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Abstract—The long-standing analog-to-digital conversion par-

adigm based on Shannon/Nyquist sampling has been challenged

lately, mostly in situations such as radar and communication

signal processing where signal bandwidth is so large that sampling

architectures constraints are simply not manageable. Compressed

sensing (CS) is a new emerging signal acquisition/compression

paradigm that offers a striking alternative to traditional signal ac-

quisition. Interestingly, by merging the sampling and compression

steps, CS also removes a large part of the digital architecture and

might thus considerably simplify analog-to-information (A2I) con-

version devices. This so-called “analog CS,” where compression

occurs directly in the analog sensor readout electronics prior to

analog-to-digital conversion, could thus be of great importance for

applications where bandwidth is moderate, but computationally

complex, and power resources are severely constrained. In our

previous work (Mamaghanian, 2011), we quantified and validated

the potential of digital CS systems for real-time and energy-ef-

ficient electrocardiogram compression on resource-constrained

sensing platforms. In this paper, we review the state-of-the-art

implementations of CS-based signal acquisition systems and per-

form a complete system-level analysis for each implementation to

highlight their strengths and weaknesses regarding implementa-

tion complexity, performance and power consumption. Then, we

introduce the spread spectrum random modulator pre-integrator

(SRMPI), which is a new design and implementation of a CS-based

A2I read-out system that uses spread spectrum techniques prior

to random modulation in order to produce the low rate set

of digital samples. Finally, we experimentally built an SRMPI

prototype to compare it with state-of-the-art CS-based signal

acquisition systems, focusing on critical system design parameters

and constraints, and show that this new proposed architecture

offers a compelling alternative, in particular for low power and

computationally-constrained embedded systems.

Index Terms—Analog-to-information, compressed sensing
(CS), electrocardiogram (ECG) compression, low-power, random

modulation pre-integrator (RMPI), spread spectrum, system-level

design.
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I. INTRODUCTION

S ENSING and processing information have traditionally
relied on the Shannon sampling theorem, one of the central

tenets of digital signal processing. This theorem states that,
given a signal of bandwidth , it is sufficient to sample it at
twice its the bandwidth (i.e., the Nyquist rate) to ensure faithful
representation and reconstruction. However, this traditional
analog-to-digital conversion paradigm has been challenged
lately. First, there are many situations where is so large
that constraints put on sampling architectures are simply un-
bearable. Systems working in radio-frequency (RF) bands for
example, require high sampling rates that severely stress cur-
rent ADC technologies. Second, even for relatively low signal
bandwidths, Nyquist-rate sampling might produce a large
amount of redundant digital samples, which causes bottlenecks
in systems with limited resource and power storage.
In the absence of extra information, Nyquist rate sampling

is essentially optimal for band limited signals, but in many ap-
plication signals are known to have strong structures that can
be exploited with dedicated, often nonlinear, sampling schemes.
The recent theory of compressed sensing (CS) [1]–[3], showed
that signals that can be represented by sparse superpositions of
elementary waveforms can be sampled linearly at rates propor-
tional to their sparsity, which can be dramatically smaller than
their Nyquist frequency. This is particularly promising for three
main reasons. First, the class of sparse signals is quite broad and
covers a wide range of applications, from biosignals, to medical
imaging. Second, the linear sampling strategy advocated by CS
is universal: the same encoder can be used to sample signals
drawn from diverse dictionaries of waveforms. Third, CS is ro-
bust: it offers performance guarantees for signals that are only
approximately sparse and it is resilient to noise added on the
signals or on the collected samples. There is of course a price
to pay for these advantages. The decoder in a CS system can be
complex, usually it has to solve a convex optimization program
to recover the signal, and CS is therefore best suited for appli-
cations where constrains are on the encoder. More importantly,
the sampling architecture must be redesigned and studied from
the ground up; this is the focus of this paper.
There has been a number of interesting initiatives aimed at

implementing sub-Nyquist signal acquisition systems. These
efforts have resulted in CS-based architectures such as the
random demodulator (RD) [5], the modulated-wideband con-
verter (MWC) [6], and others [7]–[10]; see [11] for a complete
review.
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The present work aims at exploring and designing a
low-power (and scalable in implementation complexity) analog
front-end for compressive signal acquisition. Our main target
applications are embedded systems for ambulatory bio-signal
monitoring. In this setting, the concern is not so much high
bandwidth, but rather very restricted computational resources
and power profiles. We therefore explore simple architectures
with a strong emphasis on low-power components. To the
best of our knowledge, the present work introduces two main
contributions. First, we propose the spread spectrum random
modulator pre-integrator (SRMPI), which is a new CS archi-
tecture based on the random demodulation techniques. This
new design reduces the complexity of state-of-the-art CS-based
A2I system implementations while also reducing their power
consumption. Second, in order to quantify the potential of CS
for low-power sensing and compression, an exhaustive perfor-
mance and power analysis comparison is performed between
different CS-based architectures implementations. In particular,
our work carefully quantizes the power figure for our proposed
SRMPI hardware implementation based on spread spectrum
techniques [12] with the state-of-the-art random modulation
pre-integrator (RMPI) [5]. This comparison confirms the po-
tential of our proposed SRMPI architecture as a low power
CS-based analog front-end for embedded applications.
Notations: In all the following, lower case letters designate

scalar quantities, boldface lower case letters indicate column
vectors, and boldface capitals represent matrixes. stands
for the inner product of vectors and .Moreover, and
are the th entry of vector and the th entry of matrix
, respectively. Finally, and denote the conjugate

transpose, and the -norm of a vector, respectively.

II. COMPRESSED SENSING AND SPARSE RECOVERY

The main idea behind CS is now quite well known but, for the
sake of completeness, we summarize the main concepts. More
details can be found in [1]–[3]. Let be a real-valued
-dimensional discrete signal vector that is com-

pressible in some orthonormal basis ,
where each column is a vector , and represents the -di-
mensional coefficient vector. By compressible we mean that
the entries of , when sorted in decresing
order of magnitude, decay rapidly to zero; any such a signal is
well approximated using a -term approximation, consisting
of the largest entries of and setting all other terms to zero,

, with and . In
essence, compressible signals are well approximated by sparse
signals.
Conventionally, one would collect signal samples at the

Nyquist rate forming and then compress it using nonlinear
digital compression techniques. CS offers a striking alternative
by showing that if is compressible, one can recover to a
-term approximation by only collecting roughly

samples using simple analog measurement waveforms, thus
sensing/sampling and compressing at the same time. More
precisely, we collect samples by pro-
jecting on sensing waveforms thus forming the
measurement vector .
Consequently, the CS linearly compressed data vector

is described by , where denotes the
measurement or sensing matrix with the vectors
as rows. It is important to notice that the sensing matrix does
not depend on the signal: CS proposes a simple linear sampling
strategy that is only marginally off the optimal but complex
best adaptive strategy. To guarantee the robust and efficient
recovery of any -sparse signal, the sensing matrix must
obey the key restricted isometry property (RIP) [13]

(1)

for all -sparse vectors . The isometry constant of matrix
must not be too close to one. This property is difficult to verify
in practice and it is often replaced by the requirement that the
sensing matrix and sparsity basis must be incoherent [14],
[15], i.e., their coherence

(2)

is small enough. A universal good choice for the sensing matrix
are random matrixes, such as random matrixes with indepen-

dent identically distributed (i.i.d.) entries formed by sampling:
1) a Gaussian distribution ; 2) a symmetric Bernoulli
distribution .
If the RIP holds, then accurate reconstruction can be accom-

plished by solving the following convex optimization problem:

(3)

where bounds the amount of noise unavoidably corrupting the
data. Many algorithms were introduced to solve this reconstruc-
tion problem, including interior-point algorithms [16], [17], gra-
dient projection [18], iterative thresholding [19], and greedy ap-
proaches such as orthogonal matching pursuit (OMP) [20], [21].
Our results are based on the basis pursuit denoise algorithm pro-
vided in the SPGL1 solver [22].

III. METHODS

The CS sampling and reconstruction steps described in
Section II are depicted in Fig. 1. As shown, sampling is es-
sentially a linear projection from an -dimensional original
signal space down to a lower -dimensional measurement
space using a sensing matrix . Since the introduction of CS,
several hardware implementations have been proposed in the
literature. Some of these implementations are purely digital:
CS is used as a simple compression technique that does not
require a complex transform. In these cases, CS is applied after
Nyquist sampling. More interesting for us is the analog version
of CS, where linear measurement are collected in the analog
domain prior to digitization. Since AD conversion is often the
dominant source of power consumption [4], analog implemen-
tations of CS can offer interesting low power alternatives since
they inherently allow using low rate ADCs.
In this work, our main focus is therefore on the analog imple-

mentation of CS. In this section, we first describe a model for
sparse signals. We then review the RD architecture, which was
the first proposed hardware implementation for CS. We discuss
extensions of RD and highlight the main difficulties arising for
hardware implementation and limits to their performances.
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Fig. 1. Block diagram of CS sampling and reconstruction. is the original signal being sampled, is linear measurements collected using sensing matrix .
is the signal basis under which x is sparse, and is the resulting coefficients and the sparse solution found in optimization and is the reconstructed signal.

A. Signal Model

Suppose our analog signal has a sparse representation in
some basis or dictionary as mentioned before, i.e., the signal
can be represented using parameters per unit of time in some
continuous-time basis. More concretely, let the analog signal

be expanded via a basis

(4)

with and is analogous to the signal bandwidth.
Sparsity means that only a fraction of the entries of
are nonzero, i.e., the signal in each time frame is only composed
of a few waveforms.
According to the sampling theorem, we should sample sig-

nals of the form 4 by sampling at twice the bandwidth. How-
ever, these signals have only few degrees-of-freedom. In con-
sequence, it is reasonable to expect that we can acquire them
by sampling at roughly the sparsity level . Stirling’s approx-
imation shows that there are about
ways to select distinct integers in the range of .
Therefore, it takes bits to encode the nonzeros
elements in the coefficient vector . Ideally this is our bound for
the necessary amount of measurements to solve (3) and re-
construct the -sparse approximation of the original signal .

B. Random Demodulator

Let us now describe the RD architecture for sampling an
analog sparse signal [5], as depicted in Fig. 2. The first stage is a
demodulator whose input signal is multiplied by a contin-
uous time sequence of pseudo-random numbers to obtain
a continuous time demodulated signal . Starting with a se-
quence of pseudo random numbers of
that take values with equal probability, it is used to create a
continuous chipping sequence

(5)

This (ideal) demodulation signal takes values over each
time frame and switches between the levels randomly at or faster
than the Nyquist rate of the input signal . The final stage is a
standard ADC to sample the signal. A low-pass filter is used
prior to ADC to prevent aliasing.
The demodulator

(6)

Fig. 2. Block diagram of the RD. The system includes a pseudo-random
number generator, an analog anti-aliasing filter and a sampler.

acts by spreading the frequency content of the signal so that it
is not destroyed when it is low pass filtered prior to sampling at
rate . In a discrete time form this demodulation action
corresponds to the map where

. . .
(7)

The low pass filter is used as a simple accumulator that sums the
demodulated signal for duration of . The filtered signal

is sampled every seconds to obtain the measure-
ments vector . After each sample, the low pass filter is reset.
In summary

(8)

This approach is called sample and dump sampling. Suppose
that number of measurements divides , then each measure-
ments is the sum of consecutive entries of the demodu-
lated signal. Therefore, we can represent the action of accumu-
lating and sampling as an matrix , whose th row
has consecutive entries starting in column .
An example for and is

(9)

where are the filter coefficients, which in case of an ideal
accumulate-and-dump sampler are all unit entries. Inserting the
signal model (4), we can further simplify and write

(10)

It is now clear that we can rewrite this equation in CS matrix
form. Concatenating the sampling matrix and basis ,
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Fig. 3. Block diagram of random demodulator pre-integrator.

where and , then element for row
and column reads

(11)

As it is clear from (9), the rows of the sensing matrix are co-
herent and this coherency increases, as we decrease the number
of measurements . This is one of the disadvantages of the RD
sampler.

C. Random Demodulation Pre-Integrator

The RMPI is a variant of the RD architecture, which is com-
posed of parallel channels of RD. Each block on Fig. 3 rep-
resents a RD channel. The input signal is fed into chan-
nels in parallel and it is demodulated with a unique sequence
of pseudo random numbers. Then, as in a normal RD structure,
it is low pass filtered and sampled. Here again the continuous
time pseudo random signals are chipping signals that take
values and simply just invert the input signal polarity. The
alternating frequency of is at the Nyquist rate and the se-
quences are independent for each channel. The RMPI structure
allows to further reduce the ADC rate by reducing the coherency
between rows of the sensingmatrix for the same number of mea-
surements compared to the RD architecture. However, RMPI
needs more (one for each channel) multiplexers or mixers (for
implementing the demodulator section), each of them operating
at the Nyquist rate.
Suppose is the number of channels and

is the number of measurements for
channel . We can again rewrite the CS matrix using (13). Now,
the element for row and column and channel of the
equivalent CS matrix is

(12)

where we have , and the CS matrix for the whole
system is

(13)

In a recent work [23] comparing power consumption pro-
files for both digital and analog CS, the power efficiency of the
RMPI architectures is questioned. The authors claim that their
results show that a digital CS implementation can ultimately

Fig. 4. Block diagram of SRMPI.

outperform analog implementations in terms of overall energy
efficiency for data compression in wireless sensors due to the
power consumption of amplifiers. However, the RMPI archi-
tecture used in their work is a special case where the number of
parallel channels is equal to the number of measurements. Thus,
an array of (equal to the number of needed measurements)
amplifiers is needed. Moreover, the use of a higher working fre-
quency for the mixers (which should be more than or at least
equal to Nyquist rate) makes the analog implementation more
costly in terms of power consumption. Hence, the reduction of
the sampling rate of the ADC in RMPI or RD structures is done
at the expense of using a large number of high frequency mixers
and amplifiers (i.e., equal to the number of channels). Although
from the circuit viewpoint building the mixer blocks is easy and
far simpler than a high rate ADC, there is a significant over-
head in terms of overall power consumption. Thus, the applica-
tion of RMPI seems limited to cases where the signal bandwidth
puts unbearable constraints to state-of-the-art ADCs. However,
there is a whole realm of applications where signals have a mod-
erate bandwidth, but traditional ADC designs are still too power
hungry. In that context, analog CS can offer an interesting alter-
native, if more strategies, like the proposed SRMPI architecture
for power reduction are used.

IV. SPREAD SPECTRUM RANDOM MODULATION
PRE-INTEGRATOR

To overcome these problems of the RMPI architecture, we
propose a new architecture called spread spectrum random

modulator pre-integrator (SRMPI), which includes an initial
pre-modulation block as fundamental change with respect to the
RMPI architecture. The proposed SRMPI design (like RMPI)
is a “universal” encoder, which unlike other architectures (like
RM) works with signals that are sparse in any fixed domain.
Fig. 4 shows the block diagram of the SRMPI architecture. This
new premodulation block modulates the original signal
with a random sequence , similar to what is done in the RD
structure. Hence, based on the same principle, this modulator
block should operate at a rate least equal to Nyquist range and
the information of the signal is thus spread over the whole
frequency spectrum. The random-modulated signal is then
fed to a regular RMPI structure. Thanks to the premodulation
block and the signal sparsity features, it is possible to lower the
internal channel modulators’ working frequency in the SRMPI
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Fig. 5. Analog CS data acquisition board.

design significantly below the Nyquist rate. In fact, the limit
to reduce the internal modulators clock depends on the signal
sparsity. The equivalent sensing matrix is similar to the RMPI
one (12), except that in this case another demodulator should
be introduced

(14)

where and are the continuous time sequence of
random numbers, and where the internal demodulator
can work at rates lower than Nyquist rate. Interested readers can
refer to the work by [24] and its references, where the properties
of spread spectrum are carefully studied. In this paper, we show
the results for the SRMPI architecture (cf. Section VI) having
the internal modulators working at half the Nyquist rate.

V. EXPERIMENTAL SETUP

In this section, we present our setup to explore the analog CS
design space. The setup is a circuit level implementation of both
RMPI and SRMPI as described in Sections III-C and IV. Our
hardware implementation consists of a signal acquisition board
and a PC with a Data Acquisition Card (DAC). The signal ac-
quisition board is a circuit level implementation of an analog CS
system with eight channels (Fig. 5). It consists of a main board
with eight slots (one per channel) supporting daughter boards
implementing each channel architecture. The main board also
has a slot for the DAC card. The communication with the PC
is done through this card. Each channel includes a modulator at
the beginning of the line and a low-pass filter. Each channel has
a unique ADC which samples the output of the low-pass filter.
The difference between the RMPI and SRMPI structure in our
hardware implementation lies on the common modulator on the
main input signal line. To test both architectures, this modulator
is implemented on the main board and can be bypassed to give
the possibility of testing both architectures.

A. Modulator

In both architectures, one of the essential blocks is the random
modulator. Since the modulation alternates between values of
with equal probability, it is simply implemented by changing

the polarity of the input signal. In recent works, different circuits
have been proposed to implement such modulators [7], [11].

However, the main concern about the implementation of mixers
is that the transient time (switching time) should be significantly
low compared to the sampling period. The output of the mod-
ulation is subsequently integrated (filtered) and any distortion
in the switching transient time is treated as additive random
noise. Since in our platform the signal bandwidth is in the hertz
range, this is not a challenge for the proposed SRMPI imple-
mentation. The modulators for both architectures have been im-
plemented using the single pole, double throw (SPDT) CMOS
Switch ADG636 from Analog Devices.
In many cases, specially in RF applications with higher

sampling frequency, the implementation and calibration of fast
mixers with these properties is a crucial part in the design. In
these cases, an architecture like SRMPI can drastically ease
the problem by reducing the number of high frequency mixers
with respect to RMPI without affecting the performance of the
overall system as we shall see below.

B. Integrator

Another block in both architectures is the integrator, which is
used to integrate the output signal after modulation. An integra-
tion in the time domain is equivalent to a filter with frequency
response . But building an ideal integrator is not
realizable, and instead a low pass filter used as an integrator.
The exact characteristics of this filter must be precisely known
at the decoder to implement the full sensing matrix. The only
constraint is to have a filter that prevents aliasing before sam-
pling. From an implementation viewpoint, the characteristics of
the filter should be stable over time (i.e., time invariant).
In this work, we have used a single-pole filter with custom

cutoff frequency Hz with 256 steps. It was im-
plemented via a configurable potentiometer MAX5387NAUD
with 256 steps. The transfer function of a single-pole filter is

. The pole indicates the time constant of the
impulse response . The ideal integrator corresponds
to and if is large the impulse response will decay
very rapidly and the filter will quickly forget the past time in-
formation. The main concern is to push the pole close to zero.
In both architectures, when a sample is taken, the integrator

is reseted. A reset control circuit is added to the design to pre-
cisely control the timing of this operation. The filter transient
time should be small enough compared to the ADC sampling
period not to affect the integration. Thus, synchronizing the re-
sets is very important and can introduce more errors in the mea-
surements. In our design, the reset control command along with
ADC commands for each channels are sent from the DAC card.

C. ADC and Sampling

A low-power Linear Technology LTC 1409 ADC is used to
sample the output of the filters in each channel. The LTC1409
is a 12-bit ADC with sampling rate of 800 ks/s. To initiate sam-
pling, the DAC card triggers the operation by writing zero on
conversion pin of the ADCs. When the sample is taken, it is on
hold on the ADC and later DAC the card collects the sampled
data of the channels sequentially. The sampling time should be
precisely adjusted since any jitter or undesired deviations will
introduce more distortion to the measurements. It is a serious
challenge in hardware design to reduce the timing deviations in
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Fig. 6. versus for both RMPI and SRMPI architectures with
8 channel for number of measurement and 64.

Fig. 7. versus number of measurements for both RMPI and SRMPI
architectures with 8 channel for different input SNR range.

a system. The values of timing deviations should be insignifi-
cant compared to the sampling period of the ADC to have valid
measurements. In our setup, since we are working at low fre-
quencies the problem is not critical. The data transfer rate for
the DAC card is at 80 MHz and far beyond the sampling rate
of the ADC. This will ensure that the amount of noise added by
sampling is insignificant compared to other parts.

VI. EXPERIMENTAL RESULTS

Fig. 6 compares the output signal-to-noise ratio (SNR), av-
eraged over 100 packets of 2 s of data, for RMPI and SRMPI
architectures over a large range of input signal quality. These
results were obtained for and samples.
For SRMPI the internal modulators’ frequency is fixed at half
the Nyquist rate (512 Hz) and the input signal is composed of

frequency tones. This plot confirms that both architec-
tures could reach the same performance with equal number of
measurements and channels. The plot also shows the success
of both architecture at recovering the compressed signals even
under strong noise corruption. Fig. 7 shows the output signal

Fig. 8. Box plots for input SNR of 40 dB for RMPI (top) and SRMPI (bottom).

quality for different number of measurements. It is clear that
the quality reaches a plateau after roughly measure-
ments. For an input SNR of dB both architectures can reach
a signal quality of 23 dB and even 120 dB for an input SNR of
40 dB with . These figures show the average SNR, but
there is a large variance across individual packets. Alternatively,
Fig. 8(a) and (b) shows box plots for RMPI and SRMPI, respec-
tively. On each box, the central mark is the median, the edges
of the box are the 25th and 75th percentile, and the whiskers
extend to the most extreme data points not considered outliers.
The red cross markers on the plots correspond to the outliers.
Points are drawn as outliers if they are larger than
or smaller than , where and are the 25th and 75th
percentiles (the edges of the boxes), respectively, and is the
maximum whisker length (set to 1.5). The default of 1.5 corre-
sponds to approximately and 99.3 coverage if the data
are normally distributed. These plots show that with
measurements we can reach values of output SNR higher than
110 dB for both architectures with high probability. These plots
also confirm that even outliers never drop lower than the input
signal quality (fixed at 40 dB).
We have also defined a success rate, which corresponds to

the number of tones that are exactly recovered. Fig. 9 shows
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Fig. 9. Averaged successful detected tones of both 8-channel architecture
RMPI and SRMPI.

the results for a wide range of input signal quality and number
of measurements. Each color indicates the number of frequency
tones that were exactly recovered. These results show that full
recovery is obtained at all input signal qualities with
measurements and an 8-channel architecture.

VII. POWER ANALYSIS

The previous section described in detail two analog CS archi-
tectures, RMP and SRMPI, and carefully characterized both in
terms of implementation choices and signal reconstruction met-
rics (i.e., SNR and success rate). The present section focuses on
their power profiles and consumption on the 8-channel platform
we developed.
To characterize the power consumption of both architectures,

we are interested in the power consumed by two main elements
of our implementation: ADCs and mixers. However, the overall
power consumption of the physical board includes the consump-
tion by other off-the-shelf components. Nonetheless, we neglect
these parts since they can be optimized in a final integrated de-
sign (like the path resistors, interfaces with DAC card on PC and
so on). This assumption is a simplified way of estimating the
overall power consumption of the designed board, but it is valid
since the other elements used in both architectures are common
and therefore do not change our conclusions. To measure the
power, we placed a 330- resistor in the power path of both ele-
ments individually and the voltage drop was measured using an
oscilloscope. The corresponding current and power consump-
tion were then calculated in a straightforward way.
Fig. 10(a) shows the ADC consumption during sampling.

To find out the exact timing period of the ADC, both conver-
sion start and busy signals were monitored. Both the start and
end of the sampling operation are marked on the plot, and the

Fig. 10. Power consumption of the ADC (top) during the acquisition time and
the mixer (bottom); measured directly on the physical board. The start and end
of the periods are indicated on the plots with vertical lines.

Fig. 11. Energy consumption break down for traditional Nyquist sampling,
RMPI and SRMPI architectures for 8 channels.

area below the power curves corresponds to the power con-
sumption of the ADC during one sampling interval. Similarly,
Fig. 10(b) shows the power consumption of the mixer during
two switching periods. The timing period for a mixer is ex-
tracted from the manufacturer’s datasheets. Although the power
consumption of the mixers are relatively very low compared to
the ADC, since they work at a higher rate in both architectures,
they consume a significant part of the overall system power
consumption.
Therefore, to understand the reduction of power consump-

tion provided by SRMPI over RMPI, we further characterized
the energy consumption breakdown of the ADC and mixers in
our experimental setup and platform for a period of 1 s with

. In particular, Fig. 11 depicts the share of the ADC and
mixers in total system power consumption breakdown for the
normal Nyquist rate sampling ( Hz) and twoCS-based
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Fig. 12. Energy consumption for traditional Nyquist sampling, RMPI and
SRMPI architectures for 8, 16, 32, and 64 channels.

sampling architectures. As shown in Fig. 11, the power con-
sumption of the mixers is significant compared to the ADC.
Fig. 11 shows that both architectures can successfully reduce the
overall sampling cost. The results show that RMPI can reduce
the power consumption by 63% compared to normal Nyquist
rate sampling while SRMPI reduces the power consumption by
more than 75%. Clearly SRMPI outperforms RMPI by at least
25% in total power consumption. Moreover these results high-
light the suitability of analog CS, even at moderate bandwidth,
as a low power alternative to traditional sampling.
In addition, the SRMPI architecture shows even higher power

saving gains if it is used at high sampling frequency or when
a large number of channels is required. In fact in many real
world problems like in multi-lead biosignal analysis (e.g., EEG
or 12-lead ECG) or in RF applications our preliminary investi-
gations (Fig. 12) show that, for a 32-bit architecture, RMPI only
reaches 3% power reduction compared to traditional Nyquist
sampling whereas our SRMPI reaches up to 43% energy saving.

VIII. DISCUSSION AND CONCLUSION

The classical analog-to-digital conversion paradigm based on
Shannon/Nyquist sampling has been challenged lately, and CS
has been proposed as a new emerging signal acquisition/com-
pression paradigm that offers a striking alternative to traditional
signal acquisition. For signals having a sparse representation
in some dictionary of waveforms, CS can be used to recover
those signals from a small number of linear projections, thus
enabling efficient sensing, sampling and compression. How-
ever, only very few system-wide implementations of CS exist
that could serve as reference design and furthermore there is
no sensible exploration of the features of each proposed de-
sign in the literature to select the best CS-based architecture for
different sensing requirements of various types of applications
(biomedical sensing, radar systems and communication signal
processing, etc.).
In this paper, we have first presented a complete system-level

analysis and comparison between state-of-the-art CS-based

signal acquisition systems and then introduced the SRMPI,
which is a new design architecture for CS-based analog-to-in-
formation (A2I) readout systems. Our experimental results
confirm that SRMPI exhibits significantly better overall energy
efficiency for a given output quality than any state-of-the-art
CS-based signal acquisition systems. Moreover, SRMPI re-
duces the complexity of the design and final calibration of the
system with respect to other CS-based A2I systems. To the best
of our knowledge, the results in this work have provided the
first system-level power characterization of different analog
CS architectures on a real scenario. These results also validate
the suitability of using CS-based A2I systems over traditional
sampling techniques for highly sparse signals with low-power
operation requirements.
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