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INTRODUCTION

Research on advanced-technology airfoils for general aviation applications

has received considerable attention over the past decade at the NASA Langley

Research Center. The initial emphasis in this research program was on the

design and testing of turbulent-flow airfoils with the basic objective of pro-

ducing a series of airfoils which could achieve higher maximum lift coefficients

than the airfoils in use on general aviation airplanes at that time. For this

series of airfoils, it was assumed that the flow over the entire airfoil would

be turbulent, primarily because of the construction techniques in use (mostly

riveted sheet metal). A summary of this work is presented in reference ].

While these new NASA low-speed airfoils did achieve higher maximum lift coeffi-

cients, the cruise drag coefficients were essentially no lower than the earlier

NACA four- and five-digit airfoils. Accordingly, the emphasis in the research

program has been shifted toward natural-laminar-flow (NLF) airfoils in an

attempt to obtain lower cruise drag coefficients while retaining the high maxi-

mum lift coefficients of the new NASA airfoils. In this context, the term

"natural-laminar-flow airfoil" refers to an airfoil which can achieve signif-

icant extents of laminar flow (_30-percent chord) solely through favorable pres-

sure gradients (no boundary-layer suction or cooling).

Research on natural-laminar-flow airfoils dates back to the ]930's at the

National Advisory Committee for Aeronautics (NACA). (See ref. 2. ) The work

at NACA was culminated with the 6-series airfoils (ref. 3). The 6-series air-

foils were not generally successful as low-drag airfoils, however, because of

the construction techniques available at the time.

The advent of composite structures has led to a resurgence in NLF research.

The initial applications were sailplanes, but recently, a number of powered

general aviation airplanes have been constructed of composites - most notably,

the Bellanca Skyrocket II (ref. 4) and the Windecker Eagle (ref. 5). In Europe,

powered composite airplanes have also been produced. One such aircraft, the

LFU 205, used an NLF airfoil specifically tailored for its mission (ref. 6).

Thus, the introduction of composite construction has allowed aerodynamicists

to design NLF airfoils which achieve, in flight, the low-drag characteristics

measured in the wind tunnel (ref. 7). The goal of the present research on NLF

airfoils at Langley Research Center is to combine the high maximum lift capabil-

ity of the NASA low-speed airfoils with the low-drag characteristics of the NACA
6-series airfoils.

As part of the present research, an NLF airfoil, the NLF(])-04]6, was

designed using the method of reference 8 and verified experimentally (ref. 9)

in the Langley Low-Turbulence Pressure Tunnel (LTPT) (ref. ]0). Based upon the

success of this airfoil and the excellent agreement between the theoretical pre-

dictions and the experimental results, a second, more advanced, airfoil was

designed using the method of reference 8. An experimental investigation was

then conducted in the Low-Turbulence Pressure Tunnel to obtain the basic low-

K

Y

}

.k.



OE POOR QUALITY

speed, two-dimensional aerodynamic characteristics of the airfoil. The results

have been compared with the predictions from the method of reference 8.

Use of trade names or names of manufacturers in this report does not con-

stitute an official endorsement of such products or manufacturers, either

expressed or implied, by the National Aeronautics and Space Administration.
m

SYMBOLS

Values are given in both SI and U.S. Customary Units.

calculations were made in U.S. Customary Units.

PZ - P_

Cp pressure coefficient,
q_

Measurements and

c airfoil chord, cm (in.)

c c

Cd

c d ,

cZ

cm

cn

h

M

P

q

R

t

section chord-force coefficient, fCp d(_ 1

section profile-drag coefficient, f C d' d(!)

Wake

point drag coefficient (ref. I])

section lift coefficient, c n cos _ - c c sin

section pitching-moment coefficient about quarter-chord point,

C x

vertical height in wake profile, cm (in.)

free-stream Mach number

static pressure, Pa (ibf/ft 2)

dynamic pressure, Pa (ibf/ft 2)

Reynolds number based on free-stream conditions and airfoil chord

airfoil thickness, cm (in.)
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x

z

_f

airfoil abscissa, cm (in.)

airfoil ordinate, cm (in.)

angle of attack relative to chord line, deg

flap deflection, positive downward, deg

Subscripts:

Z local point on airfoil

max maximum

min minimum

free-stream conditions

Abbreviations:

1s

LTPT

NLF

us

lower surface

Langley Low-Turbulence Pressure Tunnel

natural laminar flow

upper surface
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AIRFOIL DESIGN

OBJECTIVES AND CONSTRAINTS

The target application for this airfoil is a high-performance, single-

engine, general aviation airplane. This application requires low section

profile-drag coefficients cd at a Reynolds number R of about 9 x ]0 6 for

the cruise section lift coefficient (c z = 0.2) as well as for the climb section

lift coefficients (c z = 0.5 to ].0).

Two primary objectives were identified for this airfoil. The first objec-

tive was to design an airfoil which would produce a maximum lift coefficient

CZ,ma x at R = 3 x ]0 6 comparable to those of the NASA low-speed series air-

foils. (See ref. ].) A requirement related to the first objective was that

Cz,ma x not decrease with transition fixed near the leading edge on both sur-

faces. This means that the maximum lift coefficient cannot depend on the

achievement of laminar flow. Thus, if the leading edge of the wing is con-

taminated by insect remains, etc., the CZ,ma x should not decrease. This

requirement is set by safety considerations relating to stall and, therefore,

to landing speeds. The second objective was to obtain low profile-drag coeffi-

cients c d from the cruise lift coefficient cz of 0.2 to about ].

Y
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Three constraints were placed on this airfoil design in order to make it

compatible with existing aircraft designs. First, the airfoil thickness t/c

must be ]5 percent. Second, the pitching-moment coefficient cm should be no

more negative than -0.05 at the cruise lift coefficient (c Z -- 0.2). Third, the

airfoil must incorporate a simple flap having a chord equal to 25 percent of

the airfoil chord c.

PHILOSOPHY

Given the previously discussed objectives and constraints, certain charac-

teristics of the design are evident. The following sketch illustrates the

desired c z - c d curve, which meets the goals for this design:

C
1

1.8 m C

C

d

I

I:
I:

F

Sketch ] [r

The desired airfoil shape can be related to the pressure distributions which occur

at the various lift coefficients shown in the sketch. Point A is the cruise con-

dition (c z = 0.2, R = 9 × ]06). The value of cd for this point is determined

by the extents of laminar flow on the upper and lower surfaces. There is little

aerodynamic advantage in achieving low drag below c z = 0.2. This is especially

important if high maximum lift must be obtained (point C). However, in an

attempt to insure a low-drag coefficient at the cruise lift coefficient

(c Z = 0.2) despite contour deviations due to construction tolerances, the lower

limit of the low-drag range was extended downward to c z = 0. ]. Notice that the

drag at point B (c z = ].0) is not quite as low as at point A (c Z = 0.2). This

feature is quite important because it shows that the transition point on the

upper surface moves slowly and steadily toward the leading edge with increasing

c Z, as opposed to the sudden forward jump characteristic of the NACA 6-series

airfoils. This feature leads to an airfoil with a relatively blunt leading edge

which, in turn, should produce a high maximum lift coefficient as well as good

flap effectiveness. L_

This outline of the desired section characteristics is not sufficient to

design the airfoil, however, primarily because of the variable introduced by
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• the flap and the unconstrained extents of laminar flow on the upper and lower

surfaces. In order to evaluate the effects of these variables, it is helpful

to examine the design goals with respect to overall aircraft performance. For

this airfoil, the primary goal is a reduction in wing parasite drag. This goal

can be achieved in a number of ways, two of which are discussed in this report.

First, if a high maximum lift coefficient Cz,ma x can be realized, the wing

area can be reduced relative to a wing with a lower Cz,ma x. This conclusion is

based on the assumption that both aircraft must achieve the same minim_ speed.

Second, if the amount of laminar flow on one or both surfaces can be extended,

the minimum profile-drag coefficient Cd,mi n will be reduced. Further analysis

indicates that by maximizing Cz,max/Cd,mi n, the wing parasite drag is minimized.

Unfortunately, a reduction in Cd, mi n through the extension of the amount of

laminar flow on the upper surface generally results in a reduction in CZ,ma x.

(See ref. 3.) By trial and error, it was determined that c Z,max/cd,min would
be maximized for this application if the extent of laminar flow was about 0.4c

on the upper surface and about 0.6c on the lower surface.

The effect of the flap on the design can be evaluated by examining the con-

straint on the pitching-moment coefficient (Cm, cruise > -0.05). The objective

of a high maximum lift coefficient is in conflict with the pitching-moment con-

straint. For this design, the flap can be used to alleviate this conflict by

employing negative (up) flap deflections. This concept allows an airfoil to be

designed which has a fairly large amount of camber (conducive to a high Cz,max)
but retains the ability to achieve a low pitching-moment coefficient at the

cruise lift coefficient (c Z = 0.2). This concept has the added advantage that,

by deflecting the flap up or down, the low-drag range can be shifted to lower or

higher lift coefficients, respectively. (See ref. ]2.) Based upon experience

with other airfoils, the negative flap deflection 6f was limited to -10 °.

From the preceding discussion, the pressure distributions along the

c Z - c d curve from points A to B in sketch ] can be deduced. The pressure dis-

tribution for a flap deflection of 0° at a lift coefficient of about 0.7 (i.e.,

between points A and B) should probably resemble sketch 2.

C
P

+

0

us

I I

0.4 0.6

X/C

Sketch 2
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For the reasons previously stated, a favorable pressure gradient on the upper

surface is desirable up to x/c = 0.4. Aft of 0.4c on the upper surface, a

short region of slightly adverse pressure gradient is desirable to promote the

efficient transition from laminar to turbulent flow (ref. ]3). Thus, the ini-

tial slope of the pressure recovery is relatively shallow. This short region is

followed by a steeper concave pressure recovery which produces lower drag and ,

has less tendency to separate than the corresponding linear or convex pressure

recovery (ref. 13). The proposed pressure recovery, although concave, does not

approach the extreme shape of a Stratford recovery (ref. ]4). The Stratford

recovery is not appropriate for an airfoil which must operate over a range of

lift coefficients and Reynolds numbers (ref. 15).

For the reasons previously stated, a favorable pressure gradient on the

lower surface is desirable up to x/c = 0.6. A rather abrupt and very steep con-

cave pressure recovery is introduced aft of 0.6c, which results in a large

amount of aft camber. This camber, although limited by the pitching-moment con-

straint (Cm, cruise > -0.05 with _ = -]0°), helps produce a high maximum lift

coefficient.

For point A (c I = 0.2) in sketch ], the pressure distribution should resem-
ble sketch 3. For this lift coefficient, the flap is deflected up ]0 °. Along

C
P

+ I I I
0 0.4 0.6 1.0

x/c

Sketch 3

the lower surface, the pressure gradient is initially adverse, then zero, and

then increasingly favorable. Basically, this concept is to transition as the

Stratford pressure recovery (ref. ]4) is to separation. The concept was sug-

gested by Richard Eppler of the University of Stuttgart, Stuttgart, West Germany.

For point B (c I = 1.0) in sketch l, the pressure distribution should resem-
ble sketch 4. For this lift coefficient, the flap is deflected down ]0 o. A

favorable pressure gradient on the upper surface to x/c = 0.4 and a zero pres-

sure gradient on the lower surface to x/c = 0.6 is expected to result in low

drag, albeit at the lower limit of the low-drag range for this flap deflection.

i
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0.4 0.6 1.0

x/c

Sketch 4

It should be noted that the cruise-flap concept may not be optimum for all

applications. If the construction tolerances at the flap hinge are not suf-

ficiently tight, lift and drag penalties due to a disturbance to the turbulent

boundary layer may be sufficient to offset the advantages of this concept. (See

ref. ]6. )

EXECUTION

Given the pressure distributions for c Z = 0.2, c Z = 0.7, and c Z = 1.0,

the design of the airfoil is reduced to the inverse problem of transforming

the pressure distributions into an airfoil shape. The method of reference 8 was

used because it is ideal for handling multipoint designs, i.e., designs where

more than one angle of attack must be considered. This method was also chosen

because of its capability to analyze flap deflections and because of confidence

gained during the design, analysis, and experimental verification of the

NLF(])-0416 airfoil (ref. 9).

The inviscid pressure distributions computed by the method of reference 8

for c z = 0.7 (6f : 0o), c Z = 0.2 (_f : -I0°), and c z : 1.0 (_f : 10 ° ) are

shown in figures I (a), I (b), and I (c), respectively. The resulting shapes are

shown in figure 2 and the coordinates with 0 ° flap deflection are presented in

table I. The designation, NLF(1)-0215F, follows the form:

Application Airfoil number cz, desic_n t/___cc

Natural Laminar Flow I 0.2 0.1 5

k

The second "F" designates "flapped." For this airfoil, c_ _os_,, is defined

as the cruise lift coefficient. It must be emphasized, however, that this in no

way implies that this airfoil was designed at only one point, CZ,design; all of
the objectives and constraints were considered.
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EXPERIMENTAL PROCEDURE

WIND TUNNEL

The Langley Low-Turbulence Pressure Tunnel (LTPT) is a closed-throat,

single-return tunnel which can be operated at stagnation pressures from 3 to

]000 kPa (0.03 to ]0 atm). (See ref. 10.) The minimum unit Reynolds number

is approximately 3.9 x 104 per meter (1.2 x 104 per foot) at a Mach number of

0.05, whereas the maximum unit Reynolds number is approximately 4.9 × 107

per meter (1.5 x ] 07 per foot) at a Mach number of 0.23. The maximum tunnel-

empty test-section Mach number of 0.46 occurs at a stagnation pressure of

about 100 kPa (1 arm).

The test section is 9].44 cm (36.00 in.) wide by 228.6 cm (90.00 in.) high.

Hydraulically actuated circular plates provide positioning and attachment for

the two-dimensional model. The plates, ]0].6 cm (40.00 in.) in diameter, are

flush with the tunnel sidewalls and rotate with the model. The model ends were

mounted to rectangular model attachment plates, as shown in figure 3.

MODEL

The forward portion of the wind-tunnel model of the NLF(])-0215F airfoil

consisted of an aluminum spar surrounded by plastic filler with two thin

layers of fiberglass forming the aerodynamic surface. The flap was constructed

of aluminum and was attached to the forward portion of the model by aluminum

brackets. These brackets were shaped so as to simulate 0 °, -10 ° , and 10 °

deflections of a sealed, center-hinged, simple flap. (See fig. 4.) The loca-

tion of the flap-hinge point was x/c = 0.7500, z/c = 0.0328. The model had

a chord of 60.960 om (24.000 in.) and a span of 9].44 om (36.00 in.). Upper-

and lower-surface orifices were located 7.62 cm (3.00 in. ) to one side of

the midspan at the chord stations listed in table II. Spanwise orifices were

located in the upper surface only in order to monitor the two-dimensionality

of the flow at high angles of attack. All the orifices were 1.0 n_n (0.040 in.)

in diameter with their axes perpendicular to the surface. The model surface

was sanded with No. 600 dry silicon carbide paper to insure an aerodynamically

smooth finish. The steps and gaps between the brackets and the forward portion

of the model and between the brackets and the flap were eliminated by filling.

The model contour accuracy was generally within +0.05 mm (0.002 in.) as deter-

mined by measurement.

WAKE RAKE

A fixed wake rake (fig. 5) was cantilevered from the tunnel sidewall at the

model midspan and 1.0 chord downstream from the trailing edge of the model. The

wake rake employed 91 total-pressure tubes, 0.]52 om (0.060 in.) in diameter, and

5 static-pressure tubes, 0.3]8 cm (0.]25 in.) in diameter. The total-pressure

tubes were flattened to 0.]02 cm (0.040 in.) for a length of 0.61 cm (0.24 in.)

from the tips of the tubes. Each static-pressure tube had four flush orifices

located 90 ° apart, 8 tube diameters from the tip of the tube in the measurement

plane of the total-pressure tubes.

Ii
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Measurements of the static pressures on the model surfaces and of the

wake-rake pressures were made by an automatic pressure-scanning system utilizing

variable-capacitance precision transducers. Basic tunnel pressures were mea-

sured with precision quartz manometers. Geometric angle of attack was measured

by a calibrated digital shaft encoder driven by a pinion gear and a rack attached

to the circular plates. Data were obtained by a high-speed data-acquisition sys-

tem and were recorded on magnetic tape.

TESTS AND METHODS

The model was tested at Reynolds numbers based on airfoil chord from approx-

imately 2 × ]06 to 9 × 106 . The Mach number was varied from about 0.1 to 0.3.

The model was tested both smooth (transition free) and with transition fixed by

roughness at 0.05c on both surfaces. The roughness was sized for each Reynolds

number by the method of reference ]7. The granular roughness was sparsely dis-

tributed along the 3-mm (0. l-in. ) wide strips which were applied to the model

with lacquer.

For several test runs, the model upper surface was coated with oil to deter-

mine the location as well as the nature of the boundary-layer transition from

laminar to turbulent flow (ref. ]8).

The static-pressure measurements at the model surface were reduced to stan-

dard pressure coefficients and numerically integrated to obtain section normal-

force and chord-force coefficients and section pitching-moment coefficients

about the quarter-chord point. Section profile-drag coefficients were computed

from the wake-rake total and static pressures by the method of reference 11.

S_tandard low-speed wind-tunnel boundary corrections (ref. 19), a maximum of

approximately 3 percent of the measured section characteristics and 0.2 °

angle of attack, have been applied to the data. The wake-rake total-pressure-

tube displacement correction (ref. ] ]), a maximum increase of approximately

2 percent of the measured profile-drag coefficients, has not been taken into

account in order that the data be directly comparable to previously published

airfoil data.

fJ

DISCUSSION OF RESULTS

EXPERIMENTAL RESULTS

Pressure Distributions

The pressure distributions for various angles of attack with a flap deflec-

tion 6f of 0 ° at a Reynolds number of 6.0 x ]06 and a Mach number of 0.]0 are

shown in figure 6. At & = -]3.08 ° , -]2.08 ° , and -]].08 ° (figs. 6(a) to 6(c)),

the entire lower surface is separated. As the angle of attack is increased from

-]0.]5 ° (fig. 6(d)), which corresponds to Cz,min, the lower-surface, leading-

edge pressure peak decreases in magnitude until it has disappeared at & = 0.0] °

K
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(fig. 6(n)). At this angle of attack, the profile-drag coefficient is minimum,

and favorable pressure gradients exist along the upper surface to about 0.40c

and along the lower surface to about 0.60c. As the angle of attack is increased

further, the pressure gradient along the upper surface becomes less favorable

until, at _ = 3.06 ° , it is essentially flat (fig. 6(q)). As the angle of [_

attack is increased even further, the position of minimum pressure on the upper

surface moves slowly forward while the magnitude of the minimum pressure

increases (figs. 6(r) to 6(y)). This feature was one of the design goals discus-

sed in "Philosophy" and represents an improvement over the sudden forward jump

of Cp,min, typical of the NACA 6-series airfoils. At e = ]2.20 ° (fig. 6(z)),

the mlnimum pressure on the upper surface occurs at x/c = 0.0, thus forming a

leading-edge peak. At _ = ]3.2] ° (fig. 6(aa)), the lift aoefficient is maxi-

mum, and turbulent trailing-edge separation has occurred on the upper surface

at about 0.85c. The leading-edge peak continues to increase in magnitude, even

beyond CZ,max, indicating that leading-edge separation does not occur
I

(figs. 6(bb) to 6(dd)).

The pressure distributions for various angles of attack with a flap deflec-

tion of -10 ° at a Reynolds number of 6.0 × 106 and a Mach number of 0.10 are

shown in figure 7. At _ = -11.09 °, -]0.]0 ° , and -9.07 ° (figs. 7(a) to 7(c)),

the entire lower surface is separated. As the angle of attack is increased from

-8.]7 ° (fig. 7(d)), which corresponds to Cz,min, the lower-surface, leading-

edge pressure peak decreases in magnitude. It should be noted that the kink [!

(depression) in the upper-surface pressure distribution which occurs at approxi-

mately 0.75c is the re_.zl_ of the corner formed in the upper surface by the

negative flap deflection. (See fig. 4(b).) Further negative flap deflection

increases the magnitude of this depression and, correspondingly, the possibility

of separation in the corner. Thus, the negative flap deflection is limited by

the requirement of low drag. The minimum profile-drag coefficient occurs at

= 1.52 ° despite the persistence of the lower-surface, leading-edge peak which

the laminar flow apparently survives (fig. 7(p)). At e = 2.51 ° (fig. 7(r)),

the peak has disappeared and favorable pressure gradients exist along the upper If

surface to about 0.35c and along the lower surface to about 0.60c. As the angle
L_

of attack is increased further, the pressure gradient along the upper surface

becomes less favorable until, at e = 4.05 ° , it is essentially flat (fig. 7(t)).

As the angle of attack is increased even further, the position of minimum pres-

sure on the upper surface moves slowly forward until, at _ = 14.20 °

(fig. 7(dd)), a leading-edge peak is formed. The maximum lift coefficient occurs

at _ = ]5.25 ° (fig. 7(ee)). The leading-edge peak continues to increase in

magnitude, even beyond CZ,max, indicating that leading-edge separation does not

occur (figs. 7(ff) to 7(hh)).

The pressure distributions for various angles of attack with a flap deflec-

tion of 10 ° at a Reynolds number of 6.0 × 106 and a Mach number of 0.10 are

shown in figure 8. The kink (spike) in the upper-surface pressure distribution

at approximately 0.75c is caused by the radius formed in the upper surface by

the positive flap deflection. (See fig. 4(c).) At _ = -]].]8 ° (fig. 8(a)), a

sharp peak is evident in the lower-surface pressure distribution. As the angle

of attack is increased, this peak decreases in magnitude until it has disap-

peared at e = -3.04 ° (fig. 8(i)). At this angle of attack, the profile-drag

coefficient is minimum and a favorable pressure gradient exists along the upper

surface to about 0.45c. As the angle of attack is increased further, the

10
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pressure gradient along the upper surface becomes less favorable until, at

= ].05 ° , it is essentially flat (fig. 8(m)). As the angle of attack

is increased even further, turbulent trailing-edge separation occurs on the

upper surface (figs. 8(0) to 8(aa)). The maximum lift coefficient occurs at

= ]2.20 ° with the flow over the entire flap separated (fig. 8(x)). The

leading-edge peak continues to increase in magnitude, even beyond Cz,max,

indicating that leading-edge separation does not occur (figs. 8(y) to 8(aa)).

Tr ansition Location

For a flap deflection of 0 ° and a Reynolds number of 3.0 x ]06 , the mech-

anism of the boundary-layer transition from laminar to turbulent flow on the

upper surface, at an angle of attack of 0.0 °, was a laminar separation bubble

which extends from laminar separation to turbulent reattachment as shown in

figure 9(a). This bubble occurred at about 0.5c and was caused by the slight

adverse pressure gradient immediately downstream of the minimum pressure on

the upper surface. (See fig. 6(n).) This gradient was a design goal as

discussed in "Philosophy." At e = 2.0 ° (fig. 9(b)), the laminar separation

bubble has decreased in length and moved forward. At _ = 4.0 ° (fig. 9(c)),

the laminar separation bubble has disappeared and transition has moved further

forward.

Section Characteristics

Reynolds number effects.- The section characteristics with a flap deflec-

tion of 0° at a Mach number of 0.]0 are shown in figure ]0. The effects of

Reynolds number on the section characteristics with this flap deflection are

summarized in figure ]]. The angle of attack for zero lift coefficient, approx-

imately -5.8 ° , was unaffected by Reynolds number. The lift-curve slope and

pitching-moment coefficients were relatively insensitive to Reynolds number

variation. The maximum lift coefficient increased substantially with increasing

Reynolds number, whereas the minimum drag coefficient and the width of the low-

drag range decreased significantly.

The section characteristics with a flap deflection of -]0 o at a Mach number

of 0.]0 are shown in figure ]2. The effects of Reynolds number on the section

characteristics with this flap deflection are surmnarized in figure ]3. The

angle of attack for zero lift coefficient, approximately -0.2 ° , was unaffected

by Reynolds number. The lift-curve slope and pitching-moment coefficients were

also unaffected by Reynolds number. The maximum lift coefficient increased

moderately with increasing Reynolds number, whereas the minimum drag coefficient

and the width of the low-drag range decreased significantly.

The section characteristics with a flap deflection of ]0 ° at a Mach number

of 0.]0 are shown in figure ]4. The effects of Reynolds number on the section

characteristics with this flap deflection are summarized in figure ]5. The

abrupt change in lift-curve slope at a lift coefficient of about ].4 was caused

by a forward jump of the transition location on the upper surface. This jump

was caused by a disturbance generated by the chordwise orifices (fig. ]6). The

premature transition led to premature, turbulent trailing-edge separation and,

]]
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thus, a reduction in lift-curve slope. Premature transition also occurred with

a flap deflection of 0° , although it did not result in such a sudden trailing-

edge separation (fig. ] 7). This phenomenon does, however, explain the change

in lift-curve slope evident in figure ]0(a).

Mach number effects.- The effects of Mach number on the section character-

istics with a flap deflection of 0° for a Reynolds number of 6.0 × ]06 are

summarized in figure ]8. The angle of attack for zero lift coefficient

was unaffected by Mach number. The lift-curve slope increased moderately with

increasing Mach number, whereas the pitching-moment coefficients decreased.

The maximum lift coefficient decreased slightly with increasing Mach number

(fig. ]9), whereas the minimum drag coefficient was unaffected (fig. 20).

Effect of roughness.- The effect of roughness on the section characteris-

tics with a flap deflection of 0O for various Reynolds numbers is shown in fig-

ure 2]. The angle of attack for zero lift coefficient as well as the

pitching-moment coefficients increased with transition fixed, whereas the lift-

curve slope decreased. All these results are a consequence of the boundary-

layer displacement effect which decambers the airfoil slightly; the displacement

thickness is greater for the transition-fixed condition than for the transition-

free condition. Increasing Reynolds number decreases the displacement thickness

and, therefore, the displacement effect.

Of more importance, however, is the effect of roughness on the maximum lift

coefficient and on the drag coefficients. The addition of roughness had essen-

tially no effect on Cz,ma x for any of the Reynolds numbers. Thus, one of the
most important design requirements has been achieved. (See "Objectives and

Constraints.") The drag coefficients were, of course, adversely affected by the

roughness.

The effect of roughness on the section characteristics with flap deflections i_

of -]0 ° and ]0 ° for various Reynolds numbers is shown in figures 22 and 23, i
respectively. All the previously mentioned effects are again apparent.

Effect of flap deflection.- The effect of flap deflection on the section

characteristics for various Reynolds numbers with transition free is shown in

figure 24. The effects of flap deflection and roughness on maximum lift coef-

ficient and minimum drag coefficient are summarized in figures 25 and 26,

respectively.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Pressure Distributions

The comparison of theoretical and experimental pressure distributions is

shown in figure 27. The pressure distributions predicted by the method of refer-

ence 8 are inviscid (potential-flow) and incompressible. The experimental pres-

sure distributions were obtained for a Reynolds number of 6.0 × ]06 and a Mach

number of 0.]0 and, thus, contain the same data presented in figures 6(n), 7(p),

and 8(1). With a flap deflection of 0 ° at an angle of attack of 0.0] °

(fig. 27(a)), the theoretical predictions and the experimental data are in close
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agreement. Although the values of the pressure coefficients do not match

exactly, the pressure gradients agree well. With a flap deflection of -]00 at

an angle of attack of ].52 ° (fig. 27(b)), the agreement between theory and

experiment is very good. With a flap deflection of ]0 ° at an angle of attack

of 0.05 ° (fig. 27(c)), the decambering viscous effects have become more apparent

and the disparities include small differences in the pressure gradients as well

as larger differences in the values of the pressure coefficients.

Section Characteristics

The theoretical section characteristics were computed by the method of

reference 8. A boundary layer is calculated using the potential-flow pressure

distribution. However, no iteration between the boundary-layer displacement

thickness and the pressure distribution is performed. The lift and pitching-

moment coefficients are determined from the potential flow and then some simple

viscous corrections are applied including a correction for boundary-layer sepa-

ration. The profile-drag coefficients are obtained by applying a modified

Squire-Young formula to the boundary-layer characteristics at the trailing edge.

The comparison of theoretical and experimental section characteristics with

a flap deflection of 0° and transition free is shown in figure 28. The magni-

tudes of both the angle of attack for zero lift coefficient and the pitching-

moment coefficients are overpredicted by the method of reference 8 (fig. 28(c)).

These results are obtained because the theoretical method does not contain a

boundary-layer displacement iteration. The agreement between theoretical and

experimental lift-curve slopes is good. The maximum lift coefficients are over-

predicted by the method of reference 8 although the agreement improves slightly

with increasing Reynolds number. Past experience indicates that this overpre-

diction is not typical of the method of reference 8. (For example, see

ref. 9.) The calculated drag coefficients agree well with the experimental data

and become increasingly conservative (high) with increasing Reynolds number.

The comparison of theoretical and experimental section characteristics with

a flap deflection of -]0 ° and transition free is shown in figure 29. Because

the displacement effect with this flap deflection is small, the agreement between

theoretical and experimental angles of zero lift coefficient, lift-curve slopes,

and pitching-moment coefficients is very good. At the higher angles of attack,

the theoretical method predicts separation in the corner formed in the upper

surface by the negative flap deflection; therefore, a realistic estimate of the

maximum lift coefficient is not possible. The calculated drag coefficients

agree well with the experimental data and again become increasingly conservative

(high) with increasing Reynolds number. The disparity in the lower limit of the

low-drag range is attributed to the increased turbulence in the wind tunnel at

the higher Reynolds numbers. (See ref. ] 0.)

The comparison of theoretical and experimental section characteristics with

a flap deflection of ]0 ° and transition free is shown in figure 30. The magni-

tudes of both the lift and pitching-moment coefficients are overpredicted by the

method of reference 8. The agreement between theoretical and experimental lift-

curve slopes is good up to the angle of attack at which separation occurs on

the upper suface of the flap. The maximum lift coefficients are overpredicted
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by the method of reference 8. The calculated drag coefficients agree well with

the experimental data over the range of lift coefficients for which little sepa-

ration occurs. The predicted drag coefficients become increasingly conserva-

tive (high) with increasing Reynolds number. At the lower angles of attack, the

theoretical method predicts separation in the corner formed in the lower surface

by the positive flap deflection; therefore, the calculated results are not real-

istic and, accordingly, have not been included. No comparison for R = 2.0 × ]06

has been made because the theoretical method predicts separation in the corner

at all angles of attack for this Reynolds number.

The comparisons of theoretical and experimental section characteristics with

transition fixed and flap deflections of 0°, -]0 ° , and ]0 ° are shown in fig-

ures 3], 32, and 33, respectively. The results are the same as for the

transition-free condition except that the small differences between the theoret-

ical and experimental drag coefficients do not increase with increasing Reynolds

number.

CONCLUDING REMARKS

A flapped natural-laminar-flow airfoil for general aviation applications,

the NLF(])-02]5F, has been designed and analyzed theoretically and verified

experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objec-

tive of combining the high maximum lift of the NASA low-speed airfoils with the

low cruise drag of the NACA 6-series airfoils has been achieved. The safety

requirement that the maximum lift coefficient not be significantly affected with

transition fixed near the leading edge has also been met. Comparisons of the

theoretical and experimental results show generally good agreement.

The most important result is that the new natural-laminar-flow airfoil

achieves maximum lift coefficients similar to those of the NASA low-speed air-

foils even with transition fixed near the leading edge. At the same time, the

new airfoil with transition fixed exhibits no higher cruise drag than comparable

turbulent-flow airfoils. Thus, if the new airfoil is employed in an aircraft

design and laminar flow is not achieved, nothing is lost relative to the NASA

low-speed airfoils. If laminar flow is achieved, a very substantial profile-

drag reduction results.

Finally, this airfoil demonstrates the unique and powerful capabilities of

the theoretical method to design and analyze multipoint designs, including those

which incorporate simple flaps.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

April ]3, ]98]
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TABLE I.- NLF (]) -02l 5F AIRFOIL COORDINATES

[c = 60.960 (::In (24.000 in.)]

(_f = 0o)

UPPER

×/C

.00240

.00909

,02004

.03527

.05469

.07816

.10546

.13635

.17050

.20758

.24770

,28894

.33237

.37702

.42253

.46864

.51524

,56247

.61010

.65752

.70408

,74914

.79206

.83222

.86902

.90193

.93044

,95409

,97285

.98710

,99658

1.00000

SURFA CE LOWER SUR

ZlC XlC

.00917 .00000 -

.01947 .00245 -

.03027 ,01099 -

.04120 .02592 -

,05201 ,04653 -

.06250 .07242 -

,07247 .10324 -

.08175 .13854 -

.09019 ,17788 -

.09761 .22073 -

,I0389 ,26654 -

• ]0887 .31473 -

,I1240 .36468 -

.11478 ,41576 -

,11427 ,46731 -

• 11219 ,51867 -

.I0784 ,56920 -

,I0147 .61825 -

,09373 .66662 -

• 08513 .71614 -

.07603 .76645

.06673 ,81565

,05746 ,86198

•04844 ,90359

,03983 .93862

,03175 ,96588

,02428 ,98504

.01737 ,99630

•01082 1.00000

.00507

.00126

.00000

FACE

Z/C

.00006

.00704

.01211

.01656

.02052

.02399

.02699

.02954

.03166

,03334

,03456

.03931

.03554

.03519

.03415

.03225

.02925

.02441

.01663

,00705

,00167

,00804

.01155

.01198

,00990

.00655

,00323

.00086

,00000

r

¥
L

17

L



OF poOR ',J_'- '

TABLE II.- MODEL ORIFICE LOCATIONS

[c = 60.960 cm (24.000 in.)]

UPPER

X/C

.0001&6

.005713

.010538

.015313

.020421

.025425

.030733

.040425

.050333

.060283

.075242

.100425

.150950

.200571

.250650

.300717

,350792

.400571

.450671

.500904

.550633

.600850

.650742

.700500

,746638

,802404

.851800

.901758

.950917

.974675

SUR FACE LOWER SURFACE

ZIC XIC ZIC

.000625 .000146 .000625

.015346 .004379 -.008742

.021233 .009975 -.011800

,026138 ,014979 -,013642

• 030596 ,019983 -,015133

.034479 .024892 -.016396

,038267 .030021 -.017546

,044354 ,040096 --,019488

,049808 ,050096 -,021129

.054721 ,059950 -.022500

,061313 ,074850 -.024288

,070779 ,099883 -.026733

,085604 .149996 -.030225

.096329 ,200117 --.032592

,i04325 ,250071 -,034142

.I09963 ,299896 --,035092

.113358 .350188 -.035454

.Iik463 .400063 -,035317

.113167 .449963 -.034513

.109354 .499933 -.033013

.103158 .550167 -.030417

.095242 .600188 -,026417

,086363 ,649913 -,019392

,076742 ,699396 -,010138

,067304 .745754 -.001542

.055258 .800988 .006450

.044013 .851267 .011025

.031804 .899833 .012079

.018442 ,948883 ,008863

.010325 .974208 .005071

F_

L

L
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Cp

-1.2

-.8

-.4

.4

.8

_Lower surface

1.20 ' ' ' ' '.i .2 .S

Upper surface

I , I

.4 .5

x/c

I i I i I I

.6 .7 .8 .9 1.0

(a) c Z = 0.7; 6f = 0 °-

-i.6

Cp

-1.2

-.8

-.4

.4

.8

1.2

Upper surface

, I, , I , I , I , I ,

.1 .2 .8 .4 .5

x/c

I n I I I J

.6 .7 .8 .9 1.0

(b) c Z : 0.2; 6f = -]0 °.

Figure ].- Inviscid pressure distributions.
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Cp
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-1.2
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/--Upper surface

/

]-.2 0 ' I , I , I . I , r.I .2 .8 .4 .5

x/c

I , I I , i I

.6 .7 .8 .9 1.0

(c) c Z = 1.0; 6f = I0 °.

Figure ].- Concluded.
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_--'_ Diam - 1 67c S Access to press_ tubes

-. /
L J..

Airflow
A

Circularplate---_

_///////////////////_

A

I

I.50c

,.,/--- Tunnel sidewalls
Ir

,w,"
/..I// /i"/.I// _ '%

Top view

-- Model

attachment plate

-- Zero angle of attack reference

End view, sedion A-A

Figure 3.- Typical airfoil model mounted in wind tunnel. All dimensions are in

terms of model chord, c = 6].0 cm (24.0 in.).
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-.I I , I , I _ I

.6 .7 .8 .9 1.0

x/c

(a) _f : 0 o.

z/c

.I

0

-.I
.6

, I , I , I ,

.7 .8 .9

I

1.0

x/c

(b) (Sf = -lO o.

Figure 4.- Flap brackets.
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(c) 6f = lO °.

Figure 4.- Concluded.
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I0 °

Static-pressure probe _5c _'__

•042c-" i

Static- pressure probes

Airflow

Tunnel CE

m

m

m

m

m

m

w

m

M

Total- pressure probes

(tubes flattened )

= .250 c-_-_-

-F
021c

(typ.)

-T-
.010c

(typ.)

__--F
-- .0052 c

(typ.)

.188c

(typ.)

1

.042c

1.16c

Figure 5.- Wake rake. All dimensions are in terms of model chord,

c = 6].0 cm (24.0 in.).
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Upper surface

Lower surface

-8.4

-8.0

-7.6

-7.2

-6.8

-6.4

-6.0

-5.6

-5.2

-4.8

-4.4

-4.0

Cp -3.6

-8.2

-9.8

-2.4

-2.0

-1.6

-1.2

-.8

1.2

0 .1 .2 .S .4 .5 .6 .7 .8 .9 1.0

x/c

o

(a) a = 13.08 ; c t = -0.288; e d = 0.1781; c m = O.OOh

Figure 6.- Pressure distributions with

M = 0.]0.

Upper surface

-.4

0

.4

.8

1.9
.1 .2 .S .4 .5 .6 .7 .8 .9

x/c

(b) _t = -12.08°; c t = -0.299; c d = 0.1758: c m = 0.001.

_f = 0° for R = 6.0 x 106 and
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-7.2

-6.8

-6.4

-6.0

-5.6

-5.2

i
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Cp -3.6

-3.2

+2.8

-2.4

-2.0

-1.6

-1.2

-.8

-.4

0

.4

.8

1.2 0

0 Upper surface

Lower surface

.1 .2 .3 .4 .5 .6 .7 .8 ,9

x/c

(e) a = -11.08°; c l = -0.287; e d = 0.1544; e m = -0.022.

Figure

1.0

Upper surface

Lower surface

.1 .2 .8 .4 .5 .6 .7 .8 .9

x/c

(d) a = -10.15°; c l = -0.482; c d = 0.0121; c m = -0.125,

6.- Continued.
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Upper surface

Lower surface
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(e) a = -9.17°; c t = 0.375; c d = 0.0105; c m = -0.128.

.1 .2 .8 .4 .5 .6 .7 .8 .9

x/c

(f) a = -8.15°; c l = -0.264; c d = 0.0090; c m = -0.130.

Figure 6.- Continued.
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-8.4

-8.0

-7.6

-7.2

-6.8

-6.4

-6.0

-5.6

-5.2

-4.8

-4.4

-4.0

Cp -8.6

-S.2

-9.8

-2.4

-2,0
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-.8

-.4
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.4

.8

1.2
0

0 Upper surface

® Lower surface

.1 .2 .8 .4 .5 .6 .7 .8 .9

x/c

(k) a = -3.050; c l = 0.312; c d = 0.0068; c m = -0.141.

Figure

-8.4

0 Upper surface

® Lower surface

-8.0

-7.6

-7.2

-6.8

-6.4

-6.0

-5.6

-5.2

-4.8

-4.4

-4.0

Cp -8.6

-8.2

-2.8

-2.4

-2.0

-1.6

-1.2
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1

-.4

o_
_5

?
u

.8,

1.0 1"20 .1 .2 ,8 .4 .5 .6 .7 .8 .9 1.0

x/c

(1) a = -2.04°; c l = 0.428; c d = 0.0062; c m = -0.144.

6.- Continued.
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0 Upper surface

_) Lower surface

.1 .2 .3 .4 .5 .6 .7 .8 .9

x/c

(o) a = 1.02°; c l = 0.767; c d = 0.0048; c m = -0.149.

Figure

I0

6.- Continued.

Upper surface

Lower surface

.1 .2 .3 .4 .5 .6 .7 .8 .9

x/c

(p) a = 2.03°; c l = 0.876; c d = 0.0052; Cm = --0.150.
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OF PL_O;_ ;.
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(v) a = 8.14°; e l = 1.443; c d = 0.0124; c m = -0.142.

6.- Continued.
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6.- Continued.
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Cp
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.I .2 .3 .4 .5 .6 .7 .8 .9

x/c

(y) a = 11.19°; c t = 1.667; e d = 0.0187; c m = -0.129.

Figure 6.- Continued.
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OF POOR QUALITY
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Figure 7.- Pressure distributions with
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Upper surface

Lower surface

.1 .2 .8 .4 .5 ,6 ,7 .8 .9

x/c

(e) a = -9.070; c l = -0.542: e d = 0.1820; c m = 0.050.

Figure 7.-

Upper surface

Lower surface
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1.2 0 .1 .2 .8 .4 .5 .6 .7 .8 .9

x/c

(d) a = -8.17°; e l = -0.849; c d = 0.0148; c m = -0.035.
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ORIGINAL P#.,_._.IS

OF POOR QUALITY
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Figure 7.- Continued.
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OF PO0_ __-_

0 Upper surface

Lower surface

.1 .2 .3 .4 .5 .6 .7 .8 .9

x/c

(g) a = -5.11°; e I = -0.541; e d = 0.0104; c m = -0.036.

-8.4

-8.0

-7.6

-7.2

.6,8

.6.4

.6.0

-5.6

-5.2

.4.8

-4.4

-4.0

Cp -8.6

-3.2

-2.8

e

-2A

-2.0

-1.8 _

-1.2,

-.8

-.t

0

.4

.8 oo

1.2 0

0 Upper surface

® Lower surface

e

d
o

\

i
.1 .2 .5 .4 .5 .6 .7 .8 ,9

x/c

(h) tx = -4.10°; c I = -0.431; c d = 0.0091; c m = -0.037.

1.O

Figure 7.- Continued.
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Figure 7.- Continued.
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Figure 7.- Continued.
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(a) a : 0.0o; c Z : 0.7.

Figure 9.- Oil-flow photographs of upper surface with

R = 3.0 x l0 6 and M = 0.21.
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(b) _ = 2.0°; c Z = 0.9.

Figure 9.- Continued.
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(c) e = 4.00; c z = ].].

Figure 9.- Concluded.
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