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Abstract—Microsensors are becoming increasingly 
important to society as the field of nanotechnology 
advances. One such microsensor is a solid state gas 
concentration sensor, which has been used for over a 
decade, especially in the automotive field to control air/fuel 
ratios in the combustion process. These devices generally 
utilize an on-board microheater to improve gas sensitivity. 
Such a gas sensor is currently being developed here at the 
University of Utah to detect nitrous oxide (NOx) 
concentrations in diesel exhaust. My contribution was to 
develop the controller required to regulate the high 
temperature set points (up to 650°C) of the microheater. 
Feedback for this control is provided by an on-chip thin 
film Resistance Temperature Detector (RTD) located near 
the microheater.  Using this control setup, the system is 
capable of maintaining a constant set temperature for gas 
sensing, as well as delivering step temperature profiles 
needed for testing, tuning and diagnostic purposes. 
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I.  INTRODUCTION 
Solid state gas concentration sensors have been used 

extensively in the automotive industry for over 10 years.  
These sensors provide feedback to the fuel injector controls to 
constantly maintain the most efficient ratios of air to fuel, 
thereby increasing the most efficient combustion.  Simply put, 
this type of sensor utilizes semiconductor properties of surface 
adsorption to detect changes in resistance as a function of 
varying concentrations of different gases.  In order to detect 
these resistive changes and equate them to changing (and 
static) gas concentrations, the gas temperature must be held 
constant.  A microheater (or an array of microheaters) near the 
gas sensor is controlled to maintain this temperature and to 
account for the convective cooling caused by gas flow.  Fig. 1 
below shows an example of a microheater.  This picture is one 

of three microheaters in an array, the combination of which 
reportedly exhibits excellent temperature homogeneity [1].  

 
A disadvantage of most current gas sensors is that they are 

rated at relatively low temperatures (up to about 300ºC).  
Thus, they are located downstream from the combustion 
chambers far enough to allow sufficient cooling of the exhaust 
gases.  However, high operation temperatures are needed for 
optimum performance and accuracy.    
 

 
Figure 1.  This figure displays an example of a microheater.  The green rings 
are the heaters, the central array is the temperature sensor, and the central 
speckled bars are the gas sensors.  The gas sensors are approximately 50μm 
wide, or half the width of a human hair. 

A disadvantage of most current gas sensors is that they are 
rated at relatively low temperatures (up to about 300ºC).  
Thus, they are located downstream from the combustion 
chambers far enough to allow sufficient cooling of the exhaust 
gases.  However, high operation temperatures are needed for 
optimum performance and accuracy.    

 
Mike Sorenson, Srinivasan Kannan, and Xiaoxin Chen, 

under the supervision of Dr. Florian Solzbacher and Dr. Loren 
Rieth, are currently working on a solid state gas sensor that 
will be capable of operating at temperatures of over 600ºC.  
This will allow the sensor to be placed directly outside the 
exhaust manifold to provide superior accuracy.  The design is 
currently in the last stages of fabrication and consists of 
interdigitated metal-oxide fingers serving as the gas sensor, 
with the heater encapsulating these fingers and a platinum 
RTD temperature sensor located near the heater.  The design is 
shown below in Fig. 2. 
 



 
Figure 2.  Solid-state gas concentration sensor currently being developed at 
the University of Utah.  The sensor is located in the middle, with the 
microheater on either side of it.  The RTD temperature sensor is located at the 
bottom center. 

II. SPECIFICATIONS 
Specifications for controlling the microheater included: 

 
• Max temperature of 700°C ± 2°C accuracy (max temp 

is 650°C but need to account for overshoot) 

• 1W max power delivered to ~150Ω (room temp) 
microheater 

• Response time limited by sensor, not my device  

• Estimated as 1ms 

• Be able to provide step temperature profiles 

• Voltages cannot exceed automotive supply grid (12V) 

• Feedback provided by on-board RTD 

• Voltage drop across RTD is proportional to 
temperature 

• Needs to be controlled with analog signal 

• Digital on/off may decrease life of heater 

• Temperature set points communicated by PC 

• RS232 interface 

III. CONTROL THEORY 
Rapid, accurate control of the microheater can be 

accomplished using a proportional-integral-derivative (PID) 
controller.  A basic block diagram of this controller is 
displayed in Fig. 3 below [2].   

 

 
Figure 3.  A PID controller sums the 3 terms derived from the error signal 
e(t) to provide very accurate and stable control of a process. 

For a very thorough description of a PID controller, please 
refer to one of the many articles on the web [2].  For 
temperature control, the idea of the control is that the 
temperature is compared with a desired setpoint temperature.  
The difference, or error signal e(t), is applied to the controller, 
which sums three terms derived from e(t) to produce the 
control signal u(t).  The proportional term Kp applies a 
corrective term proportional to the error; the integral term Ki 
seeks to hold its average input at zero; and the derivative term 
Kd improves stability, reduces overshot caused by high Ki and 
Kp terms and improves response time by anticipating changes 
in error.  u(t) manipulates a physical input to the process, 
thereby causing a change in the regulated temperature that will 
stably reduce the error.  To control the temperature of the 
microheater, the system must accurately measure the current 
temperature of the microheater and adjust the input power 
accordingly. 

 

IV. DESIGN 

A. PID Realization 
The PID controller has traditionally been implemented 

using discrete analog components.  However, in order to 
obtain response times on the order of 1ms, as well as to 
perform signal processing on the resistance of the RTD and 
metal-oxide layer, it was decided to implement the PID control 
algorithm on a microcontroller (mcu).  This also allows simple 
interfacing with a PC to communicate the desired temperature 
profiles.   
 

In order to implement the PID controller using a mcu, the 
continuous time PID equation obtained from Fig. 3 had to first 
be transformed into a discrete time equation.  This process is 
shown in Fig. 4 below [3].  Notice that starting with the 
traditional continuous time PID equation, discrete, 
programmable equations can be obtained.   

 



 
Figure 4.  Rewriting the traditional continuous time PID equation in the s-
domain and taking the z-transform yields the discrete PID equation.  After 
rewriting this equation and drawing the equivalent parallel realization, 
equations can be obtained by which to program the PID controller.  These 
equations use previous output variables in current calculations.   

The block diagram for the digital implementation of the 
PID controller is shown in Fig. 5 below [4].  This 
configuration places the derivative and proportional terms in 
the feedback of the controller, thereby eliminating the problem 
known as “derivative kick.”  With a maximum and minimum 
output allowed, the problem known as “integral windup.” 
 

 
Figure 5.  Realizing the PID controller in this configuration minimizes 
“integral windup” and “derivative kick.” 

B. Component Selection 
Now that the PID control setup was taken care of, it was 

time to design the system.  Obtaining the instantaneous 
temperature is accomplished by measuring the resistance of 
the RTD.  This is done by sampling the voltage across it while 
forcing a constant current through it.  For this, an analog-to-
digital converter (ADC) was needed.  Measuring the voltage 
drop across the heater itself is a way of obtaining further 
information about the temperature of the device.  An Analog 
Devices AD7655 was chosen for this sampling.  This 16-bit 
ADC has dual channels which convert at an astounding 
1MSPS (mega sample per second, or 2 channels every 2μs).  
The known current being forced through the RTD, along with 

the 16-bit digital word corresponding to the voltage drop 
across the RTD, is used to calculate the resistance of the RTD.  
As was mentioned above, this calculation is performed by a 
mcu.   
 

Two options existed for this mcu.  The first was to use a 
fast (>100MHz) mcu.  These fast mcus typically have little or 
no on-board FLASH, but floating point libraries could have 
been used to calculate the PID algorithm and the RTD 
resistance.  This option would have made the coding much 
simpler but would have required a more complex board layout 
to minimize noise and to interface with FLASH memory.   
 

Using a slower mcu with sufficient integrated FLASH 
memory seemed like a more viable option for the project.  The 
coding was more complex because the mcu had to be 
programmed using integer math only, however, the layout and 
interfacing with the data converters was much simpler.  In the 
end, the Philips LPC2129 32-bit mcu was chosen.  This mcu 
has an operating frequency of 60MHz and 256kB on-board 
FLASH and 16kB on-board RAM memory, as well as 
sufficient I/O pins and user peripherals. 
 

Because the heater had to be driven with an analog control, 
it was obvious that a digital-to-analog converter (DAC) was 
needed.  The Analog Devices AD768 16-bit was chosen 
because of its rapid conversion time (up to 30MSPS) and the 
option for current output.  The 16-bit data converters both 
have parallel outputs, which interface nicely with the 32-bit 
mcu. 
 

A basic block diagram for this project showing the present 
control setup is shown in Fig. 6 below.  Parts used in this 
design are included in Appendix A of this report. 
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Figure 6.  Block diagram of project.  The resistance of the RTD corresponds 
to the temperature of the microheater.  The voltage drop across it is converted 
to a 16-bit word and fed to the mcu to calculate the resistance and perform the 
PID algorithm based on the difference between the desired setpoint and the 
actual temperature.  The mcu communicates with a computer to relay the 
desired temperature profile, as well as to relay resistance data.  Based upon the 
setpoint temperature and the error signal, the mcu exports a digital 16-bit word 
to control the microheater.  This signal is converted to an analog signal and 

Special thanks to Mike Sorenson, Dr. Florian Solzbacher, and Dr. Ken 
Stevens for all of their help in this project. 



fed to the microheater.  The resistance of the heater is calculated using the 
second channel of the ADC and sent to the mcu for processing. 

C. Implementation 
The first task to implement the design was to characterize 

the heater.  Because the microheater being developed at the U 
was not fabricated yet at the time of this publication, a 
commercial gas sensor was obtained.  The sensor of choice 
was the Figaro TGS 2201 gasoline/diesel gas sensor, which 
operates at temperatures around 300°C.  Because this sensor 
did not have an on-board RTD, the design had to be slightly 
modified to obtain the resistance of the heater.  This was 
accomplished by adding a 1Ω precision reference resistor in 
series with the heater.  By sampling the voltage across this 
resistor, VRef, the current could be calculated using Ohm’s law, 
which, because the resistance is 1Ω, is equal to VRef.  Knowing 
the current through the reference resistor (and the heater), the 
resistance of the heater, RHeater, could be obtained after 
sampling the voltage across it, VHeater.  Thus, by sampling only 
VRef and VRef, the resistance of the heater can be obtained, as 
shown in (1) below. 
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In order to correlate RHeater with the temperature, set 
voltages were applied across the heater and reference resistor.  
Using an infrared (IR) camera, the corresponding temperatures 
were measured given applied voltages.  An example of these 
measurements is shown in Fig. 7 below.   

 

 
Figure 7.  IR picture of temperature of microheater with applied voltage of 
5V. 

A table was made of the derived RHeater vs. temperature 
values.  These values were fit to a curve in Matlab to obtain 
the linear equation relating the two variables.  The results are 
graphed in Fig. 8. 

 
The next task was to program the mcu.  This was done in 

the C programming language.  Fig. 9 shows the basic structure 

of the code.  Refer to Appendix B for a complete listing of the 
code. 

 
Figure 8.  Graph of measured and fit data.  The linear equation correlates the 
resistance of the heater with the temperature.  The resistance is multiplied by 
10 for ease in using integer math. 

 
Figure 9.  Description of the C code programmed on mcu. 

The mcu was programmed using an RS232 serial 
connection with a PC.  Loading the PID coefficients, as well 
as the temperature profile, was performed using 
HyperTerminal in Windows.  A screenshot of this program is 
shown in Fig. 10 below.  Future plans include designing a GUI 
in LabVIEW to load these values into the mcu.  This GUI is 
shown in Fig. 11. 

 
The next step was to set up the data converters.  This was 

accomplished incrementally by first hooking the output of the 
ADC directly to the DAC.  Fig. 12 below shows a sine wave 
input to the ADC and the corresponding output from the DAC.   



 
Figure 10.  Loading PID coefficients, as well as temperature profile, is done 
with HyperTerminal. 

 
Figure 11.  A LabVIEW GUI will be implemented to replace HyperTerminal. 

 

 
Figure 12.  Input wave into ADC and output from DAC. 

As can be seen in the above graph, the analog-to-digital 
conversions, as well as the digital-to-analog conversions, work 
perfectly.  The amplitude of the DAC output can be scaled to 
the desired output range, determined by resistor R2 shown in 
Fig. 14.  This provides excellent design flexibility. 

 
The same test was performed again, except this time 

reading the ouput from the ADC into the mcu and then 
exporting the corresponding digital word to the DAC.  As 
expected, the results were very similar. 

Before hooking everything up, the PID loop was tested to 
see if it could execute in the time required by the ADC to 
convert 2 channels.  The loop only executes when the BUSY 
signal from the ADC is low, meaning that the conversions are 
finished.  The bottom graph in Fig. 13 below shows the BUSY 
signal from the ADC, and the top graph shows the loop 
iteration frequency.  As can be seen, the loop does not execute 
in less than 2µs.  With some efficiency improvements, the 
execution time can be reduced to below 2µs, thus utilizing the 
full speed of the ADC. 

 
 

 
Figure 13.  Graphs of PID iteration frequency (top plot) and ADC BUSY 
signal.  Note that conversions are finished when the BUSY signal goes low.  
Only then can the PID loop be executed, thus ensuring uniform sampling. 

 
Fig. 14 below shows a simplified schematic of the system.  

Channels 1 and 2 are multiplexed in time in the ADC.  The 
ADC feeds pins 10 through 25 of Port 0 (P0.10..25) on the 
mcu.  The channel read into the mcu is controlled with P0.6.  
The mcu transmits the computed control output to the DAC 
from P1.16..31.  The 16-bit control word converted to current 
between 0-20 mA, and the corresponding output voltage is 
controlled by R2. 

 

 
Figure 14.  Simplified schematic of control setup. 

 
Fig. 15 below shows a simplified schematic of how the 

system was integrated with the heater and reference resistor to 
complete the feedback and control loop.  A photograph of the 
actual setup in the lab is shown in Fig. 16.  

 



 
Figure 15.  Simplified schematic of system implementation.  The voltage read 
from channel 2 is subtracted from channel 1 to obtain VRS. 

 
Figure 16.  Actual lab control setup. 

V. RESULTS 
Output current of the op amp from the DAC (AD811) is 

100mA.  It was thought that if the temperature was regulated 
at a temperature below 80mA (@4V ~115°C), that this setup 
would work.  Instead the output would swing rail-to-rail.  
Upon disconnecting the DAC output and applying an external 
voltage to the heater and reference resistor, the mcu computes 
the correct RHeater.  The conclusion was that the output needed 
to be buffered. 

 
Using a similar configuration as Fig. 15, except adding the 

BJT at the output of the op amp provided the schematic shown 
in Fig. 17.  The op amp is a Q2N2222 NPN transistor with a 
beta value of 180.  It has a current output of 500mA, which is 
sufficient to drive the Figaro sensor. 

 
Figure 17.  Simplified schematic of system implementation using current 
buffer.  

This setup should have worked correctly; however, the 
output still rails and RHeater is not computed correctly with the 
full-scale output (FSO) from the DAC.  Upon further 
tweaking, the problem will be resolved.  At the time of this 
publication, it is assumed that something is wrong with the 
current buffer.  An alternate buffer will be designed and 
implemented to fix it.  Working components of this design 
include: 

 
• Correct ADC and DAC conversions 

• ADC to mcu and mcu to DAC interfacing 

• PC to mcu interfacing 

• User input 

• Error handling on invalid user input 

• Sampling using BUSY signal from ADC 

• Timer match to time step durations 

• Timer interrupt to input new temperature and time 
duration 

• Temperature profile advancing at each time step 

• I/O from mcu 

• Data logging on mcu 

• MUX selection via P0.6 

• Correct computation of RHeater (given external voltage 
applied) 

• mcu operation 

• JTAG interfacing and debugging 

• RS232 communication 



VI. CONCLUSION 
PID control is a relatively easy, straightforward approach 

to use when controlling a process, enabling it to be used in a 
variety of modern control applications.  A microcontroller 
based approach to this control offered the benefits of easy 
computer interfacing, fast response time, in-situ data 
processing and logging, as well as a lot of learning.  The list of 
working components outweighs the list of non-working, but 
the controller will be operational ASAP.  In addition to the 
LabVIEW GUI still to be written, other future plans include 
housing a power supply and the evaluation boards into an 
aluminum project box.   
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APPENDIX A – SUPPLIES PURCHASED FOR PROJECT 

Date Item Vendor Price 
10/10/2005 Keil MCB2100 Eval Board Keil $0 
10/21/2005 6V Power Supply UofU Bookstore $7.45 
10/22/2005 Connectors and Header Pins RaElco Electronics $10.15 
11/10/2005 ADC & DAC Eval Boards Analog Devices $0 
1/31/2006 BNC (F) to SMB (F) (2) Ebay $15.00 
1/31/2006 USB to RS232 Connector Ebay $8.04 
3/15/2006 BNC (F) to Alligator Clips (3) Ebay $14.25 
3/30/2006 Aluminum Project Box Ebay $10.52 
4/3/2006 Triple Output Power Supply Ebay $21.45 
4/3/2006 RS232 Splitter Cable Ebay $6.98 
3/21/2006 ADC & DAC Eval Boards Analog Devices $346.32 
4/13/2006 Wire, Switches, Connectors RaElco Electronics $19.90 
4/17/2006 Connectors and Header Pins RaElco Electronics $7.32 
4/15/2006 Misc. Electronic Parts RaElco Electronics $10.92 
4/16/2006 Nuts and Bolts Home Depot $3.14 

Total $481.44 
 



APPENDIX B – C CODE OF MCU 
 

#include <stdio.h>                    // prototype declarations for I/O functions 
#include <math.h>                    // prototype declarations for math functions 
#include <stdlib.h>     // standard library declarations 
#include <LPC21xx.H>                 // LPC21xx definitions for LPC2129 mcu 
#define MAXBUFFERSIZE    8   // input cannot exceed this many characters 
#define wait   10000000  // wait before accepting transmissions again 
#define     num_steps  25   // max number of profile steps 
#define sample_save_rate  25000    // 250 for 1 ms at 4 us sample rate -> = 5 for 20 us 
//#define  max_samples  50000   // at 256 kB of memory, this is number of 4-byte samples available 

                       // AFTER calculating what is required for the program about 50 
    // seconds for 1 ms samples or 1 second at 20 us sampling 

 
/* Global Variable Declarations */ 
int interrupt = 0;   //interrupt=0:interrupt hasn't fired yet--interrupt=1:interrupt fired 
int time = 10;        //initialize time variable 
 
/****************/ 
/* main program    */ 
/****************/ 
int main (void)  {                     // execution starts here 
   //while (1) {      //can change this to interrupt and exit w/ INT1 
  /* Function Declarations */ 
  void init_serial (void);        // initialize the serial interface 
  void init_io (void);    // initialize the GPIO pins 
  void init_timer (void);    // initialize timer0 
  void T0isr(void) __fiq;    // initialize timer0 interrupt 
  
    /* Variable Declarations */ 
    unsigned int MAX_out,MIN_out,T_Max,rkT,wkT,control[80]; 
  unsigned int a,b,c,profile[50],r,n,num_samples,loop,icr,V_s,V_h;     
  int transmit1,go,delay; 
  long ekT,pkT,qkT,pkT_1,ekT_1,cnt,R_h,wkT_l,ukT; 
  float temp,profile_f[50],pid[5]; 
  char d; 
  
  /*Buffer variables*/ 
  char    ch;                         //handles user input 
  char    buffer[MAXBUFFERSIZE];    // sufficient to handle one line 
  int      char_count;                 // number of characters read for this line 
  int      valid_choice,exit_flag; 
  
  /* Initializations */ 
  init_serial();      //initialize serial interface 
    init_io();      //initialize GPIO pins 
  //IOSET0 = 0x40;    //turn off (off=high, on=low) ADC (P0.6 hooked to PD 
         //pin on ADC) 
  IOCLR0 = 0x40;     //turn on channel 2 first (V_h) (P0.6 hooked to OB pin on 
         //ADC) 
  /* Local Variable Definitions */ 
  pkT_1=0;     
  ekT_1=0; 
  T_Max=200.0;//750.0;    //max temp of heater being used 
  exit_flag=0;     //exit PID loop 
  go=0;      //flag to proceed 



  icr=0;      //counter for profile and printf 
  loop=0;      //counter for number of loops between saves  
  num_samples=0;     //counter for control[] index incramenting 
  
  /*************************/ 
    /* Start of Program loop */ 
    /*************************/ 
      printf("\nWelcome to the Microheater Control Program\n"); 
   
  /***************************************************************************/ 
    /* Get Buffered PID parameters when 'Load PID params' is pushed in LabVIEW      */ 
    /***************************************************************************/ 
  printf("waiting for PID coeffs...\n"); 
  //future need to make an interrupt to bring me here when the "load PID" button pushed 
  /*Get buffered transmission and ensure validity*/   
  for (r=0;r<5;r++) {         
   valid_choice = 0; 
   
   while( valid_choice == 0 ) { 
    ch = getchar(); 
    char_count = 0; 
   
    while( (ch != '\n')  &&  (char_count < MAXBUFFERSIZE)) { 
     buffer[char_count++] = ch; 
     ch = getchar(); 
    } 
   
    buffer[char_count] = 0x00;      /* null terminate buffer */ 
    //printf("buffer: %s\n",buffer); 
    pid[r] = atof( buffer ); 
   
    if( (pid[r] <= 0) || (pid[r] > 65535) ) { 
    
     if (buffer[0] == '0' ) valid_choice = 1;     //allow input of '0' 
    
     else { 
      printf("invalid parameters.  Please reload coeffs.\n"); 
      r=0;   //reset loop counter to load complete new array 
    
      for (cnt = 0; cnt < wait; cnt++);         // Delay to avoid last transmissions to 
             //count in new array 
     } 
    } 
    
    else 
     valid_choice = 1;    //user entered valid data, proceed 
   } 
  } 
   
   

//convert this array into individual integers components to use in calculations 
  a=pid[0];   /*P Coefficient (can shift if want to)*/ 
  b=pid[1];   /*I Coefficient (can shift if want to)*/ 
  c=pid[2];   /*D Coefficient (can shift if want to)*/ 
  MIN_out=pid[3];   /*Min digital word sent to DAC (corresponds to min power output)*/ 
  MAX_out=pid[4];  /*Max digital word sent to DAC (corresponds to max power output)*/ 
   



  /*****************************************************************************/ 
    /* Get Buffered temperature profile when 'Load Profile' is pushed in LabVIEW */ 
    /*****************************************************************************/ 
  valid_choice = 0; 
   
  while( valid_choice == 0 ) { 
   printf("waiting for temperature profile...\n"); 
   transmit1=0; 
   ch = getchar(); 
   char_count = 0; 
   
   while( (ch != '\n')  &&  (char_count < MAXBUFFERSIZE)) { 
    buffer[char_count++] = ch; 
    ch = getchar(); 
   } 
   
   buffer[char_count] = 0x00;      /* null terminate buffer */ 
   n = atof( buffer ); 
   
   if( (n <= 0) || (n > 25) ) { 
    //put in option to have constant temperature rather than steps 
    printf("invalid # steps.  Please reload profile\n"); 
    r=0;   //reset loop counter to load complete new arry 
   
    for (cnt = 0; cnt < wait; cnt++);        // Delay to avoid last transmissions to count in new 
         //array 
   } 
   
   else  { 
    printf("# steps: %d\n",n); 
    /*Import n element array*/ 
    
    for (r=0;(r<2*n) && (transmit1 == 0);r++) { 
     valid_choice = 0; 
    
     while( valid_choice == 0 ) { 
      ch = getchar(); 
      char_count = 0; 
    
      while( (ch != '\n')  &&  (char_count < MAXBUFFERSIZE)) { 
       buffer[char_count++] = ch; 
       ch = getchar(); 
      } 
    
      buffer[char_count] = 0x00;      /* null terminate buffer */ 
      //printf("buffer: %s\n",buffer); 
      profile_f[r] = atof( buffer ); //to do float math, need all float 

//elements 
      profile[r] = atof( buffer );  //This is just to create the size of array 
    
      if( (profile_f[r] <= 0) || (profile_f[r] > 65535) ) {   

  
       printf("invalid parameters.  Please reload profile\n"); 
    
       for (cnt = 0; cnt < wait; cnt++);      //Delay to avoid last 
                        //transmissions to count  

             //in new array 



       transmit1=1; 
       break; 
      } 
      
      else 
       //check here for correct time & temperature inputs 
       valid_choice = 1; 
     } 
    } 
   } 
  } 
  
  /*Convert float Times w/ 1 decimal precision to integers*/ 
  for (r=0; r<n; r++) { 
   temp = profile_f[2*r]*10;     //convert time (Ex 10.2 ms -> 102) 
   profile[2*r]=temp;      
  } 
   
  /*Convert float Temperatures to integers*/ 
  for (r=0; r<n; r++) { 
   temp = profile_f[2*r+1]/T_Max;     //convert Temps to between 0-65535 
   profile[2*r+1]=temp*65535; 
  } 
   
  /******************************************************/ 
    /* Begin exectution when 'START' is pushed in LabVIEW */ 
    /******************************************************/ 
  printf("waiting to execute profile...\n"); 
  /*When START is pressed in LabVIEW, it should transmit a 'Y'*/ 
  while (go == 0) { 
   scanf("%c",&d); 
    
   if(d == 'Y')  go = 1; 
    
   else printf("Please press Start in LabVIEW (or 'Y')...\n"); 
  } 
   
  /*******************************/ 
    /* Execute Temperature Profile */ 
    /*******************************/ 
  printf("executing profile...\n"); 
  
  IOCLR1 = 0xFFFF0000;   //clear all output on P0 so don't get DAC conversion until ready 
  //IOSET0 = 0x40;   //turn on ADC (P0.6 hooked to PD pin on ADC) 
 
  time  = profile[0]*20;   //read in first time duration --mult by 20 to get correct ms time 
  rkT = profile[1];    //read in first setpoint temp. 
  init_timer(); 
     
  while(exit_flag == 0) {   //blink for element arrays 
   
   if (interrupt != 1) {  //on interrupt, read in new time and Temp 
     
   /*PID Algorithm w/ Ts = 2 us (500 kHz)*/  //-> will take 2 cycles (4 us) to complete algorithm 
     

while ((IOPIN0 & (1<<7)) != 0);  /* Hold until end of A/D Conversion */ 
    V_h = (IOPIN0 >> 10);     //Voltage accross heater, currently between 0- 



         //65535 
    IOSET0 = 0x40;    //turn on ADC channel 1 (P0.6) 
     
    __asm { NOP; }    //wait at least 40 ns to read channel 2 (4 clock 
          //cycles at 84 MHz) 
    __asm { NOP; } 
    __asm { NOP; } 
    __asm { NOP; } 
      
    V_s = (IOPIN0 >> 10);     /* Voltage accross R_s & R_h*/ 
 
    R_h = (V_h*10)/(V_s-V_h);  //V_s not taken differentially --R_s = 1 ohm  
 
    //if (R_h<317) R_h=317; 
    if (R_h>573) R_h=573; 

 
    //equate RTD voltage drop to temperature 
    wkT_l = 256*R_h - 81190;    //linear fit to Temp vs R_h*10 curve 
    wkT=wkT_l;     
 
    /*Calculate Error*/ 
    ekT=rkT-wkT; 
 
    /*Calculate I term*/ 
    pkT=b*ekT+pkT_1; 
 
    /*Calculate D term*/ 
    qkT=c*(ekT-ekT_1); 
 
    IOCLR0 = 0x40;    //turn ADC channel 2 back on (P0.5) 
     
    /*Calculate PID output*/ 
    ukT=pkT+a*ekT+qkT; 
 
    /*Protect against integral windup*/ 
    if (ukT > MAX_out) { 
     pkT=pkT_1; 
     ukT=MAX_out; 
    } 
    else if (ukT < MIN_out) { 
     pkT=pkT_1; 
     ukT=MIN_out; 
    } 
 
    /*Save Variables*/ 
    pkT_1=pkT; 
    ekT_1=ekT; 
   
    /*Send control to DAC*/ 
    IOPIN1 = (ukT << 16); 
 
    /*Save array of control values*/ 
    loop++; 
    if ((loop==sample_save_rate) && (num_samples<80))  { 
     control[num_samples] = ukT; 
     num_samples++; 
     loop=0; 



   
    } 
    
    for (delay=0; delay<5; delay++) {}  //ensure get to 4 us sampling 
   } 
    
   else { 
    /*Read in new profile values*/ 
    if (icr < n-1) { 
     icr++; 
     time  = (profile[2*icr])*20; 
     rkT = profile[2*icr + 1];  //current temp setpoint 
     interrupt = 0; 
    } 
  
    /*Exit PID loop*/ 
    else { 
     IOCLR1 = 0xFFFF0000;  //turn off output to DAC 
     exit_flag=1; 
     T0TCR = 0x00000000;  //disable timer 
    } 
   } 
  } 
  go=0; 
  printf("Please press 'Y' to receive control values...\n"); 
   
  /*Wait for user input*/ 
  while (go == 0) { 
   scanf("%c",&d); 
   if(d == 'Y')  go = 1; 
    
   else printf("\nPlease press 'Y'...\n"); 
  } 
   
  /*Print out samples*/ 
  for (icr=0; icr<num_samples; icr++) { 
   printf("%d\n",control[icr]); 
  } 
 //}  
 return 0; 
}                                            
 
/****************/ 
/* Functions    */ 
/****************/ 
void init_serial (void) {              /* Initialize Serial Interface */ 
    PINSEL0 = 0x00050000;            /* Enable RxD1 and TxD1 */ 
   U1LCR = 0x83;                    /* 8 bits, no Parity, 1 Stop bit */ 
   U1DLL = 23;                       /* 230400 Baud Rate @ 84MHz VPB Clock */  //(divisor = Pclk/16/baud) 
   U1LCR = 0x03;                    /* DLAB = 0 */ 
} 
 
void init_io (void) {              /* Initialize IO Pins */ 
 IODIR1 = 0xFFFF0000;                   /* P1.16..31 defined as DAC Outputs (<< 16)*/ 
 IODIR0 = ~(0x3FFFC00);  /* P0.10..25 defined as ADC Inputs  (>> 10)*/  
 IODIR0 &= ~(1 << 7);  /* P0.7 defined as BUSY signal from ADC*/ 
 IODIR0 |= (1<<6);   /* P0.6 defined as channel selection output to ADC*/ 



 //IODIR0 |= (1<<6);   /*P0.6 defined as PD ADC Outputs*/ 
 /*Pin Configurations*/ 
 //P1.16..31 - 16 bit DAC Output 
 //P0.15..30 - 16 bit ADC Input 
 //P0.5 - MUX selection output signal (1=high channel A (V_S) 0=low channel B (V_H)) 
 //P0.6 - PD signal (1=high power down 0=low convert) 
 //P0.7 - Busy input signal from ADC (1=high busy 0=low finished converting) 
 //pins P0.0,1,8,9 are used for UART and P0.14 is External interrupt1 
} 
 
void init_timer (void) { 
 PINSEL0 |= 0x00000800;   //Match1 as output 
 T0PR = 0x000001A4;   //Load prescaler for 10 usec tick 
 T0TCR = 0x00000002;   //Reset counter and prescaler 
 T0MCR  = 0x00000003;   //On match reset the counter and generate an interrupt 
 T0MR0 = time;    //Set the cycle time 
 T0MR1 = 0x00000000;   // Set duty cycle to zero 
 T0EMR  = 0x00000042;   //On match clear MAT1 
 T0TCR = 0x00000001;   //enable timer 
  
 VICVectAddr4 = (unsigned)T0isr;  //Set the timer ISR vector address 
 VICVectCntl4 = 0x00000024;  //Set channel 
 VICIntEnable |= 0x00000010;  //Enable the interrupt 
} 
 
void T0isr (void) __fiq {   
 interrupt = 1;  
 T0EMR |= 0x00000002;   //Set MAT1 high for begining of the cycle 
 T0MR1++;    //Increment PWM Duty cycle  
 T0MR1  = T0MR1&0x000000FF;  //Limit duty cycle 
 T0IR |= 0x00000001;   //Clear match 0 interrupt 
 VICVectAddr = 0x00000000;  //Dummy write to signal end of interrupt 
} 
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