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a b s t r a c t

Vibration-based micro-generators, as an alternative source of energy, have become increasingly sig-

nificant in the last decade. This paper presents a new tunable electromagnetic vibration-based

micro-generator. Frequency tuning is realized by applying an axial tensile force to the micro-generator.

The dimensions of the generator, especially the dimensions of the coil and the air gap between magnets,

have been optimized to maximize the output voltage and power of the micro-generator. The resonant

frequency has been successfully tuned from 67.6 to 98 Hz when various axial tensile forces were applied

to the structure. The generator produced a power of 61.6–156.6 �W over the tuning range when excited

at vibrations of 0.59 m s−2. The tuning mechanism has little effect on the total damping. When the tun-

ing force applied on the generator becomes larger than the generator’s inertial force, the total damping

increases resulting in reduced output power. The resonant frequency increases less than indicated from

simulation and approaches that of a straight tensioned cable when the force associated with the tension

in the beam becomes much greater than the beam stiffness. The test results agree with the theoretical

analysis presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The last decade has seen an increasing interest in the develop-

ment of wireless sensor networks (WSN). Wireless systems offer

several advantages over a wired system, for example, they are flexi-

ble, easy to deploy and they can be placed in previously inaccessible

locations. Furthermore, the layout of nodes in the wireless sys-

tem can be easily changed without considering cabling. WSN can

be widely used in monitoring of the environment, machine and

structural health, surveillance, military, health, and security.

Since wireless sensors have no physical connection to the out-

side world, they must have their own power supply. At present, the

conventional power source for wireless sensor networks is a bat-

tery. However, a battery has some disadvantages: it is quite large,

can supply only a finite amount of energy and contains chemicals

be hazardous. For some applications, WSN are deployed in harsh

environments which may be difficult to access to replace the bat-

teries. Therefore, it is preferred to make the sensors self-contained

with their own renewable power supply. Recent advances in low-

power sensor technology have reduced power requirements to the
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level of only several milliwatts [1,2], which makes the concept of a

self-powered WSN feasible.

Some possible energy sources for WSN include photonic energy

[3], thermal energy [4] and mechanical energy [5]. These sources

can be used to replace or recharge the battery and increase the life-

time and capacity of WSN. Among these sources, photonic energy

has already been widely used in power supplies. Solar cells pro-

vide excellent power density. However, energy harvesting using

light sources restricts the working environment of sensors. Such

sensors cannot normally work in low light or dirty conditions. Ther-

mal energy can be converted to electrical energy by the Seebeck

effect but the working environment for thermo-powered sensors

is limited. Mechanical energy can be found in instances where ther-

mal or photonic energy is not suitable, which makes extracting

energy from mechanical energy an attractive alternative approach

for powering wireless sensors. The source of mechanical energy

can be the moving human body or a vibrating structure. The fre-

quency of the mechanical excitation depends on the source: less

than 10 Hz for human movements and typically over 30 Hz for

machinery vibrations [6]. The research covered in this paper is

based on a vibration-based micro-generator.

The majority of generators designed for vibration energy har-

vesting are based upon a spring-mass system which produces

maximum power when its resonant frequency matches the ambi-

ent vibration frequency [7]. Furthermore, devices are typically

designed to have a high Q-factor to generate maximum power
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from low amplitude vibrations. However, in such cases, the output

power drops significantly if the predominant ambient frequency

and the device resonant frequency do not match. Most reported

generators are designed to work only at one fixed resonant fre-

quency [5]. This drawback severely limits the practical application

of vibration-based micro-generators.

To date, there are generally two possible solutions to this prob-

lem. The first is to widen the bandwidth of the generator. However,

there is a tradeoff between the system bandwidth and the Q-factor.

Wider bandwidth means a lower Q-factor, which reduces the max-

imum power generated. This can be compensated by making a

generator larger in size but this is not always a practical solution.

Bandwidth can also be widened by designing a generator con-

sisting of an array of small generators, each of which works at

a different frequency. Thus, the assembled generator has a wide

operational frequency range while the Q-factor does not decrease

[8,9]. However, this assembled generator must be well designed

so that each individual generator does not affect the others. This

makes it more complex to design and fabricate. Additionally, at

a particular source frequency, only a single individual generator

contributes to power output so the approach is volume inefficient.

Other methods of widening the bandwidth include using non-linear

or bi-stable devices for energy harvesting, which are theoretically

more complicated than linear generators. The second solution is

to tune the resonant frequency of a single generator periodically

so that it matches the frequency of ambient vibration at all times.

Thus, the maximum power can be generated at various frequencies

without reducing the Q-factor and with high efficiency per unit vol-

ume. Therefore, this second approach is a better choice to increase

the working frequency range of a vibration-based micro-generator.

Attempts to tune the frequency of generators have been

reported in the literature. Challa et al. [10] reported a tunable

piezoelectric micro-generator, 50 cm3 in volume, with a frequency

range of 22–32 Hz with a tuning distance of 3 cm. Tuning distance

is defined as the maximum distance that the tuning mechanism

moves over the entire tuning range. Tuning was realized by man-

ually applying a magnetic force perpendicular to the cantilever

of the generator. The generator produced 240–280 �W powers at

0.8 m s−2 acceleration but the tuning mechanism had the unwanted

side effect of varying damping over the frequency range. Leland

and Wright [11] successfully tuned the resonant frequency of a

vibration-based piezoelectric generator by manually applying an

axial compressive force directly on the cantilever using a microme-

ter. The tuning range was from 200 to 250 Hz. This device generated

300–400 �W at an acceleration of 9.8 m s−2 and the total damping

of the generator increased significantly when the compressive force

was applied.

In this paper, a novel tunable vibration-based electromagnetic

micro-generator is reported. Theoretical analysis of inertial gen-

erators, the principle of frequency tuning, design methods and

experimental results of the generator are presented. This tunable

micro-generator has a tuning range from 67.6 to 98 Hz. It produced

a power of 61.6–156.6 �W over the tuning range when excited

at vibrations of 0.59 m s−2. Additionally, the total damping of the

generator maintains constant over 60% (67.6–85 Hz) of the entire

tuning range.

2. Basic theory

2.1. Vibration-based micro-generator

Vibration-based micro-generators can be modelled using

second-order, spring-mass systems [7]. The average power dissi-

pated within the damper (both by transduction mechanism and

parasitic damping mechanisms) is given by [7]:

P(ω) =
m�T Y2(ω/ωr)3ω3

[1 − (ω/ωr)2]
2

+ [2�T (ω/ωr)]2
(1)

where m is the mass, �T total damping factor, Y is the amplitude

of vibration, ωr is the resonant frequency and ω is the angular

frequency of vibration.

The maximum power available within the vibration-based

micro-generator, Pmax, occurs when the resonant frequency equals

the vibration frequency, i.e. ω = ωr, and is given by [5]:

Pmax =
m · a2

v

4 · ωr · �T
(2)

where av is the acceleration level and av = Yω2.

The total damping factor is the sum of the electrical damping

factor, �e and the mechanical damping factor, �m. For maximum

efficiency, the power transferred to the electrical load should equal

the mechanical losses, i.e. �e = �m. Therefore, the maximum power

delivered to the electrical domain is given by:

PE max = Pmax ·
�e

�m + �e
=

m · a2
v

16 · ωr · �m
(3)

For an electromagnetic generator which has a coil with a resis-

tance Rcoil, the power transferred into a resistive load (Rload), PL is

given by:

PL = PE max ·

(

Rload

Rload + Rcoil

)

=
m · a2

v

16 · ωr · �m
·

(

Rload

Rload + Rcoil

)

(4)

Eq. (4) shows that the maximum power generated by the micro-

generator decreases when the resonant frequency increases for

constant acceleration and constant damping.

2.2. Frequency tuning

Many generator designs employ a cantilever spring element

with an inertial mass at the free end [5]. An axial tensile load applied

to a cantilever increases the resonant frequency of the cantilever

while an axial compressive load decreases the resonant frequency.

An approximate formula for the resonant frequency of a uniform

cantilever in mode i with an axial load, f ′

ri
, is given by [12]:

f ′

ri = fri ·

√

1 +
F

Fb
·

�2
1

�2
i

(5)

where fr is the resonant frequency in mode i without load and F is

the axial load. F is positive if the load is tensile and F is negative if

the load is compressive. Fb is the compressive axial load required

to buckle the beam. �1 is a dimensionless load parameter which

is a function of and the beam boundary conditions applied to the

cantilever for mode 1 of the beam and �i is the same parameter for

mode i. �i is given by the ith solution of Eq. (6) [12].

cos � · cosh � + 1 = 0 (6)

Since most micro-generators with a beam structure work at a

resonance of mode 1, the resonant frequency of a uniform can-

tilever in mode 1 with an axial load, f ′

r1
, is given by:

f ′

r1 = fr1 ·

√

1 +
F

Fb
(7)

The buckling load of a cantilever, Fb, is given by [12]:

Fb =
�2

· E · I

4L2
(8)

where E is the Young’s modulus of the material of the cantilever, I

is the area moment of inertia and L is the length of the cantilever.
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Fig. 1. Change in resonant frequency with axial load.

Fig. 1 shows the change in the resonant frequency of a cantilever

with a varying axial load. It shows that a compressive load is more

efficient at frequency tuning than a tensile load. However, a prelim-

inary test [13] showed that the parasitic damping of the generator

rises with increasing axial compressive load. When an axial tensile

load is applied, the damping levels remain constant over most of

the tuning range. The total damping only increases when the tensile

force becomes large compared to the excitation force. Therefore, a

tensile load is preferred in this application. The effect of the tensile

force on the total damping of the cantilever will be discussed in

Section 2.4. To minimize unwanted effects on the cantilever vibra-

tions, contactless magnetic force provided by two tuning magnets

is used to apply the axial load. Fig. 2 shows the schematic diagram

of the frequency tuning mechanism.

When the tensile load applied to the cantilever becomes much

greater than the buckling force, the resonant frequency of the

cantilever approaches that of a straight tensioned cable with an

off-centre mass because the force associated with the tension in

the beam becomes much greater than the beam stiffness. This fre-

quency limit is given by [12]:

fr =
1

2�
·

√

3E · I · (l1 + l2)

m · l2
1

· l2
2

(9)

where l1 and l2 are distances from the centre of gravity of the mass

to both fixed ends.

2.3. Calculation of magnetic tuning force

The calculation of magnetic force between simple shape mag-

nets can be performed numerically. Only the key equations are

Fig. 2. Schematic diagram of tuning mechanism.

Fig. 3. Magnet configuration.

given here. A detailed description of this method can be found in

[14]. For two cuboid magnets sharing the same central line along

their thickness and with the area where these two magnets face

each other, perfectly overlapping, as shown in Fig. 3, the magnetic

attractive force between them can be calculated using:

F =
J1 · J2
4��0

1
∑

i=0

1
∑

j=0

1
∑

k=0

1
∑

l=0

1
∑

p=0

1
∑

q=0

(−1)i+j+k+l+p+q�(uij, vkl, wpq, r)

(10)

where J1 and J2 are the magnetization of these two magnets, respec-

tively. �0 is the magnetic constant and �(uij, vkl, wpq, r) is a function

of dimensions of the two magnets and their relative position. For

the magnet configuration shown in Fig. 3 to be analyzed here, the

interactive force between the two magnets is parallel with their

polarization. Therefore, � is given by:

�(uij, vkl, wpq, r) = −uij · wpq · ln(r − uij) − vkl · wpq · ln(r − vkl)

+ uij · vkl · tan−1
uij · vkl

r · wpq
− r · wpq (11)

where uij = (−1)j
· A − (−1)i

· a

vkl = (−1)l
· B − (−1)k

· b

wpq = d +
C + c

2
+ (−1)q

· C − (−1)p
· c

r =

√

u2
ij

+ v
2
kl

+ w2
pq.

In this particular application, the areas where the two magnets

face each other are curved to maintain a constant gap between them

over the amplitude range of the generator so that the axial tuning

force remains constant when the distance between the two tuning

magnets is fixed. Since the curvatures are small, as an approxi-

mation, they can be regarded as two rectangular parallelepipedic

magnets so that Eq. (10) can be applied. Fig. 4 shows the theoreti-

cal tuning force for this particular case based on Eqs. (10) and (11).

The designated minimum and maximum distance between the two

tuning magnets are 1.2 and 5 mm, respectively to give the genera-

tor a tuning range of 30 Hz. The estimated tuning forces are from 1

to 6.67 N.

2.4. Q-factor under tuning force

In this section, the effect of the tuning force on the Q-factor of the

generator is studied. Fig. 5 shows the forces on the resonator along

the z axis. To make this figure easy to understand, the transducer is

omitted as the tuning force is only applied on the tuning magnet 1

and it is assumed that the tuning magnet 1 represents the overall

mass of the generator. The magnetic force along the x and y axes

remains constant once the distance between the two magnets is

fixed. In addition, the resonator is assumed to travel only along the
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Fig. 4. Tuning force with variations of distances between two tuning magnets.

z axis to simplify the analysis. As the resonator does not move along

the x and y axes, the magnetic force along these two axes can be

omitted. Therefore, only forces along the z axis have to be studied.

The dynamic model in this situation is given by:

m
d2z(t)

dt2
+ b

dz(t)

dt
+ kz(t) + FT z[z(t)] = Fi(t) (12)

where m is the mass, b is the damping coefficient, k is the spring

constant and z(t) FT z[z(t)] is the z component of the magnetic force

introduced by the two tuning magnets, which can be calculated

using Eq. (10). The interactive force between the two magnets is

perpendicular to their polarization. Thus, in this case, the function

� in Eq. (10) is given by:

�(uij, vkl, wpq, r) =
1

2
(u2

ij − w2
pq) · ln(r − vkl) + uij · vkl · ln(r − uij)

+ uij · wpq · tan−1
uij · vkl

r · wpq
+

1

2
r · vkl (13)

Fi(t) is the inertial force on the mass, which is given by:

Fi(t) = −m
d2zh(t)

dt2
(14)

where zh(t) is the displacement of the vibration source.

The Q-factor of the generator is given by:

Q =
Z

Zh
(15)

where Z and Zh are the maximum values of z(t) and zh(t), respec-

tively.

Fig. 5. Forces on the resonator.

Fig. 6. Numerical solution of differential Eq. (14) (a) overall waveform, (b) detailed

waveform (comparison of amplitude), and (c) detailed waveform (comparison of

phase).

As it is difficult to solve analytically the differential Eq. (12),

numerical methods are used to obtain a solution. In this case, a

fourth-order Runge–Kutta method was adopted [15]. Fig. 6 shows

an example of the numerical solution to Eq. (14). The waveform

after the solution converged was treated as an approximation to

the actual solution as shown in Fig. 6(a). In Fig. 6(b) and (c), detailed

waveforms (after the solution converged) of z(t) and zh(t) are given

to compare their respective amplitudes and phases. The Q-factor
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Fig. 7. Q-factor with various distances between two tuning magnets and accelera-

tion levels.

can be obtained by observing the maximum value of z(t) and zh(t)

in Fig. 6(b).

Fig. 7 shows the calculated Q-factor with various distances

between the two tuning magnets and at various acceleration lev-

els. It was found that, as the excitation level increases, the damping

effect from the tuning magnets decreases. This enables the tuning

magnets to be brought closer together at higher excitation levels

without reducing the Q-factor and therefore a wider tuning range

can be obtained.

3. Tunable vibration-based electromagnetic

micro-generator design

The electromagnetic micro-generator presented in this paper is

a modified version of a design previously developed as part of an EU

funded research project ‘VIBES’ [16]. Fig. 8 shows the overall design

of the tunable vibration-based electromagnetic micro-generator.

In Fig. 9(c), a DIP-16 socket is placed next to the generator as a

reference of its dimensions.

3.1. Electromagnetic transducer

The generator has a four-magnet structure as the generator

designed in the ‘VIBES’ project [16]. Two mild steel keepers were

used to couple the magnetic flux between the top and bottom mag-

nets, which ensured a uniform magnetic field within the air gap.

The coil was attached to the housing of the generator. The four-

magnet structure was fixed to a cantilever beam and vibrated with

the ambient vibration. The magnets moved with respect to the

static coil so that an induced current was generated within the coil

according to Faraday’s law.

3.2. Tuning mechanism

Recall the schematic diagram of the tuning mechanism as shown

in Fig. 2; the generator and the tuning mechanism were mounted

on the same housing so that there was no relative displacement

between them. The tuning force was provided by the attractive

force between the two tuning magnets with opposite poles fac-

ing each other. One magnet was fixed to the free end of a cantilever

while the other was attached to an actuator and placed axially in

line with the cantilever. The tuning magnet attached to the actu-

ator was larger than the one on the generator along the vibration

Table 1

Material of each component.

Component Material Reason for selection

Magnet NdFeB High energy density

Keeper Mild steel Ferromagnetic material

Additional mass Tungsten alloy High density

Beam BeCu Excellent fatigue characteristics

Base Tecatron GF40 High rigidity, non-ferromagnetic

direction so that they always overlapped perfectly during opera-

tion. The distance between the two tuning magnets was adjusted

by the linear actuator. Thus the axial load on the cantilever was

changed.

3.3. Micro-generator design

Each component of the generator was fabricated separately

using conventional manufacturing processes. The magnets, the

mild steel keeper and the additional tungsten mass were glued to

the cantilever beam with cyanoacrylate with the aid of an align-

ment jig. This assembly was then clamped onto the base using

an M1 sized nut and a copper washer. The coil was bonded to a

pre-machined coil support on the base. Table 1 summarizes the

materials used for each component and the reasons for their selec-

tion.

3.3.1. Cantilever beam

The resonant frequency of the generator is controlled by the

dimensions of the beam and the inertial mass. For a given iner-

tial mass of 2.4 g, a beam length of 13 mm and a width of 5 mm,

the untuned resonant frequency and tuning range when the tuning

force changes from 1 to 6.67 N as a function of beam thicknesses

are shown in Fig. 9. These results were obtained from a prestressed

ANSYS modal analysis. It was found that the thinner the beam,

i.e. the lower the spring constant of the cantilever, the lower the

untuned resonant frequency and the larger the tuning range. For

this generator, a 120 �m thick beam was chosen to give a predicted

untuned resonant frequency of 45.2 Hz and a tuning range from

66.4 to 108.8 Hz.

3.3.2. Coil and air gap

According to Faraday’s law, the induced voltage within the coil

is given by:

V = −N
d˚

dt
(16)

where N is the number of turns of the coil and d˚/dt is the magnetic

flux gradient through the coil. The number of turns of the coil is

given by:

N =
4Fc · (Ro − Ri) · t

� · d2
(17)

where Fc is the coil fill factor (the ratio of the volume of conductor

to the volume of the coil), Ro and Ri are the outer and inner radius

of the coil, respectively. t is the thickness of the coil and d is the

diameter of the coil wire.

In order to maximize the induced voltage, the number of coil

turns and the magnetic flux gradient should be maximized. The

limitation of generator size and coil winding capability fix the outer

and inner radii of the coil. The wire with a diameter of 16 �m was

chosen to give the coil the maximum number of turns compatible

with winding and handling. The fill factor is a function of the wind-

ing process and is typically 0.5–0.6. Therefore, the only parameter

that can be changed to increase the number of turns is the coil

thickness. Increasing coil thickness linearly increases the number

of turns as shown in Fig. 10(a). However, making the coil thicker
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Fig. 8. Tunable electromagnetic micro-generator (a) model, (b) photo, and (c) generator with indication of its dimensions.
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Fig. 9. Base resonant frequency and tuning range with variation of beam thick-

nesses.

means that the air gap between the magnets has to be increased to

avoid impact between the magnets and the coil. Based on magnetic

circuit theory, a larger air gap reduces the magnetic flux within the

magnetic circuit as shown in Fig. 10(b). Hence, there is a tradeoff

between the coil thickness and the magnetic flux through the coil.

For a constant gap between coil and magnets of 0.3 mm, simula-

tion shows that the optimum air gap and coil thickness are 1.9 and

1.3 mm, respectively. The estimated number of turns is 6950 when

the fill factor is 0.5 and this gives a voltage output of 8.1 V as shown

in Fig. 10(c).

3.3.3. Magnetic field modelling

As mentioned in Section 3.1, the tunable generator presented

here has the same magnetic circuit as the generator designed in

the ‘VIBES’ project [16]. The only difference is the existence of

the tuning magnet at the free end of the cantilever. The effect of

these tuning magnets on the magnetic circuit of the four-magnet

arrangement was simulated using Ansoft Maxwell 3D magnetic

finite element (FE) software. Fig. 11 shows the simulation results of

the magnetic filed and compare the magnetic field of the generator

with and without tuning magnets. It is found that the magnetic field

within the air gap is barely affected by the tuning magnets. It can

be seen from Fig. 11 that the maximum flux density within the air

gap is 0.45 T with or without the tuning magnet in the simulation.

The simulation results agree with the mathematical calculations

discussed in Section 3.3.2 (Fig. 10(b)).

4. Experimental results and analysis

The generator was tested on a shaker table with a programmable

resistance box and a PC with LabVIEW software collecting the data.

This system is suitable for fully characterizing the generator over

a wide range of acceleration levels, load resistances and frequen-

cies. The test platform of the system is shown in Fig. 12. A tuning

magnet (5) is attached to the free end of the cantilever resonator

on the generator (4). The other tuning magnet (3) is fixed on a

slider (2) which is able to slide along a track. The movement of the

slider is controlled by the linear actuator (1). The linear actuator

used here is a Haydon® 21000 Series Size 8 linear stepper motor,

E21H4(AC)-5. The minimum step length is 0.05 mm. The distance

between the two tuning magnets can be precisely controlled by

counting the number of steps the stepper motor has executed via

a micro-controller.

Fig. 10. Simulation results (a) coil turns with variation of air gaps, (b) magnetic

flux density with variation of air gaps, and (c) maximum induced coil voltage with

variation of air gaps.

4.1. Resonant frequency

The variation of the resonant frequency of the generator with the

distance between the two tuning magnets is shown in Fig. 13(a).

The resonant frequency increases as the distance between the two
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Fig. 11. Modelling of magnetic field (a) no tuning magnets and (b) with tuning

magnets.

tuning magnets decreases, i.e. when the tuning force increases as

in Fig. 13(b). The tuning range of the generator varies from 67.6

to 98 Hz when the distance between two tuning magnets changes

from 5 to 1.2 mm. The test results follow the simulation results until

the distance between the two tuning magnets is less than 3 mm.

When this distance is less than 3 mm, i.e. tuning force was larger

than 2.87 N, the resonant frequency increases less than simulated.

The reason for this is as follows. As the force is time-varying as

mentioned in Section 2.4, it is difficult to simulate. Therefore, only

the axial force is taken into account in the simulation. When the

two tuning magnets are relatively far away from each other, the

force parallel to the vibration direction is negligible compared to

the excitation force. So in this situation the test results agree with

the simulation. However, when the two tuning magnets are closer,

the parallel force starts to have more effect on the cantilever. As

this was not simulated, the disagreement between the test results

and simulation results becomes larger.

As mentioned in Section 2.2, when the tensile force is much

greater than the buckling force of the cantilever, the resonant

frequency will approach the resonant frequency of a straight ten-

sioned cable with an off-centre mass. The buckling force of this

cantilever is 0.5 N according to Eq. (8). The frequency limit of this

Fig. 12. Test setup of the mechanically tunable electromagnetic generator. ((1)

Linear actuator; (2) slider; (3) tuning magnet 1; (4) tuning magnet 2; (5) micro-

generator.)

Fig. 13. Resonant frequency (a) with variation of distances between tuning magnets

and (b) with variation of tuning force.
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Fig. 14. Output RMS power at optimum loads with variation of tuned resonant

frequencies of the generator (excited at 0.59 m s−2).

tunable generator is 100.3 Hz according to Eq. (9). The experimental

results shown in Fig. 13 agree with the theoretical analysis pre-

sented in Section 2.2.

4.2. Generated power

The maximum power at the optimum resistive load at different

resonant frequencies when the micro-generator was excited at a

vibration of 0.59 m s−2 is shown in Fig. 14. It was found that the

maximum output power dropped with the increase of the reso-

nant frequency as predicted from Eq. (4). However, when the two

tuning magnets were less than 3 mm apart, i.e. when the resonant

frequency was higher than 85 Hz, the output power decreased more

than expected. This result agreed with the test results of resonant

frequency discussed in Section 4.1, which further proved that when

the tuning force becomes too large, the total damping will increase

and output power will reduce as predicted in Section 2.4.

Fig. 15 shows the maximum output RMS power at different exci-

tation levels over the tuning range. It was found that the output

power drop of more than that predicted by the constant damping

model occurs at lower frequency if the excitation level was lower.

In other words, the Q-factor drops at higher frequency if the exci-

Fig. 15. Maximum output RMS power at different excitation levels.

tation level is high, which agrees with the theoretical analysis in

Section 2.4.

5. Conclusions

This paper has presented a tunable vibration-based electro-

magnetic micro-generator. Its resonant frequency can be tuned by

applying an axial tensile load using a pair of tuning magnets. The

resonant frequency of the micro-generator can be tuned from 67.6

to 98 Hz by changing the distance between two tuning magnets

from 5 to 1.2 mm, respectively. The generator produced a power of

61.6–156.6 �W over the tuning range when excited at a constant

low vibration acceleration level of 0.59 m s−2.

It is found that when the tensile force is much greater than

the buckling force, the resonant frequency increases less than

predicted from simulation and approaches a finite value. This is

because the force associated with the tension in the beam becomes

much greater than the beam stiffness and the resonant frequency

approaches that of a straight tensioned cable.

Importantly, the devised tuning mechanism does not affect the

damping of the micro-generator over 60% (67.6–85 Hz) of the entire

tuning range. The maximum output power drops with the increas-

ing resonant frequency as predicted by the generator model with

constant damping. However, when the tuning force becomes larger

than the inertial force caused by vibration, total damping increases

and the output power is less than that in the constant damping

situation. In addition, an output power drop of more than the con-

stant damping model indicates occurs at a lower force and hence,

a lower frequency if the excitation level is lower.

A closed loop control system has been developed to automati-

cally tune the resonant frequency of this micro-generator to match

the ambient vibration [17]. A new and more intelligent control sys-

tem is currently being built to reduce the power consumption of

the tuning mechanism. We aim to build a tunable vibration energy

harvesting device with a completely self-powered tuning system

having a useful net output power for wireless sensor nodes.
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