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Abstract. A suspension that can be sprayed onto substrates was developed to form a 

superhydrophobic/oleophilic surface. Lyophobic slippery surfaces were prepared by infusing 

perfluorinated lubricants into the superhydrophobic coating to repel almost all liquids with low 

surface tension values, including hexane, kerosene and diesel oil, showing a transition between 

superoleophilicity and lyophobicity. In addition, the travelling speeds of liquids appeared to be 

negatively correlated with the kinematic viscosity. In the anti-icing tests, the droplet was pinned 

after contacting a 0°C textured superhydrophobic surface for a few seconds because of the 

meniscus caused by the condensation of atmospheric humidity; by contrast, on the lyophobic 

slippery surface, a water droplet could easily slide even at -20°C, demonstrating superior icing 

resistance.  
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Introduction 

Super water repellency has been widely studied because of its various applications in 

self-cleaning,1, 2 anti-icing,3, 4 anti-corrosion,5-7 fluidic drag-reducing,8-10 oil/water separation,11, 12 

microfluidic devices,13, 14 and even oil purification.15 Many methods for the preparation of 

superhydrophobic surfaces have been developed, including top-down methods (e.g., chemical 

etching on metal/Si substrates,16, 17 or laser irradiation18, 19), nano-polymer composites,20-23 and 

depositions.24-27 Ou et al. prepared superhydrophobic surfaces via etching/oxidation followed by 

surface modification.28 Tesler et al. developed a self-cleaning coating on metallic surfaces that 

showed extremely high mechanical robustness.29 In our previous work, we developed a 

SiO2-NiO-UHMWPE (ultra-high-molecular-weight polyethylene)-based superhydrophobic 

coating that could be recycled and reused.15 The amphiphobic surfaces that exhibit repellency 

toward both water and oil have been a hot topic because of their prospective use in a broad range 

of oil transport and anti-scaling applications. Inspired by the Nepenthes pitcher plants,30 

slippery-liquid-infused porous surface(s) (SLIPS) have attracted tremendous interest because of 

their repellency of liquids with surface tensions lower than that of water, such as hexane and 

diesel oil. These liquids can easily slide off SLIPS without any contamination. However, the key 

factors that control the travelling speed of a droplet on such SLIPS remain unclear. 

With regard to the anti-icing properties of superhydrophobic surfaces, current methods 

mainly focus on minimizing the contact time;31 the water droplets bounce off the 

superhydrophobic surface at a temperature well below the water freezing point, thereby 

effectively preventing the icing process. In the aforementioned mentioned mechanism, the 

contact time between the water droplet and the cold substrate is very short (typically within 20 

ms). However, whether the superhydrophobic surface would be icephobic if given a longer water 
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contact time (longer than 1 s) instead of a sudden impact is not known. In recent years, the 

anti-icing properties of superhydrophobic surfaces have been questioned; that is, the anti-icing 

efficiency is much lower in conditions of high atmospheric humidity, indicating that the 

superhydrophobic coatings are not always icephobic.32-34 Therefore, the development of a surface 

that could repel almost all liquids without being influenced by the condensation of air humidity is 

a desirable objective. 

In this work, we fabricated a superhydrophobic surface by spraying a suspension consisting 

of SiO2 nanoparticles and polymethylmethacrylate (PMMA) onto substrates. A SLIPS was 

obtained through infusing perfluorinated lubricants onto the superhydrophobic surface, to repel 

water, milk, hexane, kerosene and diesel oil. The prepared SLIPS could still function at -20°C, 

suggesting remarkable anti-icing ability. Although a series of SLIPS studies of such surfaces have 

been previously reported, they have been mainly focused on the interactions with water, such as 

icing,35, 36 water condensation,37 and improving the mobility of water on slippery surfaces.38 In 

this study, we focused on the dynamic behavior and sought to elucidate the factors that control 

the travelling speed of different liquids on lyophobic slippery surfaces.  

 

Experimental Section 

Materials. Perfluorotripentylamine (Fluorinert™ FC-70) and polymethylmethacrylate (PMMA, 

99%) were purchased from Aladdin Co., Ltd, China. Kerosene was purchased from Sinopec. All 

other chemicals were obtained from Sigma-Aldrich (analytical-grade reagents) and used as 

received. Deionized water was dyed with methylene blue and kerosene was dyed with Oil Red O 

to aid visualization. 

Fabrication of fluorinated SiO2. First, 2 mL of ammonium hydroxide (25%) was added to 40 
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mL of ethanol, and the solution was stirred at 60°C for 30 min. Second, 2 mL of tetraethyl 

orthosilicate (TEOS) was added dropwise, and the solution was further stirred for 1 h, left to age 

under ambient conditions for 12 h, and then dried. Finally, the SiO2 nanoparticles were soaked 

into 2 wt% 1H,1H,2H,2H-perfluorodecyltriethoxysilane (C10F17H4Si(OCH2-CH3)3, FAS-17) in 

hexane at 40°C for 3 h, and were then cleaned with hexane and desiccated in a drying oven.  

Fabrication of superhydrophobic and SLIPS. a) Superhydrophobic surface. PMMA, modified 

SiO2 and tetrahydrofuran (THF) were mixed at a mass ratio of 1: x: 100 and stirred vigorously at 

ambient condition for over 2 h to form a uniform suspension. Then, 10 mL of the suspension was 

added into the spray gun (jet nozzle diameter = 0.8 mm, XiaPai W-71/77, China) and sprayed 

(pressure = 300 kPa) onto the specimens that were then dried at 60°C for 2 h. The values of x 

were 0, 1, 3, 5, and 7, and the corresponding coatings obtained by the suspensions were denoted 

as A1-A5 (Figure 1a).     

b) SLIPS. FC-70 was infused into the A5 coating, with the lubricant spreading spontaneously. 

The lubricating layer was maintained at 0.02 g/cm2.  

Characterizations. Surface morphologies were observed using scanning electron microscope 

(Hitachi S4800) and a true color confocal microscope (Axio CSM 700). Surface wettability was 

measured using a contact angle measurement instrument (JC2000D, China) with 5 μL of 

deionized water at ambient temperature. A high-speed camera (IDT Y4) was used to record the 

bouncing process of 5 μL deionized water droplets at 1000 frames per second; the zoom lens 

(Navitar Zoom 6000) attached to the camera through an adapter (Navitar 2.0×) was used to 

magnify the area; the droplet fell from a height of ~5.1 cm, with a calculated impact velocity of 

~1 m/s. The lyophobic property was characterized by measuring the travelling speeds of hexane, 

kerosene, diesel oil, water and milk on a tilted SLIPS (tilting angle, ~5°; droplet sizes, ~50 ± 0.2 
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μL). The reported data were obtained as the average of 6 measurements at different locations on 

the sample. The anti-icing test was carried out in a freezing chamber (RGDS-500, Surui 

Instruments Co., Ltd.). 

 

Results and Discussion  

Figure 1a shows the contact angles (CAs) and sliding angles (SAs) of the A1-A5 samples. 

Clearly, the hydrophobicity of the prepared coatings was positively related with the addition of 

SiO2; the coating exhibited superhydrophobicity (CA = 156°, SA = 5°) when the mass ratio of 

SiO2/PMMA reached 7. Figure 1b shows the bouncing process of a 5 μL water droplet impacting 

A5: the droplet impacted (t = 2 ms), retracted (t = 5 ms), and bounced (t = 7–10 ms) without 

wetting the surface, suggesting superior water repellency. However, the surface showed high 

affinity toward hexane, kerosene, and diesel oil, as shown in Figure 1c-e. The organic liquids 

were absorbed into the surface asperities upon the contact moment, demonstrating a highly 

oleophilic nature. Furthermore, the milk on the surface showed a contact angle of 143°, smaller 

than that of water, because of the organic components of the milk. Figure 2 shows that different 

surface morphologies were obtained with increasing SiO2 content. The surface exhibited a highly 

textured morphology for A5 (Figure 2e), and nanoscale asperities could also be observed; 

meanwhile, many microscale asperities were observed on the 3D morphology, as shown in Figure 

2f, with an Rq (root-mean-square roughness) of 21.83 μm and an Ra (arithmetic average 

roughness) of 18.04 μm. Therefore, the A5 surface comprises micro-nano-hierarchical structures. 

Additionally, the SiO2-PMMA was a low-surface-free-energy coating because the SiO2 particles 

were modified with FAS-17 (see Experimental section) and the PMMA was intrinsically 

hydrophobic. The micro-nano-hierarchical structures and low surface free energy resulted in 
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surface superhydrophobicity.39  

 

 

Figure 1. (a) Wettability (contact angle, CA, and sliding angle, SA) as a function of increasing 

SiO2 nanoparticle content. The A5 surface exhibited high water repellency (CA = 156°, SA = 5°) 

when the SiO2/PMMA mass ratio reached 7:1. (b) Time-lapse optical images of water impacting, 

retracting, and bouncing off the A5 surface within 10 ms (t - ti, where ti is the time of the moment 

of impact and t is the time after the moment of impact). Droplet sizes, 5 ± 0.2 μL. Impact velocity, 

~1 m/s. The A5 exhibited good affinity toward organic liquids such as (c) hexane, (d) kerosene, 

or (e) diesel oil; moreover, the surface showed less repellency toward (f) milk (CA = 143°) 

compared with water (a).  
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Figure 2. (a-e) SEM images of A1-A5, respectively. (f) 3D morphology of A5. Scale bars, 5 μm; 

inset scale bars, 500 nm. 
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Figure 3. Wetting model of a water droplet on the A5 surface (a) before and (b) after the infusion 

of FC-70. (c) A 5 μL droplet of water (γ = 72.0 mN/m), hexane (γ = 18.6 mN/m), kerosene (γ = 

24.5 mN/m), diesel oil (γ = 26.8 mN/m) and milk (γ = 41.5 mN/m) on the SLIPS, where γ is the 

surface tension of the testing liquids at 25°C. The slippery surface showed repellency toward 

low-surface-tension liquids as well as toward water and milk, indicating a lyophobic property.  

 

SLIPS have attracted intense attention in recent years because of their lyophobic nature that 

can resist almost all types of liquids. Here, we designed a slippery surface by infusing FC-70 into 

the roughness of the superhydrophobic A5 coating. Typically, the water droplet on a 

superhydrophobic surface remains in the Cassie state,40 where air pockets are created beneath the 

droplet, as shown in Figure 3a. For SLIPS, the encapsulated air is replaced by the FC-70 

lubricant that soaks into the rough surface,30 as schematically shown in Figure 3b, and the water 

contact angle decreases from 156° (Figure 1a) to 110° (Figure 3c). Surprisingly, the SLIPS 

showed repellency toward the diesel oil, kerosene, and even hexane (Figure 3c); by contrast, the 

organic liquids were absorbed into the superhydrophobic surface upon contact, indicating a 

transition from superoleophilicity to lyophobicity. This behavior is a consequence of the 

extremely low surface tension of FC-70 (~ 17.1 mN/m), which is immiscible with most of the 
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investigated liquids, suggesting a lyophobic nature.  

 

 

Figure 4. Lyophobic slippery surface. A 50 μL droplet of (a) hexane (v = 0.45 mm2/s, m = 

0.032 g), (b) kerosene (v = 1.32 mm2/s, m = 0.041 g), (c) diesel oil (v = 4.41 mm2/s, m = 0.042 g), 

(d) water (v = 0.89 mm2/s, m = 0.050 g) and (e) milk (v = 5.82 mm2/s, m = 0.051 g) on the SLIPS 

at ambient temperature, where v and m are the kinematic viscosity and the mass of the liquid 

droplets at 25°C, respectively. Sample tilting angle, ~5°. Both the organic and water-based liquids 

could easily slide on the SLIPS. (f) The travelling velocity shows a negative correlation with the 

kinematic viscosity.   

 

Although the static contact angles of water, hexane, kerosene, diesel oil and milk on the 

SLIPS were evaluated, as previously described (Figure 3c), characterizing the mobility of these 

droplets on the SLIPS using static contact angles is difficult. Here, we used the travelling speed 

of the droplets on the SLIPS to characterize the mobility of these liquids and the slipperiness of 

the SLIPS. Figure 4a-e and Movie S1 in the Supporting Information show the movement of 50 

μL droplets on the FC-70-infused A5 surface: all the liquids easily slide on the surface, indicating 
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that a lyophobic slippery surface was achieved. Furthermore, compared to milk, the 

low-surface-tension liquids exhibited smaller contact angles (Figure 3c) but higher travelling 

speeds (Figure 3e); in particular, the liquid with lowest surface tension, hexane (γ = 18.6 mN/m), 

exhibited the highest mobility (1.15 cm/s). Thus, the travelling speed was not determined by the 

contact angle. On the superhydrophobic surface, the travelling speed of a defined droplet is 

positively correlated with its self-weight. By contrast, on the prepared SLIPS, the liquids with 

similar weights, such as water (m = 0.050 g) and milk (m = 0.051 g), kerosene (m = 0.041 g) and 

diesel oil (m = 0.042 g), exhibited substantially different travelling speeds (Figure 4b-e). 

Meanwhile, the gravitational acceleration component along the inclined plane was the same for 

all of the liquids. Therefore, the acceleration and the velocity of these droplets were independent 

of their weights. We further analyzed the relationship between the mobility and kinematic 

viscosity of the droplets on the SLIPS, as shown in Figure 4f. The travelling speeds of different 

liquids exhibited a negative correlation with the kinematic viscosity. Thus, the slipperiness for the 

testing liquids on a SLIPS depended more on their kinematic viscosities than on their weights or 

contact angles. 
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Figure 5. A 5 μL water droplet on A5 at (a) ambient temperature and (b) 0°C. The droplets could 

roll off the surface within a short time and were pinned onto the surface after contacting the 0°C 

surface for a few seconds. (c) The droplet showed good mobility on SLIPS at -20°C. Sample 

tilting angle, ~ 5°. (d and e) Schematics of the water droplet (25°C) contacting the A5 in ambient 

and cold conditions (below 0°C). In cold conditions, a water capillary bridge (meniscus) formed 

because of the condensation of atmospheric humidity and froze after contacting the cold substrate 

for a few seconds.  

 

Anti-icing has been a hot topic in the field of superhydrophobicity. Most of the reported 

studies have mainly focused on the water impinging behavior: the droplet impacts, retracts, and 

bounces off such a surface within a short time before it freezes; Kreder et al. refer to this behavior 
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as “minimized contact time.”31 However, if the contact between the droplet and the cold surface 

is extended to a few seconds, would the superhydrophobic surface remain icephobic?  

Figure 5a and b shows a 50 μL water droplet on the superhydrophobic surface (A5) at 

different temperatures (for details, see Movie S2 in Supporting Information). The droplet rolled 

off the tilted (~5°) surface easily within 0.6 s at ambient temperature; however, the droplet was 

pinned when it contacted the cold surface (0°C) for a few seconds. Although the FAS molecules 

are not stable (long-term) in contact with water/ice according to Kulinich et al.,41 the contact time 

was very short in our experiments; thus, the pinning was not due to the degradation of the 

hydrophobic properties. By comparison, the droplet showed good mobility on the lyophobic 

slippery surface at -20°C (Figure 5c, for details, see Movie S2). The pinning of the water droplet 

on the superhydrophobic surface at 0°C is mainly due to the water capillary bridge (meniscus) 

between the spherical droplet and the surface asperities. Normally, under ambient conditions, a 

large amount of air exists between the droplet and the superhydrophobic surface, as schematically 

illustrated in Figure 5d. Under low-temperature conditions (below 0°C), when contact (between 

the droplet and the superhydrophobic surface) occurs in air, a water capillary bridge is formed via 

the condensation of atmospheric humidity, and would even freeze under cold conditions, as 

shown in Figure 5e. As reported previously, menisci exhibit a curvature and the pressure is 

reduced compared to the outside pressure, leading to a meniscus force between the droplet and 

substrate that is the main component of the adhesion force;42 meanwhile, the contact angle 

decreased from 156° to 140° because of the capillary bridge beneath the droplet. Thus, the 

superhydrophobic surface could not function in cold or extremely condensing conditions because 

the water capillary force (water meniscus) would form and then greatly increase the adhesion, 

resulting in a loss of water repellency.  
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By contrast, a capillary bridge does not easily form on the lyophobic slippery surface at 

-20°C because the air pockets beneath the droplet on the superhydrophobic surface are occupied 

by the lubricating fluids (FC-70, freezing point -25°C). During this process, a small amount of 

condensation water or ice could form; however, they are repelled by FC-70 and flow separately 

on the top of the lubricating layer because of the lower density of water/ice. Thus, the lyophobic 

slippery surface exhibits superior anti-icing ability.  

 

Conclusions 

In conclusion, we have designed a slippery liquid infused porous surface (SLIPS) via two 

steps: spraying SiO2-polymethylmethacrylate suspension onto substrates to form a 

superhydrophobic coating and infusing perfluorinated lubricant into the rough surface. The 

surface repelled hexane, kerosene, diesel oil, water and milk, demonstrating superior lyophobicity 

compared to superhydrophobic surfaces. The travelling velocity of the test droplet on the 

lyophobic slippery surface was observed to be negatively correlated with the kinematic viscosity. 

When a water droplet contacted the textured superhydrophobic surface at low temperatures 

(below 0°C), a meniscus force formed between the water droplet and cold textured 

superhydrophobic surface, thus greatly increasing the adhesion force and deactivating the 

anti-icing capability of the superhydrophobic surface. However, the water droplet could easily 

slide on the lyophobic slippery surface even at -20°C, suggesting superior anti-icing properties 

compared to superhydrophobic surfaces. 
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