [2], a slicing technique that operates
on source code, thus allowing easy integration into a source-
level compiler. In addition to removing non-critical code,
program slicing also enables prefetch conversion, described
later in Section 3.3, and the result of both program slicing
and prefetch conversion drive other optimizations described
in Section 4.

3.1 Slicing Basics
The goal of program slicing is to extract a code fragment,

or program slice, from a program based on a slice crite-
rion. The slice criterion identifies an intermediate result in
the original program, and the program slice is the subset of
source code lines from the original program responsible for
computing the slice criterion.

Several experimental program slicers have been developed.
Our system is based on Unravel [13], a publicly available
program slicer for ANSI C from the National Institute of
Standards and Technology (NIST).1 Unravel, illustrated in
Figure 2, consists of two modules: an analyzer and a slicer.
The analyzer parses all .c and .h source files in the appli-
cation and generates a program dependence graph (PDG)
across the entire program. Given a slice criterion, the slicer

1Source code for Unravel can be downloaded from
http://www.itl.nist.gov/div897/sqg/unravel/unravel.html.
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Figure 2: High-level structure of Unravel.

traverses the PDG iteratively, performing data-flow and
control-flow analysis to extract the program slice.

The slicer computes program slices in the following man-
ner. First, the program slice is initialized to the statement
associated with the slice criterion, and an active set is ini-
tialized to the variable specified by the slice criterion. Next,
all statements in the PDG that are predecessors to the state-
ment(s) in the current slice are added to the current slice.
This includes statements that assign values to variables in
the active set, as well as statements that control the exe-
cution of any statement in the current slice. Then, the as-
signed variables in the slice criterion are removed from the
active set, and the variables referenced by the newly iden-
tified predecessor statements are added to the active set.
This process repeats until no new statements are added to
the current slice, at which time, the current slice is output
as the program slice.

Unravel performs several sophisticated analyses to han-
dle many language features found in C. In particular, Un-
ravel performs inter-procedure analysis to construct slices
spanning procedure boundaries and source code modules (as
long as all modules are provided to the analyzer). Also, Un-
ravel handles data dependences through individual structure
members, and performs pointer analysis. Unfortunately, a
complete description of these analyses is beyond the scope
of this paper. To obtain more details on Unravel, see [14].

3.2 Slices for Pre-Execution
We use Unravel to compute program slices for memory ref-

erences that suffer frequent cache misses by specifying each
memory reference to Unravel as a separate slice criterion.
We modified Unravel to address four issues related to our
memory-driven program slices: slice criterion specification,
store removal, slice termination, and slice merging. This
section describes our modifications using the code example
in Figure 3 from VPR, a SPECInt CPU2000 benchmark.

Slice Criterion Specification. To pick the memory refer-
ences that the slicer should analyze, we perform simulation-
based cache profiling to record the number of cache misses
incurred by each static load instruction in the application,
and identify the top cache-missing loads. Using debug-
ging information, we translate each of the load PCs into
a source code line number and variable name. In Fig-
ure 3, four frequent cache-missing memory references identi-
fied through profiling appear in bold-face, labeled “1”-”4.”
These memory references occur across three different pro-
cedures, try swap, net cost, and get non updateable bb.
Each memory reference is used as the slice criterion during
a single slicing run, described below.

Store Removal. As discussed in Section 2.2, pre-execution
threads should never modify memory state visible to the

main thread to ensure correct main thread execution. Our
SUIF compiler, described in Section 5, removes all stores
to statically allocated global variables, and stores to heap
variables through pointers when generating pre-execution
code. Such store removal enables more aggressive program
slicing. In addition to removing code off the critical path
of cache-missing memory references, our program slicer can
also remove code associated with stores that will eventually
be eliminated by the SUIF compiler. Hence, before running
the slicer, we delete all DEFs to global and heap variables
in the PDG produced by Unravel’s analyzer. When we run
the slicer, all code associated with the removed DEFs will
themselves be sliced away. In Figure 3, the underlined ref-
erences labeled “5” and “6” represent stores to heap and
global variables, respectively. Our slicer removes the DEFs
associated with these references.

While store removal is necessary for main thread correct-
ness, it can disrupt pre-execution code correctness. For ex-
ample, the computations at “5” in Figure 3 are necessary
to execute the cache-missing memory references at “2” and
“3.” By removing the stores at “5,” the cache misses will
not be correctly pre-executed each time net cost is entered
following a call to get non updateable bb. Fortunately, we
find that dataflow through global or heap variables within a
pre-execution region rarely leads to cache-missing memory
references (for example, memory references “1” and “4” are
unaffected by store removal). In exceptional cases like those
in VPR, the speculative nature of pre-execution threads en-
sures that incorrect pre-execution code never compromises
main thread integrity.

Slice Termination. After modifying the PDG to reflect
store removal, we run the slicer once for every criteria iden-
tified by cache-miss profiling. For each slicer run, Unravel
computes a program slice across the entire program. Such
slices are too large; in fact, we are interested in slicing only
within the potential pre-execution region, so we modified the
slicer to limit the scope of slicing. A pre-execution region,
as discussed in Section 2, is defined by a loop containing
the cache-missing memory reference. As we will see later
in Section 4.2, we select either the inner-most loop or the
next-outer loop encompassing a cache-missing load to serve
as its pre-execution region. Hence, we terminate slicing once
we have encountered two nested looping statements above
the slice criterion (if two nested looping statements cannot
be found, we terminate slicing after one looping statement).

Figure 3 illustrates slice termination for the VPR bench-
mark. Memory reference “1” is contained inside the loop
labeled “7.” The next outer loop, labeled “8,” is where
slicing terminates for this memory reference. Memory refer-
ences “2,” “3,” and “4” are contained inside the loop labeled
“8.” The next outer loop, which is not shown in Figure 3, is
where slicing terminates for these three memory references.

As illustrated in Figure 3, our slice termination policy
permits slices to span multiple procedures (there is no limit
on call depth). From our experience, inter-procedure anal-
ysis is crucial because loops are often nested across proce-
dure boundaries, particularly in non-numeric applications
like VPR. When slicing across procedures, however, multi-
ple paths can occur if a procedure is called from multiple
sites. Our slicer pursues all call paths and searches for the
two nested looping statements along every path, possibly
identifying multiple outer loops where slicing terminates.



int try_swap(float t, float *cost, float rlim, ...) {

  for (k=0;k<num_affected_nets;k++) {
    inet = nets_to_update[k];
    if (net_block_moved[k] == FROM_AND_TO)
      continue;
    if ( net[inet].num_pins  <= SMALL_NET) {
      get_non_updateable_bb (inet, &bb_coord[bb_index]);
    } else {

    }
    if (place_cost_type != NONLINEAR_CONG) {

net[inet].cost = net_cost(inet, &bb_coord[bb_index]);
       delta_c += net[inet].tempcost - net[inet].ncost;
    } else {

    }
    bb_index++;
  }

}

float net_cost(int inet, struct s_bb *bbptr) {
  float ncost, crossing;
  if (net[inet].num_pins > 50) {
    crossing = 2.79 + 0.026 * (net[inet].num_pins - 50);
  } else {
    crossing = cross_count[net[inet].num_pins-1];
  }
  ncost = (bbptr->xmax - bbptr->xmin + 1) * crossing *

chanx_place_cost_fac[bbptr->ymax][bbptr->ymin-1] ;

  ncost += (bbptr->ymax - bbptr->ymin + 1) * crossing *
chany_place_cost_fac[bbptr->xmax][bbptr->xmin-1] ;

  return(ncost);
}

......
void get_non_updateable_bb(int inet,
                  struct s_bb *bbptr) {
  int k, xmax, ymax, xmin, ymin, x, y;

  x = block[net[inet].pins[0]].x;
  y = block[net[inet].pins[0]].y;

  xmin = x;
  ymin = y;
  xmax = x;
  ymax = y;

  for (k=1;k<net[inet].num_pins;k++) {
    x = block[net[inet].pins[k]].x ;
    y = block[net[inet].pins[k]].y;

    if (x < xmin) {
       xmin = x;
    } else if (x > xmax) {
       xmax = x;
    }
    if (y < ymin) {
       ymin = y;
    } else if (y > ymax ) {
       ymax = y;
    }
  }

bbptr->xmin = max(min(xmin,nx),1);
bbptr->ymin = max(min(ymin,ny),1);
bbptr->xmax = max(min(xmax,nx),1);
bbptr->ymax = max(min(ymax,ny),1);

}
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Figure 3: VPR code example. Labels “1”-“4” indicate cache-missing memory references selected for slicing. Labels

“5” and “6” indicate memory references requiring store removal. Labels “7” and “8” indicate loops that bound the

scope of slicing. Labels “S1,” “S2,” “S3,” and “S4” show the slice result for the selected memory references.

Slice Merging. After slicing analysis completes, we have
a program slice for each sliced memory reference. Figure 3
illustrates the slices computed for the four cache-missing
memory references in VPR by placing an arrow to the left
of each source code line contained in the slice. The slices
for memory references “1”-“4” are specified by the columns
of arrows labeled “S1,” “S2,” “S3,” and “S4,” respectively.
(Note, slices S2, S3, and S4 should continue up to the next
outer loop). Unravel stores each program slice as a bitmask
with one bit per line of source code in the program.

To minimize the duplication of slice code and hence the
pre-execution overhead, we merge individual slices whose
bitmasks intersect so they can be pre-executed together as
a single pre-execution region. We simply “OR” together the
bitmasks with intersection, forming a single bitmask that
represents the merged slice. To maintain a small slice size,
we also clear any bits that lie outside of the second lowest
loop nest in the merged bitmask. Merging the bitmasks in
Figure 3, we see our slicing technique removes 29 out of 58
lines across the three procedures. We find our slices are quite
efficient, generating a cache miss every 10.9 instructions on
average for the applications we study in Section 6.

3.3 Prefetch Conversion
Program slicing removes non-critical computations from

pre-execution code, resulting in more efficient pre-execution
threads. Another way to speed up pre-execution threads
is to reduce blocking using prefetch instructions. Since
prefetch instructions are non-blocking, they allow the pre-

execution thread to trigger cache misses and continue exe-
cuting, saving the pre-execution thread from having to wait
for the data to be fetched. However, prefetch instructions
are only effective if the prefetched data is not needed by the
pre-execution thread shortly after the prefetch.

We perform a prefetch conversion optimization using data
dependence information computed by program slicing. This
optimization considers each cache-missing memory reference
in the pre-execution regions after program slicing. If the
data accessed by the memory reference is not needed by the
slice code (i.e., the dependent program statements have been
removed by the program slicer), we convert the blocking
memory reference into a non-blocking prefetch. In Figure 3,
memory references “1”-“3” can be converted into prefetches.

4. PRE-EXECUTION INITIATION
Program slicing and prefetch conversion, described in Sec-

tion 3, optimize pre-execution code. Before pre-execution
code can be generated, however, we must determine how
to initiate the pre-execution threads. This section describes
our pre-execution thread initiation schemes, our algorithms
for assigning initiation schemes to pre-execution regions, and
how our compiler generates code for each initiation scheme
assignment.

4.1 Thread Initiation Schemes
Our compiler employs three schemes for initiating pre-

execution threads: Serial, DoAll, and DoAcross. Fig-
ure 4 illustrates these schemes.
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Figure 4: Three pre-execution thread initiation sche-

mes: a) Serial, b) DoAll, and c) DoAcross. Solid

lines denote the main thread, dotted lines denote pre-

execution threads, arrows denote thread spawning, and

numeric labels denote loop iteration count.

Serial. This scheme initiates a single pre-execution thread
for each pre-execution region. As shown in Figure 4a, the
main thread (solid line) forks a single pre-execution thread
(dotted line) prior to entering a pre-execution region. The
pre-execution thread then executes the code for the entire
pre-execution region sequentially.

For the Serial scheme to be successful, the lone pre-
execution thread must get ahead of the main thread to
trigger cache misses sufficiently early to hide their latency.
Program slicing and prefetch conversion provide the pre-
execution thread with a speed advantage over the main
thread. In many cases, unfortunately, these optimizations
alone may not be sufficient. The problem is blocking loads
that program slicing and prefetch conversion are unable to
remove (e.g., memory reference “4” in Figure 3). If blocking
loads appear in the pre-execution code, the pre-execution
thread will stall, preventing it from getting ahead of the
main thread.

DoAll. Pre-execution code with blocking loads can be han-
dled using multiple pre-execution threads, allowing individ-
ual threads to block independently and overlap their long-
latency memory operations. Our compiler extracts thread-
level parallelism by parallelizing loops. Conventional loop
parallelization requires the compiler to analyze dependences
exactly, which is nearly impossible for the loops we would
like to pre-execute due to complex control flow and point-
ers. Fortunately, our compiler does not need to guarantee
correctness thanks to the speculative nature of pre-execution
threads, permitting us to parallelize loops speculatively. Our
compiler performs loop induction variable analysis during
parallelization, but we do not analyze dependences in the
loop body and assume (optimistically) that no loop-carried
dependences exist except through induction variables.

Our compiler recognizes two types of loop induction vari-
ables, giving rise to two speculative loop parallelization
schemes. The first parallelization scheme, DoAll, specu-
latively parallelizes affine loops (i.e., loops whose induction
variables are updated arithmetically). When our compiler
encounters an affine loop, it assumes the loop is fully par-
allel, and generates code to pre-execute the loop iterations
independently. As shown in Figure 4b, the main thread
forks multiple pre-execution threads prior to entering a pre-
execution region, with loop iterations distributed to threads

Given: Global loop nest graph, GL
Compute:  Pre-Exec Region Set, P

P =Φ;
do {
   if (level(L) == INNER_MOST) {

Given:  Pre-Exec Region Set, P
Compute: Serial Loop Set, SE
                 DoAll Loop Set, DA
                 DoAcross Loop Set, DX
                 Procedure Set, F

      if (iteration_count(L)     25)
         P = P     {L};
   } else {
      if {P     nested_loops(L) ==Φ)
         P = P     {L};
   }
} ∀ loops L in GL from inner-most

do {
   if (P     outer_loops(L) ==Φ)
      P = P     {L};

do {
   if (num_blocking_load(L) == 0)
      SE = SE     {L};
   else {
      if (induction(L) == AFFINE)
         DA = DA     {L};
      else
         DX = DX     {L};
   }
   F = F     called_procedures(L);
} ∀ loops L in P;

a). b).

} ∀ inner-most loops L in GL;

                               to outer-most;

SE = DA = DX = F =Φ;

do { generate_Serial(L); }∀ loops L in SE;
do { generate_DoAll(L); }∀ loops L in DA;
do { generate_DoAcross(L); }∀ loops L in DX;
do { clone_and_optimize(f); }∀ procedures f in F;

c). Given: SE, DA, DX, and F computed in b)

Figure 5: Algorithms for instrumenting thread initia-

tion schemes. a) Computation of the set of pre-execution

regions, P . b) Selection of the thread initiation scheme

for each pre-execution region. c) Code generation.

in round robin sequence (denoted by the loop iteration la-
bels). In this scheme, each thread keeps a private copy of
the loop induction variable and updates it locally every it-
eration.

DoAcross. The second parallelization scheme, DoAcross,
speculatively parallelizes pointer-chasing loops (i.e., loops
whose induction variables are updated through a pointer
dereference). Pointer-chasing loops are serial if for no other
reason due to the serial update of loop induction variables.
However, they can be speculatively parallelized by updating
the induction variable early in the loop iteration, and initiat-
ing a thread for the next iteration before entering the loop
body. As shown in Figure 4c, only the induction variable
computations are serialized; separate loop bodies execute in
parallel. Note in DoAcross, inter-thread communication is
required every loop iteration to pass the induction variable
value.

4.2 Region and Scheme Selection
Figure 5a-b presents our algorithms to determine the

thread initiation schemes for pre-execution. First, we com-
pute the set of pre-execution regions, P , from which we will
initiate pre-execution threads. Each pre-execution region is
either the inner-most loop or the next-outer loop contain-
ing a group of merged program slices. Which loop we select
depends on two factors. On the one hand, the likelihood of
loop-carried dependences increases as pre-execution threads
execute more distant code, reducing the effectiveness of spec-
ulative loop parallelization. This favors selecting inner-most
loops. On the other hand, the loop must contain enough
work to amortize pre-execution startup costs. This favors
selecting next-outer loops. We use loop iteration count pro-
files to approximate the work of inner-most loops. If an
inner-most loop iterates at least 25 times on average, we se-
lect it as a pre-execution region. Otherwise, we try to select
the next-outer loop as a pre-execution region.



void dbox_pos_2(TEBOXPTR antrmptr) {

sem_init(T 0,PD);

for (i=1; i<NTHREADS; i++) sem_init(T i ,1);

fork(T 0,loop_19_backbone,antrmptr);

  for(termptr = antrmptr; termptr; termptr=termptr->nextterm) {
sem_v(T 0);

    net = termptr->net;
    dimptr = netarray[net];
    dimptr->old_total = dimptr->new_total;
    termptr->termptr->xpos = termptr->termptr->newx;
    missing_rows[net] = tmp_missing_rows[net];
    num_feeds[net] = tmp_num_feeds[net];
    rowsptr1 = rows[net];
    rowsptr2 = tmp_rows[net];
    for (row = 0; row <= numRows+1; row++) {

rowsptr1[row] = rowsptr2[row];
    }
  }

kill();
}

......

void loop_19_backbone(TEBOXPTR antrmptr) {
t=T 1;

  for (termptr = antrmptr; termptr; termptr=termptr->nextterm) {
sem_p(T 0);

   sem_p(t);
    fork(t,loop_19_rib,termptr,t);
    t=next_threadID(t);
  }
}

sem_init(T,PD);
for (i=0; i<NTHREADS; i++)

fork(T i ,loop_44,i,nets_to_update,net_block_moved,

         bb_coord,bb_index,place_cost_type,delta_c);
for (k=0;k<num_affected_nets;k++) {

sem_v(T);

}
kill();

void loop_44(int tid, int *nets_to_update, int
      *net_block_moved, struct s_bb *bb_coord, ...) {
  for (k= tid ;k<num_affected_nets; k+=NTHREADS) {

sem_p(T);

  }
}

......

......

void loop_19_rib(struct termbox *termptr, thread t) {
  dimptr = netarray[termptr->net];
  prefetch(&dimptr->new_total);
  prefetch(&termptr->termptr->newx);
  prefetch(&tmp_missing_rows[net]);
  prefetch(&tmp_num_feeds[net];
  rowsptr2 = tmp_rows[net];
  for (row = 0; row <= numRows+1; row++)
    prefetch(&rowsptr2[row]);
  }

sem_v(t);
}

A. B.

1

2

3

4

                           A.  Steps for generate_DoAll routine
1.  Clone the pre-execution loop, and place it in a separate procedure.
     Identify live-in variables, and pass them as parameters.
2.  Modify the induction variable update code to distribute iterations to
     threads in round robin sequence.
3.  Insert thread forking code to create the pre-execution threads.
4.  Insert semaphore code into main and pre-execution codes to
     synchronize main and pre-execution threads.
5.  Insert kill to terminate pre-execution threads.

5

                        B.  Steps for generate_DoAcross routine
1.  Clone the pre-execution loop header, and place it in a separate
     “backbone” procedure.  Clone the pre-execution loop body, and place it
     in a separate “rib” procedure.  (We have applied program slicing and
      prefetch conversion in the rib procedure).  Identify live-in variables for
     both procedures, and pass them as parameters.
2.  Insert thread forking code to create rib threads in round robin sequence.
     (The “next_threadID” macro returns thread IDs in round robin order.)
3.  Insert code to fork a single backbone thread.
4.  Insert semaphore code into main and backbone pre-execution codes to
     synchronize main and backbone threads.
5.  Create a counting semaphore for each rib thread, and insert code into
     backbone and rib pre-execution codes to synchronize backbone and
     rib threads.
6.  Insert kill to terminate pre-execution threads.

1

2

3

4

5

5

6

Figure 6: Code generated by the compiler, appearing in boldface, to implement the A. DoAll scheme for the VPR

benchmark and B. DoAcross scheme for the TWOLF benchmark.

In Figure 5a, we show the algorithm for selecting the pre-
execution regions. Our algorithm takes as input the global
loop nest graph, GL (this graph specifies loop nesting within
procedures as well as between procedure calls, using the
program’s procedure call graph to construct the loop nest
structure across the entire program). We visit all loops in
graph GL in inner-most to outer-most order. Inner-most
loops that iterate at least 25 times are selected outright as
pre-execution regions. Next-outer loops are selected as pre-
execution regions as long as they do not contain any inner-
most loops already selected as pre-execution regions (i.e.,
we do not permit nesting of pre-execution regions). Finally,
after all loops are traversed, we visit all the inner-most loops
again, adding to the list of pre-execution regions those inner-
most loops whose parent loops have not been selected as a
pre-execution region (this handles inner-most loops that it-
erate fewer than 25 times, but are not pre-executed from the
next-outer loop because a “sibling loop” in graph GL was
selected as a pre-execution region).

After selecting the pre-execution regions, we choose a
thread initiation scheme for each pre-execution region us-
ing the algorithm in Figure 5b. This algorithm chooses Se-
rial for pre-execution regions where program slicing and
prefetch conversion have removed all blocking loads. Se-
rial performs well in this case, and it has the lowest over-
head of all schemes since only one pre-execution thread is

initiated. If blocking loads remain after optimization, our al-
gorithm speculatively parallelizes the loop at the top of the
pre-execution region to tolerate the long-latency memory
stalls, using DoAll and DoAcross for affine and pointer-
chasing loops, respectively.

4.3 Generating Code
Figure 5c shows the calls to code generation routines for

each thread initiation scheme type, and Figure 6 illustrates
the steps involved in generating code for two of the schemes.
In Figure 6A, we illustrate the steps for generating DoAll
scheme code, applying DoAll to the outer loop of the VPR
benchmark from Figure 3. In addition to inserting thread
initiation code, notice a counting semaphore is inserted as
well. This semaphore, called “T,” is initialized to the value,
“PD.” Semaphore T blocks pre-execution threads that reach
a prefetch distance number of iterations ahead of the main
thread, preventing them from getting too far ahead. Fig-
ure 6B illustrates the steps for generating DoAcross scheme
code, using a pointer-chasing loop from the TWOLF bench-
mark as an example. Our DoAcross implementation per-
forms the serialized loop induction variable updates in a
separate thread, called the “backbone” thread, which initi-
ates other threads to perform the loop body computations
in parallel, called “rib” threads. A semaphore is used to
keep the backbone thread from getting too far ahead of the
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Figure 7: Major components in the prototype compiler,

and how they interact.

main thread, and multiple semaphores are used to synchro-
nize the backbone and rib threads during communication of
each induction variable value.

The algorithm in Figure 5c calls two other code
generation routines that we omit to conserve space.
The generate Serial routine is very similar to the
generate DoAll routine illustrated in Figure 6A because the
Serial scheme is a degenerate case of the DoAll scheme.
Finally, the clone and optimize routine clones all proce-
dures called within pre-execution regions (computed in Fig-
ure 5b), and applies slicing, store removal, and prefetch con-
version to the cloned code.

5. IMPLEMENTATION
This section discusses implementation issues. First, Sec-

tion 5.1 describes our prototype compiler. Then, Sec-
tions 5.2 and 5.3 discuss the ISA and thread-level support
assumed by our compiler.

5.1 Prototype Compiler
We prototyped the algorithms from Sections 3 and 4 in

a compiler consisting of three major components. First,
we use a modified cache simulator from the SimpleScalar
toolset [3] to acquire the cache-miss and loop iteration count
profiles required by our algorithms. Second, we modify Un-
ravel to implement the program slicing algorithms described
in Section 3.2. This tool also performs the prefetch con-
version analysis from Section 3.3. Finally, we use SUIF
to implement the pre-execution thread initiation algorithm
presented in Section 4.2, and to perform the code trans-
formations described in Section 4.3. When producing the
final pre-execution code, our SUIF tool removes stores and
sliced code, and converts blocking loads to prefetches, all
guided by the program slicer output. Figure 7 illustrates
these modules and shows how they interact.

5.2 ISA Support
Our compiler assumes the SMT processor provides the

following ISA support. First, we assume a fork instruc-
tion that specifies a hardware context ID and a PC. The
fork initializes the program counter of the specified hardware
context to the PC value, and activates the context. Second,
we assume a suspend and resume instruction. Both instruc-
tions specify a hardware context ID to suspend or resume.
The processor state of suspended contexts remain in the pro-
cessor, but the associated thread discontinues fetching and

issuing instructions after the suspend. Both instructions ex-
ecute in 1 cycle; however, suspend causes a pipeline flush of
all instructions belonging to the suspended context. Finally,
we assume a kill instruction that terminates all currently
active pre-execution threads. Only the main thread can ex-
ecute kill instructions.

5.3 Thread-Level Support
Thread initiation can be expensive due to context ini-

tialization (our context initialization code contains 25 in-
structions). To minimize overhead, we “recycle” threads.
We create a pre-execution thread for each idle hardware
context once during program startup. Each pre-execution
thread enters a dispatch loop and suspends itself. To per-
form a “fork,” the forking context communicates a PC value
through memory, and executes a resume instruction to un-
block one of the suspended threads. The “forked” thread
jumps indirect through the PC argument. Upon comple-
tion, the forked thread returns to the dispatch loop and sus-
pends itself until the next fork, thus recycling the thread.

Inter-thread communication occurs during thread initia-
tion to pass arguments, and during synchronization. In both
cases, we perform communication through memory. To pass
arguments, we use a memory buffer and communicate values
via loads and stores to the buffer. For synchronization, we
implement the semaphore primitive from Section 4.3 in soft-
ware. We allocate a global counter in memory, and during
each iteration, the main thread performs a “V” by incre-
menting the counter. Since our parallelization schemes use
the semaphore only for producer-consumer synchronization,
we exploit this pattern by maintaining a private counter for
each pre-execution thread. When the pre-execution thread
performs a “P,” it increments its private counter, and com-
pares the count to the global counter. The pre-execution
thread continues only if the difference between the counters
does not exceed PD, the prefetch distance. Otherwise, the
pre-execution thread busy waits, effectively blocking.

6. EXPERIMENTAL RESULTS
This section reports our experimental results. First, we

describe our methodology. Next, we present performance re-
sults for our compiler-based pre-execution technique. Then,
we study our compiler algorithms in depth. Finally, we ex-
amine architectural support for our pre-execution threads.

6.1 Methodology
To evaluate compiler-based pre-execution, we generate

pre-execution code for several applications. First, we ac-
quire cache-miss and loop iteration count profiles using our
profiler. Then, our compiler performs program slicing anal-
ysis, thread initiation scheme selection, and pre-execution
code generation following the algorithms described in Sec-
tions 3 and 4. To reduce pre-execution overhead, our com-
piler only considers loops whose aggregate cache-miss counts
exceed 3% of the total cache misses simulated when select-
ing pre-execution regions (i.e., when using the algorithm in
Figure 5a). All profile runs and compiler analyses are per-
formed automatically, without any manual intervention.

Table 1 lists the 13 applications used in our study. Un-
fortunately, there are 5, 10, and 8 applications from the
SPECInt, SPECfp, and Olden suites, respectively, that we
could not study. One SPECInt and all 10 SPECfp remain-
ing codes are not written in C. Of the other SPECInt codes,
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Figure 8: Normalized execution time broken down into busy, overhead, and memory stall components. The “NP”

and “PX” bars show performance for no pre-execution and with pre-execution, respectively.
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256.bzip2
175.vpr
300.twolf
254.gap
197.parser
181.mcf
164.gzip
183.equake
188.ammp
179.art
177.mesa
mst
em3d

SPECInt
   2000

 SPECfp
   2000

  Olden

     186,166,461
     364,172,593
     124,205,119
     147,924,013
     245,292,554
12,149,459,578
     162,221,430
  2,570,651,646
  2,439,723,993
12,899,865,395
     262,597,285
     183,274,940
       53,331,921

123,005,773
130,044,367
111,068,899
127,932,004
137,427,886
137,280,363
135,946,580
  21,850,552
129,357,604
113,811,999
  52,683,249
  24,361,256
108,341,604

reference
reference
reference
reference
reference
reference
reference
reference
reference
reference
reference
1024 nodes
20K nodes

3
3
6
1
4
1
1
1
3
7
1
1
1

  Suite  Name  Input FastFwd Sim PXR

Table 1: Benchmark characteristics.

two could not be processed by the original Unravel tool, one
could not be processed by SUIF, and one performs system
calls not supported by SimpleScalar. All 8 remaining Olden
codes perform recursive tree traversals which our compiler
does not analyze. In Table 1, the column labeled “Input” re-
ports the inputs used to run each application. The next two
columns, labeled “FastFwd” and “Sim,” specify the number
of skipped and simulated instructions, respectively, in our
simulation regions. Both profile and data collection runs use
the same simulation regions; hence, our results do not ac-
count for discrepancies between profile and actual program
inputs. Finally, the last column, labeled “PXR,” reports
the number of pre-execution regions our compiler identifies
based on the cache-miss profiles. There are 33 in all.

We run our compiler-generated pre-execution threads on
the SMT simulator from [15], which is derived from Sim-
pleScalar’s out-of-order processor model [3]. Our simula-
tor uses the same functional unit, register renaming, branch
predictor, and cache models provided by SimpleScalar. In
addition, it has been augmented to model SMT’s multiple
hardware contexts. The program counter, register map, and
branch predictor tables have been replicated; all other struc-
tures are shared between contexts. Also, the issue logic se-
lects instructions from one or more threads per cycle, using
the ICOUNT fetch policy from [22]. Finally, the ISA sup-

Processor
Pipeline:

8-way issue SMT processor with 4 hardware contexts;
Instruction fetch queue = 32 entries; Load-store queue = 64 entries;
RUU size = 128 entries; 8 integer, 4 floating-point functional units;
Latency - int add = 1 cycle; int mult = 3 cycles; int div = 20 cycles;
                 fp add = 2 cycles; fp mult = 4 cycles; fp div = 12 cycles;

Branch
Predictor:

Gshare predictor = 2K entries; Return of stack = 8 entries;
Branch target buffer = 2K entries, 4-way set-associative;

Memory
Hierarchy:

Split L1 I & D cache: 32KB, 2-way set-associative, 32 byte block;
Unified L2 cache: 1MB, 4-way set-associative, 64 byte block;
L1 hit time = 1 cycle; L2 hit time = 10 cycles;
Main memory access time = 122 cycles;

Table 2: SMT simulator settings.

port described in Section 5.2 has been provided. Table 2
reports the simulator settings used for our experiments.

6.2 Baseline Pre-Execution Performance
Figure 8 presents the performance of our compiler-based

pre-execution technique. We report execution time with-
out pre-execution, labeled “NP,” and with pre-execution,
labeled “PX,” broken down into three components. “Busy”
is the execution time without pre-execution assuming a per-
fect data memory system (e.g., all D-cache accesses com-
plete in 1 cycle whereas I-cache accesses work normally).
“Overhead” is the incremental increase in execution time
over “Busy” due to pre-execution, again on a perfect data
memory system. “Mem Stall” is the incremental increase
in execution time over “Busy”+“Overhead” assuming a real
memory system. All times are normalized against the “NP”
bars.

Our compiler-based pre-execution technique reduces ex-
ecution time for 9 out of 13 applications. Execution time
is reduced between 2% and 47%, providing a 22.7% reduc-
tion on average for all 9 applications. Of the remaining 4
applications, 2 do not receive any gain, and 2 experience a
degradation in performance by 7.5% on average. Overall,
our technique delivers an average speedup of 17.0% across
all 13 applications.
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Figure 11: Performance impact of program slicing and prefetch conversion. The “P” bars show pre-execution alone,

the “PS” bars show pre-execution with slicing but without prefetch conversion, and the “PX” bars show pre-execution

with both program slicing and prefetch conversion.

To provide more insight, Figure 9 reports cache-miss cov-
erage. The “NP” bars in Figure 9 break down the L1 cache
misses without pre-execution into misses incurred outside
of pre-execution regions, labeled “Non-Region,” misses sat-
isfied from the L2 cache, labeled “L2-Hit,” and misses to
main memory, labeled “Mem.” The “PX” bars show the
same three components, but in addition show those cache
misses that are fully or partially covered by pre-execution,
labeled “Full” and “Partial,” respectively.

Our compiler effectively covers cache misses for VPR,
GAP, MCF, EQUAKE, AMMP, ART, MST, and EM3D,
converting 84.9% of the main thread’s misses into fully or
partially covered misses. For BZIP2, TWOLF, and GZIP,
coverage is lower, 36.5%, and for PARSER and MESA, cov-
erage is only 6.9%. Three factors contribute to reduced cov-
erage. First, our compiler does not consider loops with fewer
than 3% of the total cache misses. This is responsible for
the “Non-Region” components in Figure 9, which are par-
ticularly severe in PARSER and MESA. Second, some mem-
ory references are pre-executed late, issuing after the main
thread has already suffered the cache miss. Pre-execution
threads require a few loop iterations to get ahead of the main
thread, so loops with small iteration counts are vulnerable
to such late pre-execution. This factor accounts for some
uncovered misses in BZIP2, VPR, and TWOLF.

The third factor contributing to reduced cache-miss cov-
erage is incorrect pre-execution code resulting from store
removal or speculative loop parallelization. Section 3.2 al-
ready discussed the correctness issues regarding store re-
moval. In speculative loop parallelization, our compiler
performs data dependence analysis on loop induction vari-
ables only (see Section 4.1); hence, sometimes we mistak-
enly parallelize loops containing loop-carried dependences
through other variables. Although our compiler’s specula-
tive transformations cannot compromise main-thread cor-
rectness, they may prevent pre-execution threads from faith-
fully mimicking the main thread’s memory reference stream,
reducing cache-miss coverage. Out of 33 pre-execution re-

gions, we found pre-execution code failed to cover some
cache misses in only 3 regions due to either store removal
or speculative loop parallelization (these occurred in VPR,
MCF, and GZIP).

Why are speculative transformations successful most of
the time? Control and data flow leading up to cache-missing
memory references frequently involve loop induction vari-
ables. (For example, the memory addresses for references
“1” and “4” in Figure 3 are computed via complex control
and data flow rooted at the induction variables from loops
“7” and “8”). Hence, preserving the integrity of computa-
tions involving induction variables is a necessary (though
not sufficient) condition for high cache-miss coverage. Since
store removal only removes stores to global or heap vari-
ables, it is unlikely to remove anything critical for comput-
ing induction variables which are typically kept in registers
or on the stack. Furthermore, since our loop parallelization
techniques perform induction variable analysis, we usually
capture the necessary control and data flow for computing
induction variable values correctly.

6.3 Evaluating Program Slicing
Having quantified the performance gains of compiler-

based pre-execution, we now study the compiler algorithms
in greater detail to understand how each individually con-
tributes to overall performance. This section examines pro-
gram slicing. We begin our study by measuring the num-
ber of instructions program slicing removes. Figure 10 re-
ports normalized dynamic instructions executed in the main
thread (“M” bars) and pre-execution threads (“P” bars),
broken down into compute and overhead components. The
latter reports parameter passing, thread initiation, and syn-
chronization instructions. Only instructions executed within
pre-execution regions are counted, and busy-wait instruc-
tions executed by pre-execution threads are omitted.

Without slicing, the main thread and pre-execution
threads should execute the same number of instructions (ex-
cluding overhead). Comparing the compute components in



the “M” and “P” bars from Figure 10, we see pre-execution
threads execute 33.8% fewer instructions than the main
thread across 12 applications, due to program slicing. In
one case (GZIP), pre-execution threads perform more com-
putation than the main thread. This is due to incorrect
pre-execution code generated by speculative loop paralleliza-
tion (see Section 6.2). If we include overhead instructions,
we see pre-execution threads execute 29.7% fewer instruc-
tions than the main thread across 10 applications. In MCF
and MST, pre-execution threads execute more instructions
than the main thread due to high overhead associated with
passing arguments and forking threads. Overall, Figure 10
shows program slicing can effectively reduce computation
performed in pre-execution threads.

Although program slicing effectively removes non-critical
instructions, the bottom line is the impact this has on ap-
plication performance. Figure 11 addresses this important
issue. In Figure 11, we apply optimizations incrementally
to the 9 applications our compiler speeds up, and measure
the change in performance provided by each optimization.
The “P,” “PS,” and “PX” bars report pre-execution per-
formance without any optimizations, with program slicing
only, and with both program slicing and prefetch conver-
sion, respectively. Note, store removal is always applied
(except for “NP”); otherwise, pre-execution threads would
crash the main thread. Also, the Serial scheme is never
used in “P” and “PS” since pre-execution regions always
contain blocking loads for these experiments (DoAll and
DoAcross schemes are selected instead).

In 5 out of the 9 applications, program slicing does not
play a role in improving performance. Figure 11 shows the
entire speedup for BZIP2, TWOLF, MCF, EQUAKE, and
MST is achieved when going from “NP” to “P”; no addi-
tional performance gain is achieved by program slicing and
prefetch conversion. In contrast, half of the performance
gain in VPR and AMMP, and all of the performance gain
in ART and EM3D occur when going from “P” to “PX.”
Surprisingly, however, it is the combination of prefetch con-
version with program slicing that accounts for most of this
gain. While program slicing alone speeds up VPR, all of the
gain in AMMP, ART, and EM3D is attributable to prefetch
conversion (i.e., going from “PS” to “PX”). In these appli-
cations, the pre-execution threads cannot tolerate all of the
memory stalls; hence, by reducing the frequency of stalls
in each pre-execution thread, prefetch conversion improves
performance. From this data, we conclude program slicing
is important, especially since it enables prefetch conversion.

6.4 Evaluating Pre-Execution Initiation
This section evaluates our pre-execution thread initia-

tion schemes. In Figure 12, we study four pre-execution
regions from AMMP, EQUAKE, EM3D, and MST, each
with different blocking load attributes and induction vari-
able types. In AMMP, our compiler removes all block-
ing loads, while in EQUAKE, EM3D, and MST, blocking
loads remain after program slicing. Furthermore, AMMP,
EQUAKE, and EM3D have affine induction variables, while
MST has a pointer-chasing induction variable. For each
pre-execution region, we apply the Serial, DoAll, and
DoAcross schemes, labeled “SE,” “DA,” and “DX,” re-
spectively, and compare their performance. The schemes
selected by our compiler appear in boldface.

Figure 12 shows three results. First, choosing the right
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thread initiation scheme has a first-order impact on pre-
execution performance. In Figure 12, the best scheme for
each pre-execution region outperforms the worst scheme by
25.9%, 39.8%, 51.3%, and 40.6% for AMMP, EQUAKE,
EM3D, and MST, respectively.

Second, Figure 12 confirms the best scheme depends
on pre-execution region type, as discussed in Sections 4.1
and 4.2. For AMMP, Serial is the best. Since there are no
blocking loads, Serial has the same ability to get ahead of
the main thread as the other schemes, but has lower over-
head because it initiates fewer threads. For EQUAKE and
EM3D, DoAll is the best. Serial is ineffective because
the blocking loads prevent a lone pre-execution thread from
getting ahead of the main thread. Furthermore, DoAll
outperforms DoAcross since DoAll has no inter-thread
communication once threads are initiated. In DoAcross,
communication (and synchronization) must occur each loop
iteration to pass the induction variable, limiting the speed
of pre-execution threads. Finally, for MST, DoAcross is
the best. Since the induction variable is pointer chasing,
the DoAll scheme cannot be applied. And Serial is inef-
fective due to the blocking loads.

The third and final result is that our compiler picks the
best scheme for all cases in Figure 12, thus validating the
accuracy of the selection algorithm presented in Section 4.2.

6.5 Architectural Support for Pre-Execution
Thus far, we have evaluated compiler-based pre-execution

assuming only conventional SMT hardware. This section
studies the impact of hardware support for synchronization
on pre-execution performance. We implemented hardware
semaphores that permit single-cycle “P” and “V” operations
to be performed on hardware semaphore registers. Further-
more, we block and resume threads in hardware, replacing



the busy-waiting code used in our software synchronization
(see Section 5.3). Figure 13 compares pre-execution with
software and hardware synchronization primitives, labeled
“PXS” and “PXH” respectively, for 7 applications (for the
remaining 6 applications, there is no difference). All bars are
normalized to the “NP” bars from Figure 8. Figure 13 shows
hardware support improves performance by 4.4%. Across all
13 applications, we find hardware semaphores increase the
overall speedup of pre-execution from 17.0% to 20.4%.

7. CONCLUSION
This paper presents algorithms for creating pre-execution

thread code in a compiler, and prototypes them using the
SUIF framework and Unravel. On a detailed SMT simula-
tor, we show our compiler-generated pre-execution threads
reduce execution time by 22.7% for 9 out of 13 applica-
tions, and delivers an average speedup of 17.0% across all
13 applications. We find these performance gains are due in
part to the fact that cache-miss addresses are frequently de-
rived from induction variables. While our store removal and
loop parallelization transformations are speculative, they
preserve the correctness of induction variable code most of
the time; hence, our pre-execution code correctly generates
addresses for a large number of cache misses.

In studying our algorithms individually, we find program
slicing and prefetch conversion are responsible for half to
all of the performance gains in 4 out of the 9 applications
our compiler speeds up. Moreover, while program slicing is
crucial, its primary value lies in enabling prefetch conver-
sion rather than reducing pre-execution overhead. We also
find careful selection of the pre-execution thread initiation
scheme impacts performance significantly. Our results show
a 25.9-51.3% performance differential between the best and
worst schemes. Fortunately, our compiler chooses the best
scheme in the cases we examined.

We believe our work demonstrates that compilers can ef-
fectively orchestrate pre-execution in SMT processors. At
the same time, we view this paper only as a starting point.
Future work includes improving algorithms to construct
more effective pre-execution threads as well as to detect
when pre-execution is ineffective, developing static analy-
ses to supplement or possibly replace profile information,
and conducting further applications studies.
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