
Design and Fabrication of a
Microheater Control System

University of Utah Senior Project

Michael William Chambers
Electrical and Computer Engineering

University of Utah
Salt Lake City, USA

www.ece.utah.edu/~mchamber
mike.chambers@utah.edu

Abstract—Microsensors are becoming increasingly
important to society as the field of nanotechnology
advances. One such microsensor is a solid state gas
concentration sensor, which has been used for over a
decade, especially in the automotive field to control air/fuel
ratios in the combustion process. These devices generally
utilize an on-board microheater to improve gas sensitivity.
Such a gas sensor is currently being developed here at the
University of Utah to detect nitrous oxide (NOx)
concentrations in diesel exhaust. My contribution was to
develop the controller required to regulate the high
temperature set points (up to 650°C) of the microheater.
Feedback for this control is provided by an on-chip thin
film Resistance Temperature Detector (RTD) located near
the microheater. Using this control setup, the system is
capable of maintaining a constant set temperature for gas
sensing, as well as delivering step temperature profiles
needed for testing, tuning and diagnostic purposes.

Keywords-Microheater; Gas Sensor; PID Control; Data
Converters

I. INTRODUCTION
Solid state gas concentration sensors have been used

extensively in the automotive industry for over 10 years.
These sensors provide feedback to the fuel injector controls to
constantly maintain the most efficient ratios of air to fuel,
thereby increasing the most efficient combustion. Simply put,
this type of sensor utilizes semiconductor properties of surface
adsorption to detect changes in resistance as a function of
varying concentrations of different gases. In order to detect
these resistive changes and equate them to changing (and
static) gas concentrations, the gas temperature must be held
constant. A microheater (or an array of microheaters) near the
gas sensor is controlled to maintain this temperature and to
account for the convective cooling caused by gas flow. Fig. 1
below shows an example of a microheater. This picture is one

of three microheaters in an array, the combination of which
reportedly exhibits excellent temperature homogeneity [1].

A disadvantage of most current gas sensors is that they are

rated at relatively low temperatures (up to about 300ºC).
Thus, they are located downstream from the combustion
chambers far enough to allow sufficient cooling of the exhaust
gases. However, high operation temperatures are needed for
optimum performance and accuracy.

Figure 1. This figure displays an example of a microheater. The green rings
are the heaters, the central array is the temperature sensor, and the central
speckled bars are the gas sensors. The gas sensors are approximately 50μm
wide, or half the width of a human hair.

A disadvantage of most current gas sensors is that they are
rated at relatively low temperatures (up to about 300ºC).
Thus, they are located downstream from the combustion
chambers far enough to allow sufficient cooling of the exhaust
gases. However, high operation temperatures are needed for
optimum performance and accuracy.

Mike Sorenson, Srinivasan Kannan, and Xiaoxin Chen,

under the supervision of Dr. Florian Solzbacher and Dr. Loren
Rieth, are currently working on a solid state gas sensor that
will be capable of operating at temperatures of over 600ºC.
This will allow the sensor to be placed directly outside the
exhaust manifold to provide superior accuracy. The design is
currently in the last stages of fabrication and consists of
interdigitated metal-oxide fingers serving as the gas sensor,
with the heater encapsulating these fingers and a platinum
RTD temperature sensor located near the heater. The design is
shown below in Fig. 2.

Figure 2. Solid-state gas concentration sensor currently being developed at
the University of Utah. The sensor is located in the middle, with the
microheater on either side of it. The RTD temperature sensor is located at the
bottom center.

II. SPECIFICATIONS
Specifications for controlling the microheater included:

• Max temperature of 700°C ± 2°C accuracy (max temp

is 650°C but need to account for overshoot)

• 1W max power delivered to ~150Ω (room temp)
microheater

• Response time limited by sensor, not my device

• Estimated as 1ms

• Be able to provide step temperature profiles

• Voltages cannot exceed automotive supply grid (12V)

• Feedback provided by on-board RTD

• Voltage drop across RTD is proportional to
temperature

• Needs to be controlled with analog signal

• Digital on/off may decrease life of heater

• Temperature set points communicated by PC

• RS232 interface

III. CONTROL THEORY
Rapid, accurate control of the microheater can be

accomplished using a proportional-integral-derivative (PID)
controller. A basic block diagram of this controller is
displayed in Fig. 3 below [2].

Figure 3. A PID controller sums the 3 terms derived from the error signal
e(t) to provide very accurate and stable control of a process.

For a very thorough description of a PID controller, please
refer to one of the many articles on the web [2]. For
temperature control, the idea of the control is that the
temperature is compared with a desired setpoint temperature.
The difference, or error signal e(t), is applied to the controller,
which sums three terms derived from e(t) to produce the
control signal u(t). The proportional term Kp applies a
corrective term proportional to the error; the integral term Ki
seeks to hold its average input at zero; and the derivative term
Kd improves stability, reduces overshot caused by high Ki and
Kp terms and improves response time by anticipating changes
in error. u(t) manipulates a physical input to the process,
thereby causing a change in the regulated temperature that will
stably reduce the error. To control the temperature of the
microheater, the system must accurately measure the current
temperature of the microheater and adjust the input power
accordingly.

IV. DESIGN

A. PID Realization
The PID controller has traditionally been implemented

using discrete analog components. However, in order to
obtain response times on the order of 1ms, as well as to
perform signal processing on the resistance of the RTD and
metal-oxide layer, it was decided to implement the PID control
algorithm on a microcontroller (mcu). This also allows simple
interfacing with a PC to communicate the desired temperature
profiles.

In order to implement the PID controller using a mcu, the
continuous time PID equation obtained from Fig. 3 had to first
be transformed into a discrete time equation. This process is
shown in Fig. 4 below [3]. Notice that starting with the
traditional continuous time PID equation, discrete,
programmable equations can be obtained.

Figure 4. Rewriting the traditional continuous time PID equation in the s-
domain and taking the z-transform yields the discrete PID equation. After
rewriting this equation and drawing the equivalent parallel realization,
equations can be obtained by which to program the PID controller. These
equations use previous output variables in current calculations.

The block diagram for the digital implementation of the
PID controller is shown in Fig. 5 below [4]. This
configuration places the derivative and proportional terms in
the feedback of the controller, thereby eliminating the problem
known as “derivative kick.” With a maximum and minimum
output allowed, the problem known as “integral windup.”

Figure 5. Realizing the PID controller in this configuration minimizes
“integral windup” and “derivative kick.”

B. Component Selection
Now that the PID control setup was taken care of, it was

time to design the system. Obtaining the instantaneous
temperature is accomplished by measuring the resistance of
the RTD. This is done by sampling the voltage across it while
forcing a constant current through it. For this, an analog-to-
digital converter (ADC) was needed. Measuring the voltage
drop across the heater itself is a way of obtaining further
information about the temperature of the device. An Analog
Devices AD7655 was chosen for this sampling. This 16-bit
ADC has dual channels which convert at an astounding
1MSPS (mega sample per second, or 2 channels every 2μs).
The known current being forced through the RTD, along with

the 16-bit digital word corresponding to the voltage drop
across the RTD, is used to calculate the resistance of the RTD.
As was mentioned above, this calculation is performed by a
mcu.

Two options existed for this mcu. The first was to use a
fast (>100MHz) mcu. These fast mcus typically have little or
no on-board FLASH, but floating point libraries could have
been used to calculate the PID algorithm and the RTD
resistance. This option would have made the coding much
simpler but would have required a more complex board layout
to minimize noise and to interface with FLASH memory.

Using a slower mcu with sufficient integrated FLASH
memory seemed like a more viable option for the project. The
coding was more complex because the mcu had to be
programmed using integer math only, however, the layout and
interfacing with the data converters was much simpler. In the
end, the Philips LPC2129 32-bit mcu was chosen. This mcu
has an operating frequency of 60MHz and 256kB on-board
FLASH and 16kB on-board RAM memory, as well as
sufficient I/O pins and user peripherals.

Because the heater had to be driven with an analog control,
it was obvious that a digital-to-analog converter (DAC) was
needed. The Analog Devices AD768 16-bit was chosen
because of its rapid conversion time (up to 30MSPS) and the
option for current output. The 16-bit data converters both
have parallel outputs, which interface nicely with the 32-bit
mcu.

A basic block diagram for this project showing the present
control setup is shown in Fig. 6 below. Parts used in this
design are included in Appendix A of this report.

32-Bit Mcu-
Processes the resistance
signals from the RTD and
metal-oxide heater and

controls the power
delivered

to the heater

16-Bit DAC-
High speed analog

current (scaled
power)

output to control
heater

16-Bit ADC-
High speed digital
voltages (heater

temp)
provide feedback

to mcu

RTD-
High precision current

forced through
resistor

to obtain voltage drop
related to temp

PC-
RS232 serial comm.

link with mcu.
Setpoint temperatures
and profiles assigned.

Microheater-
Heater maintained at

desired
temperatures.

Resistance signal fed
back into controller

Figure 6. Block diagram of project. The resistance of the RTD corresponds
to the temperature of the microheater. The voltage drop across it is converted
to a 16-bit word and fed to the mcu to calculate the resistance and perform the
PID algorithm based on the difference between the desired setpoint and the
actual temperature. The mcu communicates with a computer to relay the
desired temperature profile, as well as to relay resistance data. Based upon the
setpoint temperature and the error signal, the mcu exports a digital 16-bit word
to control the microheater. This signal is converted to an analog signal and

Special thanks to Mike Sorenson, Dr. Florian Solzbacher, and Dr. Ken
Stevens for all of their help in this project.

fed to the microheater. The resistance of the heater is calculated using the
second channel of the ADC and sent to the mcu for processing.

C. Implementation
The first task to implement the design was to characterize

the heater. Because the microheater being developed at the U
was not fabricated yet at the time of this publication, a
commercial gas sensor was obtained. The sensor of choice
was the Figaro TGS 2201 gasoline/diesel gas sensor, which
operates at temperatures around 300°C. Because this sensor
did not have an on-board RTD, the design had to be slightly
modified to obtain the resistance of the heater. This was
accomplished by adding a 1Ω precision reference resistor in
series with the heater. By sampling the voltage across this
resistor, VRef, the current could be calculated using Ohm’s law,
which, because the resistance is 1Ω, is equal to VRef. Knowing
the current through the reference resistor (and the heater), the
resistance of the heater, RHeater, could be obtained after
sampling the voltage across it, VHeater. Thus, by sampling only
VRef and VRef, the resistance of the heater can be obtained, as
shown in (1) below.

Ref

Heater

Ref

Ref

Heater

Heater

Heater
Heater V

V

R
V

V
I
V

R =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== (1)

In order to correlate RHeater with the temperature, set
voltages were applied across the heater and reference resistor.
Using an infrared (IR) camera, the corresponding temperatures
were measured given applied voltages. An example of these
measurements is shown in Fig. 7 below.

Figure 7. IR picture of temperature of microheater with applied voltage of
5V.

A table was made of the derived RHeater vs. temperature
values. These values were fit to a curve in Matlab to obtain
the linear equation relating the two variables. The results are
graphed in Fig. 8.

The next task was to program the mcu. This was done in

the C programming language. Fig. 9 shows the basic structure

of the code. Refer to Appendix B for a complete listing of the
code.

Figure 8. Graph of measured and fit data. The linear equation correlates the
resistance of the heater with the temperature. The resistance is multiplied by
10 for ease in using integer math.

Figure 9. Description of the C code programmed on mcu.

The mcu was programmed using an RS232 serial
connection with a PC. Loading the PID coefficients, as well
as the temperature profile, was performed using
HyperTerminal in Windows. A screenshot of this program is
shown in Fig. 10 below. Future plans include designing a GUI
in LabVIEW to load these values into the mcu. This GUI is
shown in Fig. 11.

The next step was to set up the data converters. This was

accomplished incrementally by first hooking the output of the
ADC directly to the DAC. Fig. 12 below shows a sine wave
input to the ADC and the corresponding output from the DAC.

Figure 10. Loading PID coefficients, as well as temperature profile, is done
with HyperTerminal.

Figure 11. A LabVIEW GUI will be implemented to replace HyperTerminal.

Figure 12. Input wave into ADC and output from DAC.

As can be seen in the above graph, the analog-to-digital
conversions, as well as the digital-to-analog conversions, work
perfectly. The amplitude of the DAC output can be scaled to
the desired output range, determined by resistor R2 shown in
Fig. 14. This provides excellent design flexibility.

The same test was performed again, except this time

reading the ouput from the ADC into the mcu and then
exporting the corresponding digital word to the DAC. As
expected, the results were very similar.

Before hooking everything up, the PID loop was tested to
see if it could execute in the time required by the ADC to
convert 2 channels. The loop only executes when the BUSY
signal from the ADC is low, meaning that the conversions are
finished. The bottom graph in Fig. 13 below shows the BUSY
signal from the ADC, and the top graph shows the loop
iteration frequency. As can be seen, the loop does not execute
in less than 2µs. With some efficiency improvements, the
execution time can be reduced to below 2µs, thus utilizing the
full speed of the ADC.

Figure 13. Graphs of PID iteration frequency (top plot) and ADC BUSY
signal. Note that conversions are finished when the BUSY signal goes low.
Only then can the PID loop be executed, thus ensuring uniform sampling.

Fig. 14 below shows a simplified schematic of the system.

Channels 1 and 2 are multiplexed in time in the ADC. The
ADC feeds pins 10 through 25 of Port 0 (P0.10..25) on the
mcu. The channel read into the mcu is controlled with P0.6.
The mcu transmits the computed control output to the DAC
from P1.16..31. The 16-bit control word converted to current
between 0-20 mA, and the corresponding output voltage is
controlled by R2.

Figure 14. Simplified schematic of control setup.

Fig. 15 below shows a simplified schematic of how the

system was integrated with the heater and reference resistor to
complete the feedback and control loop. A photograph of the
actual setup in the lab is shown in Fig. 16.

Figure 15. Simplified schematic of system implementation. The voltage read
from channel 2 is subtracted from channel 1 to obtain VRS.

Figure 16. Actual lab control setup.

V. RESULTS
Output current of the op amp from the DAC (AD811) is

100mA. It was thought that if the temperature was regulated
at a temperature below 80mA (@4V ~115°C), that this setup
would work. Instead the output would swing rail-to-rail.
Upon disconnecting the DAC output and applying an external
voltage to the heater and reference resistor, the mcu computes
the correct RHeater. The conclusion was that the output needed
to be buffered.

Using a similar configuration as Fig. 15, except adding the

BJT at the output of the op amp provided the schematic shown
in Fig. 17. The op amp is a Q2N2222 NPN transistor with a
beta value of 180. It has a current output of 500mA, which is
sufficient to drive the Figaro sensor.

Figure 17. Simplified schematic of system implementation using current
buffer.

This setup should have worked correctly; however, the
output still rails and RHeater is not computed correctly with the
full-scale output (FSO) from the DAC. Upon further
tweaking, the problem will be resolved. At the time of this
publication, it is assumed that something is wrong with the
current buffer. An alternate buffer will be designed and
implemented to fix it. Working components of this design
include:

• Correct ADC and DAC conversions

• ADC to mcu and mcu to DAC interfacing

• PC to mcu interfacing

• User input

• Error handling on invalid user input

• Sampling using BUSY signal from ADC

• Timer match to time step durations

• Timer interrupt to input new temperature and time
duration

• Temperature profile advancing at each time step

• I/O from mcu

• Data logging on mcu

• MUX selection via P0.6

• Correct computation of RHeater (given external voltage
applied)

• mcu operation

• JTAG interfacing and debugging

• RS232 communication

VI. CONCLUSION
PID control is a relatively easy, straightforward approach

to use when controlling a process, enabling it to be used in a
variety of modern control applications. A microcontroller
based approach to this control offered the benefits of easy
computer interfacing, fast response time, in-situ data
processing and logging, as well as a lot of learning. The list of
working components outweighs the list of non-working, but
the controller will be operational ASAP. In addition to the
LabVIEW GUI still to be written, other future plans include
housing a power supply and the evaluation boards into an
aluminum project box.

ACKNOWLEDGMENT
M.W.C. thanks his wife, who has been a single mom for the

last month, Mike Sorenson for all the times he helped and
offered his valuable insights. Also, special thanks to his
advisor, Dr. Stevens for his knowledgeable advice and his

mentor, Dr. Solzbacher for his patience and scheduling. Dr.
Harrison was also very willing to offer his help and advice.
Thanks should also be extended to Brian Flint for his help with
timer interrupts and providing the author with free lab parts.

M.W.C. also wishes to thank Analog Devices and Keil
Software for providing evaluation boards free of charge.

REFERENCES

[1] M. Graf, D. Barrettino, P. Kaeser, J. Cerda, A. Heirlemann, and H.
Baltes, “Smart single-chip CMOS microhotplate array for metal-oxide-
based gas sensors”, Transducers (2003), 123.

[2] E. Neary, “Mixed-signal control circuits use mcu for flexibility in
implementing PID algorithms”. Analog Dialogue 38-01, January (2004)

[3] D. Ibrahim, Microcontroller Based Temperature Monitoring and
Control, Woburn, MA: Newnes, 2002, pp. 194–195.

[4] D. Ibrahim, Microcontroller Based Temperature Monitoring and
Control, Woburn, MA: Newnes, 2002, p. 196.

APPENDIX A – SUPPLIES PURCHASED FOR PROJECT

Date Item Vendor Price
10/10/2005 Keil MCB2100 Eval Board Keil $0
10/21/2005 6V Power Supply UofU Bookstore $7.45
10/22/2005 Connectors and Header Pins RaElco Electronics $10.15
11/10/2005 ADC & DAC Eval Boards Analog Devices $0
1/31/2006 BNC (F) to SMB (F) (2) Ebay $15.00
1/31/2006 USB to RS232 Connector Ebay $8.04
3/15/2006 BNC (F) to Alligator Clips (3) Ebay $14.25
3/30/2006 Aluminum Project Box Ebay $10.52
4/3/2006 Triple Output Power Supply Ebay $21.45
4/3/2006 RS232 Splitter Cable Ebay $6.98
3/21/2006 ADC & DAC Eval Boards Analog Devices $346.32
4/13/2006 Wire, Switches, Connectors RaElco Electronics $19.90
4/17/2006 Connectors and Header Pins RaElco Electronics $7.32
4/15/2006 Misc. Electronic Parts RaElco Electronics $10.92
4/16/2006 Nuts and Bolts Home Depot $3.14

Total $481.44

APPENDIX B – C CODE OF MCU

#include <stdio.h> // prototype declarations for I/O functions
#include <math.h> // prototype declarations for math functions
#include <stdlib.h> // standard library declarations
#include <LPC21xx.H> // LPC21xx definitions for LPC2129 mcu
#define MAXBUFFERSIZE 8 // input cannot exceed this many characters
#define wait 10000000 // wait before accepting transmissions again
#define num_steps 25 // max number of profile steps
#define sample_save_rate 25000 // 250 for 1 ms at 4 us sample rate -> = 5 for 20 us
//#define max_samples 50000 // at 256 kB of memory, this is number of 4-byte samples available

 // AFTER calculating what is required for the program about 50
 // seconds for 1 ms samples or 1 second at 20 us sampling

/* Global Variable Declarations */
int interrupt = 0; //interrupt=0:interrupt hasn't fired yet--interrupt=1:interrupt fired
int time = 10; //initialize time variable

/****************/
/* main program */
/****************/
int main (void) { // execution starts here
 //while (1) { //can change this to interrupt and exit w/ INT1
 /* Function Declarations */
 void init_serial (void); // initialize the serial interface
 void init_io (void); // initialize the GPIO pins
 void init_timer (void); // initialize timer0
 void T0isr(void) __fiq; // initialize timer0 interrupt

 /* Variable Declarations */
 unsigned int MAX_out,MIN_out,T_Max,rkT,wkT,control[80];
 unsigned int a,b,c,profile[50],r,n,num_samples,loop,icr,V_s,V_h;
 int transmit1,go,delay;
 long ekT,pkT,qkT,pkT_1,ekT_1,cnt,R_h,wkT_l,ukT;
 float temp,profile_f[50],pid[5];
 char d;

 /*Buffer variables*/
 char ch; //handles user input
 char buffer[MAXBUFFERSIZE]; // sufficient to handle one line
 int char_count; // number of characters read for this line
 int valid_choice,exit_flag;

 /* Initializations */
 init_serial(); //initialize serial interface
 init_io(); //initialize GPIO pins
 //IOSET0 = 0x40; //turn off (off=high, on=low) ADC (P0.6 hooked to PD
 //pin on ADC)
 IOCLR0 = 0x40; //turn on channel 2 first (V_h) (P0.6 hooked to OB pin on
 //ADC)
 /* Local Variable Definitions */
 pkT_1=0;
 ekT_1=0;
 T_Max=200.0;//750.0; //max temp of heater being used
 exit_flag=0; //exit PID loop
 go=0; //flag to proceed

 icr=0; //counter for profile and printf
 loop=0; //counter for number of loops between saves
 num_samples=0; //counter for control[] index incramenting

 /*************************/
 /* Start of Program loop */
 /*************************/
 printf("\nWelcome to the Microheater Control Program\n");

 /***/
 /* Get Buffered PID parameters when 'Load PID params' is pushed in LabVIEW */
 /***/
 printf("waiting for PID coeffs...\n");
 //future need to make an interrupt to bring me here when the "load PID" button pushed
 /*Get buffered transmission and ensure validity*/
 for (r=0;r<5;r++) {
 valid_choice = 0;

 while(valid_choice == 0) {
 ch = getchar();
 char_count = 0;

 while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {
 buffer[char_count++] = ch;
 ch = getchar();
 }

 buffer[char_count] = 0x00; /* null terminate buffer */
 //printf("buffer: %s\n",buffer);
 pid[r] = atof(buffer);

 if((pid[r] <= 0) || (pid[r] > 65535)) {

 if (buffer[0] == '0') valid_choice = 1; //allow input of '0'

 else {
 printf("invalid parameters. Please reload coeffs.\n");
 r=0; //reset loop counter to load complete new array

 for (cnt = 0; cnt < wait; cnt++); // Delay to avoid last transmissions to
 //count in new array
 }
 }

 else
 valid_choice = 1; //user entered valid data, proceed
 }
 }

//convert this array into individual integers components to use in calculations
 a=pid[0]; /*P Coefficient (can shift if want to)*/
 b=pid[1]; /*I Coefficient (can shift if want to)*/
 c=pid[2]; /*D Coefficient (can shift if want to)*/
 MIN_out=pid[3]; /*Min digital word sent to DAC (corresponds to min power output)*/
 MAX_out=pid[4]; /*Max digital word sent to DAC (corresponds to max power output)*/

 /***/
 /* Get Buffered temperature profile when 'Load Profile' is pushed in LabVIEW */
 /***/
 valid_choice = 0;

 while(valid_choice == 0) {
 printf("waiting for temperature profile...\n");
 transmit1=0;
 ch = getchar();
 char_count = 0;

 while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {
 buffer[char_count++] = ch;
 ch = getchar();
 }

 buffer[char_count] = 0x00; /* null terminate buffer */
 n = atof(buffer);

 if((n <= 0) || (n > 25)) {
 //put in option to have constant temperature rather than steps
 printf("invalid # steps. Please reload profile\n");
 r=0; //reset loop counter to load complete new arry

 for (cnt = 0; cnt < wait; cnt++); // Delay to avoid last transmissions to count in new
 //array
 }

 else {
 printf("# steps: %d\n",n);
 /*Import n element array*/

 for (r=0;(r<2*n) && (transmit1 == 0);r++) {
 valid_choice = 0;

 while(valid_choice == 0) {
 ch = getchar();
 char_count = 0;

 while((ch != '\n') && (char_count < MAXBUFFERSIZE)) {
 buffer[char_count++] = ch;
 ch = getchar();
 }

 buffer[char_count] = 0x00; /* null terminate buffer */
 //printf("buffer: %s\n",buffer);
 profile_f[r] = atof(buffer); //to do float math, need all float

//elements
 profile[r] = atof(buffer); //This is just to create the size of array

 if((profile_f[r] <= 0) || (profile_f[r] > 65535)) {

 printf("invalid parameters. Please reload profile\n");

 for (cnt = 0; cnt < wait; cnt++); //Delay to avoid last
 //transmissions to count

 //in new array

 transmit1=1;
 break;
 }

 else
 //check here for correct time & temperature inputs
 valid_choice = 1;
 }
 }
 }
 }

 /*Convert float Times w/ 1 decimal precision to integers*/
 for (r=0; r<n; r++) {
 temp = profile_f[2*r]*10; //convert time (Ex 10.2 ms -> 102)
 profile[2*r]=temp;
 }

 /*Convert float Temperatures to integers*/
 for (r=0; r<n; r++) {
 temp = profile_f[2*r+1]/T_Max; //convert Temps to between 0-65535
 profile[2*r+1]=temp*65535;
 }

 /**/
 /* Begin exectution when 'START' is pushed in LabVIEW */
 /**/
 printf("waiting to execute profile...\n");
 /*When START is pressed in LabVIEW, it should transmit a 'Y'*/
 while (go == 0) {
 scanf("%c",&d);

 if(d == 'Y') go = 1;

 else printf("Please press Start in LabVIEW (or 'Y')...\n");
 }

 /*******************************/
 /* Execute Temperature Profile */
 /*******************************/
 printf("executing profile...\n");

 IOCLR1 = 0xFFFF0000; //clear all output on P0 so don't get DAC conversion until ready
 //IOSET0 = 0x40; //turn on ADC (P0.6 hooked to PD pin on ADC)

 time = profile[0]*20; //read in first time duration --mult by 20 to get correct ms time
 rkT = profile[1]; //read in first setpoint temp.
 init_timer();

 while(exit_flag == 0) { //blink for element arrays

 if (interrupt != 1) { //on interrupt, read in new time and Temp

 /*PID Algorithm w/ Ts = 2 us (500 kHz)*/ //-> will take 2 cycles (4 us) to complete algorithm

while ((IOPIN0 & (1<<7)) != 0); /* Hold until end of A/D Conversion */
 V_h = (IOPIN0 >> 10); //Voltage accross heater, currently between 0-

 //65535
 IOSET0 = 0x40; //turn on ADC channel 1 (P0.6)

 __asm { NOP; } //wait at least 40 ns to read channel 2 (4 clock
 //cycles at 84 MHz)
 __asm { NOP; }
 __asm { NOP; }
 __asm { NOP; }

 V_s = (IOPIN0 >> 10); /* Voltage accross R_s & R_h*/

 R_h = (V_h*10)/(V_s-V_h); //V_s not taken differentially --R_s = 1 ohm

 //if (R_h<317) R_h=317;
 if (R_h>573) R_h=573;

 //equate RTD voltage drop to temperature
 wkT_l = 256*R_h - 81190; //linear fit to Temp vs R_h*10 curve
 wkT=wkT_l;

 /*Calculate Error*/
 ekT=rkT-wkT;

 /*Calculate I term*/
 pkT=b*ekT+pkT_1;

 /*Calculate D term*/
 qkT=c*(ekT-ekT_1);

 IOCLR0 = 0x40; //turn ADC channel 2 back on (P0.5)

 /*Calculate PID output*/
 ukT=pkT+a*ekT+qkT;

 /*Protect against integral windup*/
 if (ukT > MAX_out) {
 pkT=pkT_1;
 ukT=MAX_out;
 }
 else if (ukT < MIN_out) {
 pkT=pkT_1;
 ukT=MIN_out;
 }

 /*Save Variables*/
 pkT_1=pkT;
 ekT_1=ekT;

 /*Send control to DAC*/
 IOPIN1 = (ukT << 16);

 /*Save array of control values*/
 loop++;
 if ((loop==sample_save_rate) && (num_samples<80)) {
 control[num_samples] = ukT;
 num_samples++;
 loop=0;

 }

 for (delay=0; delay<5; delay++) {} //ensure get to 4 us sampling
 }

 else {
 /*Read in new profile values*/
 if (icr < n-1) {
 icr++;
 time = (profile[2*icr])*20;
 rkT = profile[2*icr + 1]; //current temp setpoint
 interrupt = 0;
 }

 /*Exit PID loop*/
 else {
 IOCLR1 = 0xFFFF0000; //turn off output to DAC
 exit_flag=1;
 T0TCR = 0x00000000; //disable timer
 }
 }
 }
 go=0;
 printf("Please press 'Y' to receive control values...\n");

 /*Wait for user input*/
 while (go == 0) {
 scanf("%c",&d);
 if(d == 'Y') go = 1;

 else printf("\nPlease press 'Y'...\n");
 }

 /*Print out samples*/
 for (icr=0; icr<num_samples; icr++) {
 printf("%d\n",control[icr]);
 }
 //}
 return 0;
}

/****************/
/* Functions */
/****************/
void init_serial (void) { /* Initialize Serial Interface */
 PINSEL0 = 0x00050000; /* Enable RxD1 and TxD1 */
 U1LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
 U1DLL = 23; /* 230400 Baud Rate @ 84MHz VPB Clock */ //(divisor = Pclk/16/baud)
 U1LCR = 0x03; /* DLAB = 0 */
}

void init_io (void) { /* Initialize IO Pins */
 IODIR1 = 0xFFFF0000; /* P1.16..31 defined as DAC Outputs (<< 16)*/
 IODIR0 = ~(0x3FFFC00); /* P0.10..25 defined as ADC Inputs (>> 10)*/
 IODIR0 &= ~(1 << 7); /* P0.7 defined as BUSY signal from ADC*/
 IODIR0 |= (1<<6); /* P0.6 defined as channel selection output to ADC*/

 //IODIR0 |= (1<<6); /*P0.6 defined as PD ADC Outputs*/
 /*Pin Configurations*/
 //P1.16..31 - 16 bit DAC Output
 //P0.15..30 - 16 bit ADC Input
 //P0.5 - MUX selection output signal (1=high channel A (V_S) 0=low channel B (V_H))
 //P0.6 - PD signal (1=high power down 0=low convert)
 //P0.7 - Busy input signal from ADC (1=high busy 0=low finished converting)
 //pins P0.0,1,8,9 are used for UART and P0.14 is External interrupt1
}

void init_timer (void) {
 PINSEL0 |= 0x00000800; //Match1 as output
 T0PR = 0x000001A4; //Load prescaler for 10 usec tick
 T0TCR = 0x00000002; //Reset counter and prescaler
 T0MCR = 0x00000003; //On match reset the counter and generate an interrupt
 T0MR0 = time; //Set the cycle time
 T0MR1 = 0x00000000; // Set duty cycle to zero
 T0EMR = 0x00000042; //On match clear MAT1
 T0TCR = 0x00000001; //enable timer

 VICVectAddr4 = (unsigned)T0isr; //Set the timer ISR vector address
 VICVectCntl4 = 0x00000024; //Set channel
 VICIntEnable |= 0x00000010; //Enable the interrupt
}

void T0isr (void) __fiq {
 interrupt = 1;
 T0EMR |= 0x00000002; //Set MAT1 high for begining of the cycle
 T0MR1++; //Increment PWM Duty cycle
 T0MR1 = T0MR1&0x000000FF; //Limit duty cycle
 T0IR |= 0x00000001; //Clear match 0 interrupt
 VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt
}

	I. Introduction
	II. Specifications
	III. Control Theory
	IV. Design
	A. PID Realization
	B. Component Selection
	C. Implementation

	V. Results
	VI. Conclusion
	Acknowledgment
	References
	Appendix A – Supplies Purchased for Project
	 Appendix B – C Code of mcu

