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Abstract

Medical ultrasonic imaging has been utilized in a variety of clinical diagnoses for many years. Recently, because of the

needs of portable and mobile medical ultrasonic diagnoses, the development of real-time medical ultrasonic imaging

algorithms on embedded computing platforms is a rising research direction. Typically, delay-and-sum beamforming

algorithm is implemented on embedded medical ultrasonic scanners. Such algorithm is the easiest to implement at

real-time frame rate, but the image quality of this algorithm is not high enough for complicated diagnostic cases. As a

result, minimum-variance adaptive beamforming algorithm for medical ultrasonic imaging is considered in this paper,

which shows much higher image quality than that of delay-and-sum beamforming algorithm. However, minimum-

variance adaptive beamforming algorithm is a complicated algorithm with O(n3) computational complexity.

Consequently, it is not easy to implement such algorithm on embedded computing platform at real-time frame rate.

On the other hand, GPU is a well-known parallel computing platform for image processing. Therefore, embedded

GPU computing platform is considered as a potential real-time implementation platform of minimum-variance

beamforming algorithm in this paper. By applying the described effective implementation strategies, the GPU

implementation of minimum-variance beamforming algorithm performed more than 100 times faster than the ARM

implementation on the same heterogeneous embedded platform. Furthermore, platform power consumptions,

computation energy efficiency, and platform cost efficiency of the experimental heterogeneous embedded platforms

were also evaluated, which demonstrated that the investigated heterogeneous embedded computing platforms

were suitable for real-time portable or mobile high-quality medical ultrasonic imaging device constructions.

Keywords: Embedded GPU implementation, Medical ultrasonic adaptive beamforming, High-performance

computing

1 Introduction
There are several useful medical imaging modalities for

clinical diagnoses, which are radiography [1], magnetic

resonance imaging [2], nuclear imaging [3], ultrasonic

imaging [4], and computed tomography [5]. Among the

mentioned medical imaging modalities, medical ultra-

sonic imaging is a very common imaging technique

which has been widely applied to a vast range of clinical
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diagnoses for many years [6]. Medical ultrasonic imaging

has overwhelming advantages over other medical imag-

ing modalities, such as real-time imaging at a smooth

video frame rate, high safety without electromagnetic

radiation, and relatively low cost as compared to other

medical imaging modalities [7]. Therefore, medical ultra-

sonic imaging is usually utilized to observe heart move-

ments [8], fetal developments [9], blood flows [10], and

so on. Recently, as the needs for portable and mobile

medical ultrasonic diagnoses increase, the development

of medical ultrasonic imaging algorithms on embedded

computing platforms is a rising research direction. The

key evaluation feature of an embedded medical ultrasonic
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imaging algorithm implementation is its real-time imag-

ing capability. A medical ultrasonic imaging algorithm

can be used for real-world clinical diagnostic applications

only if its implementation can run at a real-time video

frame rate.

Delay-and-sum (DAS) beamforming [6] is the most

widespread imaging algorithm among various medical

ultrasonic imaging algorithms, which is also the easi-

est to implement at real-time frame rate. But the image

quality of DAS algorithm is not high enough for compli-

cated diagnostic cases. On the other hand, high-quality

medical ultrasonic imaging algorithms (e.g., minimum-

variance (MV) adaptive beamforming algorithm [11], syn-

thetic aperture imaging algorithm [12]) provide much

better image quality, as compared to DAS beamforming

algorithm, which can present more anatomical details for

complicated diagnostic cases. For example, Fig. 1 illus-

trates the advantage of MV adaptive beamforming over

DAS beamforming. The example used field II simulator

[13] to generate the simulated imaging input data. Field II

simulator is a widespread tool to generate reliable medical

ultrasonic imaging input data, especially for quantitative

evaluation of the output image quality and verification of

imaging algorithm correctness, which is its major benefit

over real scenario. As shown in Fig. 1, DAS beamform-

ing failed to resolve the two very close point targets at

30-mm imaging depth, making the two points look like

a short line instead. But on the other hand, the two very

close point targets at 30-mm imaging depth were clearly

distinguished usingMV adaptive beamforming algorithm.

However, these high-quality imaging algorithms are

computationally demanding and difficult to implement

in real-time, especially on embedded platforms with lim-

ited computing resources. The real-time implementa-

tion of MV adaptive beamforming is challenging, whose

computational complexity is O(n3) in sequential imple-

mentation [14]. Among various embedded computing

platforms, field-programmable gate arrays (FPGAs) are
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Fig. 1 Results of imaging two very close point targets at different

imaging depths using DAS beamforming algorithm and MV adaptive

beamforming algorithm

good potential development platforms to implement real-

time medical ultrasonic imaging algorithms. However, an

FPGA platform with sufficient computational resources

to implement a regular high-quality medical ultrasonic

imaging algorithm at real-time video frame rate is usually

of high price. Hence, in order to reduce the implemen-

tation cost of a portable or mobile medical ultrasonic

imaging device, alternative high-performance embedded

computing platform with relatively lower implementation

cost is required. As a result, the heterogeneous embed-

ded computing platforms with high-performance graph-

ics processing units (GPUs) and advanced RISC machine

(ARM) processors will be investigated in this paper.

In this paper, the implementation ofMV adaptive beam-

forming algorithm on high-performance embedded GPU

computing platform will be discussed. The implementa-

tion strategies for a high-performance GPU on a hetero-

geneous embedded computing platform will be described,

and the performance of the GPU implementation and

its ARM processor counterpart on the same embedded

computing platform will be evaluated. The performance

features evaluated in this paper will include the algorithm

computing speed, the computation energy efficiency, and

the platform cost efficiency. The following section will

interpret the detailed sequential calculation steps of the

medical ultrasonic MV adaptive beamforming algorithm.

Then, the implementation design of the MV adaptive

beamforming algorithm on the embedded GPU comput-

ing platform will be described in Section 3. Section 4

will illustrate the experimental setup and the performance

evaluations of the embedded implementations. Finally, the

paper concludes in Section 5.

2 Medical ultrasonic adaptive beamforming

sequential calculation
The adaptive beamforming algorithm investigated in this

paper is based on the principles of medical ultrasonic MV

adaptive beamforming algorithm described in [11, 14];

the MV adaptive beamforming algorithm is implemented

according to the calculation steps illustrated in Fig. 2.

The MV adaptive beamforming algorithm starts with

the input matrices which contain unaligned ultrasonic

echo signals from a series of ultrasonic echo channels.

The number of the ultrasonic echo channels is denoted as

M, which is also called the receive aperture of the ultra-

sonic echo signals. In order to obtain the aligned (M × 1)

echo signal vector echo(ps) for a specific image pixel ps,

the algorithm calculates the delay information of all the

ultrasonic echo channels for the specific image pixel.

In the practical MV adaptive beamforming implementa-

tion, sub-aperture averaging is a critical technique which

helps to increase the image quality. When sub-aperture

averaging is applied, the receive aperture M is segmented

into a set of sub-apertures. If the size of the sub-aperture
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Input matrices containing 

unaligned echo signals from a 

series of ultrasonic echo channels

Algorithm input

Calculate the delays in the 

ultrasonic echo channels for a 

specific pixel, obtain an aligned 

echo signal vector echo(ps)

Apply sub-aperture averaging to 

echo(ps), obtain echosubk(ps) 

(k=0, 1, …, M-L) 

Calculate covariance matrix for the 

specific pixel, obtain Covar(ps)

Calculate adaptive weight vector 

for the specific pixel, obtain w(ps)

Calculate amplitude estimate value 

for the specific pixel, obtain v(ps)

Algorithm output
Fig. 2Medical ultrasonic MV adaptive beamforming algorithm

calculation steps (Calculation steps repeat until all pixel amplitude

estimate values are obtained)

is L, which means there are L consecutive ultrasonic echo

signal channels within the sub-aperture, (M − L + 1)

sub-apertures are constructed. As a result, the aligned

ultrasonic echo signal vector echo(ps) is segmented into

(M − L + 1) sub-aperture echo signal vectors

echosubk(ps)(k = 0, 1, . . . ,M − L), where echosubk(ps)

is a (L × 1) vector of input ultrasonic echo signals in

kth sub-aperture, i.e., echosubk(ps) is the assemble of

kth to (k + L − 1)th elements of echo(ps) vector. Then,

the covariance matrix calculation with sub-aperture

averaging for a specific image pixel is expressed as

Covar(ps) =

∑M−L
k=0 echosubk(ps)echo

H
subk(ps)

M − L + 1
. (1)

The calculation of adaptive apodization weight vector

is conducted after the covariance matrix Covar(ps) is

obtained, which is calculated as

w(ps) =
Covar−1(ps)a

aHCovar−1(ps)a
, (2)

where a is a steering vector with all ones, which is because

the ultrasonic echo signals used for covariance matrix

calculation are already delayed and aligned.

Finally, when the adaptive apodization weight vector

w(ps) is ready, the amplitude estimate value of the specific

image pixel ps is obtained by

v(ps) =
1

M − L + 1

M−L∑

k=0

wH(ps)echosubk(ps). (3)

The pixel amplitude estimate value v(ps) is the output of

the MV adaptive beamforming algorithm. The calculation

steps repeat until all the pixel amplitude estimate values of

the whole image are obtained.

3 Implementation design on embedded GPU

computing platform

3.1 Heterogeneous embedded computing platform

Although MV adaptive beamforming algorithm outputs

high-quality medical ultrasonic images, it is computa-

tionally demanding. The high computational complex-

ity of MV adaptive beamforming algorithm hinders MV

algorithm being implemented in real-time on conven-

tional embedded computing platforms, such as conven-

tional ARM processors. Therefore, the implementation of

MV adaptive beamforming algorithm on heterogeneous

embedded computing platform with high-performance

GPU is explored in this paper, so as to validate the real-

time imaging capability of MV adaptive beamforming

algorithm on embedded platforms.

The symbolic architecture modules of the heteroge-

neous embedded computing platform is illustrated in

Fig. 3. As shown in Fig. 3, the ARM processors and the

embedded GPU are within one single embedded pro-

cessing chip, as well as the internal memory and the

external memory modules. There are plenty of periph-

erals on the heterogeneous embedded computing plat-

form, such as camera input module, display output mod-

ule, USB, GPIO, and other common peripheral connec-

tor modules. The heterogeneous embedded computing

platforms investigated in the MV adaptive beamforming
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Fig. 3 Heterogeneous embedded computing platform architecture

modules

algorithm implementation experiments and evaluations

are shown in Section 4, which are the products of Nvidia

Corporation.

3.2 Implementation strategies for embedded GPU

Before starting the implementation design ofMV adaptive

beamforming algorithm on the embedded GPU comput-

ing platform, the sequential MV adaptive beamforming

code execution time profiling was carried out, so as to

determine which parts were the time-consuming parts of

the sequential algorithm code. The execution time pro-

filing result is shown in Fig. 4. As seen from Fig. 4, the

input data delay calculation and the covariance matrix

calculation consumed most of the execution time of the

sequential MV code. As L/M increased, the percentage

of execution time used for covariance matrix calculation

and adaptive weight calculation increased, but the per-

centage of execution time for input data delay calculation

decreased. Such changes conformed to the computational

complexities of different calculation steps. For example,

the input data delay calculation had a computational

complexity of O(n), the covariance matrix calculation

had a computational complexity of O(n2), and the adap-

tive weight calculation had a computational complexity

of O(n3). Based on the analysis of the sequential MV

code, the code parts with high computational complexity

or high percentage of execution time should be imple-

mented on the GPU platform. As a result, also consid-

ering reducing the hardware/software communications

between GPU and ARM processor, all parts of the MV

adaptive beamforming algorithm were decided to imple-

ment on the GPU platform.

In order to effectively utilize the high-performance

embedded GPU in the heterogeneous embedded comput-

ing platform to implement the MV adaptive beamforming

algorithm efficiently, the following implementation strate-

gies are applied.

3.2.1 Allocation of GPU computing resources

The first implementation strategy is about the allocation

of the GPU computing resources. According to the GPU

compute unified device architecture (CUDA) program-

ming principles, the GPU CUDA programming model

consists of three programming hierarchy levels, i.e., GPU

compute grid, GPU compute block, and GPU compute

thread. At the top level of the programming hierarchy, all

the algorithm computations are executed within one GPU

compute grid. Meanwhile, at the second level of the pro-

gramming hierarchy, the program tasks are allocated into

a set of GPU compute blocks. The computation in dif-

ferent GPU compute blocks can be executed in parallel.

Besides, at the third level of the programming hierarchy,

the computational workloads are assigned to a series of

GPU compute threads. The programs in different GPU

compute threads are executed simultaneously, while the

program instructions within one GPU compute thread are

executed sequentially.

Fig. 4 Sequential MV adaptive beamforming code execution time profiling. a L/M = 1/4. b L/M = 1/2
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Such hierarchical GPU CUDA programming model can

be applied to the medical ultrasonic image formation pro-

cess which utilizes MV adaptive beamforming algorithm.

In the medical ultrasonic image formation process, the

image pixel amplitude estimate values of the whole image

are calculated following MV adaptive beamforming algo-

rithm calculation steps as described in Section 2. The

image pixels are organized in rows and columns, which

can be mapped to the GPU compute grid with a two-

dimensional GPU compute block allocation, as shown in

Fig. 5. As a result, each GPU compute block is responsible

to the computation of one image pixel amplitude estimate

value calculation. The program steps used to calculate the

image pixel amplitude estimate value are executed inside

one block via the simultaneous computation of the parallel

threads within the block. Finally, the sequential opera-

tions of the program, which cannot be executed at the

same time, are computed inside the threads. The best

practices of the GPU block size and the GPU thread size

rely on the arrangement of the computational resources

on the embedded computing platform according to the

computational problem size.

3.2.2 Overall design overview

Referring to the allocation of GPU computing resources

illustrated in Fig. 5, the high-level design block diagram

of the MV adaptive beamforming algorithm for GPU

implementation is demonstrated in Fig. 6. Based on the

overall design block diagram, the fine-grained paralleliza-

tion of the algorithm implementation was conducted on

the embedded GPU.

In the design, the MV beamforming implementation

tookM receive channels as its inputs to generate an ampli-

tude estimation of one image pixel. The input data from

the ultrasonic echo receive channels was also known as

pre-beamform data before the beamforming process, and

the output pixel value was also known as post-beamform

data after the beamforming process.

Each receive channel streamed input echo samples to

the delay calculation block, forming an M × 1 vector of

delayed echo samples as its output. The purpose of the

delay calculation block was to align the input ultrasonic

echoes based on the delay information among the receive

channels. The delayed echo vector must subsequently be

multiplied by the adaptive apodization weights. Hence,

while the adaptive weight calculation block was calculat-

ing the adaptive weights, the echo vector was stored in the

data storage buffer for later usage, which was built with

GPU shared memory. The purpose of data storage buffer

was to let the delayed echo vector wait until the adaptive

weight calculation block finished its workload.

Finally, the pixel amplitude estimation block outputs the

final pixel value. It first multiplied (M− L+ 1) segmented

delayed echo vectors echosubk(ps)(k = 0, 1, . . . , M − L)
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Fig. 6 Design block overview of MV adaptive beamforming algorithm on GPU computing platform

and their adaptive weights. The results of these (M − L +

1) pixel value estimates were then averaged to obtain the

final pixel amplitude value output.

3.2.3 Adaptive weight calculation parallelization

In order to implement a highly parallelizedMV algorithm,

probability theories and linear algebra theories were used

to optimize the detailed implementation and reduce the

computation operations. The integration of the mathe-

matical theories into the implementation will be described

in the following three parts.

The adaptive weight calculation block in Fig. 6 performs

the core computation of the MV adaptive beamforming

algorithm. It consists of three major units: covariance

matrix calculation, linear equation solver, and final weight

calculation. Here, the inner working principles of these

blocks will be elaborated.

Covariance matrix calculation Derived from (1), the

covariance matrix element Covarij(ps) is calculated as

Covarij(ps) =

∑M−L
k=0 echo(i+k)(ps)echo(j+k)(ps)

M − L + 1
, (4)

where echo(i+k)(ps) is the (i + k)th element in echo(ps)

vector. As the input digital echo data are real numbers, the

covariance matrix is a symmetric matrix [15], which has

the following property:

CovarT (ps) = Covar(ps). (5)

As a result, only the diagonal elements and the lower (L)

or upper (U) triangular matrix elements of the covariance

matrix need to be calculated. Therefore, L×(L + 1)/2 cal-

culations are needed in stead of L×L calculations. Taking

the advantage of the symmetry makes the covariance

matrix implementation nearly twice faster.

Linear equation solver As shown in the weight calcu-

lation (2), Covar−1(ps) has to be calculated. But also

shown in (2), every Covar−1(ps) is multiplied by a vec-

tor a. As a result, a linear equation solver which outputs

Covar−1(ps)a can take over the places of the matrix

inverse unit and the matrix multiplication unit. The solver

is used to solve a system of linear equations like:

Covar−1(ps) y = a. (6)

Therefore, using a system solver reduces extra opera-

tion time and storage resources. The covariance matrix

has positive-semidefinite and symmetric properties [15],

hence, Cholesky decomposition [16] is applicable to this

weight solver in regular MV algorithm. Cholesky decom-

position is derived from Gaussian elimination, but halves

the decomposition operations and is more stable than

LU decomposition which is the matrix form of Gaussian

elimination. LDLT decomposition form of the Cholesky

decomposition was adopted.

Since the weight solver was iterative, the iterations can-

not be parallelized. But inside the iterations, paralleliza-

tion was achievable. For example, the Lmatrix was formed

column by column and only one column in one itera-

tion, but the element calculations within each column of

L could be parallelized.

Final weight calculation The final step of the weight

calculation is to calculate

w(ps) =
y

aHy
. (7)

As a is a vector of ones, aHy can be calculated as

aHy =

L∑

n=1

yn. (8)

Therefore,

w(ps) =
y

∑L
n=1 yn

. (9)

As a result, the final weight calculation step can be

parallelized.

3.2.4 Assignment of GPUmemory access

The memory access strategy of GPU implementation has

an important impact on the overall GPU computational
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speed. There are basically three types of memory modules

inside the GPU, i.e., global memory, shared memory, and

register files. The lifetime of the data in the three mem-

ory types is associated to the GPU computing resources

respectively. The lifetime of the data in the global memory

is associated to the GPU compute grid, the lifetime of the

data in the shared memory is associated to the GPU com-

pute block, and the lifetime of the data in the register files

is associated to the GPU compute thread.

These three types of memory modules are fabricated

according to different architectural hierarchies. The reg-

ister files reside right next to the GPU processing cores,

the shared memory locates in a place with a farther dis-

tance to the GPU processing cores, and the global memory

locates farthest to the GPU cores. The distance to the GPU

cores determines the access speed of the specific mem-

ory type. As a result, the access speed of the register files

is the fastest, the access speed of the shared memory is

slower than that of the register files, and the access speed

of the global memory is the slowest among the three types

of memory modules. However, on the other hand, the

memory size of a specific memory type is inversely pro-

portional to its memory access speed. Thus, the size of

the global memory is the largest, the size of the register

files is the smallest, and the size of the shared memory

is between the size of the global memory and the size

of the register files. Therefore, in a GPU program mem-

ory assignment, small-size and frequently-used variables

can be stored in the register files, while large amount

of data should be stored in the global memory. Further-

more, the shared memory is usually used for the shared

data space utilized in the computation among the GPU

compute threads within a specific GPU compute block.

The GPU memory access assignment of the implemen-

tation design is illustrated in Fig. 7. As shown in Fig. 7,

the utilization of the slowest global memory was restricted

to store input and output data of the beamforming pro-

cess, i.e., pre-beamform data and post-beamform data.

As a result, the communications between ARM and GPU

happen only at the beginning and at the end of the MV

beamforming algorithm. The faster shared memory was

used as storage of intermediate results during the beam-

forming process. The fastest register files were assigned to

hold the temporary results within beamforming steps.

4 Implementation evaluations and discussions

4.1 Experimental setup and simulated scenario

The experimental heterogeneous embedded computing

platforms used in our experiments were Jetson TX1 and

TK1 evaluation embedded platforms from Nvidia Corpo-

ration. Both evaluation boards utilized similar heteroge-

neous embedded computing platform architecture mod-

ules as illustrated in Fig. 3. The major differences between

the two evaluation boards were the different GPUmodule

and the different ARM processor module. TX1 platform

was using a GPU module of Maxwell GPU architecture

and a quad-core Cortex-A57 ARM processor [17], while

TK1 platform was using a GPU of Kepler GPU architec-

ture and a quad-core Cortex-A15 ARM processor [18].

The computational capabilities and the power consump-

tion requirements of the two heterogeneous embedded

computing platforms were different, which will be shown

in Section 4.2.

The experiments in this paper used simulated scenario

demonstrated in Fig. 8a to obtain the unaligned medical

ultrasonic echo signals for the algorithm implementa-

tion. The simulation tool used for the simulated scenario

construction was field II simulation tool. Figure 8a illus-

trates the constructed imagingmodel for the experiments.

There were four cysts in the simulated imaging model,

centering at 15-, 25-, 35-, and 50-mm axial imaging

depths, respectively. The diameters of the cysts were 6,

6, 8, and 10 mm, respectively. A sample output image

of the experiments for the MV adaptive beamforming

algorithm was shown in Fig. 8b, which presented the

high image quality of the MV adaptive beamforming

algorithm and demonstrated the implementation correct-

ness of the MV adaptive beamforming algorithm imple-

mentation on the heterogeneous embedded computing

platforms.
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Fig. 7 GPU memory assignment of the implementation design
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Fig. 8 Simulated scenario used in the experiments for MV adaptive beamforming algorithm implementation. a A simulated cyst imaging model.

bMV adaptive beamforming output image

In order to mimic the real-world medical ultrasonic

imaging applications, the Field II simulation tool simu-

lated a 128-element medical ultrasonic transducer with

0.3048-mm element pitch. The pulse repetition rate was

set as 5 KHz and the sampling rate was 40 MHz. These

parameter settings referred to the real-world medical

ultrasonic transducer characteristics. During the simu-

lation of the medical ultrasonic imaging process, the

simulation program first simulated the emission process

of the medical ultrasonic imaging and then simulated

the reception process of the medical ultrasonic imaging.

The output of the simulation program was the expected

unaligned medical ultrasonic echo signal matrices which

were adopted as the input for theMV adaptive beamform-

ing algorithm implementation.

4.2 Evaluations and discussions

4.2.1 Algorithm computing speed

The computing speed evaluation of the MV adaptive

beamforming algorithm implementation comprised (a)

the giga floating-point operations per second (GFLOPS),

(b) the output image frame rate of the algorithm

implementation, and (c) the computational speedup of the

embedded GPU implementation over its ARM processor

counterpart. The algorithm computing speed evaluation

was conducted on Jetson TX1 heterogeneous embedded

development board. The evaluation test cases included

various M and L combinations. While doing the evalu-

ation tests, the value of M was first determined, which

was chosen as 16, 32, 64, and 128, respectively. Then,

the value of L was chosen from 1 to M/2. Therefore,

there were 8 M and L combinations when M is 16, 16

M and L combinations when M is 32, 32 M and L com-

binations when M is 64, and 64 M and L combinations

when M is 128. In the experiments, as the number of

image pixels, 127 × 1000 pixels for one image, did not

change during the tests, the number of the GPU com-

pute blocks were not changed in the experiments. But the

number of the GPU compute threads, a.k.a. GPU compute

thread block size, was varying during the experiments.

The algorithm computing speed of various GPU com-

pute thread block size was tested so as to find the value

of the GPU compute thread block size in the best prac-

tices. The GPU compute thread block size test cases cov-

ered the numbers from 32 to 1024 which were multiples

of 32.

As the values of M and L increased, the computational

operations of the MV adaptive beamforming algorithm

increased dramatically. Therefore, the larger the values of

M and L, the longer the algorithm computational time

spent for the implementation. However, the GFLOPS of

the implementation might increase when the values of M

and L increased. In the experiments, the highest GFLOPS

throughput 88.98 GFLOPS was achieved in the case that

M was 128, L was 16, and the GPU compute thread block

size was 32, as shown in Fig. 9 using the parallel coor-

dinate plots. In the parallel coordinate plots illustrated

in Fig. 9, the leftmost coordinate represented the value

of M, the center coordinate represented the value of L,

and the rightmost coordinate represented the GFLOPS

throughput for the specific values ofM and L. Apart from

the GFLOPS throughput, the output image frame rate of
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Fig. 9MV adaptive beamforming algorithm computational GFLOPS throughput of embedded GPU implementation (variousM and L)

the MV adaptive beamforming algorithm implementation

was calculated as:

Frame rate =
1

Timeframe

=
1

Timepixel × Numberpixel
,

(10)

where Timeframe was the algorithm computational time to

obtain one frame of image, Timepixel was the algorithm

computational time to obtain one image pixel amplitude

estimate value, and Numberpixel was the number of the

pixels in one image frame.

In the experiments,the shortest algorithm computa-

tional time was 0.017 s in the case that M was 16, L was

2, and the GPU compute thread block size was 32. Thus,

the highest output image frame rate of the MV adaptive

beamforming algorithm implementation was 1/0.017 =

58.82 frame/s (fps). Since the number of image pixels was

127 × 1000 = 127, 000, the fastest pixel computation

time for the MV adaptive beamforming algorithm was

0.017/127, 000 = 1.34×10−7 s. Therefore, when the num-

ber of the pixels Numberpixel changed, the output image

frame rate changed, which was expressed as the follow-

ing: Frame rate = 1/(1.34 × 10−7
× Numberpixel). The

output image frame rate was higher than those in the

experiments when Numberpixel was smaller than 127,000,

but the output image frame rate was lower than those

in the experiments when Numberpixel was larger than

127,000. Therefore, the real-time imaging capability of

the MV adaptive beamforming algorithm implementation

was not only associated with Timepixel but also associated

with Numberpixel. In the experiments with Numberpixel =

127, 000, many test cases for various M and L combi-

nations achieved real-time video imaging frame rate for

medical ultrasonic imaging, which was higher than 20 fps.

The computational speedup of the embedded GPU

implementation over its ARM processor counterpart

was another important evaluation feature of the MV

adaptive beamforming algorithm implementation on the

high-performance heterogeneous embedded computing

platform. The overall speedup results of the GPU imple-

mentation over the single-core ARM processor imple-

mentation for variousM and L combinations were shown

in Fig. 10. As seen from Fig. 10, the highest speedup in

all the conducted experiments was 102.7 times, also in the

case that M was 128, L was 16, and the GPU compute

thread block size was 32. The dark blue lines in Fig. 10

represented the highest speedup cases for the specific

values of M. For other specific values of M, the high-

est speedup for M = 64 was 74.4 times when L = 16,

the highest speedup for M = 32 was 50.1 times when

L = 8, and the highest speedup for M = 16 was

31.0 times when L = 7. Therefore, as seen from the

results, asM decreased, the fraction of L overM increased

when the highest speedup was achieved for specificM. In

our experiments, L/M increased from 1/8 to nearly 1/2

when M decreased from 128 to 16. The reason of this
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Fig. 10MV adaptive beamforming algorithm computational speedup of embedded GPU implementation over single-core ARM processor

implementation (variousM and L)

trend was because of the GPU compute blocks’ matching

with the GPU hardware compute cores. When highest

speedup occurred, the GPU compute blocksmatchedwith

the GPU hardware compute cores’ alignment. Further-

more, the computational speedup increased when the

computational problem size increased, which means that

the high-performance heterogeneous embedded comput-

ing platform was more efficient when the computational

workload was larger. This was because in our implemen-

tation, the hardware/software communications were not

frequent. The communications between GPU and ARM

only occurred at the beginning and the end of the algo-

rithm calculation. Hence, as the computational problem

size increased, the GPU exhibited more powerful comput-

ing capability.

4.2.2 Computation energy efficiency

The computation energy efficiency evaluation of the

MV adaptive beamforming algorithm implementation

included the power consumptions of the embedded com-

puting platforms, and the performance-energy efficiency

of the MV algorithm implementation. The performance-

energy efficiency of the algorithm implementation was

calculated as:

Performance − energy efficiency =

Computational performance

Consumed power
,

(11)

where Computational performance could be any of the

algorithm computing performance evaluation features

discussed in Section 4.2.1, but GFLOPS and image out-

put frame rate of the MV adaptive beamforming algo-

rithm were usually adopted. Besides, Consumed power

was defined as the average power consumption while the

embedded computing platform was fully-loaded for the

computation.

Two heterogeneous embedded computing platforms,

Jetson TX1 and TK1 evaluation boards, were evaluated

in the experiments. The power consumptions of idle

and fully-loaded embedded computing platforms were

recorded to evaluate whether the heterogeneous embed-

ded computing platforms were suitable to be used as

portable or mobile diagnostic devices for medical ultra-

sonic imaging. Table 1 showed the power consumption

records for both heterogeneous embedded evaluation

boards. As seen from Table 1, the average idle power

consumption of TX1 board was lower than that of TK1

board and the average fully-loaded power consumption

Table 1 Average power consumptions of idle and fully loaded

embedded platforms

Platform Idle power (Watt) Fully loaded power (Watt)

Jetson TX1 2.1 12.2

Jetson TK1 3.3 9.3
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of TX1 board was higher than that of TK1 board, which

demonstrated the dynamic power saving scheme of TX1

development board. The power consumption measure-

ments demonstrated that the heterogeneous embedded

GPU platforms can be used in the portable or mobile

diagnostic device constructions.

Referring to (11) and the results discussed in

Section 4.2.1, the highest performance-energy efficiency

of Jetson TX1 heterogeneous embedded comput-

ing platform could be calculated as 88.98/12.2 =

7.29 GFLOPS/Watt or 58.82/12.2 = 4.80 fps/Watt.

Besides, the highest operation calculation throughput of

the MV adaptive beamforming algorithm on Jetson TK1

heterogeneous embedded computing platform was 37.52

GFLOPS in the case that M was 128, L was 32, and the

GPU compute thread block size was 128, and the highest

output image frame rate of the MV adaptive beamform-

ing algorithm on Jetson TK1 heterogeneous embedded

computing platform was 17.24 fps in the case that M was

16, L was 1, and the GPU compute thread block size was

64. As a result, the highest performance-energy efficiency

of Jetson TK1 heterogeneous embedded computing plat-

form was calculated as 37.52/9.3 = 4.03 GFLOPS/Watt or

17.24/9.3 = 1.85 fps/Watt. Therefore, the performance-

energy efficiency results of the two heterogeneous

embedded computing platform demonstrated that the

embedded computing platform consumed more power

did not mean that it had a lower performance-energy

efficiency. In the experiments, the TX1 embedded com-

puting platform with higher average fully-loaded power

consumption exhibited higher performance-energy

efficiency.

4.2.3 Platform cost efficiency

One of the important evaluation aspect of the embed-

ded MV adaptive beamforming algorithm implementa-

tion was the cost of the implementation platform and its

cost efficiency. The cost efficiency was calculated as:

Platform cost efficiency =

Computational performance

Platform cost
,

(12)

where Computational performance could be GFLOPS

throughput or image output frame rate of theMV adaptive

beamforming algorithm. Furthermore, the cost of the het-

erogeneous embedded computing platform Platform cost

was measured in US dollars.

As stated in the official website of Nvidia Corpora-

tion, Jetson TX1 heterogeneous embedded computing

platform cost $600 and Jetson TK1 heterogeneous embed-

ded computing platform cost $200. When considering

the highest computational performance of the hetero-

geneous embedded computing platforms, the highest

cost efficiency of the Jetson TX1 heterogeneous embed-

ded computing platform was expressed as 88.98/600 =

0.148 GFLOPS/dollar or 58.82/600 = 0.098 fps/dollar.

Similarly, the highest cost efficiency of the Jetson TK1 het-

erogeneous embedded computing platformwas expressed

as 37.52/200 = 0.188 GFLOPS/dollar or 17.24/200 =

0.086 fps/dollar. Hence, the Jetson TX1 embedded com-

puting platform has lower platform cost efficiency as

compared to Jetson TK1 embedded computing platform

in terms of GFLOPS throughput, and slightly higher plat-

form cost efficiency as compared to Jetson TK1 embedded

computing platform in terms of image output frame rate

performance.

If the computation energy efficiency and the platform

cost combined together, the performance-power-cost effi-

ciency was obtained, which was calculated as:

Perforamnce − power− cost efficiency

=
Performance-energy efficiency

Platform cost
.

(13)

As a result, the highest performance-power-cost

efficiency of Jetson TX1 heterogeneous embed-

ded computing platform was 7.29/600 = 0.01215

GFLOPS/Watt/dollar or 4.80/600 = 0.00800

fps/Watt/dollar. Similarly, the highest performance-

power-cost efficiency of the Jetson TK1 heterogeneous

embedded computing platform was 4.03/200 =

0.02015 GFLOPS/Watt/dollar or 1.85/200 = 0.00925

fps/Watt/dollar. Therefore, the Jetson TK1 embedded

computing platform has higher performance-power-

cost efficiency over Jetson TX1 embedded computing

platform in both computing performance measurement

means.

5 Conclusions
In this paper, the MV adaptive beamforming algorithm

implementation on heterogeneous high-performance

embedded computing platforms was investigated.

According to the effective high-performance GPU imple-

mentation strategies, the MV adaptive beamforming

algorithm implementation in high-performance embed-

ded GPU on Jetson TX1 platform can fulfil the real-time

imaging requirements for medical ultrasonic imaging in

many test cases, and can achieve 102.7 times speedup

over its ARM processor counterpart. Besides, the power

consumptions of the two experimental heterogeneous

high-performance embedded platforms illustrated that

the heterogeneous embedded computing platforms can

be used as portable or mobile medical ultrasonic devices.

Furthermore, the computation energy efficiency and
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platform cost efficiency of the heterogeneous embedded

computing platforms demonstrated that the heteroge-

neous embedded computing platforms had relatively

good implementation efficiency. As a result, the hetero-

geneous embedded computing platforms investigated in

this paper were suitable to construct real-time portable or

mobile high-quality medical ultrasonic imaging devices,

especially the Jetson TX1 platform.
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