
Multimedia Tools and Applications, 14, 23–53, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Design and Experimental Evaluation of an Adaptive
Playout Delay Control Mechanism for Packetized
Audio for Use over the Internet

MARCO ROCCETTI roccetti@cs.unibo.it
VITTORIO GHINI
GIOVANNI PAU
PAOLA SALOMONI
MARIA ELENA BONFIGLI
Universit̀a di Bologna, Dipartimento di Scienze dell’Informazione Via Mura Anteo Zamboni 7,
40127 Bologna, Italy

Abstract. We describe the design and the experimental evaluation of a playout delay control mechanism we
have developed in order to support unicast, voice-based audio communications over the Internet. The proposed
mechanism was designed to dynamically adjust the talkspurt playout delays to the traffic conditions of the under-
lying network without assuming either the existence of an external mechanism for maintaining an accurate clock
synchronization between the sender and the receiver during the audio communication, or a specific distribution
of the audio packet transmission delays. Performance figures derived from several experiments are reported that
illustrate the adequacy of the proposed mechanism in dynamically adjusting the audio packet playout delay to the
network traffic conditions while maintaining a small percentage of packet loss.

Keywords: multimedia applications, packetized audio, playout delay control, packet loss, Internet

1. Introduction

Sophisticated applications of Internet multimedia conferencing will become increasingly
important only if the quality of the communications will be perceived as sufficiently good by
their users. The result of extensive experiments has shown that audio is frequently perceived
as one of the most important component of multimedia conferencing [5]. A number of
problems have been identified which negatively impacts the quality of audio conversations,
but probably the more critical one with audio is the loss of audio packets. Basically, two are
the main causes for audio packet loss over wide-area packet-switched networks: 1) traffic
congestion at the interconnecting routers that cause audio packets to be discarded, and 2)
too large transmission delays that cause audio packets to arrive at the destination past the
time instant at which they are scheduled to be played out (the playout point).

With the termplayout delaywe refer to the total amount of time that is experienced by the
audio packets of a given talkspurt from the time instant they are generated at the source and
the time instant they are played out at the destination. Summarizing, such a playout delay
consists of: i) the “collection” time needed for the transmitter to collect audio samples and
to prepare them for transmission, ii) the “transmission” time needed for the transmission of
audio packets from the source to the destination over the underlying transport network, and

24 ROCCETTI ET AL.

finally iii) the “buffering” time, that is the amount of time that a packet spends queued in
the destination buffer before it is played out. A crucial tradeoff exists between audio packet
playout delay and audio packet loss: the longer the scheduled playout delay, the more likely
it is that an audio packet will arrive at the destination before its scheduled playout deadline
has expired. However, if on one side a too large percentage of audio packet loss (over
5–10%) may impair the intelligibility of an audio transmission, on the other side, too large
playout delays (e.g., more than 200–250 msec) may disrupt the interactivity of an audio
conversation [13].

The main purpose of this paper is to describe a playout delay control mechanism that
is suitable for adjusting the talkspurt playout delays of unicast, voice-based audio com-
munications across the Internet. The mechanism was designed to dynamically adjust the
talkspurt playout delays to the network traffic conditions without assuming either the exis-
tence of an external mechanism for maintaining an accurate clock synchronization between
the sender and the receiver, or a specific distribution of the end-to-end transmission delays
experienced by the audio packets. Succinctly, the technique for dynamically adjusting the
talkspurt playout delay is based on obtaining, in periodic intervals, an estimation of the up-
per bound for the packet transmission delays experienced during an audio communication.
Such an upper bound is periodically computed using round trip time values obtained from
packet exchanges of a three-way handshake protocol performed between the sender and the
receiver of the audio communication. At the end of such protocol exchange, the receiver is
provided with the sender’s estimate of an upper bound for the transmission delay that can be
used in order to dynamically adjust the talkspurt playout delay. The proposed mechanism
guarantees that the talkspurt playout delay may be dynamically set from one talkspurt to
the next, without causinggapsor time collisions(formally defined in the Sections 3.1.1
and 3.1.2) inside the talkspurts themselves, provided that intervening silence periods of
sufficiently long duration are exploited for the adjustment.

The need of silent intervals for allowing the mechanism to adjust to the fluctuating network
conditions is common to the most part of the existing audio tools (e.g., NeVoT, vat and rat
[5, 8, 18]) but renders the proposed scheme particularly relevant for voice-based applications
where conversational audio with intervening silence periods between subsequent talkspurts
is transmitted.

The design of our mechanism was completed during the Summer of 1997. A prototype
version of the mechanism running on workstations equipped with the SunOS 4.3 (BSD
Unix) operating system, and based on the datagram based UDP protocol was soon carried
out. Based on that prototype implementation, several experiments were conducted over an
(IP based) internetworked connection between the University of Bologna (Italy) and the
C.E.R.N. Institute in Geneva (Switzerland). The performance figures derived by the experi-
mentations conducted on the field illustrated the adequacy of our mechanism in dynamically
adjusting the audio packet playout delay to the traffic conditions of the underlying network
while maintaining a small percentage of packet loss.

The paper is structured as follows. In the next section, we discuss some background
issues that we have regarded as important for the design of our mechanism. The remaining
Sections (3 and 4) describe and discuss: i) the proposed playout delay control mechanism, ii)
a prototype implementation we have developed, iii) the results of an experimental assessment

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 25

we have carried out, and finally iv) a performance comparison between our mechanism and
another adaptive playout delay adjustment mechanism recently proposed [13].

We conclude this introduction by summarizing the main features of our playout delay
control mechanism. It provides: 1) an embedded and accurate algorithm that maintains
tight time synchronization between the sender’s system clock and the clock that supports
the playout process at the receiving host, during an audio conversation; 2) a method for
adaptively estimating the audio packet playout time (on a per-talkspurt basis) with an
associated minimal computational overhead for both the source and the destination hosts,
and 3) an exact and simple method for dimensioning the playout buffer depending on the
network traffic conditions.

2. Packetized audio over the Internet

Since the early experiments with packetized voice in the Arpanet network [3], packetized
audio applications have become sophisticated tools that many Internet users try to use with
regularity. For example, the audio conversations of many international conferences and
workshops are now usually conducted over the Mbone (the multicast backbone), an experi-
mental overlay network of the Internet [11]. The audio tools that are used to transmit packet
audio over the Internet (e.g., NeVot [18], vat [8], rat [5], the INRIA audio tool [2]) typically
operate by periodically sampling audio streams generated at the sending host, packetizing
them, and transmitting the obtained packets to the receiving site by using datagram based
connections (e.g., UDP). In addition, at the receiving site, packets are buffered and their
playout time is delayed in order to compensate for variable network delays that may be fre-
quently experienced. Such playout mechanisms try to adaptively adjust the playout delay
in order to keep this delay as small as possible while minimizing the number of packets
that arrive too late (i.e., after their playout point). The next section provides additional in-
formation that constitute the background of the algorithm to be presented in this paper. In
particular, the main characteristics of the mechanisms that are used to adaptively adjust the
playout time for audio packets over the Internet are reviewed.

2.1. Background

A typical audio segment may be considered as constituted oftalkspurt periods during
which the audio activity is carried out, andsilenceperiods during which no audio packet
is generated. In order for the receiving site to reconstruct the audio conversation, the audio
packets constituting a talkspurt must be played out in the order they were emitted at the
sending site. If the delay between the arrival of subsequent packets is constant (i.e., the
underlying transport network is jitter-free) a receiving site may simply play out the arriving
audio packets as soon as they are received. Unfortunately, this is only rarely the case, since
jitter-free, ordered, on-time packet delivery almost never occurs in today’s packet-switched
networks. Those variations in the arrivals of subsequent packets strongly depend on the
traffic conditions of the underlying network. Packet loss percentages (due to the effective
loss and damage of packets as well as late arrivals) often vary between 15% and 40% [13].
In addition, extensive experiments with wide-area network testbeds have shown that the

26 ROCCETTI ET AL.

Figure 1. Audio data flow over the Internet.

delays between consecutive packets may also be as much as 1.5 seconds, thus impairing
real-time interactive human conversations.

New protocol suites such as the Resource Reservation Protocol (RSVP) [21] might even-
tually ameliorate the effect of jitter and improve the quality of the audio service over the
Internet, but they are not yet widely used. On the other hand, the most used approach is to
adapt the applications to the jitter present on the network. Hence, to transport audio over a
non-guaranteed packet-switched network, audio samples are encoded (usually with some
form of compression), inserted into packets that have creation timestamps and sequence
numbers, transported by the network, received in a playout buffer, decoded in sequential
order, and finally played out by the audio device, as seen in figure 1. A symmetric scheme is
used in the other direction for interactive conversation. Thesmoothingplayout buffer is used
at the receiver in order to compensate for variable network delays. Received audio packets
are queued into the buffer, and the playout of each packet of a given talkspurt is delayed
for some quantity of time beyond the reception of the first packet of that talkspurt. In this
way, dynamic playout buffers can hide, at the receiver, packet delay variance at the cost
of additional delay. A crucial tradeoff exists between the length of the imposed additional
quantity of delay and the amount of lost packets due to their late arrival: the longer the
additional delay, the more likely it is that a packet will arrive before its scheduled playout
deadline. However, too long playout delays may in turn seriously compromise the quality
of the conversation over the network.

Typical acceptable values for the end-to-end delay between packet audio generation at
the sending site and its playout time at the receiver are below the threshold of 200–250

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 27

msec, furthermore a percentage of no more than 5–10% of packet loss is considered quite
tolerable in human conversations [2].

Besides adjusting the audio playout delay in order to compensate for the effect of the
jitter, modern audio tools typically make also use of error and rate control mechanisms
based on a technique known as forward error correction (FEC) to reconstruct many lost
audio packets [2]. For example, the INRIA audio tool adjusts the audio packet send rate to the
current network conditions, adds redundant information to packets (under the form of highly
compressed versions of a number of previous packets) when the loss rate surpasses a certain
threshold, and establishes a feedback channel to control the send rate and the redundant
information. Simply put, the complete process is controlled by an open feedback loop
that selects among different available compression schemes and the amount of redundancy
needed, as described in the following. If the network load and the packet loss are high, the
amount of compressed redundant information carried in each packet is increased by adding
to each packet compressed version of the previous two to four audio packets. In 5-seconds
intervals the receiver returns (using the Real Time Protocol suite RTP-RTCP [19]) quality
of service reports to the sender in order to regulate and adapt the quantity of redundant
information being sent.

As discussed above, efficient playout adjustment mechanisms have been developed to
minimize the effect of delay jitter. Typically, a receiving site in an audio application buffers
packets and delays their playout time. Such a playout delay may be kept constant for
the duration of the audio conversation, or dynamically adjusted from one talkspurt to the
next. Due to the fluctuating end-to-end (application-to-application) delays experienced over
the Internet, constant, non-adaptive playout delays may result in unsatisfactory quality for
audio applications. Hence, two are the approaches widely exploited for adaptively adjusting
playout time: the former approach keeps the same playout delay constant throughout a given
talkspurt, but permits different playout delays in different talkspurts. In the latter approach,
instead, the playout delay is adjusted on a per-packet basis. However, an adaptive adjustment
on a per-packet basis may introduce gaps inside talkspurt and thus is considered as of being
damaging to the perceived audio quality. On the contrary, the variation of the playout delay
from a talkspurt to the next may introduce artificially elongated or reduced silence periods,
but this is considered acceptable in the perceived speech if those variations are reasonably
limited. Hence, the totality of the above mentioned tools adopt a mechanism for adaptively
adjusting the playout delays on a per-talkspurt basis. However, in order to implement such
a playout control mechanism, almost all the above cited audio applications make use of the
following two strong assumptions.

1. An external mechanism exists that keeps synchronized the two system clocks at both the
sending and the receiving site. Usually, the IP-based Network Time Protocol (NTP) is
used for this purpose.

2. The delays experienced by audio packets on the network follow a Gaussian distribution.

Based on the above assumptions, the playout control mechanism works as described in
the remainder of this section [20]. Let us denote with:

• gi the time instant in which the audio packeti is generated at the sending site,
• ai the time instant in which the audio packeti is delivered at the receiving site,

28 ROCCETTI ET AL.

• pi the time instant in which the audio packeti is played out at the receiving site,
• ni the end-to-end transmission delay, i.e.,ni = ai − gi ,
• bi the introduced buffering delay at the receiving site,
• di the playout delay, i.e., the time interval between the generation of the audio packet

at the sender and the time instant in which the packet is played out at the receiver, i.e.,
di = ni + bi ,
• d̂i the average playout delay,
• v̂i the variation of the average playout delay.

If i is the first packet of a given talkspurt, then the playout timepi for that packet is usually
calculated as [14]:

pi = gi + d̂i + s× v̂i ,

where the constants usually ranges in the interval [0, 4], with typical values set equal to
0.5, 2, 4, since the correspondent multiplications are easily implemented withshift opera-
tions. From an intuitive standpoint, the reported formula (and thes× v̂i term) is used to set
the playout time to be far enough beyond the average delay estimate, so that only a small
fraction of the arriving packets should be lost due to late arrivals. The playout point for any
subsequent packetj of that talkspurt is computed as an offset from the point in time when
the first packeti in the talkspurt was played out:pj = pi + t j − ti .

The estimation of both the average delay and the average delay variation are carried
out using the well knownstochastic gradient algorithm[14] by using the following two
formulas:

d̂i = a× d̂i−1+ (1− a)× ni , v̂i = a× v̂i−1+ (1− a)× |d̂i − ni |,

where the constanta (usually equal to 7/8) is a weight that characterizes the “memory
properties” of the estimation.

Extensive experiments have been carried out that have shown that the playout delay
control mechanisms based on the formulas above may be adequate to obtain acceptable
values for the tradeoff between the average playout delay and the loss due to late packet
arrivals. However, in some circumstances, the cited mechanisms may suffer from a number
of problems, especially when they are deployed over wide-area networks. In particular, the
following problems may be pointed out [13, 20]:

• The “external” software-based mechanisms (e.g., the NTP protocol) used to maintain the
system clocks synchronized at both the sending and the receiving sites are not typically
widespread all over the Internet. In addition, those mechanisms may turn out to be too
much inaccurate to cope with the real-time nature of the audio generation/playout process.
For example, even if the NTP protocol may achieve computer clock synchronization
within a few tens of milliseconds over most paths in the Internet of today, however,
there may be frequent exceptions with synchronization values up to a few hundreds of
milliseconds, especially if a client host is not directly connected to a primary server of the
NTP hierarchy but achieves synchronization through a stratum-2 (or higher) server via a

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 29

congested link [12]. The problem with clock synchronization is that if the two different
clocks (respectively, at the source and at the destination) do not run at the same rate and
the synchronization mechanism is not sufficiently accurate, they will tend to drift further
and further apart. Extensive experiments have shown that the above mentioned behavior
may have a very negative impact on the provided formulas for the calculation of the
playout time, thus resulting in an increased number of lost packets [20].
• The widely adopted assumption that the packet transmission delays over the Internet

follow a Gaussian distribution seems to be a plausible conjecture only for those limited
time intervals in which the overall load of the underlying network is quite light. Indeed,
recent experimental studies carried out over the Internet have indicated the presence
of frequent and conspicuously large end-to-end delay spikes for periodically generated
packets (as is the case with audio packets) [2, 10].
• Several experiments have been conducted [20] that show that choosing a value equal to

4 for the constants in the calculation of the formula of the playout delay typically results
in a quite small quantity of loss packets (approx. 4%), but also in a quite large average
playout delayd̂i usually equal to 2 times the transmission timeni .

3. A novel mechanism for packetized audio

The adaptive mechanism for the control of the playout delay proposed in this section
ameliorates all the negative effects of the audio tools reported above, while maintaining
satisfiable values of both the average playout delay and the packet loss due to late arrivals.
The proposed policy assumes neither the existence of an external mechanism for maintaining
an accurate synchronization at both the sending and the receiving sites, nor a Gaussian
distribution for the end-to-end transmission delays of the audio packets. In particular, it
provides:

• an internal and accurate mechanism that maintains tight time synchronization between
the system clocks of both the sending and the receiving hosts;
• a method for adaptively estimating the audio packet playout time (on a per-talkspurt

basis) with an associated minimal computational overhead;
• an exact and simple technique for dimensioning the playout buffer depending on the

traffic conditions of the underlying network.

In the following, a description of the main ideas behind the mechanism is provided. This
proposed mechanism has been also subject to a simulated performance study, whose results
are described in [1, 16]. For continuous playout of audio packets at the receiving site, it is
essential that the audio packets be available at the receiver prior to their respective playout
time and that the rate of consumption (i.e., playout) of packets at the receiver meets the rate
of transmission at the sender [15]. Hence, when the sender transmits the first packet of an
audio talkspurt, it timestamps that packet with the value (sayC) of the reading of its own
clock. As soon as this first packet arrives at the receiver, it sets the clock that supports the

30 ROCCETTI ET AL.

playout process (sayCR) by using theC value, i.e.,

CR = C,

and immediately schedules the presentation of that first packet. Subsequent audio packets
belonging to the same talkspurt are also timestamped at the sender with the value of the
reading of the sender’s clock at the time instants when the packets are transmitted. When
these subsequent packets arrive at the receiving site, their attached timestamp is compared
with the value of the reading of clock that supports the playout process at the receiving host
(the receiver’s clock, for short). If the timestamp attached to the packet is equal to the value
of the receiver’s clock, that packet is immediately played out. If the timestamp attached to
the packet is larger than the value of the receiver’s clock, that packet is buffered and its
playout time is scheduled after a time interval equal to the positive difference between the
value of the timestamp and the actual value of the receiver’s clock. Finally, if the timestamp
attached to the packet is smaller than the value of the receiver’s clock, the packet is simply
discarded since it is too late for presentation.

However, (even if an identical clock rate is assumed) due to the fluctuating delays in real
transmissions, the values of the clocks of the sender and of the receiver may differ, at a
given time instant, by the following quantity

CS(T)− CR(T) = 1,

whereCS(T)andCR(T)are, respectively, the readings of the local clocks at the sender and at
the receiver (at the same time instantT), and1 is a non negative quantity ranging between 0
(a theoretical lower bound) and1max (a theoretical upper bound on the transmission delay
introduced by the network between the sender and the receiver). Later, we will show a
technique for the estimation of1, and how this value impacts the calculation of the playout
time for the audio packets.

A crucial issue of the mechanism is an accurate dimensioning of the playout buffer for
audio packets. Both buffer underflow and overflow may occur, thus resulting in discontinu-
ities in the playout process. In order to master all the possible problems deriving from both
buffer underflow and overflow, a simple technique is proposed that was first used in [15] in
order to guarantee the continuity of the playout process controlled by an MPEG codec for
video frames. Such a technique accurately distinguishes among the two possible cases of
buffer underflow and overflow. The worst case scenario for buffer underflow (corresponding
to the case when packets arrive too late for presentation) is clearly when the first packet
arrives after a minimum delay (e.g., 0), while subsequent packets arrives with maximum
delay (e.g.,1max). In this case, due to the minimum delay of the first packet, there is a null
difference between the clock at the sender and at the receiver

CS(T)− CR(T) = 0.

However, consider now a situation in which a subsequent packet arrives at the receiver
that suffers from the maximum delay1max. Suppose that this packet has been transmitted
by the sender when its clock shows a time value equal to sayX. Due to the imposed

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 31

Figure 2. Delayed setting of the receiver’s clock for preventing buffer underflow.

synchronization, at that precise instant also the receiver’s clock would show a value equal
to X. Now, adding the transmission delay of1max, the arrival time of this subsequent packet
occurs when the receiver’s clock shows the value given byX +1max. Unfortunately, that
packet would be too late for playout and consequently discarded. This example suggests
that a practical and secure method for preventing buffer underflow (i.e., packets lost due
to their late arrival) is that the receiver delays the setting of its local clock of an additional
quantity equal to1max, when the first packet of the talkspurt is received. Precisely, when
the first packet is received with its timestamp equal toC, the receiver sets its local clock to
a value equal toC −1max:

CR(T) = C −1max.

With this simple modification (see figure 2) the problem of buffer underflow gets solved.
Simply put, this policy implicitly guarantees that all the audio packets that will suffer from
a transmission delay not greater than1max will be on-time for the playout.

However, the above mentioned technique introduces another problem: that of playout
buffer overflow. The worst case scenario for buffer overflow occurs in the following cir-
cumstance: the first packet of a talkspurt suffers from the maximum delay1max, instead
a subsequent audio packet experiences the minimum delay 0. At the arrival of the first
packet of the talkspurt at the receiving site, the receiver sets its clock equal to the value
timestamped in the packet (sayC) only after1max time units since the packet is arrived.
Due to this setting and to the maximum delay experienced by the first packet of the talkspurt
the time difference between the two clocks at the sender and at the receiver at a given time
instantT is equal to

CS(T)− CR(T) = 2×1max.

Now, if a subsequent packet arrives at the receiver that has experienced only a minimum
delay equal to 0, then the receiver’s clock, upon the reception of that packet, shows a time

32 ROCCETTI ET AL.

Figure 3. Additional buffering required for preventing buffer overflow.

value equal to

CR(T) = C − 2×1max,

whereC is the timestamp attached to the first packet of the talkspurt. From the formula
above it is clear that, in order for each packet with an early arrival to have room in the playout
buffer, an additional buffering space is required at the receiving site equal to the maximum
number of audio packets that might arrive in a time interval of 2×1max (see figure 3). In
conclusion, the example above dictates that the playout buffer dimension may never be less
than the maximum number of packets that may arrive in an interval of 2×1max.

Nevertheless, two problems have been left unresolved:

1. The accurate estimation of the value1 of the difference between the sender’s and the
receiver’s clock at a given time instantT , and

2. The dynamical adaptation of the proposed playout control mechanism in order to com-
pensate for the highly fluctuating end-to-end transmission delays that may be experienced
over wide-area packet-switched networks such as the Internet.

The following section is devoted to describe a technique that may be used to evaluate an
upper bound on the maximum experienced delay, and also to adapt the proposed playout con-
trol mechanism to the highly fluctuating transmission delays of wide-area packet-switched
networks.

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 33

3.1. Adaptive adjustment of the mechanism

A simple technique may be devised to estimate an upper bound for the maximum trans-
mission delay. This technique exploits the so called Round Trip Time (RTT) and is based
on a three-way handshake protocol. It works as follows. Prior to the beginning of the first
talkspurt in an audio conversation, aprobepacket is sent from the sender to the receiver
timestamped with the clock value of the sender (sayC). At the reception of this probe
packet, the receiver sets its own clock with the value of the timestamp attached to the probe
packet, and sends immediately back to the sender aresponsepacket with the same time-
stampC. Upon the reception of this response packet, the sender computes the value of the
RTTby subtracting from the current value of its local clock the value of the timestampC.
At that moment, the difference between the two clocks, respectively at the sender and at
the receiver, is equal to an unknown quantity (sayt0) which may range from a theoretical
lower bound of 0 (that is, all theRTTvalue has been consumed on the way back from the
receiver to the sender), and a theoretical upper bound ofRTT (that is all theRTThas been
consumed on the way in during the transmission of the probe packet). Unfortunately, a time
difference of onlyt0 between the sender’s and the eceiver’s clocks could not be sufficient
to prevent packet loss due to late arrivals, as well as a rough approximation of this value
(e.g.,t0=RTT/2) might result in both playout buffer underflow problems and packet loss
due to primature arrivals. Based on these considerations, the sender, after having received
the response packet from the receiver and having calculated theRTT value, sends to the
receiver a finalinstallationpacket, with piggybacked on it the previously calculatedRTT
value. Upon receiving this installation packet, the receiver sets the time of its local clock by
subtracting from the value shown at its clock the value of the transmittedRTT. Hence, at
that precise moment, the difference between the two clocks at the receiver and at the sender
is equal to a value given by

1 = CS(T)− CR(T) = t0+ RTT,

where1 ranges in the interval [RTT, 2×RTT], depending on the unknown value oft0, that
in turn may range in the interval [0,RTT]. In essence, with the strategy above, a maximum
transmission delay equal to1 is left to the audio packets to arrive at the receiver in time
for playout, and consequently a playout buffering space proportional to1 is required for
packets with early arrivals. In order for the proposed policy to adaptively adjust to the fluc-
tuating network delays experienced over the Internet, the above mentionedsynchronization
technique is first carried out prior to the beginning of the first talkspurt of the audio con-
versation, and then periodically repeated throughout the entire conversation. The adopted
period is about 1 second in order to prevent the two clocks (possibly equipped with different
clock rates) from drifting apart. Thus, each time a newRTTvalue is computed by the sender,
it may be used by the receiver for dynamically setting both the value of its local clock and
the playout buffer dimensions. This method guarantees that both the introduced additional
buffering delay and the buffer dimension are always proportioned to the traffic conditions.
However, it may be not possible to replace on-the-fly during a talkspurt the current values
of the receiver’s clock and the dimensions of its playout buffer. In fact, as earlier men-
tioned, such an instantaneous adaptive adjustment of thesynchronizationparameters might

34 ROCCETTI ET AL.

introduce eithergapsor eventime collisionsinside a talkspurt. (For a formal definition of
gaps and time collisions see below in Sections 3.1.1 and 3.1.2). Based on this consideration,
the installation at the receiver of the values of a new synchronization (namely, the activity
of changing the values of the receiver’s playout clock and of the buffer dimension) is carried
out only during the periods of audio inactivity, when no audio packets are generated by the
sender (i.e., during silence periods between different talkspurts).

The main purpose of the following two sections is to show how the installation of a new
synchronization between the sender and the receiver may be conducted during a silence
period detected by the sender without introducing either gaps or time collisions inside the
talkspurts of the audio conversation.

3.1.1. Installing a new synchronization without introducing gaps.With the termgaps
inside a talkspurt we refer to those cases when a given sequence of audio packets is artificially
contracted (or truncated) by the playout control mechanism thus causing at the receiver an
arbitrary skipping of a number of consecutive audio samples. For example, suppose that a
given sequence of consecutive audio packets may be numbered with consecutive integers
ranging from 1 to 100, a gap would be introduced by the playout control mechanism if that
original packet sequence would be perceived at the receiver as composed by the packets
numbered from 1 to 36 and then, immediately after, by the packets numbered from 60 to
100, thus excluding all the packets from 37 to 59.

We denote respectively with1i = ti + RTTi and1 j = t j + RTTj the values of the
differences between the sender’s and the receiver’s clocks due to two subsequent synchro-
nizationsi and j , where the synchronizationj occurs after the synchronizationi (i.e., j > i).
We denote withδsync the value given byδsync= 1 j −1i . Note that even if the values ofti
andt j are unknown, instead their difference (i.e.,t j − ti) may be exactly evaluated at the
receiver’s site upon the reception of the correspondent probe packets, by using, for example,
the method that was first proposed in [4].

Possible gaps in the talkspurt (i.e., an arbitrary skipping of audio packets) may occur in the
situation whenδsync is smaller than 0. This situation really corresponds to an improvement
of the traffic conditions of the underlying network since the value1 j turns out to be smaller
than the value1i . Because of this improvement in the traffic conditions, the installation
of the synchronizationj causes the advance of the receiver’s clock from its current value
(say I) to a larger valueI∗ = I − δsync, where I∗ > I . Hence, in order for the receiver
to playout all the audio packets generated by the sending site without skipping any audio
sample, it is necessary that the sender does not generate audio packets whose attached
timestamps range in the interval given by [I , I − δsync− 1]. Otherwise, the improvement
in traffic conditions could cause possible negative scenarios, like that depicted in figure 4.
In figure 4, a situation is represented where an improvement of the traffic conditions is
experienced (1 j = 2< 1i = 25,δsync= −23). Owing to this improvement in the network
traffic conditions, a new synchronizationj could be installed (rightmost arrow in the figure)
that would cause the advance of the receiver’s clock from its previous valueI = 37 to the
new value given byI∗ = 60. Unfortunately, this instantaneous increase in the receiver’s
clock would make impossible to play out at the receiver all the audio samples in the interval
[37, 59].

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 35

Figure 4. δsync< 0: gaps at the receiver (from 37 to 59) due to the installation of a new synchronization.

It is possible to avoid the negative scenario described in figure 4 by adopting the following
policy. Consider a situation during an audio conversation in which a previous synchroniza-
tion (denoted withi) has been installed. All the playout activities concerning that audio
conversation are carried out using the receiver’s clock (sayCR,i) initialized with the cor-
responding values of the synchronizationi . Suppose that subsequently all the preliminary
activities related to a new synchronization (sayj) are successfully performed: i.e., the probe
and the response packets of the synchronizationj are transmitted and received, and at the
receiving site a new “spare” clock sayCR, j is initialized accordingly. Consequently, at the
sender site, the value ofδsync= 1 j −1i may be computed.

At that precise instant, the sender may exploit a timeout-based mechanism (together with
a silence detector) in order to detect the first silence period whose length is not smaller
than|δsync|. As soon as such a silence period is detected whose length is equal to|δsync|, an
installation message is instantaneously transmitted by the sender for installing the synchro-
nization j . Suppose that such a silence period has begun when the value of the sender’s clock
wasCS(T) = U . Hence, the time instant at which that installation packet (timestamped
with the valueU) is transmitted by the sender isT = U + |δsync|. In addition, that packet
transports (piggybacked in itself) the installation valueRTTj . Such an installation packet
will be subsequently received at the receiving site and dealt with according to the normal
procedure for audio packets.

In particular, upon the reception of the installation packet, if the attached timestamp
U is equal to the valueCR,i (T) shown by the receiver’s clock, that packet causes the
immediate installation of the synchronizationj . In essence, theRTTj value piggybacked in
the synchronization packet is used to definitely adjust the value of the new receiver’s clock.
At that time, the new receiver’s clockCR, j may immediately replace the previous clock
CR,i in the support of all the audio playout activities. On the contrary, if the installation
packet arrives at the receiver when the receiver’s clock shows a valueCR,i (T) larger than
the attached timestampU , the installation packet is discarded and the installation does not
take place. Finally, if the timestampU attached to the packet is larger than the value of
the receiver’s clock, that packet is buffered and the synchronization activity will take place
when the current receiver’s clockCR,i will show a value equal toU .

36 ROCCETTI ET AL.

Figure 5. δsync< 0: installation of a new synchronization during a sufficiently long silence period.

From the discussion above, it is easy to deduce that the proposed policy guarantees that
a synchronizationj (occurring after the synchronizationi), whose corresponding valuest j

andRTTj are such thatt j +RTTj < ti +RTTi ,may always be installed without producing
gaps by using a silence period whose length is at least equal to|δsync|, since no audio packet
is generated during the silence period [U,U + |δsync| − 1].

The application of the described policy to the example of figure 4 is depicted in figure 5.
In that figure, the installation of the synchronizationj is performed by exploiting a silence
period detected at the sender (and represented with grey rectangles from 37 to 59) whose
length is equal to|δsync| = 23. As seen from the figure, no audio sample is lost at the receiver
due to the installation of the new synchronization.

Finally, it is possible to show that with the described policy all the audio packets that are
generated by the sender prior to the time instantU are guaranteed to be played out provided
that they experience a transmission delay time not larger than1i , since they arrive before
the synchronizationj is installed. Furthermore, all the audio packets that are generated
after the end of the silence period (i.e., afterU +|δsync|−1) are guaranteed to be played out
provided that they experience a transmission delay not larger than1 j , since they arrive at
the receiver when the synchronizationj has been already installed. (The interested reader
may refer to Proposition A1 in the Appendix of the already cited reference [17] for a formal
description and a proof of the statements reported above). Summarizing, the improvement
of the traffic conditions experienced by the audio packets is accommodated by the proposed
policy by installing an up-to-date synchronizationj that causes at the receiver an artificial
contraction of the silence period chosen for the installation. The reduction of the silence
period at the receiver (w.r.t. the original duration of the corresponding silence period at the
sender) may be estimated as equal to|δsync|.

3.1.2. Installing a new synchronization without introducing time collisions.With the
term time collisionswe refer to those circumstances when audio packets that would be
too late for playout according to a given synchronizationi , may instead be considered in
time for playout if their timestamps are processed with the clock values deriving from the
installation of a subsequent synchronizationj . Following the same notation introduced in

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 37

the previous section, we denote with1i = ti + RTTi and1 j = t j + RTTj the values
of the differences between the sender’s and the receiver’s clocks due to two subsequent
synchronizationsi and j (j > i). Yet again, the valueδsync may be calculated as given by
δsync= 1 j −1i .

It is straightforward to deduce that time collisions may occur in the circumstances when
δsync is larger than 0. This situation corresponds to a deterioration of the traffic conditions
over the underlying network, since the value1 j turns out to be larger than the value1i .
Because of this, the installation of the synchronizationj causes the receiver’s clock to be
moved back from its current valueI to a smaller valueI∗ = I − δsync, whereI∗ < I . Thus,
in order to avoid collisions, it is necessary that the receiver does not play out, when the
synchronizationj is active, any audio packet that was generated when the synchronizationi
was active. Otherwise, it could be the case that, due to the time contraction imposed to the
receiver’s clock by the synchronizationj , some audio packets (arrived at the receiver too
late for being played out according to the clock values imposed by the synchronization
i) are, instead, in time for being played out according to the clock value imposed by the
synchronizationj .

The above mentioned problem may be avoided by adopting the following policy. Consider
a situation during a transmission of audio packets in which a previous synchronization (sayi)
has been installed. All the playout activities concerning that audio conversation are carried
out using the receiver’s clock that has been set with the values of the synchronizationi .
Then, suppose that, at a subsequent time instant, all the preliminary activities related to
a new synchronizationj are successfully executed: i.e., both the probe and the response
packets of the synchronizationj are transmitted and received, and, at the receiving site,
a new clockCR, j is initialized accordingly. At that time, at the sender site, the value of
δsync= 1 j − 1i may be computed. Assume thatδsync> 0. At this point, the sender may
exploit its silence detector in order to detect the silence period that first occurs. As soon as
such a silence period is detected, an installation message may be transmitted by the sender
for installing the synchronizationj . That installation packet will be timestamped with the
time valueU (corresponding to the beginning of the silence period), and will also carry
the most recently computed installation valueRTTj . Upon the reception of this installation
packet at the receiver, an installation procedure may be executed similar to that described
in the previous Section 3.3.1.

In particular, if the timestampU attached to the installation packet is equal to the value
CR,i (T) shown by the receiver’s clock, that packet causes the installation of the synchroniza-
tion j . On the contrary, if the installation packet arrives at the receiver when the receiver’s
clock shows a valueCR,i (T) larger than the attached timestampU , the installation packet
is discarded and the installation does not take place. Finally, if the timestampU attached
to the packet is larger than the value of the receiver’s clock, that packet is buffered and the
synchronization activity will take place when the current receiver’s clockCR,i will show a
value equal toU . As a result of a successfully installed synchronization, the receiver’s clock
is moved back from its old value (i.e.,U) to the new value equal toU−δsync, (U−δsync< U).
Unfortunately, this could be the cause of time collisions.

Nevertheless, in order to avoid time collisions the receiver may now use the time value
U that represents the time instant at which the installation packet was transmitted by the

38 ROCCETTI ET AL.

sender. In essence, after having installed a new synchronizationj , the receiver uses the
timestampU attached to the installation packet as aplayout threshold. If the timestamps of
the received audio packets are smaller than the valueU , the corresponding packets are to be
discarded, since they are too late w.r.t. the deadline imposed by the the synchronization that
was active when they were emitted by the sender. On the contrary, all those audio packets
whose attached timestamp is larger thanU are considered for playout (and consequently
buffered) if they arrive before their playout deadline expires.

Thus, with the policy described above time collisions may be avoided and the decrease
of the receiver’s clock byδsync simply causes an artificial elongation of the silence period
perceived at the receiver by a quantity equal toδsync.

From the discussion above, it is easy to deduce that with the proposed policy a syn-
chronization j (occurring after a synchronizationi), whose corresponding valuest j and
RTTj are such thatt j + RTTj > ti + RTTi , may always be installed without causingtime
collisionsof the audio packets in the talkspurt, provided that: i) a silence period is used
whose original length is artificially elongated at the receiver by a quantity equal toδsync, and
ii) the installation packet does not experience a transmission delay larger thanti + RTTi .

Moreover, it is possible to show that, if the installationj is successfully installed: i) all
the audio packets that are generated by the sender when the synchronizationi is active
(i.e., before the installation packet ofj is transmitted) are guaranteed to be played out at
the receiver provided that their transmission delay over the network does not exceed the
value given byti + RTTi , and ii) all the audio packets that are emitted by the sender after
the installation packet ofj is transmitted are guaranteed to be played out at their deadlines
provided that their transmission delay does not exceed the value given byt j + RTTj . (A
formal description and a proof of the above mentioned statements may be found in the
Proposition A2 contained in the Appendix of [17]). To conclude this section, in figure 6
an example of application of the described policy is depicted. In that figure a situation is
represented where a deterioration of the traffic conditions is experienced (i.e.,1i = 2 <
1 j = 6, δsync = 4). Following this deterioration, a new synchronizationj is installed at
the receiver (the rightmost arrow in the figure) by exploiting a silence period which is

Figure 6. δsync> 0: installing a new synchronization without time collisions.

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 39

detected by the sender when its clock shows a value equal to 37. The installation causes
an instantaneous decrease of the receiver’s clock from its old valueU = 37 to the new
valueU − δsync = 33. An exact application of the proposed policy guarantees that all
the audio packets with timestamps in the interval [33, 36] are regularly played out at the
receiver only if they arrive in time w.r.t. their deadlines and before the installation of the
synchronizationj . After that the synchronizationj has been installed, possible late packets
with timestamps in the interval [33, 36] are discarded (grey rectangles in the figure). This
causes at the receiver the perception of a silence period whose original duration is elongated
by δsync= 4.

3.1.3. Detecting and smoothing out playout delay spikes.A possible problem with the
playout delay adjustment mechanism that has been proposed in this paper is related to the
possible large value for the obtainedRTTvalue, that may be caused by the fact that either
the probe or the response packet suffers from a very large transmission delay spike. Due
to that, a very large playout delay value (termedplayout delay spike) may be introduced
that impairs the interactivity of the audio conversation. For example, consider a case when,
due to a given synchronizationi , anRTTi value of 100 msec has been obtained. Based
on this value, the use of the delay playout adjustment mechanism presented in this paper
would have the effect to introduce at the receiver a playout delay for the audio packets
ranging in the interval [100, 200] msec. Suppose now that a subsequent synchronizationj
is performed that obtains anRTTj value equal to 600 msec. This very large value forRTTj

would have the effect of setting the playout delay value to a very large value ranging in the
interval [600, 1200] msec. This very large playout delay may be not considered tolerable
for an interactive audio conversation. Summarizing, a very largeRTTvalue obtained with
a given synchronization may cause an untolerable playout delay value that disrupts the
interactivity of the conversation. Nevertheless, that problem may get solved by adopting
a policy which was inspired by delay spike detection and management mechanism
proposed in [13]. Our policy works by using two different modes of operation depending
on whether a transmission delay spike has been detected or not. In thenormalmode (i.e.,
no transmission delay spike has been detected) the playout delay adjustment mechanism
operates by calculating the playout delay to be introduced in the playout process, just
as already described. Instead, in thespike-detectedmode (i.e., a very large transmission
delay spike has been detected) the very largeRTT value obtained from the spike-affected
synchronization is smoothed out by multiplying it with asmoothing factor k(k < 1). Let us
denote, in the following, withRTTj such a smoothed value obtained with the synchronization
j . Each audio packet that arrives at the receiver after a spike-affected synchronizationj has
been installed is played out after a playout delay value equal tot j + RTTj .

In the following we give a high level description of the policy we use to detect a playout
delay spike. That policy is based on the comparison between theRTTvalues obtained from
two consecutive synchronization activitiesj and i (j > i). For ease of understanding,
the policy is presented in C-language-like pseudo code in Table 1. For each most recently
computedRTTj value, the algorithm checks the current mode and, if necessary, switches
its mode to the other one (lines 1-9 in the leftmost side of the table). More precisely, if the
most recently computedRTTj value is larger than some multipleh (h > 1) of theRTTi

40 ROCCETTI ET AL.

Table 1. Playout delay spike management: delay spike detection (left) and playout delay estimation (right).

(1) For eachnewly computedRTTj {
(2) IF (mode== SPIKE)

(3) IF (RTTj <= h× old-RTTi) (1) IF (mode== SPIKE){
(4) mode= NORMAL (2) k = f (h)

(5) ELSE(mode== NORMAL) (3) 1 j = t j + RTTj × k}
(6) IF (RTTj > h× RTTi){ (4) ELSE (mode== NORMAL)

(7) mode= SPIKE (5)1 j = t j + RTTj

(8) old-RTTi = RTTi }
(9) RTTi = RTTj }

value then a delay spike is considered to be detected, and the algorithm switches to the
spike-detectedmode (lines 5–7 in the leftmost side of the table). In such spike-detected
mode, the smoothed valueRTTj is computed and then used for playout (lines 1–3 in the
rightmost side of the table). The end of a spike is detected similarly. If the most recently
computedRTTj value is smaller than some multipleh of the RTT value experienced when
the spike-affected period began, the mode is reset tonormal(lines 2–4 in the leftmost side
of the table). Clearly, when the algorithm operates in the normal mode, the normalRTTj

value is used at the receiver for calculating the playout delay (lines 4-5 in the rightmost
side of the table).

In the calculation of the smoothed valueRTTj the following policy has been adopted. Ifh
is the constant value used to detect the transmission delay spike, then the smoothing factor
k is calculated ask = f (h), such thatk < 1. For instance, take into account the example
provided at the beginning of this section. If the valueh used to detect the transmission delay
spike is equal to 3 (600> 3× 100), then a possible value for the smoothing factork may
be given byk = 1/h = 1/3. Consequently, the smoothed valueRTTj would be 200 msec,
and the playout delay imposed by our proposed mechanism would result to range in the
interval given by [200, 400] msec.

The motivations behind the mechanisms adopted for both detecting the transmission
delay spikes and smoothing out the correspondent playout delay spikes have been derived
by taking into account the considerations provided in [13]. Those considerations have been
adapted to our proposed playout delay adjustment mechanism as described in the following.
In that cited paper (as well as in other ones, e.g., [2]) the results of several experiments
concerning audio conversations over the Internet are reported that show that typically the
delay values of audio packets during a spike present an initial steep rise and then decrease in
a monotonic linear fashion. The delay spikes behavior mentioned above justifies the choice
of a multiple of the currentRTTvalue in order to detect the occurrence of a very big delay
spike. In fact, if the spike is small (that is, its delay is less than an order of magnitude larger
than other baseline delays) then probably the normal mode of operation of our proposed
mechanism is able to assimilate that spike without causing any disruption at the interactivity
of the audio session. Instead, if the spike is large, then the comparison between theRTT
value obtained with the most recent synchronization and an adequate multiple of the current

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 41

RTTmay be enough to detect the spike, that can be then assimilated with a smoothedRTT
value.

With respect to those big delay spikes, it is also worth mentioning that, in principle, our
proposed policy may fail either in detecting or in assimilating them, if they either occur in
between two subsequent synchronizations or are properly contained in a unique talkspurt.
Nevertheless, several experiments (detailed in the following section) have been carried
out with our playout delay adjustment mechanism that show that the percentage of packet
loss due to either undetected or missed transmission delay spikes is very small, and do
not disrupt the audio intelligibility. Probably, this is due to the following three factors: i)
the frequency used to periodically repeat the synchronization activity (one synchronization
activity per second), ii) the distribution of silence periods in human conversations (it has
been experimentally shown that typical human conversations embody almost a 50–60%
of silence periods [20]), and finally iii) the typical large duration (about 3–4 seconds) of
big delay spikes that usually span through multiple talkspurts. Finally, we wish to mention
that an adequate choice for the values of the parametersh and k should be made on a
per-connection basis by taking into account the end-to-end transmission delay values that
are usually experienced on that connection [17].

4. Experimental evaluation of the mechanism

A working prototype implementation of the playout control mechanism presented in this
paper was performed using the C programming language, and the development environ-
ment provided by the SunOS 4.3 (BSD Unix) operating system. Using such a prototype
implementation, an initial extensive experimentation was carried out aiming at measuring
the performance of the mechanism. In the following three sections, the prototype imple-
mentation used for the experimentation, the obtained experimental results, and a set of
comparative simulation results are presented.

4.1. Prototype implementation and measurement architecture

The Unix socket interface and the datagram based UDP protocol were used to transmit
and receive the sampled audio packets. The coding schemes that were used to produce
the audio packets use 8-kHz sampled speech with bit rates varying from 5.3-kbit/sec to
8-kbit/sec. In particular, all the audio packets used to perform the measurements were
produced using a codec based on the ITU-T G.729 standard [6] that provides coding of
speech at 8-kbit/sec while maintaining toll-level audio quality. In addition, in order to
reconstruct possibly lost (or corrupted) audio packets, a forward error correction-based
mechanism was implemented that was able to add to a given packet redundant information
(under the form of a highly compressed version of the previous packet). To this aim, a
codec based on the ITU-T G.723.1 standard was exploited that was able to code speech
of a low, synthetic quality at 5.3-kbit/sec. Such an alternative coding scheme was adopted
based on the consideration that it may provide redundant information by adding only a
small amount of byte overhead per packet. This redundant information was piggybacked

42 ROCCETTI ET AL.

Figure 7. Audio packet used in the experimentation.

in the packet following that containing the primary speech codeword. Thus, the loss of an
individual packet can be repaired using the redundant information carried by the following
packet [5]. Needless to say, the use of this redundancy technique entails an increase in the
overall delay due to both the algorithmic delay of the coding process and the reconstruction
delay introduced at the receiver. In substance, the measurements were all done using audio
packets that were produced by exploiting both the G.729 and the G.723.1 based codecs.

The resulting audio packets all had the structure represented in figure 7. In particular,
besides the IP and UDP headers (respectively of 20 and 8 bytes), each packet includes
a 30 msec of speech coded with the G.729 primary coding algorithm, and a 30 msec of
previous speech coded with the G.723.1 secondary coding algorithm. The 30 msec of the
current speech result in a 30 bytes field (denoted “F” in figure 1), while the 30 msec of
previous speech are coded using the 20 bytes field (denoted “P” in figure 1). In addition,
to each audio packet two timestamps are associated: the first timestamp (the “Tf” field
in figure 1) records using 4 bytes the time of generation of the 30 msec of the current
speech. Instead, the second timestamp (the “Tp” field in figure 1) records using 4 bytes
the time of generation of the previous 30 msec of speech. The time values recorded by the
timestamps use 0.1 msec as time base unit. Hence, a 4 byte timestamp field may be enough
to timestamp audio packets for a consecutive 100 hours long period of time. No sequence
number was attached to the packet in order to reduce the total amount of bytes needed, but
the timestamps were used, at the application level, both to measure end-to-end transmission
delays and also to detect packet loss. In addition, the audio packets were also used in the
prototype implementation of our protocol for implementing two out of the three phases of
the synchronization activity, namely the “probing” and the “installation” phases. Hence, a
4 byte field (denoted “T”) was included in each packet to carry theRTTi value needed for
the installation of the synchronizationi . Moreover, since each audio packet was emitted by
the sender only at regular intervals of 30 msec, the 4 byte field “W” was included to record
the total quantity of time elapsed from the time instant when theRTTvalue was available
at the sender, and the time instant when thatRTT value was effectively transmitted. That
time value was used at the receiver in order to calculate the average time of completion of
the synchronization activity. Finally, an additional 2 byte field (termed “A” in figure 1) was
used for numbering subsequent synchronizations. Summarizing, the total number of bytes

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 43

used for producing the IP-based audio packets amounts to exactly 96 bytes, out of which
28 are used to encode both the IP and the UDP headers, while the remaining 68 bytes are
used to encode all the audio data and the correspondent timestamps.

One of the most important performance metrics for packet audio is the percentage of
packets lost at the destination host. Such loss results from either the late arrival of a packet
(i.e., the arrival of a packet after its scheduled playout point) or a premature arrival of a
packet. In the latter case, packet loss derives from the limitation on the finite size of the
receiver’s playout buffer. In order to manage adequately the receiver’s playout buffer, in our
prototype implementation a set of communicating processes implements at the application
level of the receiving host the buffering/playout policy described in Section 3. In summary, a
circular buffering scheme has been adopted according to which only “on-time” audio packets
(see below) are first queued in the empty locations of the buffer and then periodically fetched
and sent to the audio device for being played out.

As illustrated in Section 3, we have devised a method for an accurate calculation of the
playout buffer dimensions depending on the network traffic conditions. In essence, that
method dictates that with each synchronizationi the receiver’s playout buffer dimensions
are calculated as equal toD×1i /r , whereD is the total number of bytes needed to encode
an audio sample ofr milliseconds with a given codec and1i = ti +RTTi is the time value
(expressed in milliseconds) of the difference between the sender’s and the receiver’s clocks
according to a given synchronizationi . Both buffer overflow and underflow are prevented
by managing the buffer according to the strategy summarized below. When an audio packet
arrives (i.e., it is delivered to the application level of the receiving host), its timestampt is
compared with the valueT of the receiver’s clock, and a decision is taken according to the
rules depicted in Table 2. Ift < T , the packet is discarded having arrived too late w.r.t. its
playout time to be buffered (first row in Table 2). Ift > T + 1i , the packet is discarded
having arrived too far in advance of its playout time to be buffered (second row in Table
2). Instead, ifT < t <= T +1i , the packet is arrived in time for being played out and it
is placed in the first empty location in the playout buffer (third row in Table 2). Using the
same rate adopted for the sampling of the original audio signal, the playout process fetches
audio packets from the buffer and sends them to the audio device for playout as discussed
in the following. When the receiver’s playout clock shows a value equal toT , the playout
process searches in the buffer the audio packet with timestampT . If such a packet is found,
it is fetched from the buffer and sent to the audio device for immediate playout, while the
buffer location where the audio packet has been found is marked as empty (fourth row in
Table 2). If neither the packet timestamped withT nor the packet (timestamped withT+ r)

Table 2. Buffering/playout policy implemented at the application level of the receiving host.

Condition Policy

t < T Packet discarded (late arrival)

t > T +1i Packet discarded (premature arrival)

T < t <= T +1i Packet buffered (waiting for playout)

t = T Packet sent to the audio device for playout

44 ROCCETTI ET AL.

that contains the samer milliseconds of previous speech coded with the secondary coding
algorithm is present in the buffer, then the playout process replaces the corresponding audio
sample with a silence period of lengthr .

As new synchronization activities are carried out during an audio communication the
playout buffer dimensions are recomputed accordingly. However, it is important to notice
that with the buffering/playout policy we have adopted, even if the the playout buffer is
dynamically manipulated in order to accommodate new synchronization events, those audio
packets that are already queued in the playout buffer are neither removed nor invalidated.
When a new synchronizationj replaces a previous synchronizationi at the receiver, in fact,
two are the possible cases: eitherδsync > 0 or δsync < 0. If δsync > 0, this means that a
deterioration of the current network traffic conditions has been experienced. In order to take
into account this traffic deterioration, the receiver’s playout buffer size should be increased.
The up-to-date dimensions of the playout buffer may be calculated as equal toD ×1 j /r ,
with an increase of exactlydδsync/r e additional locations w.r.t. to the buffer used when the
synchronizationi was active. In our prototype implementation, thosedδsync/r e additional
empty locations are dynamically inserted in the same circular buffer that was in use with
the previous synchronizationi . Instead, the otherd1i /r e old locations of the buffer (where
some audio packets are possibly queued) are left untouched and are processed by the playout
process as already mentioned.

If δsync< 0, an improvement of the network traffic conditions between two subsequent
synchronization events has been measured. We may take advantage of such an improvement
in the traffic conditions to decrease the playout buffer dimensions, thus saving memory
space. Since each new synchronizationj characterized by aδsync< 0 value may be installed
at the receiver only at the end of a silent interval of length equal to|δsync| (see Section 3.1.1),
we are sure that, with our buffering/playout policy, at leastd|δsync|/r eempty locations always
exist in the buffer when a new synchronization with aδsync< 0 value is installed. Those
d|δsync|/r e empty locations may be safely removed from the buffer. The remaining1 j /r
locations of the buffer (where some audio packets are possibly queued) are left untouched
by our mechanism and are processed according to the already mentioned playout policy.

The performance of the prototype implementation of the playout delay control mechanism
presented in this paper has been evaluated using an IP-based internetworked infrastructure
connecting two SPARCstation 5 workstations running the SunOS 4.3 operating system and
situated, respectively, at the Laboratory of Computer Science of Cesena (a remote site of
the University of Bologna), and at the C.E.R.N. Institute in Geneva. Each one of the used
workstations was locally connected to a 10-Mbit/sec Ethernet LAN. In order to perform
measurements while avoiding the issue of sender’s and receiver’s clock synchronization,
the audio packets were sent using the following communication scenario. The source host
was the same as the destination host and were located in the same workstation situated
at Laboratory of Computer Science of Cesena. Instead, the workstation situated at the
C.E.R.N. Institute in Geneva operated as an intermediate host. In essence, each generated
audio packet was sent from the source host to the intermediate host. Such an intermediate
host, upon the receipt of a packet, simply echoed that packet back to the destination host.
This policy has allowed us to take experimental measurements of end-to-end packet delays
not affected from the clock synchronization problem, since in the above mentioned scenario

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 45

Figure 8. Route between the Laboratory of Computer Science of Cesena and the C.E.R.N. Institute.

the end-to-end delays coincide with round trip delays. In figure 8 the routes taken by the
packets sent over the above mentioned connection are shown that were obtained with the
tracerouteroutine.

Prior to illustrating the measurements that were taken during the experiments, it is also
interesting to notice that at the time the experiments were carried out (September–October
1997) the experimental testbed that was used had almost all interconnecting links with
bandwidth ranging from a few to several megabits per second. Indeed, the unique bottleneck
link of the above mentioned communication scenario was the regional link interconnecting
the router situated at Laboratory for Computer Science of Cesena with the router of the
Network Center of the University of Bologna (512 Kbit/sec). It is also interesting to note
that the router of the Laboratory for Computer Science of Cesena is typically under a heavy
load, since it operates as an interconnecting router for a number of remote university sites
of the region.

4.2. Experimental results and data interpretation

Several experiments (about 30) of unicast audio conversations were conducted using the
software prototype implementation of our mechanism during daytime (from 7 a.m to 8 p.m)
in different days during the period September–October 1997. Each experiment carried out
between Cesena and Geneva consisted in transmitting about 15.000 audio packets. Those
packets were generated using both the G.729 and the G.723.1 based codecs from prerecorded
10 minutes long audio files.

Two are the most important metrics that influence the users’ perception of audio data: 1)
the percentage of audio packets that arrive too late at the destination to be played out (and
so can be effectively considered lost), and 2) the amount of total delay that an audio packet

46 ROCCETTI ET AL.

Figure 9. Evolution of the round trip delay (start time: 02.00 pm 10/9/97).

has to experience before it is played out at the destination. Hence, in order to measure the
performance of our mechanism, during each experiment we measured: i) the percentage
of lost packets, ii) the end-to-end transmission delay experienced by audio packets during
transmission, and finally iii) the additional buffering delay imposed by our mechanism.

As an example, in figure 9 the evolution of the (round trip) transmission delay of the
nth packet is plotted (as a function ofn) that was measured during one of the conducted
experiments. The transmission of the 15.000 audio packets of the experiment started at 2.00
pm, on 9th October 1997. Note that on they-axis of figure 9 the value of the round trip
transmission delays are reported in milliseconds. Instead, on thex-axis the value of the
timestamps are reported that were re-numbered using consecutive integers (starting from
0), thus eliminating all the gaps in the timestamp-based numbering of the audio packets
that were caused by the silence periods between talkspurts. From a statistical analysis of
the provided data, it is possible to measure an average value of the round trip transmission
delay almost equal to 119 msec, with a maximum delay spike of 627 msec at the beginning
of the transmission, and only another spike exceeding 550 msec (after 1/3 of the period of
the audio transmission). It is also worth noticing that the total number of audio packets that
were completely lost by the network (i.e., never arrived packets) was rather low (about 40).
This is probably due to the large bandwidth that is provided by the communication links
that interconnect the end hosts of our experiment.

In figure 10, the evolution of the playout delay, i.e., the total amount of delay that each
packetn has to experience before it is played out, is reported (as function ofn) that was
obtained with our playout delay control mechanism, where the synchronization activity was
repeated with the frequency of 1 second. Yet again, on thex-axis of figure 10, the value of

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 47

Figure 10. Evolution of the playout delay (start time: 02.00 pm 10/9/97).

the timestamps are reported re-numbered in order to eliminate timestamp gaps. Instead, on
they-axis of figure 10 the values of both the (round trip) transmission delay and the playout
delay are reported for each packet expressed in milliseconds. In particular, the values of the
transmission delays are shown with grey lines (and denoted as “RTT” in the caption inside
the figure), while the values of the playout delays are plotted with black lines (and denoted
as “D” in the caption inside the Figure). More precisely, note that when a grey line exceeds
the corresponding black line, this entails that this packet has arrived too late with respect
to the playout deadline computed by our playout control mechanism and, consequently, is
discarded. On the contrary, if the black line encapsulates the grey line, this means that the
corresponding audio packet has arrived in time to be played out at the receiver. From a
statistical analysis of the data plotted in figure 10, several interesting considerations may
be derived. First, it is important to notice that our playout control mechanism keeps the
percentage of lost packets below the threshold of 5%. Furthermore, the average playout
delay was calculated as equal to 238 msec. This playout delay value may be considered
tolerable for audio conversations and guarantees a good degree of interactivity. In addition,
it is worth noticing from figure 10 that a number of playout delay spikes (approx. 15) were
produced that exceeded the value of 450 msec. Nevertheless, it is also worth mentioning
that our playout control mechanism was used during the experiment with the value of the
smoothing factork equal to 1, that is the mechanism for smoothing out the playout delay
spikes was kept deactivated. Finally, in order to fully assess the performance of the proposed
playout control mechanism, the percentage of lost packets obtained with our mechanism
(i.e., 5%) has been contrasted with the percentage of audio packets that would be lost if
a constant playout delay of 150 msec was used throughout all the performed experiment.
The percentage of lost audio packets (due to a playout delay of 150 msec) was measured
as equal to 23%.

48 ROCCETTI ET AL.

Table 3. Experimental results: average playout delay and packet loss.

Experiment Start Time Playout Delay Packet Loss Spike Management

1 08:20am 10/15/97(Th) 188 msec 7% Yes (k = 4/5)

2 02:00pm 10/9/97(Fr) 238 msec 5% No (k = 1)

3 11:00am 10/4/97(Su) 202 msec 6% Yes (k = 4/5)

4 7:40pm 9/21/97(Mo) 229 msec 5% No (k = 1)

5 04:15pm 9/16/97(We) 207 msec 5% No (k = 1)

We conclude this section by reporting in Table 3 the values of the average playout delay
and the packet loss percentage of only 5 out of the 30 experiments that were carried out. It is
worth mentioning that, besides the results provided in Table 3, also in all the other 25 cited
experiments both an acceptable value of the average playout delay (ranging in the interval
180–250 msec) and a tolerable loss percentage of up to 6–7% were experienced, and only
rarely playout delay spikes exceeding 600/700 msec were imposed by our mechanism. On
the contrary, in all those other experiments that were conducted using a constant playout
delay (typically obtained by increasing of a 10% the value of the average transmission delay)
an amount of lost audio packets was experienced ranging from about 15% to almost 40%.

4.3. Comparative simulation results

This section is devoted to the comparison of our mechanism with another playout delay
control mechanism recently proposed [13]. A new adaptive (history-based) delay adjust-
ment algorithm was proposed that tracks the network delays of received audio packets and
efficiently maintains delay percentile information [13]. That information, together with an
appropriate delay spike detection algorithm, is used to dynamically adjust talkspurt playout
delays. In essence, the main idea behind that algorithm is to collect statistics on packets
already arrived and then to use them to calculate the playout delay. Instead of using some
variation of the stochastic gradient algorithm in order to estimate the playout delay, each
packet’s delay is recorded and the distribution of packet delays is updated with each new
arrival. When a new talkspurt starts, the algorithm proposed in [13] calculates a given per-
centile point (sayq) for the last arrivedw packets, and uses it as the playout delay for
the new talkspurt. In addition, the algorithm accommodates delay spikes in the following
manner. Upon the detection of a delay spike, the algorithm stops collecting packet delays,
and follows the spike (until the detection of the spike’s end) by using as playout delay the
delay experienced by the packet that commenced the spike. Upon detecting the end of the
delay spike, the algorithm resumes its normal operation mode. The authors of [13] have
experimentally shown that their algorithm outperforms other existing delay adjustment al-
gorithms over a number of measured audio delay traces, and performs close to a theoretical
optimum over a range of parameters of interest.

Thus, in order to assess the performance of the mechanism proposed in this paper, we
carried out a simulation experiment that compares our playout delay adjustment algorithm

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 49

with the history-based mechanism proposed in [13]. As already mentioned, the most impor-
tant metric that influence the users’ perception of audio data is represented by the average
playout delay vs. the packet loss. Hence, the two algorithms were compared with respect to
these values. To this aim, a simulator was designed and developed that reads in the trans-
mission delay of each packet from a given trace, detects if it has arrived before the playout
time that is computed by each of the two algorithms, and executes the algorithm [16]. The
simulator is also able to calculate the average playout delay and the packet loss for a given
trace (for each of the two algorithms). Thus, we run the simulator several times in order to
simulate the use of the history-based algorithm over the measured audio delay trace reported
in figure 9. The simulator was used by varying (at each run) the percentile pointq, in order
to reach the following fixed values of loss percentage (approx. 3%, 4%, 5%, 7%, 10%, 12%,
15%, 20%), and then to measure the correspondent average playout delays. The values of
the percentile pointq that were used to keep the packet loss percentage below the values
reported above were the following: .995, .99, .985, .98, .97, .96, .94, .92.

Subsequently, we run repeatedly the simulator to simulate our algorithm over the same
measured audio delay trace depicted in the figure 9. The purpose of those simulations was to
identify that set of cases where our algorithm reaches approximately the same values of the
loss percentage that were obtained with the history-based algorithm, and then to measure the
correspondent average playout delays. This allow us to compare the performance of the two
algorithms under identical network conditions. To this end, we simulated our algorithm using
the buffer size as the control parameter to be varied to achieve different loss percentages,
as was done in [13, 14]. Such a variation of the buffer size was achieved by tuning a
sensitivity factor in the synchronization formula used to obtain the synchronization values
to be installed at the receiver. In essence, instead of using the “regular” synchronization
formula (namely1 = t + RTT), the following formula was used to calculate the playout
delay:1 = t + (p × RTT), where p is a non negative constant. Hence, in order for
our algorithm to obtain approximately the same packet loss percentages obtained with the
history-based algorithm the following values ofp were approx. needed: 1.5, 1.3, 1, 4/5, 3/4,
2/3, 1/2, 2/5. The average playout delays obtained using this simulation technique were then
compared with the average playout delays obtained with the simulation of the history-based
algorithm, at a parity of packet loss percentage.

It is worth mentioning that our algorithm was used twice for simulation. First, it was
simulated with the playout delay spike smoothing mechanism deactivated (i.e.,k = 1), then
the experiment was repeated with the playout delay spike smoothing mechanism activated
(i.e.,k = 4/5). In conclusion, in Table 4 the values of the average playout delays are reported,
that were obtained with the simulation of respectively: i) the history-based algorithm (first
row in Table 4), ii) our algorithm with the playout delay spike smoothing mechanism

Table 4. Simulation results: average playout delays (msec).

Algorithm 3% 4% 5% 7% 10% 12% 15% 20%

History-based 332 249 215 201 178 172 161 152
Our-algorithm I 298 260 202 194 181 170 166 157
Our-algorithm II 352 301 237 223 210 193 187 172

50 ROCCETTI ET AL.

Figure 11. Comparison of the analyzed algorithms: average playout delay vs loss rate.

activated (second row in Table 4), iii) our algorithm with the playout delay smoothing
mechanism deactivated (third row in Table 4). From the analysis of Table 4, it is possible to
deduce that the history-based algorithm outperforms our algorithm with the playout delay
spike smoothing mechanism deactivated. Instead, based on the consideration that audio
of acceptable quality may be obtained only if lower delays are achieved while the loss
percentage does not exceed the value of 10%, our algorithm (with the delay spike smoothing
mechanism activated) shows better performance w.r.t. to the history-based algorithm as long
as the loss percentage is kept below the value of 10%.

In order to better illustrate the results of our comparison, in figure 11 the average playout
delay is plotted as a function of the loss percentages for each analyzed algorithm. The plot
of the playout delay has been obtained by running the simulator over all the 30 experimental
traces, and then averaging the results. In order to provide the reader with an understanding
of the effect that various delay and loss rates (as well as buffer dynamics) have on the
quality of the perceived audio, we have reported in figure 11 an approximate and intuitive
representation of three different ranges for the quality of the perceived audio. The three
following audio quality ranges have been adopted from [6]:good, for delays of less than
200/250 msec and low loss rate,potentially useful, for delays of about 300–350 msec and
higher loss rates, andpoor, for delays larger than 350 msec and very high loss rates. As
seen from the Figure, our algorithm (with the playout delay smoothing mechanism activated)
shows betteraverageperformance w.r.t. the history-based algorithm in both thegoodand
thepotentially usefulaudio quality regions.

To conclude this comparison, it is worth noticing that the synchronization policy em-
bedded in our mechanism imposes little computational overhead (both at the source and
the destination hosts) w.r.t. the history-based algorithm, where delay statistics have to be
collected, and percentile points of the delay distribution have to be calculated on-the-fly.

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 51

5. Concluding remarks

An adaptive mechanism for the control of the playout delay of audio packets over the Inter-
net has been proposed. This mechanism is suitable for dynamically adjusting the talkspurt
playout delays for unicast, voice-based communications where conversational audio with
silence periods between subsequent talkspurts is transmitted. We commenced the design
and the experimental evaluation of our playout delay control mechanism during the Summer
of 1997, and completed them in October 1997. During that period, several experiments were
carried out that showed that our design was successful in maintaining satisfiable values of
the average playout delay, while minimizing the number of audio packets that were lost
during an audio transmission performed over a interconnected (IP based) link. The designed
mechanism assumes neither the existence of an external algorithm for maintaining an ac-
curate synchronization at both the sending and the receiving sites of the audio connection,
nor a Gaussian distribution for the end-to-end transmission delays experienced by the audio
packets. In addition, our mechanism provides: i) an internal and accurate algorithm that
maintains tight time synchronization between the sending and the receiving hosts, ii) a
method for adaptively estimating the audio packet playout time (on a per-talkspurt basis)
with an associated minimal computational overhead, iii) an exact and simple technique
for dimensioning the playout buffer depending on the traffic conditions of the underlying
network.

An extended version of this paper, referenced as [17] in the bibliography, is available via
anonymous FTP fromftp.cs.unibo.it:/pub/TR/UBLCS.

Acknowledgments

This research has been funded by the Italian MURST and CNR under a grant. We are
indebted to Prof. Paolo Capiluppi (University of Bologna and C.E.R.N.) for letting us to
experiment our software prototype implementation using a workstation of the C.E.R.N.
Institute in Geneva. We are grateful to the anonymous referees ofMultimedia Tools and
Applicationsfor their exhaustive and helpful reviews of this paper.

References

1. M. Bernardo, R. Gorrieri, and M. Roccetti, “Formal performance modeling and evaluation of an adaptive
mechanism for packetized audio over the internet,” Formal Aspects of Computing, to appear.

2. J. Bolot, H. Crepin, and A. Vega Garcia, “Analysis of audio packet loss on the internet,” in Proc. of Network
and Operating System Support for Digital Audio and Video, Durham (NC), 1995, pp. 163–174.

3. D. Cohen, “Issues in transnet packetized voice communications,” in Proc. of Fifth Data Communication
Symposium, Snowbird (UT), 1977, pp. 6.10–6.13.

4. F. Cristian, “Probabilistic clock synchronization,” Distributed Computing’ Vol. 3, pp. 146–158, 1989.
5. V. Hardman, M.A. Sasse, and I. Kouvelas, “Successful multi-party audio communication over the Internet,”

in Communications of the ACM Vol. 41, pp. 74–80, 1998.
6. ITU-T Recommendation G.729, “Coding of speech at 8-kb/s using coniugate-structure algebraic-code-excited

linear-prediction,” 1996.
7. ITU-T Recommendation G.723.1, “Dual rate speech coder for multimedia communications transmitting at

5.3/6.3-kb/s,” 1996.
8. V. Jacobson and S. McCanne,vat, ftp://ftp.ee.lbl.gov/conferencing/vat/.

52 ROCCETTI ET AL.

9. T.J. Kostas, M.S. Borella, I. Sidhu, G.M. Schuster, J. Grabiec, and J. Mahler, “Real-time voice over packet-
switched networks,” IEEE Network, Vol. 12, pp. 18–27, 1998.

10. W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the Self-Similar Nature of Ethernet Traffic,”
in IEEE/ACM Trans. on Networking Vol. 2, pp. 1–15, 1994.

11. M. Macedonia and D. Brutzmann, “mbone provides audio and video across the Internet,” in IEEE Computer
Magazine, Vol. 21, pp. 30–35, 1994.

12. D.L. Mills, “Improved algorithms for synchronizing computer network clocks,” in Proc. ofACM SIG-
COMM’94, London (UK), 1994, pp. 317–327.

13. S.B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay adjustment: Performance bounds and
algorithms,” in ACM Multimedia Systems Vol. 6, pp. 17–28, 1998.

14. R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive playout mechanisms for packetized audio
applications in wide-area networks,” in Proc. ofIEEE INFOCOM’94, Montreal (CA), 1994.

15. P.V. Rangan, S.S. Kumar, and S. Rajan, “Continuity and synchronization in MPEG,” in IEEE Journal on
Selected Areas in Communications, Vol. 14, pp. 52–60, 1996.

16. M. Roccetti, M. Bernardo, and R. Gorrieri, “Packetized audio for industrial applications: A simulation study,”
in Proc. of 10th European Simulation Symposium, Nottingham (UK), 1988, pp. 495–500.

17. M. Roccetti, V. Ghini, G. Pau, P. Salomoni, and M.E. Bonfigli, “Design and experimental evaluation of an
Adaptive playout delay control mechanism for packetized audio for use over the Internet,” UBLCS Technical
Report n. 98-4 , Laboratory for Computer Science, University of Bologna, May 1998.

18. H. Schulzrinne, “Voice communication across the Internet: A network voice terminal,” Tech. Rep., Dept. of
ECE and CS, Univ. of Massachusetts, Amherst (MA), 1992.

19. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for real-time applica-
tions,” Request for Comments 1889, IETF, Audio-Video WG, 1995.

20. A. Vega Garcia, “Mecanismes de controle pour la transmission de l’audio sur l’Internet,” Doctoral Thesis in
Computer Science, University of Nice-Sophia Antipolis, Ecole Doctoral SPI, 1996.

21. L. Zhang, “RSVP: A new resource reservation protocol,” in IEEE Network Magazine Vol. 7, pp. 8–18, 1993.

Marco Roccetti is a Professor of Computer Science at the Department of Computer Science of the University of
Bologna (Italy). He received the Laurea degree in Electronic Engineering from the University of Bologna, in the
academic year 1987/88. From 1992 to 1998, he was with the Department of Computer Science of the University of
Bologna as a research associate. He has worked in distributed computing systems, communication protocols and
performance analysis. His current research interests include architectural design of distributed real time computing
systems and protocol architectures for Internet based multimedia communications.

Vittorio Ghini is a Ph.D. student in Computer Science at the Computer Science Department of the University
of Bologna (Italy). He received the Laurea degree (with honors) in Computer Science from the University of

ADAPTIVE PLAYOUT DELAY CONTROL MECHANISM 53

Bologna in 1997. He has worked in digital radio and computer networks. His current research interests include
interconnection networks, digital radio and QoS management over IP.

Giovanni Pau received the Laurea degree in Computer Science from the University of Bologna (Italy) in 1998.
In the same year, he started his Ph.D. studies in Computer Engeneering and Telecommunications at the Computer
Engeneering Department of the University of Bologna. His current research interests include network architecture
and protocols, distributed systems and QoS in the IP-based differenziated services.

Paola Salomonireceived the Laurea degree in Computer Science from the University of Bologna (Italy) in 1992.
Since 1995, she is an Assistant Professor of Computer Science at the Department of Computer Science of the
University of Bologna. Her current research interests include Internet based multimedia systems and artificial
intelligence.

Maria Elena Bonfigli received the Laurea degree (with honors) in Computer Science from the University of
Bologna (Italy) in 1995. In 1997 she started her Ph.D. studies at Department of Computer Science of the University
of Bologna, Italy. Since 1998 she is collaborating with CINECA—Interuniversity SuperComputing Centre—within
the Nu.M.E. project. Her research interests include design and development of distributed multimedia systems
and 3-D Web interfaces.

