
CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Design and Experimentation of Activities for CS1:

A Competences Oriented Approach

 (unpacking the Informed Design Teaching and Learning Matrix)

Alejandro Adorjan

Universidad ORT Uruguay, Facultad de Ingeniería,

Montevideo, Uruguay, 11100

adorian@ort.edu.uy

and

Inés Friss de Kereki

Universidad ORT Uruguay, Facultad de Ingeniería,

Montevideo, Uruguay, 11100

kereki_i@ort.edu.uy

Abstract

In Introductory Computer Science courses, especially Computer Science 1 (CS1), dropout

rates are generally high and results are often disappointing. In order to motivate and engage

students to achieve better results in CS1, our teaching strategy is based on designing several

activities using a competences oriented approach. This paper describes the use of a framework

proposed by Crismond and Adams in order to create pedagogical activities for the CS1 course

at Universidad ORT Uruguay. We propose to extend that framework with competences

oriented activities. We present a detailed description of each activity. Our thesis is that

including this kind of activities helps to obtain better results. Experimentation was done in

2012 and 2013. Teachers of the experimental group referred a high level of motivation of the

students. Results show that the inclusion of those activities seems to be helpful for students

and the proposed pedagogical design appears to produce better final results.

Keywords: Computer Science 1, Programming, Competence, Teaching, Learning.

1 Introduction

Programming is in the heart of computer science, and therefore most Computer Science (CS) programs globally start

with an introductory programming course [1]. Programming is certainly a complicated skill to master, and learning

to program is correspondingly complex [2,3] and is understandably a key area of education research [4].

In Introductory CS courses, especially CS1, dropout rates are generally high [1,3,5,6,7] and results are often

disappointing [1,3]. Several strategies have been adopted by different institutes in the organization and teaching of

these courses to diminish these effects [6].

Competences and their development have acquired a key role in many current teaching and training methods [8,9].

Competence means the proven ability to use knowledge, skills and personal, social and/or methodological abilities,

in work or study situations and in professional and personal development [10]. Generic and specific competences

are been proposed in Computing Engineering profiles through competency-based curricula models [11].
CS1 course at Universidad ORT Uruguay emphasizes teaching problem-solving methodology that uses an Object

Oriented Programming approach.

The research question that motivated this study was: What kind of competence-oriented activities can we design to

engage students and obtain better results?

1

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

We propose unpacking the Informed Design Teaching and Learning Matrix proposed by Crismond and Adams [12],

assuming the role of informed design teachers that propose innovative activities (oriented to competences in our

case), in order to satisfy learning goals of the course, develop several competences of our students and reduce drop

out percentages.

This paper is structured as follows: Section 2 refers to competences and learning outcomes. Section 3 includes

several teaching strategies at University level. Section 4 reports the Informed Design Teaching and Learning Matrix

concepts. Section 5 deals with CS1 course. Section 6 describes our proposal, details the unpacking of the Matrix and

explains each of the activities proposed. Section 7 reports the experimentation. Section 8 presents the conclusion and

future work.

2 Competences

Competences and learning outcomes are emerging as a new teaching/learning paradigm where approaches centered

on the learner are increasingly important, playing a key role in the teaching and learning process [13].

Competences represent a dynamic combination of knowledge, understanding, skills, and abilities [14]. Most of the

taxonomies of competences are organized into general and specific. General competences have acquired a special

relevance in the last years [15].

Transversal competences are usually forgotten and neglected, however competences in transversal skills are

considered by employers thinking about hiring a university graduate as important as technical knowledge [16].

Higher Education must provide advanced knowledge, skills and competences that students need for their

professional life [16].

The higher education sector is faced with several strategic decisions in order to maximize quality, impact, and

competitiveness. In this context of “engineering” competences and learning outcomes, one core challenge is the

inclusion of curriculum stakeholders in prioritizing subject-specific and generic competences in study programs

[17].

Tuning Latin America Project (TLAP) [18] refers to 27 generic competences. From the list of generic competences

agreed for Latin America we selected those which apply in the context of our CS1 course: capacity for abstraction,

analysis, and synthesis (C1), ability to apply knowledge in practice (C2), ability to organize and plan time (C3),

capacity for oral and written communication (C4), ability to use information and communication technology (C5),

ability to learn and update learning (C6), ability to identify, pose, and solve problems (C7), ability to work as part of

a team (C8), interpersonal skills (C9) and ethical commitment (C10). These competences are skills that software

engineering graduates must possess [11].

3 Teaching Strategies

Good teaching is getting most students to use the level of cognitive process needed to achieve the intended outcomes

that the more academic students use spontaneously [19]. Traditional teaching methods do not seem adequate for

many students for different reasons [3]. Beyond the mastery of core CS material, good CS educators should also be

familiar with a significant body of material that will expand their perspectives on the field, and consequently,

enhance the quality of their teaching [20].

Several teaching and learning concepts have been proposed in engineering education [21]. Effective teaching

requires flexibility, creativity, and responsibility in order to provide an instructional environment able to respond to

the learner’s individual needs, and one of the ongoing challenges the university teachers are facing is related to

matching the teaching strategies with the students’ learning styles in order to improve the academic results [22].

Students have different levels of motivation, different attitudes about teaching and learning, and different responses

to specific classroom environments and instructional practices, the more thoroughly instructors understand the

differences, the better chance they have of meeting the diverse learning needs of all their students [23]. Activities

that require students to collaborate, share solutions, review each others’ work, or create materials have been shown

to be beneficial for the students [24].

2

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

A survey of literature related to teaching of introductory programming reported by [25] concludes that there is no

canonical answer to the question on how to teach introductory programming courses. Several techniques are

identified by [26] in this courses: questionnaires, interviews, observations, videos, inventories, tasks, artifacts, tests

and formal course assessments.

In this context, our teaching strategy is based on designing several competences oriented activities that motivate and

engage students in order to achieve better results.

4 The Informed Design Teaching Matrix

Crismond and Adams [12] report the Informed Design Teaching and Learning Matrix (IDTLM) for engineering

education that describes design strategies, contrasting patterns tiles, statements of how beginning and informed

designers do those strategies, relevant goals and instructional approaches that teachers can use.

Design Strategies presented by Crismond and Adams [12] describe nine design strategies: Understanding the Design

Challenge (DS1), Building Knowledge (DS2), Generating Ideas (DS3), Representing Ideas for Deep Inquiry (DS4),

Weighing Options & Making Decisions (DS5), Conducting Test and Experiments (DS6), Troubleshooting (DS7),

Revising /Iterating (DS8) and Reflecting on Process (DS9).

Crismond and Adams [12] argues that IDTLM acts as a framework for teaching and learning, including teaching

strategies that instructors need to know to teach engineering effectively. Design activities are the opportunity to

naturally weave together skills, processes, and knowledge that are typically taught separately in the discrete subjects

of traditional curricula [27].

The following examples of teaching strategies (TS) are presented by Crismond and Adams [12] supporting design

strategies:

• TS1: comprehending the problem statement, problem framing, and scoping.

• TS2: focus information searches, study prior art, writing a product history report, research users, product

dissections and reverse engineering.

• TS3: divergent thinking, brainstorming, constraint relaxation, generative database searches, starter vs. final

project challenges.

• TS4: thinking with given model, building before sketching, virtual drawing and computational modeling,

descriptions and structures reviews of design ideas, artifacts, and gestures as stand-ins for drawings.

• TS5: explanation-based designing, decision diagrams, design values and guidelines, emotions and their role

in design decision-makings.

• TS6: experiment-base design advice, investigate-and-redesign task and product comparisons.

• TS7: diagnostic troubleshooting, cognitive training in troubleshooting, troubleshooting stations.

• TS8: design storyboards, project and time management, instruction and scaffolding for systematic design,

risk taking and iteration.

• TS9: design diaries and portfolios, compare and contrast design cases, computer-supported structures

reflections.

All the above teaching strategies could be used in teaching activities and support the design strategies presented in

the IDTLM. Nine design strategies (DS1- DS9) are presented in the IDTLM, also contrasting patterns tiles

(Informed Design Patterns) and several instructional approaches (TS1- TS9) that teachers can use.

Design knowledge and skills is a core-learning objective in combination with reinforcing fundamental engineering

competences [28]. Informed design is a pedagogical approach to design, and as a pedagogical strategy, design

activities have great potential to: engage students, encourage pluralism thinking, reflect upon, revise and extend

internal models [29].

Crismond and Adams [12] focus on teaching and learning design, arguing that IDTLM contains design strategies

that help teachers do informed teaching, helping teachers design tasks while developing their own design

pedagogical content knowledge.

3

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Crismond [29] argues that The “Informed Design Teaching and Learning Matrix” provides more in-depth

descriptions of the design practices, research on misconceptions, and teaching strategies. In this context, unpacking

the matrix and extending the IDTML in a pedagogical approach help us to become “informed design teachers”.

5 CS1 Course

Introductory programming courses develop several learning activities and programming projects in an attempt to

change negative outcomes, high failure and drop-out rates [1, 6, 30, 31]. Various problems experienced by novices

were identified relating to basic program design and algorithm complexity. Programming courses suffer from a wide

range of difficulties and deficits [30].

Gomez and Mendez [32] argues that programming is a complex subject that requires effort and a special approach in

the way it is learned and taught. To become good programmers, students must acquire several abilities and

traditional teaching methods do not seem to be adequate for all students’ needs. Also, they describe different

reasons why learning programming is inherently difficult: teaching is not personalized, teaching strategies do not

support all students’ learning styles, teachers are more concentrated on teaching programming languages instead of

promoting problem solving, programming demands a high level of abstraction and programming languages have

complex syntax.

Literature of learning programming contains many research studies that have been proposed to face these problems

with different approaches; for example: games [33,34], robots[35], pair programming [36,37].

Our CS1 course at Universidad ORT Uruguay emphasizes teaching problem-solving methodology using an Object

Oriented Programming (OOP) approach. The course prepares the learner for constructing simple programs using the

OOP paradigm. By the end of the semester, the student will be ready to analyze simple situations, to design possible

solutions and to implement them with an OOP approach. Our teaching strategy is based on designing activities that

motivate and engage students in order to achieve better results.

The duration of the course is 15 weeks, 4 hours of lectures and 2 hours for lab session per week. The programming

language used is Java for all these assignments. A brief description of the 15-week course is shown in Table 1.

The main topics are: pseudo code, variables, and control structures, objects and classes, association, inheritance,

aggregation and collections, enumeration, sorting and searching, and advanced use of collections.

 The course includes two compulsory programming assignments (done in pairs) and a final evaluation. The first

programming assignment has 20 points; the second 30 and the final evaluation 50. If the student achieves 86 points

or more passes the course and does not have to take a final exam (AP1). Between 70 and 85 the course is approved

but the student must take a final exam (AP2). With less than 70 points the student fail and must retake the course

(FL).

Table 1: CS1 Course Description

Week Topics

1-3 Variables, pseudo code, control structures.

4 Classes and Objects.

5-7 Relations between classes: Association.

8 Relations between classes: Inheritance.

9-10 Relations between classes: Aggregation. Collections.

11 Enumerations.

12 Sorting and Searching.

13-15 Advanced use of Collections.

4

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

6 Proposal: Unpacking the Matrix

IDTLM proposed by Crismond and Adams [12], suggests pedagogical strategies to help teachers design pedagogical

content. IDTLM shows key concepts of what instructors needed to know to use design activities effectively in the

classroom.

In this context, we unpack the IDTLM, generating informed design activities based on competences in order to

satisfy learning goals and develop selected competences of TLAP.

Our proposal is to design pedagogical activities for CS1 using the IDTLM as a framework. We use several teaching

strategies (TS1- TS9) proposed by Crismond and Adams [12] and we integrate a variety types of activities, each one

designed with the IDTLM design strategy (DS1-DS9).

In particular, we propose to extend the IDTLM with concrete activities (Table 2, Column 3) incorporating a list of

selected competences that students should develop for each one of the proposed activities (Table 2, Column 4).

Learning objectives and goals of each activity have been defined in this context and we ensure that each one of the

selected TLAP competences were covered (completeness of the selected TLAP).

Table 2: Unpacking the Matrix

Design Strategy [12]

Unpacking the Matrix

Informed Designer

Pattern [12]
Activity Proposed Competence

(DS1)

Understand the

Challenge

(Problem Framing)

Delay making design

decisions in order to

explore, comprehend

and frame the problem

better.

 Scratch (week 1) C1,C7

(DS2)

Build Knowledge

(Doing Research)

Do investigations and

research to learn about

the problem, how the

system works,relevant

cases, and prior

solutions.

 Infographics (week 2) C1,C2,C3, C4,C5

(DS3)

Generate Ideas

(Idea Fluency)

Practice idea fluency in

order to work with lots

of ideas by doing

divergent thinking,

brainstorming, etc.

Wordle (week 5) C1,C2,C3,C4,C5

(DS4)

Represent Ideas

(Deep Drawing &

Modeling)

Use multiple

representation to

explore and investigate

design ideas and support

deeper inquiry into how

the system works.

Modeling Clay (week 4), Tools

(week 15)

C1,C3,C4,C6,C7,

C9

(DS5)

Weigh Options &

Make Decisions

(Balance Benefits &

Tradeoffs)

Use words and graphics

to display both benefits

and tradeoffs of all ideas

before picking a design.

Rubric (week 7) C4,C10

(DS6)

Conduct

Experiments

(Valid Test &

Experiments)

Conduct valid

experiments to learn

about materials, key

design variables and the

system work.

Puzzle Algorithm (week 3) C1,C6,C7,C8,C9

5

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Design Strategy [12]

Unpacking the Matrix

Informed Designer

Pattern [12]
Activity Proposed Competence

(DS7)

Troubleshoot

(Diagnostic

Troubleshooting)

Focus attention on

problematic areas and

subsystems when

troubleshooting devices

and proposing ways to

fix them.

Concept Test (week 10), Minute

Test (week 4)
C1,C2,C4,C6

(DS8)

Revise / Iterate

(Iterative Designing)

Do design in a managed

way, where ideas are

improved iteratively via

feedback, and strategies

are used multiple times

as needed, in any order.

Video (week 5)
C2, C3, C5,C8,

C9, C10

(DS9)

Reflect on Process

(Reflective Design

Thinking)

Practice reflective

thinking by keeping tabs

on design strategies and

thinking.

UML Modeling Game (week

6)
C1,C2,C8,C9

In order to design pedagogical content we define learning outcomes in terms of competences and we align teaching

activities with strategies (TS1-TS9) proposed by Crismond and Adams [12]. In Table 3 we map each activity with

the selected teaching strategies.

Table 3: Activities Vs Teaching Strategies

Activity
Teaching

Strategies

1-Scratch TS1, TS2, TS8

2-Infographics TS2, TS3

3-Wordle TS2, TS3

4- Modeling Clay

5-Tools
TS4, TS6

6-Rubric TS5, TS6, TS9

7-Puzzle Algorithm TS3, TS6, TS9

8-Concept Test,

9-Minute Test
TS7

10-Video TS3, TS8

11-UML Modeling Game TS4, TS9

A detailed description of each activity proposed is given below:

6.1 Scratch

We used Scratch [38] in the very first weeks with the purpose of improving students’ programming experiences and

motivation. Scratch can be taken as an auxiliary tool of students’ learning of programming, stimulating the students’

learning motivation and cultivating their ability of solving practical problems with the computational thinking

approach [39]. A list of exercices is given to students. The list includes exercises to develop in Scratch (like to draw

a particular grid, see (Fig. 1)), sample codes with simple mistakes to correct and examples to complete.

6

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Figure 1: Scratch

6.2 Infographics

Infographics are graphic visual representations of information, data and knowledge that includes text and images,

narratives, descriptions, maps, etc. This activity aims to generate computer graphics containing answers to: “What is

Java?,” “Where?”, “Who developed it?”, “When?”. As a homework, each student searchs the required information

and develops the infographic. In (Fig. 2) there is a sample infographic developed by one student. Students must

bring to class the picture. In class, all infographics are discussed and the main topics are referred.

Figure 2: Infographics (In Spanish)

6.3 Wordle

Students are asked to create at home a "word cloud" from Java code using the Wordle tool [40]. The class "Truck" is

the first complete design example of a Java class that is presented in the course. The model consists of a truck, with

attributes color and plate number. This includes instance variables and methods of access and modification. Each

student creates his or her own "cloud" and in the next class all must provide an explanation of the words that appear

more prominently (Fig. 3).

Figure 3: Wordle (In Spanish)

6.4 Modeling Clay

To become familiar with the concept of identifying objects, aliasing and message passing we use a kinesthetic

learning activity modeling clay promoting comprehension of object oriented concepts as proposed in [41] . This

activity focused on improving the comprehension on the difference between object and class, memory, creation of

objects, garbage collector, aliasing and message passing (Fig 4). This activity takes about 20 minutes.

7

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Figure 4: Modeling Clay

6.5 Tools

The teacher brings to class various objects (eg disposable razor, kitchen grater, sandpaper drill, soap, bucket, cotton

swabs, etc.). Each group of 4 students choose an object. On a sheet they must write: a) name of the group, b)

drawing the chosen object, c) analysis of the object‘s characteristics: functionality, materials, costs, etc.).

Students must answer: what would you like to know more about the subject? What new questions arise? (eg Cost?,

Who makes it? Is it recyclable?, etc.). Students must describe how they would answer these questions. From the

responses on the characteristics and properties of specific tangible objects, they must find an analogy to desirable

properties and characteristics of the software (such as usability, efficiency, reliability, etc.). The activity takes about

50 minutes.

6.6 Rubric

In class we study two tasks from a previous course: one developed properly and one with errors. They are given to

each group with the rubric to assess the work. The rubric contains the following areas: organization of

documentation, writing and spelling, class diagram, test data, listing, coding style and execution. Work is classified

in each area as excellent, good or poor. Each group must assess and justify the chosen category. The activity takes

about 30 minutes.

6.7 Puzzle Algorithm

Students should solve the problem of finding the maximum of a list of numbers. We provide students with an

algorithm puzzle. Each piece of it is a line of code and there are some extra pieces (different valid solutions could be

constructed). Students must select the lines, and recompose the algorithm. In (Fig 5) is presented an initial (and

partially incorrect) solution proposed by one student. Students present their own solutions putting it on the

blackboard, and in groups discuss and select the most appropiate. This activity takes about 45 minutes.

Figure 5: Puzzle Algorithm

6.8 Concept Test

Peer Instruction (PI) [42] engages students during class through activities that require each student to apply the core

concepts being presented, and then to explain those concepts to their fellow students. A class taught with PI is

divided into a series of short presentations of certain concepts, each focused on a central point and followed by a

related conceptual question. We use this activity to develop concepts of “Array”. The activity takes about 50

minutes.

8

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

6.9 Minute Test

Angelo and Cross [43] suggest assigning minute papers at the end of class. In one minute, students answer the

following questions: (1) What is the most significant thing you learned today?, and (2) What relevant question is in

your mind at the end of today's session?. The answers are discussed in groups and the most remarkable points are

selected.

6.10 Video

Pair programming consists of two programmers sharing a single workstation (one screen, keyboard and mouse

among the pair). The programmer at the keyboard is usually called the "driver", the other, also actively involved in

the programming task but focusing more on overall direction is the "navigator"; it is expected that the programmers

swap roles every few minutes or so [44]. A short video of pair programming [45] is presented to discuss the

concepts of the practice. Students discuss what is the true spirit of pair programming and the advantages and

disadvantages of such methodology. The main purpose of this activity is to take into account the required skills and

the problems of working in groups. This activity takes about 15 minutes.

6.11 UML Modeling Game

The teacher brings to class several toys in their original packages (e.g. race car, deck of cards, puzzle), see (Fig 6).

Students are asked to model the game in UML notation. Information of attributes is implicit in the packages

(identification, recommended age, pieces, etc.). Different models are sketched on the blackboard and several valid

options are analyzed. This activity takes about 20 minutes.

Figure 6: UML Modeling Game

7 Experimentation

The research question that motivated this study was: What kind of competence-oriented activities can we design to

engage students and obtain better results?.

In terms of GQM [46] (Goal, Quality, Metrics): Our study aims to generate informed design activities in order to

enhance the development of several TLAP competences, providing better results in CS1 course from the educational

perspective in the context of introductory programming (CS1) course at Universidad ORT Uruguay.

The independent variable chosen in the experimental design was the teaching method, which incorporates IDTLM

design strategy and selected TLAP competences. The dependent variable is the course result.

An initial experiment was conducted in the second semester of 2012. One random group of 20 freshmen in the

experimental group (EG) was selected to participate in the activities and 16 students were in the control group (CG).

Students in the EG receive instruction though IDTLM design strategy and selected TLAP competences and students

in CG received instruction through the use of traditional lecture. Common syllabus, notes, assignments, teachers

experience and classroom were used in (CG) and (EG). Both groups included a high number of students who fail in

previous course. A limitation of the study was the low number of freshmen. Considering only the students who take

the course for first time, in the selected group, 44% (4/9) of them had completed the course and in the control group,

22% (2/9).

Based on that experience, we designed some improvements in the activities and replicated the study. In the first

semester of 2013, two groups of students corresponding to CS1 courses were randomly selected to participate in the

experiment. In the EG were 24 students and in the CG were 22 students.

An initial test on Java, object oriented concepts and programming was designed and applied in both groups. The

scores showed that both groups were similar in terms of CS knowledge and the students were essentially novices.

As we exposed, final results of assessments establish a classification into 3 groups according to final scores in a 0-

100 scale: students that must retake the course (1-69) (FL), students that must take a final exam (70-85) (AP2) and

9

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

finally the category of students that approve the course (86-100) (AP1). Fig. 7 illustrates final results of assessments

for EG and CG.

The dot plot shows a distribution of final result of each student. In the EG, most of the students are in the AP1 area

(86-100 points) and in the CG they are distributed all over the values.

Figure 7: DotPlot (EG) and (CG)

Table 4 illustrates final results for both (EG) and (CG).

Table 4: CS1 Final Results

Final Results

Categories

Scale (0-100)

Experimental

Group (EG)

Control Group

(CG)

FL (0-69) 4 (16,7%) 11 (50%)

AP2 (70-85) 1 5

AP1 (86-100) 19 6

AP1+AP2 20 (83,3%) 11 (50%)

Total 24 22

Table 5 illustrates descriptive statistics outputted by Minitab [47].

Table 5: CS1 Descriptive Statistics

Descriptive Statistics

Experimental

Group (EG)

Control Group

(CG)

Mean 79.75 63.32

StDev 26.0 28.49

Maximum 100 100

Minimum 0 0

Median 88 66.50

N 24 22

In order to evaluate the proposed pedagogical design, we tested the following hypotheses:

Null Hypothesis: H0: There is no difference in applying informed design activities with a competencies

oriented approach in the final results of our students.

10

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Alternative Hypothesis: H1: There is a difference in applying informed design activities with a

competencies oriented approach in the final results of our students.

Different non-parametric methods can be applied in our experiment. We select Mann-Whitney U [48] (MWU) as the

non-parametric context of the experiment. MWU is the non-parametric equivalent of Student’s test or the t-test for

two samples. Table 6 illustrates the significance level (p-value) of the Mann Whitney U Test, obtained by SPSS

[49].

Table 6: Mann Whitney U Test

Mann Whitney U Test

N Mean Rank

Experimental

Group (EG)
24 29,02

Control

Group (CG)
22 17,48

Output

Mann Whitney U – 131.500

Z= -3.252

Asymp. Sig (2-tailed) , 0,001

In terms of statistical significance (measured by alpha (α)) a high level of significance (α < 0.01) was found. As the

value of p-value shown in Table 7 is 0,001 (less than 0.01) we reject H0 and accept H1. In this context, there is

statistical evidence to conclude that the performance of the experimental group is significantly different.

Considering the detailed final results of the students and the MWUT, we could infer that the proposed pedagogical

design produce significantly better final results.

Teachers of the experimental group referred a high level of enjoyment. In class, informally talking with students

they show high levels of motivation.

Related to the activities, a survey was conducted among students in the experimental group (EG). We asked them to

order the activities according to their preference. Each student selected their three preferred activities. Integrating

the answers, the three activities preferred by all the students were: Concept Test, Puzzle Algorithm, and Modeling

Clay. A brief description of the results of student’s survey preference of proposed activities is shown in Table 7.

Table 7: Activities Survey

Ranking Activity

1 Concept Test

2 Puzzle Algorithm

3 Modeling Clay

4 Infographics

5 Scratch

6 UML Modeling Game

7 Wordle

8 Video

9 Minute Test

10 Rubric

11 Tools

8 Conclusion and Future Work

11

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

Unpacking the IDTLM allowed out teachers to generate informed design activities based on competences in order to

satisfy learning goals. Our findings suggest that this pedagogical design approach seems to be more effective in

engaging students in order to achieve better results.

 As mentioned in the experimentation section, in the experimental group 83.3% of the students approved the course

and in the control 50%. Also, teachers referred to high motivated students in the experimental group. The main

internal threat to validity that could be identified is the size of the groups.

This set of didactic units and activities are the outcome of the work and didactic units are available to all CS1

teachers at Universidad ORT Uruguay. A subset of these exercises obtained one of the first prizes in the PRECITYE

Program [50] (Regional Program in Engineering Entrepreneurship and Innovation).

In the future we will incorporate the Informed Design Rubric [51] proposed by Crismond to assess student learning

over one or more design activities proposed. Also, we will incorporate other approaches and monitoring the

performance of students in the following courses.

References

[1] Kinnunen, P., Malmi, L., “Why Students Drop Out CS1 Course?”, ICER’ 06, United Kingdom, pp 97-108,

2006.

[2] Jenkins, T., “On the difficulty of learning to program.”, Proceedings of the 3rd Annual Conf. of the LTSN

Centre for Information and Computer Sciences. Loughborough: Univ. United Kindom, pp 53-58, 2002.

[3] Gomes, A., Mendes, A.J., “Learning to program- difficulties and solutions”, International Conf. on

Engineering Education ICEE, 2007 .

[4] Sheard, J., Simon, S., Hamilton, M. and Lonnberg, J, “Analysis of research into the teaching and learning of

programming”, Proceedings of the fifth International Workshop on Computing Education Research WorkShop

ICER 09, pp.93-104, 2009.

[5] Soh, L. K., Samal, A. and Nugent, G., An integrated framework for improved Computer Science Education:

Strategies, implementations, and results”. Computer Science Education, 17, pp 59-83, 2007.

[6] Ambrosio, A.P., Costa, F.M., Almeida, L.,Franco, A., Macedo, J., “Identifying cognitive abilities to improve

CS1 outcome”, Proc. of 41th ASEE/IEE Frontiers in Education Conference, pp. F3G-1 F3G-7, 2011.

[7] Lahtinen E., Ala-Mutka K., and Järvinen H. M., “A study of the difficulties of novice programmers”. SIGCSE

Bull. 37, pp 14-18, 2005.

[8] Tovar, E. and Soto, O., "Are new coming computer engineering students well prepared to begin future studies

programs based on competences in the European Higher Education Area?", 39th IEEE Frontiers in Education

Conference, 2009. FIE '09, 2009.

[9] Ramirez, C.; Sanchez, E., "Competences memory map: A model for the representation of competences applied

in education," 2012 IEEE 11th Int. Conf. on Cognitive Informatics & Cognitive Computing (ICCI*CC),

pp.363,371, 2012.

[10] Commission of the European Communities, “Recommendation of the European Parliament and of the Concil

on the establishment of the European Qualifications Framework for lifelong learning”, Available at

http://ec.europa.eu/education/policies/educ/eqf/rec08_en.pdf , last accessed October 15 2013.

[11] “Software Engineering 2004” Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering, The joint Task Force on computing Curricula, IEEE Computer Society, Association for

Computing Machinery, August 2004.

[12] Crismond, D. P. and Adams, R. S., “The Informed Design Teaching and Learning Matrix”. Journal of

Engineering Education, Vol 101, No. 4, 738–797, 2012.

[13] Edwards, M., Tovar, E. and Soto, O., "Embedding a core competence curriculum in computing engineering,"

Frontiers in Education Conference, 2008. FIE 2008, pp.S2E-15,S2E-20, 22-25 Oct. 2008.

[14] González, J., Wagenaar, R., “Universities contribution to the Bologna Process. An Introduction (2nd edition)”.

Publicaciones de la Universidad de Deusto, 2008 [On-line].Available:

12

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

http://www.unideusto.org/tuningeu/images/stories/Publications/ENGLISH_BROCHURE_FOR_WEBSITE.pdf

, last accessed October 15 2013.

[15] Tovar, E.; Soto, O., "The use of competences assessment to predict the performance of first year students,"

Frontiers in Education Conference 2010, pp.F3J-1,F3J-4, Oct. 2010.

[16] Sanchez, J.L.; Gonzalez, C.S.; Alayon, S., "Evaluation of transversal competences in the final year project in

engineering", 2011 Proc. of the 22nd EAEEIE Annual Conference (EAEEIE), pp.1,5, June 2011.

[17] Kabicher, S.; Motschnig-Pitrik, R.; Figl, K., "What competences do employers, staff and students expect from

a Computer Science graduate?", 39th Frontiers in Education Conf., pp.1,6, 18-21 Oct. 2009.

[18] Tuning America Latina, http://tuning.unideusto.org/tuningal/index.php?

option=com_docman&Itemid=191&task=view_category&catid=22&order=dmdate_published&ascdesc=DES

C, last accessed October 15 2013.

[19] Biggs, J., & Tang, C. , “Teaching for quality learning at university”, Open University Press., 2011.

[20] Gal-Ezer J.and Harel D., “What (Else) should CS Educators know?”, Comm. ACM, vol 41, no. 9, pp 77-84,

1998.

[21] Felder R. M.,Brent R, The ABC's of Engineering Education: Abet, Bloom's Taxonomy, Cooperative Learning,

and So on, Proc. of the 2004 American Society of Engineering Education annual conference and exposition,

Session 1375, 2004.

[22] Tulbure, C. , “Learning styles, teaching strategies and academic achievement in higher education: A cross-

sectional investigation”. Procedia-Social and Behavioral Sciences, 33, 398-402, 2012.

[23] Felder, R.M. and Brent, R. , “Understanding Student Differences”, Journal of Engineering Education, 94(1),

57-72, 2005.

[24] Hamer, J., Luxton-Reilly, A., Purchase, H. C., & Sheard, J. , “Tools for contributing student learning”. ACM

Inroads, 2(2), 78-91, 2011 .

[25] Pears A., Seidman S., Malmi L., Mannila L., Adams E, Bennedsen J, Devlin M., and Paterson J., “A survey of

literature on the teaching of introductory programming”. SIGCSE 2007, 2007.

[26] Sheard J., Simon S.,Hamilton M and Lönnberg J.. Analysis of research into the teaching and learning of

programming. In Proceedings of the fifth international workshop on Computing education research workshop

(ICER '09), ACM, New York, NY, USA, 93-104, 2009.

[27] Davis, M., Hawley, P., McMullan, B., & Spilka, G., "Design as a catalyst for learning". Alexandria, VA:

Association for Supervision and Curriculum Development, 1997.

[28] Adams, R.S.; Fralick, B., "Work in progress — A conceptions of design instrument as an assessment tool,"

Frontiers in Education Conference (FIE) 2010 IEEE, pp.F2G-1,F2G-2, Oct. 2010.

[29] Crismond, D., Desing Practices and Misconceptions, The Science Teacher, 2013.

[30] Robins, A., Rountree, J. and Rountree, N., "Learning and teaching programming: a review and discussion",

Computer Science Education, Vol 13, No 2, pp. 137-172, 2003.

[31] Bennedsen, J., Caspersen, M., “Failure Rates in Introductory Programming”, Inroads SIGCSE Bull., Vol 39:2, ,

pp 32-36, 2007.

[32] Gomes A.J., Santos A. N. and Mendes A.J.. A study on students'behaviours and attitudes towards learning to

program. Proceedings of the 17th ACM annual conference on Innovation and technology incomputer science

education (ITiCSE '12), 2012.

[33] Cliburn D.C., Miller S.M. and Bowring E. , "Student preferencesbetween open-ended and structured game

assignments in CS1",Frontiers in Education Conference (FIE), pp.F2H-1-F2H-5, 2010.

[34] Smallwood G.R. and Black D.V. "Observations on designing a computer science Curriculum focusing on game

programming using testimonials from industry leaders", 2011 IEEE International Games Innovation

Conference (IGIC), 2011, pp.126-129, 2011.

[35] De Giusti A., Frati F. E., Sanchez M., De Giusti L. "LIDI Multi RobotEnvironment: Support software for

concurrency learning in CS1", International Conference Collaboration Technologies and Systems (CTS),

pp.294-298, 21-25 May 2012.

13

http://tuning.unideusto.org/tuningal/index.php?option=com_docman&Itemid=191&task=view_category&catid=22&order=dmdate_published&ascdesc=DESC
http://tuning.unideusto.org/tuningal/index.php?option=com_docman&Itemid=191&task=view_category&catid=22&order=dmdate_published&ascdesc=DESC
http://tuning.unideusto.org/tuningal/index.php?option=com_docman&Itemid=191&task=view_category&catid=22&order=dmdate_published&ascdesc=DESC

CLEI ELECTRONIC JOURNAL, VOLUME 17, NUMBER 3, PAPER 7, DECEMBER 2014

[36] Radermacher A. and Walia G. "Investigating student-instructor interactions when using pair programming: An

empirical study" , 24th IEEE-CS Conference Software Engineering Education and Training (CSEE&T), pp.41-

50, 2011.

[37] Shaw A. "Extending the Pair Programming Pedagogy to Support Remote Collaborations in CS Education,"

ITNG '09. Sixth International Conference Information Technology: New Generations, pp.1095-1099, 2009.

[38] Scratch, http://scratch.mit.edu , last accessed April 10, 2013.

[39] Xiaoxia Wang; Zhurong Zhou, "The research of situational teaching mode of programming in high school with

Scratch," 6th IEEE Joint International Information Technology and Artificial Intelligence Conf.(ITAIC), vol.2,

no., pp.488,492, 20-22 Aug. 2011.

[40] Wordle, http://www.wordle.com , last accessed October 15 2013.

[41] de Kereki, I. F. “Incorporation of Kinesthetic Learning Activities to Computer Science 1 course: Use and

Results”. CLEI Electronic Journal. V. 13, N.2, Paper 1, 2010.

[42] Crouch C.H. and Mazur E. “Peer Instruction: Ten years of experience and results” , American Journal of

Physics, vol. 69, no. 9, p. 970, 2001.

[43] Angelo, T.A., and Cross, K.P. “Classroom Assessment Techniques”, 2nd ed., Jossey-Bass, San Francisco, pp.

148-153, 1993.

[44] Pair Programming. Agile Alliance. http://guide.agilealliance.org/guide/pairing.html, last accessed October 15

2013.

[45] Pair Programming Video, http://www.youtube.com/watch?v=oINaUu_wnqo, last accessed October 15 2013.

[46] Basili Victor, Software Modeling and Measurement: The Goal/Question/metric Paradigm. Technical Report.

University of Maryland at College Park, College Park, MD, USA, 1992.

[47] Minitab, http://www.minitab.com , last accessed October 15 2013.

[48] SPSS, Mann Whitney- U Test , http://pic.dhe.ibm.com/infocenter/spssstat/v22r0m0/index.jsp?topic=

%2Fcom.ibm.spss.statistics.help%2Fspss%2Fbase%2Ftwo_independent_samples_test_types.htm , last

accessed October 15 2013.

[49] SPSS, http://www-01.ibm.com/software/analytics/spss , last accessed October 15 2013.

[50] IngEmprendedores, http://www.ingemprendedores.org/tag/precitye , last accessed October 15 2013.

[51] Informed Design Rubric, www.nsta.org/highschool/connections.aspx , last accessed October 15 2013

14

http://www.nsta.org/highschool/connections.aspx
http://www.ingemprendedores.org/tag/precitye
http://www-01.ibm.com/software/analytics/spss
http://pic.dhe.ibm.com/infocenter/spssstat/v22r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fspss%2Fbase%2Ftwo_independent_samples_test_types.htm
http://pic.dhe.ibm.com/infocenter/spssstat/v22r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fspss%2Fbase%2Ftwo_independent_samples_test_types.htm
http://www.minitab.com/
http://www.youtube.com/watch?v=oINaUu_wnqo
http://guide.agilealliance.org/guide/pairing.html
http://www.wordle.com/
http://scratch.mit.edu/

