
 Open access Journal Article DOI:10.1088/0029-5515/55/12/123006

Design and first applications of the ITER integrated modelling & analysis suite
— Source link

Frederic Imbeaux, S. D. Pinches, J.B. Lister, Y. Buravand ...+14 more authors

Institutions: ITER, École Polytechnique Fédérale de Lausanne, Chalmers University of Technology

Published on: 30 Oct 2015 - Nuclear Fusion (IOP Publishing)

Related papers:

 The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results

 Disruptions in ITER and strategies for their control and mitigation

 JINTRAC: A System of Codes for Integrated Simulation of Tokamak Scenarios

 A generic data structure for integrated modelling of tokamak physics and subsystems

 The CRONOS suite of codes for integrated tokamak modelling

Share this paper:

View more about this paper here: https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-
21zcpqrvfx

https://typeset.io/
https://www.doi.org/10.1088/0029-5515/55/12/123006
https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-21zcpqrvfx
https://typeset.io/authors/frederic-imbeaux-595c5x9rlr
https://typeset.io/authors/s-d-pinches-1ut6ytasqx
https://typeset.io/authors/j-b-lister-aung5kqs9h
https://typeset.io/authors/y-buravand-2hfg2g9mbn
https://typeset.io/institutions/iter-3oun0l37
https://typeset.io/institutions/ecole-polytechnique-federale-de-lausanne-3d352jbh
https://typeset.io/institutions/chalmers-university-of-technology-5yhxtx41
https://typeset.io/journals/nuclear-fusion-1fenqkdq
https://typeset.io/papers/the-european-integrated-tokamak-modelling-itm-effort-169ki01xu6
https://typeset.io/papers/disruptions-in-iter-and-strategies-for-their-control-and-5eyrjdws01
https://typeset.io/papers/jintrac-a-system-of-codes-for-integrated-simulation-of-2zllbhapzu
https://typeset.io/papers/a-generic-data-structure-for-integrated-modelling-of-tokamak-30thml2qbu
https://typeset.io/papers/the-cronos-suite-of-codes-for-integrated-tokamak-modelling-3sm2om9fs4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-21zcpqrvfx
https://twitter.com/intent/tweet?text=Design%20and%20first%20applications%20of%20the%20ITER%20integrated%20modelling%20&%20analysis%20suite&url=https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-21zcpqrvfx
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-21zcpqrvfx
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-21zcpqrvfx
https://typeset.io/papers/design-and-first-applications-of-the-iter-integrated-21zcpqrvfx

HAL Id: cea-01576460
https://hal-cea.archives-ouvertes.fr/cea-01576460

Submitted on 31 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and first applications of the ITER integrated
modelling & analysis suite

Frédéric Imbeaux, Simon Pinches, Jonathan Lister, Y. Buravand, Thomas
Casper, Basil Duval, B. Guillerminet, Masanari Hosokawa, Wayne Houlberg,

Philippe Huynh, et al.

To cite this version:
Frédéric Imbeaux, Simon Pinches, Jonathan Lister, Y. Buravand, Thomas Casper, et al.. Design and
first applications of the ITER integrated modelling & analysis suite. Nuclear Fusion, IOP Publishing,
2015, 55, pp.123006. ฀10.1088/0029-5515/55/12/123006฀. ฀cea-01576460฀

https://hal-cea.archives-ouvertes.fr/cea-01576460
https://hal.archives-ouvertes.fr

1 © 2015 IAEA, Vienna Printed in the UK

1. Introduction

The ITER Integrated Modelling & Analysis Suite (IMAS) will

support both plasma operation and research activities on the

ITER tokamak experiment. The IMAS will be accessible to

all ITER Members as a key tool for the scientific exploitation

of ITER. It will allow collective development of integrated

modelling tools, by sharing data, code components and, ulti-

mately, workflows based on coupling together various code

components. Its design started in 2011 and a first prototype

of the IMAS infrastructure has already been implemented at

the ITER organization (IO). The purpose of this paper is to

describe the essential features of the IMAS design, the imple-

mented prototype infrastructure (section 2), as well as the

first physics applications that have been developed under the

IMAS infrastructure (section 3). The key target application

is a plasma simulator coupled to a simulator of the plasma

control system, which are implemented under a co-simulation

scheme presented in section 4.

2. IMAS infrastructure

2.1. Overview

The IMAS infrastructure is a modular set of components

enabling collective development and execution of integrated

modelling applications. Every component carries out a dedi-

cated functionality and the modularity is a critical element to

facilitate the maintenance of the IMAS infrastructure over its

30 years lifespan. Indeed, changes will inevitably occur in

Nuclear Fusion

Design and first applications of the ITER

integrated modelling & analysis suite

F. Imbeaux1, S.D. Pinches2, J.B. Lister3, Y. Buravand1, T. Casper2, B. Duval3,
B.Guillerminet1, M. Hosokawa2, W. Houlberg2, P. Huynh1, S.H. Kim2,
G. Manduchi4, M.Owsiak5, B. Palak5, M. Plociennik5, G. Rouault6,
O. Sauter3 and P. Strand7

1 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
2 ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
3 Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas,

Association EURATOM-Confédération Suisse, CH-1015 Lausanne, Switzerland
4 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy
5 PSNC, Poznan Supercomputing and Networking Center, Poznan, Poland
6 CORYS T.E.S.S., 44 rue des Berges, 38024 Grenoble cedex 1, France
7 Chalmers University of Technology, S-41296 Göteborg, Sweden

E-mail: frederic.imbeaux@cea.fr

Received 19 December 2014, revised 22 September 2015

Accepted for publication 13 October 2015

Published 30 October 2015

Abstract

The ITER Integrated Modelling & Analysis Suite (IMAS) will support both plasma operation

and research activities on the ITER tokamak experiment. The IMAS will be accessible to

all ITER members as a key tool for the scientific exploitation of ITER. The backbone of the

IMAS infrastructure is a standardized, machine-generic data model that represents simulated

and experimental data with identical structures. The other outcomes of the IMAS design and

prototyping phase are a set of tools to access data and design integrated modelling workflows,

as well as first plasma simulators workflows and components implemented with various

degrees of modularity.

Keywords: integrated modelling, modelling infrastructure, ITER, plasma control system

(Some figures may appear in colour only in the online journal)

International Atomic Energy Agency

0029-5515/15/123006+13$33.00

doi:10.1088/0029-5515/55/12/123006Nucl. Fusion 55 (2015) 123006 (13pp)

mailto:frederic.imbeaux@cea.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/0029-5515/55/12/123006&domain=pdf&date_stamp=2015-10-30
publisher-id
doi
http://dx.doi.org/10.1088/0029-5515/55/12/123006

F. Imbeaux et al

2

software and hardware technologies, as well in the methods

used to solve physics problems and one must be able to replace

a component with minimal impact on the others.

The backbone of the IMAS infrastructure is a standard-

ized data model, called the ITER Physics Data Model (PDM).

This is not only important for coupling physics components

together (solving the N2 interfaces problem), but also to make

sure that every input and output of the physics components is

saved in a standard way. It removes the ‘private file’ problem,

i.e. when codes access data from a private format or location

which is unknown to the infrastructure, and the ‘private defini-

tion’ problem, i.e. when the data accessed by the code has no

(or not clearly enough) documented definition.

To access data, a data model aware Application

Programming Interface (API) has been developed for various

programming languages. It enables cross-language commu-

nication and a way to store and retrieve data from a remotely

accessible storage that becomes a prototype of an ITER

physics database.

Physics components, once interfaced to the data model,

can be coupled into an Integrated Modelling workflow

orchestrated by a workflow engine. A workflow component

generator is provided to automate the integration of a physics

component in the workflow engine. With these tools, a physics

code developer can seamlessly wrap his/her component with

data access methods and even develop IM workflows.

This global design of the IMAS infrastructure has been

largely inspired by the developments of the European

Integrated Modelling Task Force (EU-ITM) [1–3], a pro-

ject which also puts a strong emphasis on the development

of integrated modelling standards for a large community of

researchers. A large part of the IMAS infrastructure software

reuses EU-ITM developments, although the original source

code sometimes required significant adaptations to be con-

sistent with the ITER Physics Data Model, which has sig-

nificant improvements and new features with respect to the

EU-ITM data model [3] (see section 2.2). Although other

integrated modelling frameworks have been developed in the

previous decade in the international fusion community, they

did not attach enough importance to the development of a

standard language for the scientific community for describing

a fusion experiment and the associated physics, a goal of

utmost importance in our view owing to the international char-

acter of ITER. In contrast, the OMFIT framework [4] takes

the opposite approach and facilitates using together codes

without following any common standard by providing a GUI

environment to set input data and schedule execution. Data

remains expressed in code-specific form, code coupling has

to be developed for every pair of codes, and the experiment-

generic character of the physics components is not enforced.

It has to be emphasized that the IMAS infrastructure

remains fully modular, in the sense that the usage of the

Physics Data Model does not constrain the choice of work-

flow engine for executing codes. Even a stand-alone pro-

gram can be considered IMAS-compliant as long as it uses

exclusively the PDM for expressing its input/output data.

A graphical workflow engine (Kepler [5]) has been inte-

grated to the IMAS prototype because it allows exposing to

developers in an intuitive way the architecture of the work-

flow (the way component are coupled but also convergence

algorithms which are described explicitly in the fine grained

modularization described in section 3.2), thus facilitating the

collective development of IM workflows by the community.

Moreover the interactive features of Kepler (such as pause /

modify of a parameter / resume the simulation) were requested

for the development of the Plasma Control System algorithms

(see section 4). However, more user-oriented tools (e.g. a

graphical interface for editing input data, parameterizing a

workflow and schedule execution such as OMFIT) can also

become part of the IMAS infrastructure, for different reasons

and purposes than the workflow engine, under the condition

that these tools are compliant with the Physics Data Model.

Other interesting features such as the CPU advanced reserva-

tion mechanism and load balancing of workflow components

implemented in IPS [6] to optimize the execution of work-

flows on a single high performance computer could also be of

interest for some IMAS applications, and could be added to

the IMAS infrastructure either directly by integrating a PDM-

enabled IPS as an alternative workflow engine, or by imple-

menting them around Kepler (a prototype of such a Kepler

implementation has been developed).

Finally version control and regression testing systems are

essential for collective development of the IMAS infrastruc-

ture and of its physics suite.

These key elements of the IMAS infrastructure have been

already implemented in a prototype form and are described in

more detail in the sections below.

2.2. The ITER physics data model

The data model provides information for data providers and

data consumers on what data exist, what they are called and

how they are structured as seen by the user. It is important to

stress that the ITER physics data model corresponds to the

user’s view of the data and is a priori independent of how

the data is stored in the back-end. This data model potentially

encompasses all data of physics interest, i.e. its applications

are not restricted to IMAS codes but are foreseen to cover

most of the scientific activities related to the ITER experi-

ment. The ITER physics data model aims at being the main

gate to data for scientific exploitation, both for code inter-

facing and hands-on data browsing by experimentalists after

a pulse. Another important goal is to make the data model

device-generic, i.e. it is a magnetic fusion oriented data model

usable for any fusion device.

The data model consists thus of two parts: a ‘data dictionary’

part which is the one seen by the user and is device-generic;

a ‘data model’ part which is a list of expressions making the

link between the nodes of the generic data dictionary and the

methods for accessing data for a particular experiment and

a particular pulse number. This design allows the user to see

a unique representation (the data dictionary) for any fusion

device and thus to apply the IMAS transparently to any experi-

ment, ITER being only a particular case of application.

To ease the comparison between simulation and experi-

ments, the data dictionary is unique for simulated and

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

3

experimental data, i.e. the same data structures are used to

represent data measured during an experiment (e.g. the elec-

tron temperature from a Thomson scattering diagnostic) and

its simulated counterpart.

The ITER physics data model is physics oriented: therefore

it must be able to evolve as the representation of the physics

phenomena developed by the scientific community evolves.

A precise lifecycle procedure has been defined to allow the

data model to evolve and be jointly developed by multiple

teams. In addition, precise design rules for the data dictionary

have been defined to maintain its global homogeneity.

An Interface Data Structure (IDS) is an entry point of the

data dictionary that can be used as a single entity to be used

by a user; examples are the full description of a tokamak sub-

system (diagnostic, heating system, …) or an abstract physical

concept (equilibrium, set of core plasma profiles, wave propa-

gation, …); this concept allows tracing of data provenance and

allows simple transfer of large numbers of variables between

loosely or tightly coupled applications; the IDS thereby define

standardized interface points between IMAS physics compo-

nents. An IDS is a part of the data dictionary, like an entry

point into it, thus the IMAS components are interfaced with

the same structures as those constituting the data dictionary.

An IDS is marked by having a child ids_properties node,

containing traceability and self-description information. An

IDS may contain both time-dependent and time-independent

data, thus grouping for example diagnostic measurements and

the description of the diagnostic setup (geometry, calibration

data, …). One important idea here is to make the machine

description fully explicit in the data model in order to make

them accessible by all users of an experiment (while in present

experiments these data are often scattered in different loca-

tions and formats and are difficult to access). Within an IDS,

data may have different time bases to reflect the fact that in an

experiment, data may be acquired at different rates. Again, the

philosophy is to have a full description of the whole tokamak

and its associated physics in an experiment-generic and code-

generic form, making all physical data explicit, traceable and

accessible to the user. Details of the existing IDS structures

can be found at https://imas.iter.org/. An example is provided

in table 1 for the description of the interfero-polarimeter

diagnostic.

The design of the ITER physics model has benefited from

the European integrated modelling task force (EU-ITM) expe-

rience with the so-called Consistent Physical Objects (CPOs)

[3]. The idea of a structured, device-generic data dictionary

providing a list of standardized interfaces between IM compo-

nents as well as the granularity of these interfaces stems from

this experience. Nonetheless, some new key aspects have

been introduced in the design, in particular the dual notion

of data dictionary and data model, the capability of handling

multiple asynchronous time bases in a single IDS (this flex-

ibility is needed to represent experimental quantities as they

are acquired and to not lose information) and the naming and

structuring conventions of the data dictionary. The resulting

ITER physics data model is therefore new and original, ben-

efitting from lessons learned from previous experience with

similar goals.

The present status of the data dictionary is as follows:

about 30 IDS have been designed and start being used by the

first IMAS applications, essentially covering the needs of core

transport solvers with free boundary equilibrium. Examples of

diagnostic subsystems have also been designed. The data dic-

tionary will continue its expansion in the near future as new

physics applications are added to the IMAS. The concept of

‘data model’, i.e. a formal link between the data dictionary

and the access method, has been demonstrated under a sepa-

rate Matlab prototype for a few JET and TCV examples but is

not implemented yet under the default access layer.

2.3. The access layer

A prototype access layer, based on the Universal Access

Layer developed by the EU-ITM [7] has been implemented

to allow data access for the first IMAS applications. It has

been made compliant with the ITER Physics data dictionary

and has APIs for Fortran, C + +, Python, Java and Matlab. It

primarily writes data files on disk and features also a memory

cache mechanism for fast data transfer between workflow

components. Remote data access is also available: a proce-

dure has been created to enable access layer installation on a

local computer, i.e. the user can choose to access data either

locally on his computer or remotely on the ITER cluster. This

prototype access layer operates only at the IDS level, allowing

essential operations such as put or get data, time interpolation,

access to single time slices of data.

In parallel to the implementation of this prototype, the

design of the architecture and functionalities of the longer term

access layer has been carried out. The final product should

not be restricted to IMAS usage but should allow access to

any ITER data. It should not only allow operations based on

the ITER Physics data model but, for example, operations

expressed in terms of the ITER CODAC data model will also

be possible through the same interface. The design is based on

a client-server architecture and features the data dictionary /

data model correspondence described in the previous section.

This is a joint development with the ITER CODAC which will

start next year and eventually replace the present access layer

prototype.

2.4. Workflow engine and component generator

Physics components, once interfaced to the data model, can

be coupled into an Integrated Modelling workflow. Different

methods may be used: components written in the same pro-

gramming language can be straightforwardly coupled, e.g.

as subroutines within a main program. Components written

in different languages may use the access layer to exchange

data and then be scheduled e.g. by a simple script. In case of

complex workflows involving a large number of components,

a workflow engine is provided within the IMAS infrastruc-

ture to help the development. The workflow engine allows

designing, debugging, and running IMAS workflows. It hides

the complexity of code scheduling and data transfer between

components. A useful feature is a graphical interface for

visualising and editing the workflow and the data flows. The

Nucl. Fusion 55 (2015) 123006

https://imas.iter.org/

F. Imbeaux et al

4

Table 1. Documentation of the interfero_polarimeter IDS (automatically generated from the data dictionary, version 3.2.0). The first
column provides the path of all nodes in the structure, the second column gives its description, as well as its units and whether data depends
on time (‘dynamic’) or is constant or belong to machine description (‘static’). The third column provides the type of data. The fourth
column provides the location of the data coordinates, when it is an array; the indication 1…N means that the node has no coordinate in the
structure, usually because the node is itself a coordinate of other nodes.

Full path name Description Data Type Coordinates

ids_properties Interface Data Structure properties. This element

identifies the node above as an IDS

Structure

ids_properties/comment Any comment describing the content of this IDS

{constant}
STR_0D

ids_properties/homogeneous_time 1 if the time of this IDS is homogeneous. In this

case, the time values for this IDS are stored in ../time

just below the root of this IDS. Otherwise, the time

values are stored in the various time fields at lower

levels in the tree. {constant}

INT_0D

channel(:) Set of channels (lines-of-sight) Struct_array [max_

size = 15]

1- 1...N

channel(:)/name Name of the channel {static} STR_0D

channel(:)/identifier ID of the channel {static} STR_0D

channel(:)/line_of_sight Description of the line of sight of the channel,

defined by two points when the beam is not

reflected, a third point is added to define the reflected

beam path

Structure

channel(:)/line_of_sight/first_point Position of the first point Structure

channel(:)/line_of_sight/first_point/r Major radius {static} [m] FLT_0D

channel(:)/line_of_sight/first_point/z Height {static} [m] FLT_0D

channel(:)/line_of_sight/first_point/phi Toroidal angle {static} [rad] FLT_0D

channel(:)/line_of_sight/second_point Position of the second point structure

channel(:)/line_of_sight/second_point/r Major radius {static} [m] FLT_0D

channel(:)/line_of_sight/second_point/z Height {static} [m] FLT_0D

channel(:)/line_of_sight/second_point/phi Toroidal angle {static} [rad] FLT_0D

channel(:)/line_of_sight/third_point Position of the third point Structure

channel(:)/line_of_sight/third_point/r Major radius {static} [m] FLT_0D

channel(:)/line_of_sight/third_point/z Height {static} [m] FLT_0D

channel(:)/line_of_sight/third_point/phi Toroidal angle {static} [rad] FLT_0D

channel(:)/wavelength_polarimetry Wavelength used for polarimetry {static} [m] FLT_0D

channel(:)/wavelength_interferometry(:) Set of wavelengths used for interferometry Struct_array [max_

size = 2]

1- 1...N

channel(:)/wavelength_interferometry(:)/

value
Wavelength value {static} [m] FLT_0D

channel(:)/wavelength_interferometry(:)/

n_e_line

Line integrated density estimated from this

wavelength

Structure

channel(:)/wavelength_interferometry(:)/

n_e_line/data

Line integrated density estimated from this

wavelength {dynamic} [m−2]

FLT_1D 1- channel(:)/

wavelength_

interferometry(:)/

n_e_line/time

channel(:)/wavelength_interferometry(:)/

n_e_line/time
Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/polarisation_initial Initial polarisation vector before entering the plasma

{static} [m]

FLT_0D

channel(:)/ellipticity_initial Initial ellipticity before entering the plasma {static}
[m]

FLT_0D

channel(:)/n_e_line Line integrated density, possibly obtained by a

combination of multiple interferometry wavelengths

Structure

channel(:)/n_e_line/data Line integrated density, possibly obtained by a

combination of multiple interferometry wavelengths

{dynamic} [m−2]

FLT_1D 1- channel(:)/

n_e_line/time

channel(:)/n_e_line/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

(Continued)

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

5

workflow engine should not be considered only as a scheduler,

but as a way to expose complex and large workflows in a stan-

dard way to a team of developers. This is thought to facilitate

collective development and to be an advantage with respect to

developing such workflows within a classical program. In the

latter case, the structure of the program may be less obvious

and inserting a new component may be more subject to code-

specific peculiarities. In this context, the workflow engine is

primarily a tool for developers or advanced users, while the

broad range of users would rather benefit from simpler GUIs

to drive the exploitation of production workflows. In 2011 the

available open source workflow engines have been evaluated

and Kepler [5] has been selected for the development of the

first IMAS workflows.

Another key aspect of the workflow development chain

is the automated generation of workflow physics compo-

nents from the physics modules. The primary function for the

‘component generator’ tool is to seamlessly turn an original

physics code with data dictionary compliant interfaces into a

component of a workflow engine. The integration to the work-

flow engine becomes fully automated and the data exchange

between components becomes also seamlessly managed in a

standard way by access layer calls wrapped around the physics

code (see figure 1). The workflow engine and data exchange

software of the IMAS may thus be modified without impacting

the physics code developers: only the component generator

will need to be updated. Since the integration of a component

is automated, it can be done in a single step for multiple con-

texts, i.e. to generate simultaneously a stand-alone program

and components for multiple workflow engines. Presently, the

IMAS component generator produces (i) a stand-alone pro-

gram, (ii) a Kepler actor (with various execution modes: same

process as Kepler, batch job submission, possibly using MPI,

execution within a debugger) and (iii) a component callable

by Python scripts.

2.5. Distributed version control and local deployment

All IMAS software (both infrastructure and physics compo-

nents) are under version control using GIT [8], a distributed

version control system. Its distributed feature is a key one

in the context of the distribution of IMAS within the ITER

members institutes. Indeed local installations of IMAS are

foreseen, (i) to ease local development of new IMAS soft-

ware and usage in the frame of ITER exploitation and also

(ii) to enable the usage of IMAS for local experiments. Using

GIT, local IMAS repositories can be used for development

and, when agreed, shared with the official IMAS repositories

channel(:)/faraday_angle Faraday angle (variation of the Faraday angle

induced by crossing the plasma)

Structure

channel(:)/faraday_angle/data Faraday angle (variation of the Faraday angle

induced by crossing the plasma) {dynamic} [rad]

FLT_1D 1- channel(:)/

faraday_angle/

time

channel(:)/faraday_angle/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/ellipticity Ellipticity structure

channel(:)/ellipticity/data Ellipticity {dynamic} [-] FLT_1D 1- channel(:)/

ellipticity/time

channel(:)/ellipticity/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/validity_timed Indicator of the validity of the channel as a function

of time (0 means valid, negative values mean non-

valid)

Structure

channel(:)/validity_timed/data Indicator of the validity of the channel as a function

of time (0 means valid, negative values mean non-

valid) {dynamic}

INT_1D 1- channel(:)/

validity_timed/

time

channel(:)/validity_timed/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/validity Indicator of the validity of the channel for the whole

acquisition period (0 means valid, negative values

mean non-valid) {static}

INT_0D

code Generic decription of the code specific parameters

for the code that has produced this IDS

Structure

code/name Name of the code {constant} STR_0D

code/version Version of the code {constant} STR_0D

code/parameters List of the code specific parameters in XML format

{constant}
STR_0D

code/output_flag Output flag: 0 means the run is successful, other

values mean some difficulty has been encountered,

the exact meaning is then code specific. Negative

values mean the result shall not be used. {dynamic}

INT_1D 1- time

time Generic time [s] {dynamic} flt_1d_type 1- 1...N

Table 1. (Continued)

Full path name Description Data Type Coordinates

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

6

at ITER. Branch management procedures are being drafted

to guide development, which is expected to be collective and

world-wide.

To enable this vision of a collective IMAS development,

a local installation procedure of IMAS is being developed.

Every IMAS component will be revision controlled using

GIT. The motivation for this is to have a guaranteed trace-

ability of versions of the IMAS components in use at different

sites.

Regression testing is also being implemented on every

IMAS component (physics or infrastructure).

3. IMAS first physics applications

First applications have been integrated under the prototype

IMAS infrastructure to demonstrate its expected function-

alities. The initial application for prototyping the IMAS

infrastructure and developing the tools required for pulse

preparation is a plasma simulator, i.e. a transport solver with

free boundary equilibrium capability (and later including also

scrape-off-layer and plasma-wall interaction modelling). This

plasma simulator, used in conjunction with the plasma con-

trol system simulation platform (PCSSP) [9–11], forms a full

tokamak simulator allowing developing control strategies.

This tool is planned to be used systematically as part of the

pulse validation procedure, a requisite prior to the execution

of any pulse on the real ITER experiment.

Different strategies can be used to implement the plasma

simulator. The simplest approach is to use existing plasma

simulators as they are and integrate them as a single, mono-

lithic component of a workflow. Examples of this most direct

approach, although not satisfying from the point of view

of modularity, are described in section 3.1. A finer grained

integration is desirable and examples of elementary physics

components integrated to IMAS are presented in section 3.2.

Different choices can also be made regarding the implementa-

tion of the plasma control system (PCS) simulation. In the first

Figure 1. The standard layered structure used in IMAS to enable the execution of the original physics solver and the data exchange with
other components. The original, unmodified solver is shown as the innermost box (dark green). Around it, the data mapping layer (light
blue) makes the mapping between the original solver data model and the ITER physics data model, resulting in a layer with standard
interfaces (using IDSs). One level above, the next layer wraps the previous one with access layer calls (this is the layer generated
automatically by the component generator). The outermost structure (light green) represents the launcher, which contains the knowledge
of the workflow and the data flow and schedules the execution of the components. This structure is used systematically to organize the
execution of components in layers of different functionalities. The only exception is for codes handling massive amounts of data, for which
data access is usually parallelised and must be done inside the physics solver (no processor has enough memory to gather all data).

Figure 2. The structure of the full tokamak simulator. The SDN is
the hardware used by the real PCS to communicate with the plant
(receiving diagnostic information and sending actuator commands).
In the simulation, it is simply an interface between the PCSSP and
the tokamak plant simulator. The latter, residing in IMAS, simulates
the plasma response, the actuators and the diagnostics. An event
generator is added to test the behavior of the system in case of
physical or technical ‘events’, e.g. L-H transition, appearance on a
Neoclassical Tearing Mode, power supply interruption, diagnostic
failure.

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

7

plasma simulator implementations described in section 3.1, the

PCS simulation has been for simplicity implemented directly

in Kepler or even kept within the original plasma component,

while the PCSSP is normally an independent simulation plat-

form (handled under Simulink®). To achieve this desired sep-

aration of concerns between plasma physics on one hand and

control aspects on the other hand, co-simulation techniques

have been developed between Kepler and Simulink and are

described in section 4.

3.1. Coarse-grained component integration

Plasma simulators are usually complex codes involving a large

number of modules organised around a main solver of the

1D transport equations. Although they may have a modular

internal structure, it is not necessarily easy to extract a given

module and use it in a different context, because there can

be significant internal dependencies. Therefore the simplest

way (although not the most desirable one) of integrating an

existing plasma simulator to a multi-purpose workflow engine

is to do it as a single, monolithic component. This has been

done with CORSICA [12, 13], which has been integrated as

a single Kepler actor in a simple time loop workflow. Kepler

controls the main time loop and calls CORSICA to solve the

transport equations with free boundary equilibrium between

two steps of the time loop. This is one of the most basic stages

of workflow integration, where a time loop is created around a

component working on a single time step (here the CORSICA

solver executed from time t to t + dt).

In general, the advantage of using a workflow is to make

it easy to couple different physics, engineering and control

components using standardized interfaces and schemes. Here

the workflow allows coupling to CORSICA external compo-

nents that may modify the dynamics of the simulation (e.g.

an external plasma control simulator altering the actuator

values, as demonstrated with the CORSICA workflow shown

in figure 4, or an external MHD model altering the plasma

profiles). These coupled models are developed independently

of CORSICA, without requiring the knowledge of the code

internals, and can be reused with any other transport solver

in IMAS. The workflow thus provides an extended modelling

capability with respect to the stand-alone CORSICA, which

can be straightforwardly reused in multiple contexts.

First, a technical verification of the CORSICA integration

has been made by comparing the output of the Kepler workflow

to a stand-alone CORSICA simulation (figure 3). In a second

stage, to increase the modularity of the workflow, the vertical

position control algorithm was moved outside CORSICA and

implemented directly in Kepler as a new component of the

workflow. It sends commands for the poloidal field systems

simulated within the CORSICA component (figure 4). This

workflow has been tested successfully and could control the

plasma position during 10 s of an ITER hybrid scenario pla-

teau; after 10 s the vertical control is voluntarily switched off

in the simulation and a Vertical Displacement Event occurs as

expected (figure 5).

A second, more modular, integration example has been

made with the DINA transport and free boundary equilibrium

solver [14]. In this application, the structure of the workflow

(see figure 6) respects the modular logic of the full tokamak

simulator presented in figure 2. The DINA plasma simulator is

contained within the ‘Tokamak’ blue box and its execution is

Figure 3. Verification of the CORSICA-IMAS coupling (‘kepler’, solid lines) against the stand-alone CORSICA (‘corsica’, circles):
evolution of the plasma boundary (left) and the safety factor and current density profiles (right) during an ITER current ramp-up. Both
frameworks provide exactly the same results and the curves are perfectly superimposed.

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

8

also commanded by a main time loop implemented explicitly

in the Kepler workflow.

3.2. Fine-grained component integration

A finer granularity of the workflow description is nevertheless

needed to be able to act on the components used within the

plasma simulator itself. Making the internal structure of the

plasma simulator explicit at the level of the workflow engine

is a challenge but opens to a broader community the access

to the components and even to the structure of the simulator

itself (e.g. internal convergence or time loops). It makes the

structure of the simulator fully transparent and enforces a

standard method for coupling new components, independent

of a particular code or programming language. Prototypes of

such fine grained transport solver workflows have been dem-

onstrated already by the EU-ITM [1, 15] and it is foreseen to

use a similar approach on IMAS. Fast data transfer between

components, enabled by the memory cache mechanism of the

access layer, as well as using a workflow engine written in a

compiled language (Java for Kepler) are key elements to avoid

a loss of performance with such fine grained workflows. It has

been verified that the CRONOS-based European Transport

Solver, fully modularized under Kepler has similar perfor-

mances than the original CRONOS version [16] which was

implemented under another framework, namely Matlab. Some

components may require specific hardware (e.g. GPU) or use

MPI and/or OpenMP for their parallelization. Solutions have

Figure 4. Screenshot showing the interactive execution of CORSICA integrated as a single component in Kepler, with an external vertical
position controller. The Kepler GUI can be seen at the top right of the screen, displaying graphically the structure of this simple time loop
workflow.

Figure 5. VDE triggered at t = 310 s of an ITER hybrid scenario simulation with the CORSICA-IMAS workflow. Left: height of the
magnetic axis. Middle: plasma shape and location of the gap measurements. Right: time traces of the gaps. The vertical dashed blue line
indicates the time at which the vertical control is switched off.

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

9

been developed in the EU-ITM project to enable the usage of

MPI and OpenMP for Kepler workflow components, together

with various distributed computing strategies (remote submis-

sion on grid or high performance computers, web services)

[17, 18]. These solutions could be ported in the near future

to the IMAS infrastructure to optimize the performance of

various applications.

In preparation of the implementation of a fine grain trans-

port solver, basic and essential components such as a prescribed

boundary equilibrium code (CHEASE [19]) and a neoclassical

component (NCLASS [20]) have been integrated to IMAS.

4. Co-simulation with the plasma control system

simulation platform

In this section, we describe a technical development allowing

co-simulation between the tokamak plant simulator (imple-

mented under IMAS) and the plasma control system simulator

(implemented under a separate platform, named the Plasma

Control System simulation platform (PCSSP) [9–11]). The

full tokamak simulator represented in figure 2 is thus imple-

mented using two different workflow engines for IMAS and

the PCSSP, respectively Kepler and Simulink® [21]. This

required the development of this co-simulation technique.

4.1. Synchronization scheme

In ITER, the PCS runs the tokamak by exchanging informa-

tion with the plant every specified ∆tsync time-steps, typically

every 1 ms.

The dashed box represented in figure 7 repeats itself

throughout the tokamak/simulation pulse and can be repre-

sented as follows:

The schema represented in figure 8 is what is implemented

in simulators. The write/read data exchange is performed only

once per time-step, to reduce synchronisation burden. This

implies that the PCS delivers new actuator demands at time

k + 2 based on information received at time k + 1. This delay

is of course taken into account in the PCS model, to control

the tokamak properly.

Figure 6. Overview of the implemented DINA-IMAS simulator (workflow designed and executed using the Kepler workflow engine),
highlighting the coupling between the various elements of the full tokamak simulator: actuators, tokamak, diagnostics, plasma control
system (PCS). The boxes correspond to high level components of the workflow and contain themselves more detailed sub-workflows. The
arrows connecting the boxes represent the data flow, which consists of two main streams: the DINA simulation data bus (BUS), which stays
on the IMAS side, and a representation of the ITER SDN, which is the interface between the PCS and the plant.

Figure 7. Schematic view of the tokamak-PCS coupling with
synchronisation of information through the SDN every k predefined
time-step. The PCS delivers actuators at k + 2 based on plasma
parameters obtained at k + 1. A ∆tsync difference which is taken
into account in the PCS controller.

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

10

4.2. Global scheduling of the co-simulation

A co-simulation requires a master which will drive the whole

calculation and schedule the execution of the worfklow

engines according to the synchronization principles described

above. Three options have been identified:

 1. IMAS/Kepler is the driver and the PCSSP is called via a

Kepler component

 2. Simulink is the driver and the IMAS is called via an

S-function

 3. The two suites are executed from outside, typically from

a script/light framework and are executing in parallel.

One of the features of both Kepler and Simulink is to allow

a graphical visualisation of the workflow and interactivity

during its execution: a user may visualise part of the data flow,

pause the workflow, change a parameter and then continue

the workflow execution. These features are quite useful for

development of control algorithms, which can be fine-tuned

by trial and error. Therefore the requirement was to maintain

those interactive features of the workflow engines during the

co-simulation. The three scheduling options described above

have been tested and it has been found that, due to the par-

ticularity of Simulink, full interactivity within Simulink was

not guaranteed unless Simulink (that is the PCS environment)

drove the coupled workflows. For this reason, it was decided

to develop the co-simulation prototype using option 2.

The communication between the two workflow engine

is implemented via TCP/IP sockets using the open source

ZeroMQ software [22]. The content of the simulated

Figure 8. IMAS/Tokamak-PCS coupling view as a time-loop incremental schema. This schema has been tested with a KEPLER-Simulink
prototype.

Figure 9. Simulink part of the PCS-IMAS-Option 2 coupling. The box ‘simimasdialog’ contains an S-function within which the dialog
with IMAS is provided.

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

11

‘synchronous data network’ (SDN) is exchanged via this

technology at every synchronisation time step. Potentially, the

usage of TCP/IP sockets allows executing the two simulators

on different computers.

4.3. General structure of the workflows

The two workflows have a similar general structure: a time

loop implementing a step by step evolution of duration ∆tsync,

communication components to read/write the SDN messages

from/to the other simulator, an application specific workflow

for simulating either the plant (IMAS) or the PCS.

Figure 9 shows the top level of the Simulink workflow. It

contains the PCS algorithm itself (‘PCS simulator’ box) and

other elements to couple to the IMAS workflow engine, which is

viewed from the Simulink side as an S-function (red ‘communi-

cation with IMAS’ box). The ‘EventConf’ box provides a simple

implementation of the event generator described on figure 2.

Clicking on the ‘start’ button in Simulink, in addition to

initializing the Simulink workflow, also launches Kepler and

starts the Kepler workflow execution. During the termination

phase, Kepler is similarly closed from Simulink.

During normal execution, from time-step to time-step,

the outputs of the PCS simulator are converted to the SDN

Figure 10. IMAS part of the PCS-IMAS-Option 2 coupling. The box ‘PCSdialog’ contains an actor within which the dialog with PCS is
provided. The conversion of the Kepler variables from/to the SDN structure is performed within the SDN2IMAS/SDN2PCS boxes.

Figure 11. Position of the magnetic axis, major radius (left) and height (right) during the DINA-PCSSP co-simulation of an ITER scenario.
The vertical position controllers has a target of Z = 0.52 m (dashed line) and reacts to scenario events (this explains the transient observed
at t = 0.39 s). 200 steps of ∆tsync = 5 ms have been carried out in this first co-simulation with DINA.

Nucl. Fusion 55 (2015) 123006

F. Imbeaux et al

12

structure (in our case an array of 150 values called ‘SDN

simulator’ on the figure). A trigger event value, emulating an

event configuration (see below), is added to the SDN array

and these 151 values are made available to the IMAS dialog

S-function. The simimasdialog function sends these data to

IMAS via ZeroMQ and then awaits the IMAS output that con-

sists of an array of the 150 values contained in the SDN struc-

ture. Once received, they are converted back into PCS inputs.

The controller then calculates the new actuators values and the

loop may continue.

The plant simulator is included within Kepler as shown in

figure 10. The ‘Actuators Simulator’, ‘Diagnostic Simulator’

and ‘Plasma Simulator’ boxes correspond to the boxes shown

in figure 2. Since we are showing here the DINA-IMAS

workflow implemented as a co-simulation, the workflow is

almost identical to the one of figure 6, the difference being the

‘PCSdialog’ box which now contains the send/receive dialog

with the PCS simulator. The logic of this workflow is sym-

metric to the Simulink one, i.e. the simulator calculates one

time step ∆tsync, converts its output to the SDN, communi-

cates the SDN to the PCS, waits for receiving the new PCS

commands, converts this input from SDN to input variables

for the actuators and the time loop continues.

4.4. Demonstration case: DINA-IMAS

After having demonstrated with toy models the fully interac-

tive properties of the coupled simulators, namely event trig-

gering, live display and interactive parameter modification in

both simulation engines, the co-simulation has been applied to

a vertical position control algorithm with DINA as the plasma

simulator. The very first results of this co-simulation are dis-

played in figure 11. Although the simulation parameters still

need some tuning, this represents the first application of the

co-simulation scheme to a true physical use case.

5. Conclusions

The main results of the IMAS design and prototyping phase

are (i) a machine generic physics data model (ii) a proto-

type set of tools to access data and design integrated model-

ling workflows, (iii) first plasma simulators workflows and

components implemented with various degrees of modu-

larity, (iv) a co-simulation scheme enabling coupled Plant/

PCSSP full tokamak simulations with two separate work-

flow engines, fully maintaining the interactive features of

both engines.

The IMAS is still at an early stage of its development.

It requires the help of the ITER members fusion community

to progressively grow (primarily through the contribution of

components), start being used (i.e. validate workflows for use

on ITER) and gain maturity. The near future developments

will include further extension of the data model, the integra-

tion of more physics components and the implementation of a

transport solver as a fine grained workflow.

The IMAS is developed in support to the operation and

research activities of the ITER experiment but has the poten-

tial to be applied to any fusion experiment. The data model

and access layer will provide seamless access to any experi-

ment using a unique data dictionary. The IMAS components

will be machine generic and receive all machine data as an

input (thus getting away from the traditional hard-coding of

machine data in some hidden part of physics codes). This

represents a unique opportunity for the research commu-

nity in the ITER Members to start developing and testing

the ITER Integrated Modelling & Analysis Suite to simulate

present day tokamak devices and to analyse experimental

data in preparation for ITER experiments. The ITER physics

data model is already at a stage that allows deploying the

first physical applications, such as e.g. equilibrium recon-

struction, various versions of the Plasma Simulator and the

plasma reconstruction chain. The deployment of the IMAS

with these applications will be carried out in 2016 on a real

tokamak, namely the WEST experiment. ITPA activities will

also use more and more IMAS in the near future for e.g.

benchmarking exercises or ITER predictions. These activi-

ties will bring several new physics components in IMAS,

further extending its capabilities and the scope of its scien-

tific applications.

Disclaimer

The views and opinions expressed herein do not necessarily

reflect those of the ITER Organization.

References

 [1] Falchetto G.L. et al 2014 Nucl. Fusion 54 043018
 [2] Bécoulet A., Strand P., Wilson H., Romanelli M., Eriksson L.-G.

and the Contributors to the European Task Force on
Integrated Modelling Activity 2007 Comput. Phys.
Commun. 177 55–9

 [3] Imbeaux F. et al 2010 Comp. Phys. Commun. 181 987
 [4] http://gafusion.github.io/OMFIT-source/
 [5] http://kepler-project.org
 [6] Batchelor D.A. et al 2007 Plasma Sci. Technol. 9 312
 [7] Manduchi G. et al 2008 Fusion Eng. Des. 83 462
 [8] http://git-scm.com
 [9] Walker M.L., Ambrosino G., De Tommasi G.,

Humphreys D.A., Mattei M., Neu G., Raupp G.,
Treutterer W. and Winter A. 2014 Fusion Eng. Des.
89 518–22

 [10] Raupp G., Walker M.L., Ambrosino G., de Tommasi G.,
Humphreys D.A., Mattei M., Neu G., Treutterer W. and
Winter A. 2014 Fusion Eng. Des. 89 523–8

 [11] Walker M.L. et al 2015 Fusion Eng. Des. 96–97 719–19
 [12] Crotinger J.A. et al 1997 LLNL Report UCRL-ID-126284;

NTIS #PB2005-102154
 [13] Casper T.A. et al 2014 Nucl. Fusion 54 013005
 [14] Khayrutdinov R.R. and Lukash V.E. 1993 J. Comput. Phys.

109 193–201
 [15] Coster D.P. et al 2010 Trans. Plasma Sci. 38 2085
 [16] Artaud J.F et al 2010 Nucl. Fusion 50 043001
 [17] Frauel Y. et al 2012 Fusion Eng. Des. 87 2057

Nucl. Fusion 55 (2015) 123006

http://dx.doi.org/10.1088/0029-5515/54/4/043018
http://dx.doi.org/10.1088/0029-5515/54/4/043018
http://dx.doi.org/10.1016/j.cpc.2007.02.051
http://dx.doi.org/10.1016/j.cpc.2007.02.051
http://dx.doi.org/10.1016/j.cpc.2007.02.051
http://dx.doi.org/10.1016/j.cpc.2010.02.001
http://dx.doi.org/10.1016/j.cpc.2010.02.001
http://gafusion.github.io/OMFIT-source/
http://kepler-project.org
http://dx.doi.org/10.1088/1009-0630/9/3/13
http://dx.doi.org/10.1088/1009-0630/9/3/13
http://dx.doi.org/10.1016/j.fusengdes.2007.08.021
http://dx.doi.org/10.1016/j.fusengdes.2007.08.021
http://git-scm.com
http://dx.doi.org/10.1016/j.fusengdes.2014.02.009
http://dx.doi.org/10.1016/j.fusengdes.2014.02.009
http://dx.doi.org/10.1016/j.fusengdes.2014.02.009
http://dx.doi.org/10.1016/j.fusengdes.2014.04.068
http://dx.doi.org/10.1016/j.fusengdes.2014.04.068
http://dx.doi.org/10.1016/j.fusengdes.2014.04.068
http://dx.doi.org/10.1016/j.fusengdes.2015.01.009
http://dx.doi.org/10.1016/j.fusengdes.2015.01.009
http://dx.doi.org/10.1016/j.fusengdes.2015.01.009
http://dx.doi.org/10.1016/j.fusengdes.2015.01.009
http://dx.doi.org/10.1088/0029-5515/54/1/013005
http://dx.doi.org/10.1088/0029-5515/54/1/013005
http://dx.doi.org/10.1006/jcph.1993.1211
http://dx.doi.org/10.1006/jcph.1993.1211
http://dx.doi.org/10.1006/jcph.1993.1211
http://dx.doi.org/10.1109/TPS.2010.2056707
http://dx.doi.org/10.1109/TPS.2010.2056707
http://dx.doi.org/10.1088/0029-5515/50/4/043001
http://dx.doi.org/10.1088/0029-5515/50/4/043001
http://dx.doi.org/10.1016/j.fusengdes.2012.04.015
http://dx.doi.org/10.1016/j.fusengdes.2012.04.015

F. Imbeaux et al

13

 [18] Plociennik M. et al 2012 High level tools for
fusion simulations workflows in distributed
computing environment Proc. of Int. Conf. on
High Performance Computing and Simulation
(Madrid, Spain, 2–6 July 2012) p 602 http://ieeexplore.
ieee.org/xpl/login.jsp?tp=&arnumber=62669
80&url=http%3A%2F%2Fieeexplore.ieee.org

%2Fiel5%2F6260982%2F6266874%2F06266980.
pdf%3Farnumber%3D6266980

 [19] Lütjens H., Bondeson A. and Sauter O. 1996 Comput. Phys.
Commun. 97 219

 [20] Houlberg W.A. 1997 et al Phys. Plasmas 4 3230
 [21] mathworks.com/products/simulink/
 [22] www.zeromq.org/

Nucl. Fusion 55 (2015) 123006

http://ieeexplore.ieee.org/xpl/login.jsp?tp = & amp;arnumber = 6266980 & amp;url = http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6260982%2F6266874%2F06266980.pdf%3Farnumber%3D6266980
http://ieeexplore.ieee.org/xpl/login.jsp?tp = & amp;arnumber = 6266980 & amp;url = http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6260982%2F6266874%2F06266980.pdf%3Farnumber%3D6266980
http://ieeexplore.ieee.org/xpl/login.jsp?tp = & amp;arnumber = 6266980 & amp;url = http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6260982%2F6266874%2F06266980.pdf%3Farnumber%3D6266980
http://ieeexplore.ieee.org/xpl/login.jsp?tp = & amp;arnumber = 6266980 & amp;url = http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6260982%2F6266874%2F06266980.pdf%3Farnumber%3D6266980
http://ieeexplore.ieee.org/xpl/login.jsp?tp = & amp;arnumber = 6266980 & amp;url = http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6260982%2F6266874%2F06266980.pdf%3Farnumber%3D6266980
http://dx.doi.org/10.1016/0010-4655(96)00046-X
http://dx.doi.org/10.1016/0010-4655(96)00046-X
http://dx.doi.org/10.1063/1.872465
http://dx.doi.org/10.1063/1.872465
mathworks.com/products/simulink/
www.zeromq.org/

