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1. Introduction

The ITER Integrated Modelling & Analysis Suite (IMAS) will 

support both plasma operation and research activities on the 

ITER tokamak experiment. The IMAS will be accessible to 

all ITER Members as a key tool for the scientific exploitation 

of ITER. It will allow collective development of integrated 

modelling tools, by sharing data, code components and, ulti-

mately, workflows based on coupling together various code 

components. Its design started in 2011 and a first prototype 

of the IMAS infrastructure has already been implemented at 

the ITER organization (IO). The purpose of this paper is to 

describe the essential features of the IMAS design, the imple-

mented prototype infrastructure (section 2), as well as the 

first physics applications that have been developed under the 

IMAS infrastructure (section 3). The key target application 

is a plasma simulator coupled to a simulator of the plasma 

control system, which are implemented under a co-simulation 

scheme presented in section 4.

2. IMAS infrastructure

2.1. Overview

The IMAS infrastructure is a modular set of components 

enabling collective development and execution of integrated 

modelling applications. Every component carries out a dedi-

cated functionality and the modularity is a critical element to 

facilitate the maintenance of the IMAS infrastructure over its 

30 years lifespan. Indeed, changes will inevitably occur in 
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software and hardware technologies, as well in the methods 

used to solve physics problems and one must be able to replace 

a component with minimal impact on the others.

The backbone of the IMAS infrastructure is a standard-

ized data model, called the ITER Physics Data Model (PDM). 

This is not only important for coupling physics components 

together (solving the N2 interfaces problem), but also to make 

sure that every input and output of the physics components is 

saved in a standard way. It removes the ‘private file’ problem, 

i.e. when codes access data from a private format or location 

which is unknown to the infrastructure, and the ‘private defini-

tion’ problem, i.e. when the data accessed by the code has no 

(or not clearly enough) documented definition.

To access data, a data model aware Application 

Programming Interface (API) has been developed for various 

programming languages. It enables cross-language commu-

nication and a way to store and retrieve data from a remotely 

accessible storage that becomes a prototype of an ITER 

physics database.

Physics components, once interfaced to the data model, 

can be coupled into an Integrated Modelling workflow 

orchestrated by a workflow engine. A workflow component 

generator is provided to automate the integration of a physics 

component in the workflow engine. With these tools, a physics 

code developer can seamlessly wrap his/her component with 

data access methods and even develop IM workflows.

This global design of the IMAS infrastructure has been 

largely inspired by the developments of the European 

Integrated Modelling Task Force (EU-ITM) [1–3], a pro-

ject which also puts a strong emphasis on the development 

of integrated modelling standards for a large community of 

researchers. A large part of the IMAS infrastructure software 

reuses EU-ITM developments, although the original source 

code sometimes required significant adaptations to be con-

sistent with the ITER Physics Data Model, which has sig-

nificant improvements and new features with respect to the 

EU-ITM data model [3] (see section  2.2). Although other 

integrated modelling frameworks have been developed in the 

previous decade in the international fusion community, they 

did not attach enough importance to the development of a 

standard language for the scientific community for describing 

a fusion experiment and the associated physics, a goal of 

utmost importance in our view owing to the international char-

acter of ITER. In contrast, the OMFIT framework [4] takes 

the opposite approach and facilitates using together codes 

without following any common standard by providing a GUI 

environment to set input data and schedule execution. Data 

remains expressed in code-specific form, code coupling has 

to be developed for every pair of codes, and the experiment-

generic character of the physics components is not enforced.

It has to be emphasized that the IMAS infrastructure 

remains fully modular, in the sense that the usage of the 

Physics Data Model does not constrain the choice of work-

flow engine for executing codes. Even a stand-alone pro-

gram can be considered IMAS-compliant as long as it uses 

exclusively the PDM for expressing its input/output data.  

A graphical workflow engine (Kepler [5]) has been inte-

grated to the IMAS prototype because it allows exposing to 

developers in an intuitive way the architecture of the work-

flow (the way component are coupled but also convergence 

algorithms which are described explicitly in the fine grained 

modularization described in section 3.2), thus facilitating the 

collective development of IM workflows by the community. 

Moreover the interactive features of Kepler (such as pause / 

modify of a parameter / resume the simulation) were requested 

for the development of the Plasma Control System algorithms 

(see section  4). However, more user-oriented tools (e.g. a 

graphical interface for editing input data, parameterizing a 

workflow and schedule execution such as OMFIT) can also 

become part of the IMAS infrastructure, for different reasons 

and purposes than the workflow engine, under the condition 

that these tools are compliant with the Physics Data Model. 

Other interesting features such as the CPU advanced reserva-

tion mechanism and load balancing of workflow components 

implemented in IPS [6] to optimize the execution of work-

flows on a single high performance computer could also be of 

interest for some IMAS applications, and could be added to 

the IMAS infrastructure either directly by integrating a PDM-

enabled IPS as an alternative workflow engine, or by imple-

menting them around Kepler (a prototype of such a Kepler 

implementation has been developed).

Finally version control and regression testing systems are 

essential for collective development of the IMAS infrastruc-

ture and of its physics suite.

These key elements of the IMAS infrastructure have been 

already implemented in a prototype form and are described in 

more detail in the sections below.

2.2. The ITER physics data model

The data model provides information for data providers and 

data consumers on what data exist, what they are called and 

how they are structured as seen by the user. It is important to 

stress that the ITER physics data model corresponds to the 

user’s view of the data and is a priori independent of how 

the data is stored in the back-end. This data model potentially 

encompasses all data of physics interest, i.e. its applications 

are not restricted to IMAS codes but are foreseen to cover 

most of the scientific activities related to the ITER experi-

ment. The ITER physics data model aims at being the main 

gate to data for scientific exploitation, both for code inter-

facing and hands-on data browsing by experimentalists after 

a pulse. Another important goal is to make the data model 

device-generic, i.e. it is a magnetic fusion oriented data model 

usable for any fusion device.

The data model consists thus of two parts: a ‘data dictionary’ 

part which is the one seen by the user and is device-generic; 

a ‘data model’ part which is a list of expressions making the 

link between the nodes of the generic data dictionary and the 

methods for accessing data for a particular experiment and 

a particular pulse number. This design allows the user to see 

a unique representation (the data dictionary) for any fusion 

device and thus to apply the IMAS transparently to any experi-

ment, ITER being only a particular case of application.

To ease the comparison between simulation and experi-

ments, the data dictionary is unique for simulated and 
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experimental data, i.e. the same data structures are used to 

represent data measured during an experiment (e.g. the elec-

tron temperature from a Thomson scattering diagnostic) and 

its simulated counterpart.

The ITER physics data model is physics oriented: therefore 

it must be able to evolve as the representation of the physics 

phenomena developed by the scientific community evolves.  

A precise lifecycle procedure has been defined to allow the 

data model to evolve and be jointly developed by multiple 

teams. In addition, precise design rules for the data dictionary 

have been defined to maintain its global homogeneity.

An Interface Data Structure (IDS) is an entry point of the 

data dictionary that can be used as a single entity to be used 

by a user; examples are the full description of a tokamak sub-

system (diagnostic, heating system, …) or an abstract physical 

concept (equilibrium, set of core plasma profiles, wave propa-

gation, …); this concept allows tracing of data provenance and 

allows simple transfer of large numbers of variables between 

loosely or tightly coupled applications; the IDS thereby define 

standardized interface points between IMAS physics compo-

nents. An IDS is a part of the data dictionary, like an entry 

point into it, thus the IMAS components are interfaced with 

the same structures as those constituting the data dictionary. 

An IDS is marked by having a child ids_properties node, 

containing traceability and self-description information. An 

IDS may contain both time-dependent and time-independent 

data, thus grouping for example diagnostic measurements and 

the description of the diagnostic setup (geometry, calibration 

data, …). One important idea here is to make the machine 

description fully explicit in the data model in order to make 

them accessible by all users of an experiment (while in present 

experiments these data are often scattered in different loca-

tions and formats and are difficult to access). Within an IDS, 

data may have different time bases to reflect the fact that in an 

experiment, data may be acquired at different rates. Again, the 

philosophy is to have a full description of the whole tokamak 

and its associated physics in an experiment-generic and code-

generic form, making all physical data explicit, traceable and 

accessible to the user. Details of the existing IDS structures 

can be found at https://imas.iter.org/. An example is provided 

in table  1 for the description of the interfero-polarimeter 

diagnostic.

The design of the ITER physics model has benefited from 

the European integrated modelling task force (EU-ITM) expe-

rience with the so-called Consistent Physical Objects (CPOs) 

[3]. The idea of a structured, device-generic data dictionary 

providing a list of standardized interfaces between IM compo-

nents as well as the granularity of these interfaces stems from 

this experience. Nonetheless, some new key aspects have 

been introduced in the design, in particular the dual notion 

of data dictionary and data model, the capability of handling 

multiple asynchronous time bases in a single IDS (this flex-

ibility is needed to represent experimental quantities as they 

are acquired and to not lose information) and the naming and 

structuring conventions of the data dictionary. The resulting 

ITER physics data model is therefore new and original, ben-

efitting from lessons learned from previous experience with 

similar goals.

The present status of the data dictionary is as follows: 

about 30 IDS have been designed and start being used by the 

first IMAS applications, essentially covering the needs of core 

transport solvers with free boundary equilibrium. Examples of 

diagnostic subsystems have also been designed. The data dic-

tionary will continue its expansion in the near future as new 

physics applications are added to the IMAS. The concept of 

‘data model’, i.e. a formal link between the data dictionary 

and the access method, has been demonstrated under a sepa-

rate Matlab prototype for a few JET and TCV examples but is 

not implemented yet under the default access layer.

2.3. The access layer

A prototype access layer, based on the Universal Access 

Layer developed by the EU-ITM [7] has been implemented 

to allow data access for the first IMAS applications. It has 

been made compliant with the ITER Physics data dictionary 

and has APIs for Fortran, C  +  +, Python, Java and Matlab. It 

primarily writes data files on disk and features also a memory 

cache mechanism for fast data transfer between workflow 

components. Remote data access is also available: a proce-

dure has been created to enable access layer installation on a 

local computer, i.e. the user can choose to access data either 

locally on his computer or remotely on the ITER cluster. This 

prototype access layer operates only at the IDS level, allowing 

essential operations such as put or get data, time interpolation, 

access to single time slices of data.

In parallel to the implementation of this prototype, the 

design of the architecture and functionalities of the longer term 

access layer has been carried out. The final product should 

not be restricted to IMAS usage but should allow access to 

any ITER data. It should not only allow operations based on 

the ITER Physics data model but, for example, operations 

expressed in terms of the ITER CODAC data model will also 

be possible through the same interface. The design is based on 

a client-server architecture and features the data dictionary / 

data model correspondence described in the previous section. 

This is a joint development with the ITER CODAC which will 

start next year and eventually replace the present access layer 

prototype.

2.4. Workflow engine and component generator

Physics components, once interfaced to the data model, can 

be coupled into an Integrated Modelling workflow. Different 

methods may be used: components written in the same pro-

gramming language can be straightforwardly coupled, e.g. 

as subroutines within a main program. Components written 

in different languages may use the access layer to exchange 

data and then be scheduled e.g. by a simple script. In case of 

complex workflows involving a large number of components, 

a workflow engine is provided within the IMAS infrastruc-

ture to help the development. The workflow engine allows 

designing, debugging, and running IMAS workflows. It hides 

the complexity of code scheduling and data transfer between 

components. A useful feature is a graphical interface for 

visualising and editing the workflow and the data flows. The 
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Table 1. Documentation of the interfero_polarimeter IDS (automatically generated from the data dictionary, version 3.2.0). The first 
column provides the path of all nodes in the structure, the second column gives its description, as well as its units and whether data depends 
on time (‘dynamic’) or is constant or belong to machine description (‘static’). The third column provides the type of data. The fourth 
column provides the location of the data coordinates, when it is an array; the indication 1…N means that the node has no coordinate in the 
structure, usually because the node is itself a coordinate of other nodes.

Full path name Description Data Type Coordinates

ids_properties Interface Data Structure properties. This element 

identifies the node above as an IDS

Structure

ids_properties/comment Any comment describing the content of this IDS 

{constant}
STR_0D

ids_properties/homogeneous_time 1 if the time of this IDS is homogeneous. In this 

case, the time values for this IDS are stored in ../time 

just below the root of this IDS. Otherwise, the time 

values are stored in the various time fields at lower 

levels in the tree. {constant}

INT_0D

channel(:) Set of channels (lines-of-sight) Struct_array [max_

size  =  15]

1- 1...N

channel(:)/name Name of the channel {static} STR_0D

channel(:)/identifier ID of the channel {static} STR_0D

channel(:)/line_of_sight Description of the line of sight of the channel, 

defined by two points when the beam is not 

reflected, a third point is added to define the reflected 

beam path

Structure

channel(:)/line_of_sight/first_point Position of the first point Structure

channel(:)/line_of_sight/first_point/r Major radius {static} [m] FLT_0D

channel(:)/line_of_sight/first_point/z Height {static} [m] FLT_0D

channel(:)/line_of_sight/first_point/phi Toroidal angle {static} [rad] FLT_0D

channel(:)/line_of_sight/second_point Position of the second point structure

channel(:)/line_of_sight/second_point/r Major radius {static} [m] FLT_0D

channel(:)/line_of_sight/second_point/z Height {static} [m] FLT_0D

channel(:)/line_of_sight/second_point/phi Toroidal angle {static} [rad] FLT_0D

channel(:)/line_of_sight/third_point Position of the third point Structure

channel(:)/line_of_sight/third_point/r Major radius {static} [m] FLT_0D

channel(:)/line_of_sight/third_point/z Height {static} [m] FLT_0D

channel(:)/line_of_sight/third_point/phi Toroidal angle {static} [rad] FLT_0D

channel(:)/wavelength_polarimetry Wavelength used for polarimetry {static} [m] FLT_0D

channel(:)/wavelength_interferometry(:) Set of wavelengths used for interferometry Struct_array [max_

size  =  2]

1- 1...N

channel(:)/wavelength_interferometry(:)/

value
Wavelength value {static} [m] FLT_0D

channel(:)/wavelength_interferometry(:)/

n_e_line

Line integrated density estimated from this 

wavelength

Structure

channel(:)/wavelength_interferometry(:)/

n_e_line/data

Line integrated density estimated from this 

wavelength {dynamic} [m−2]

FLT_1D 1- channel(:)/

wavelength_

interferometry(:)/

n_e_line/time

channel(:)/wavelength_interferometry(:)/

n_e_line/time
Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/polarisation_initial Initial polarisation vector before entering the plasma 

{static} [m]

FLT_0D

channel(:)/ellipticity_initial Initial ellipticity before entering the plasma {static} 
[m]

FLT_0D

channel(:)/n_e_line Line integrated density, possibly obtained by a 

combination of multiple interferometry wavelengths

Structure

channel(:)/n_e_line/data Line integrated density, possibly obtained by a 

combination of multiple interferometry wavelengths 

{dynamic} [m−2]

FLT_1D 1- channel(:)/

n_e_line/time

channel(:)/n_e_line/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

(Continued)
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workflow engine should not be considered only as a scheduler, 

but as a way to expose complex and large workflows in a stan-

dard way to a team of developers. This is thought to facilitate 

collective development and to be an advantage with respect to 

developing such workflows within a classical program. In the 

latter case, the structure of the program may be less obvious 

and inserting a new component may be more subject to code-

specific peculiarities. In this context, the workflow engine is 

primarily a tool for developers or advanced users, while the 

broad range of users would rather benefit from simpler GUIs 

to drive the exploitation of production workflows. In 2011 the 

available open source workflow engines have been evaluated 

and Kepler [5] has been selected for the development of the 

first IMAS workflows.

Another key aspect of the workflow development chain 

is the automated generation of workflow physics compo-

nents from the physics modules. The primary function for the 

‘component generator’ tool is to seamlessly turn an original 

physics code with data dictionary compliant interfaces into a 

component of a workflow engine. The integration to the work-

flow engine becomes fully automated and the data exchange 

between components becomes also seamlessly managed in a 

standard way by access layer calls wrapped around the physics 

code (see figure 1). The workflow engine and data exchange 

software of the IMAS may thus be modified without impacting 

the physics code developers: only the component generator 

will need to be updated. Since the integration of a component 

is automated, it can be done in a single step for multiple con-

texts, i.e. to generate simultaneously a stand-alone program 

and components for multiple workflow engines. Presently, the 

IMAS component generator produces (i) a stand-alone pro-

gram, (ii) a Kepler actor (with various execution modes: same 

process as Kepler, batch job submission, possibly using MPI, 

execution within a debugger) and (iii) a component callable 

by Python scripts.

2.5. Distributed version control and local deployment

All IMAS software (both infrastructure and physics compo-

nents) are under version control using GIT [8], a distributed 

version control system. Its distributed feature is a key one 

in the context of the distribution of IMAS within the ITER 

members institutes. Indeed local installations of IMAS are 

foreseen, (i) to ease local development of new IMAS soft-

ware and usage in the frame of ITER exploitation and also 

(ii) to enable the usage of IMAS for local experiments. Using 

GIT, local IMAS repositories can be used for development 

and, when agreed, shared with the official IMAS repositories 

channel(:)/faraday_angle Faraday angle (variation of the Faraday angle 

induced by crossing the plasma)

Structure

channel(:)/faraday_angle/data Faraday angle (variation of the Faraday angle 

induced by crossing the plasma) {dynamic} [rad]

FLT_1D 1- channel(:)/

faraday_angle/

time

channel(:)/faraday_angle/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/ellipticity Ellipticity structure

channel(:)/ellipticity/data Ellipticity {dynamic} [-] FLT_1D 1- channel(:)/

ellipticity/time

channel(:)/ellipticity/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/validity_timed Indicator of the validity of the channel as a function 

of time (0 means valid, negative values mean non-

valid)

Structure

channel(:)/validity_timed/data Indicator of the validity of the channel as a function 

of time (0 means valid, negative values mean non-

valid) {dynamic}

INT_1D 1- channel(:)/

validity_timed/

time

channel(:)/validity_timed/time Generic time [s] {dynamic} flt_1d_type 1- 1...N

channel(:)/validity Indicator of the validity of the channel for the whole 

acquisition period (0 means valid, negative values 

mean non-valid) {static}

INT_0D

code Generic decription of the code specific parameters 

for the code that has produced this IDS

Structure

code/name Name of the code {constant} STR_0D

code/version Version of the code {constant} STR_0D

code/parameters List of the code specific parameters in XML format 

{constant}
STR_0D

code/output_flag Output flag: 0 means the run is successful, other 

values mean some difficulty has been encountered, 

the exact meaning is then code specific. Negative 

values mean the result shall not be used. {dynamic}

INT_1D 1- time

time Generic time [s] {dynamic} flt_1d_type 1- 1...N

Table 1. (Continued)

Full path name Description Data Type Coordinates
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at ITER. Branch management procedures are being drafted 

to guide development, which is expected to be collective and 

world-wide.

To enable this vision of a collective IMAS development, 

a local installation procedure of IMAS is being developed. 

Every IMAS component will be revision controlled using 

GIT. The motivation for this is to have a guaranteed trace-

ability of versions of the IMAS components in use at different 

sites.

Regression testing is also being implemented on every 

IMAS component (physics or infrastructure).

3. IMAS first physics applications

First applications have been integrated under the prototype 

IMAS infrastructure to demonstrate its expected function-

alities. The initial application for prototyping the IMAS 

infrastructure and developing the tools required for pulse 

preparation is a plasma simulator, i.e. a transport solver with 

free boundary equilibrium capability (and later including also 

scrape-off-layer and plasma-wall interaction modelling). This 

plasma simulator, used in conjunction with the plasma con-

trol system simulation platform (PCSSP) [9–11], forms a full 

tokamak simulator allowing developing control strategies. 

This tool is planned to be used systematically as part of the 

pulse validation procedure, a requisite prior to the execution 

of any pulse on the real ITER experiment.

Different strategies can be used to implement the plasma 

simulator. The simplest approach is to use existing plasma 

simulators as they are and integrate them as a single, mono-

lithic component of a workflow. Examples of this most direct 

approach, although not satisfying from the point of view 

of modularity, are described in section  3.1. A finer grained 

integration is desirable and examples of elementary physics 

components integrated to IMAS are presented in section 3.2. 

Different choices can also be made regarding the implementa-

tion of the plasma control system (PCS) simulation. In the first 

Figure 1. The standard layered structure used in IMAS to enable the execution of the original physics solver and the data exchange with 
other components. The original, unmodified solver is shown as the innermost box (dark green). Around it, the data mapping layer (light 
blue) makes the mapping between the original solver data model and the ITER physics data model, resulting in a layer with standard 
interfaces (using IDSs). One level above, the next layer wraps the previous one with access layer calls (this is the layer generated 
automatically by the component generator). The outermost structure (light green) represents the launcher, which contains the knowledge 
of the workflow and the data flow and schedules the execution of the components. This structure is used systematically to organize the 
execution of components in layers of different functionalities. The only exception is for codes handling massive amounts of data, for which 
data access is usually parallelised and must be done inside the physics solver (no processor has enough memory to gather all data).

Figure 2. The structure of the full tokamak simulator. The SDN is 
the hardware used by the real PCS to communicate with the plant 
(receiving diagnostic information and sending actuator commands). 
In the simulation, it is simply an interface between the PCSSP and 
the tokamak plant simulator. The latter, residing in IMAS, simulates 
the plasma response, the actuators and the diagnostics. An event 
generator is added to test the behavior of the system in case of 
physical or technical ‘events’, e.g. L-H transition, appearance on a 
Neoclassical Tearing Mode, power supply interruption, diagnostic 
failure.
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plasma simulator implementations described in section 3.1, the 

PCS simulation has been for simplicity implemented directly 

in Kepler or even kept within the original plasma component, 

while the PCSSP is normally an independent simulation plat-

form (handled under Simulink®). To achieve this desired sep-

aration of concerns between plasma physics on one hand and 

control aspects on the other hand, co-simulation techniques 

have been developed between Kepler and Simulink and are 

described in section 4.

3.1. Coarse-grained component integration

Plasma simulators are usually complex codes involving a large 

number of modules organised around a main solver of the 

1D transport equations. Although they may have a modular 

internal structure, it is not necessarily easy to extract a given 

module and use it in a different context, because there can 

be significant internal dependencies. Therefore the simplest 

way (although not the most desirable one) of integrating an 

existing plasma simulator to a multi-purpose workflow engine 

is to do it as a single, monolithic component. This has been 

done with CORSICA [12, 13], which has been integrated as 

a single Kepler actor in a simple time loop workflow. Kepler 

controls the main time loop and calls CORSICA to solve the 

transport equations with free boundary equilibrium between 

two steps of the time loop. This is one of the most basic stages 

of workflow integration, where a time loop is created around a 

component working on a single time step (here the CORSICA 

solver executed from time t to t  +  dt).

In general, the advantage of using a workflow is to make 

it easy to couple different physics, engineering and control 

components using standardized interfaces and schemes. Here 

the workflow allows coupling to CORSICA external compo-

nents that may modify the dynamics of the simulation (e.g. 

an external plasma control simulator altering the actuator 

values, as demonstrated with the CORSICA workflow shown 

in figure  4, or an external MHD model altering the plasma 

profiles). These coupled models are developed independently 

of CORSICA, without requiring the knowledge of the code 

internals, and can be reused with any other transport solver 

in IMAS. The workflow thus provides an extended modelling 

capability with respect to the stand-alone CORSICA, which 

can be straightforwardly reused in multiple contexts.

First, a technical verification of the CORSICA integration 

has been made by comparing the output of the Kepler workflow 

to a stand-alone CORSICA simulation (figure 3). In a second 

stage, to increase the modularity of the workflow, the vertical 

position control algorithm was moved outside CORSICA and 

implemented directly in Kepler as a new component of the 

workflow. It sends commands for the poloidal field systems 

simulated within the CORSICA component (figure 4). This 

workflow has been tested successfully and could control the 

plasma position during 10 s of an ITER hybrid scenario pla-

teau; after 10 s the vertical control is voluntarily switched off 

in the simulation and a Vertical Displacement Event occurs as 

expected (figure 5).

A second, more modular, integration example has been 

made with the DINA transport and free boundary equilibrium 

solver [14]. In this application, the structure of the workflow 

(see figure 6) respects the modular logic of the full tokamak 

simulator presented in figure 2. The DINA plasma simulator is 

contained within the ‘Tokamak’ blue box and its execution is 

Figure 3. Verification of the CORSICA-IMAS coupling (‘kepler’, solid lines) against the stand-alone CORSICA (‘corsica’, circles): 
evolution of the plasma boundary (left) and the safety factor and current density profiles (right) during an ITER current ramp-up. Both 
frameworks provide exactly the same results and the curves are perfectly superimposed.
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also commanded by a main time loop implemented explicitly 

in the Kepler workflow.

3.2. Fine-grained component integration

A finer granularity of the workflow description is nevertheless 

needed to be able to act on the components used within the 

plasma simulator itself. Making the internal structure of the 

plasma simulator explicit at the level of the workflow engine 

is a challenge but opens to a broader community the access 

to the components and even to the structure of the simulator 

itself (e.g. internal convergence or time loops). It makes the 

structure of the simulator fully transparent and enforces a 

standard method for coupling new components, independent 

of a particular code or programming language. Prototypes of 

such fine grained transport solver workflows have been dem-

onstrated already by the EU-ITM [1, 15] and it is foreseen to 

use a similar approach on IMAS. Fast data transfer between 

components, enabled by the memory cache mechanism of the 

access layer, as well as using a workflow engine written in a 

compiled language (Java for Kepler) are key elements to avoid 

a loss of performance with such fine grained workflows. It has 

been verified that the CRONOS-based European Transport 

Solver, fully modularized under Kepler has similar perfor-

mances than the original CRONOS version [16] which was 

implemented under another framework, namely Matlab. Some 

components may require specific hardware (e.g. GPU) or use 

MPI and/or OpenMP for their parallelization. Solutions have 

Figure 4. Screenshot showing the interactive execution of CORSICA integrated as a single component in Kepler, with an external vertical 
position controller. The Kepler GUI can be seen at the top right of the screen, displaying graphically the structure of this simple time loop 
workflow.

Figure 5. VDE triggered at t  =  310 s of an ITER hybrid scenario simulation with the CORSICA-IMAS workflow. Left: height of the 
magnetic axis. Middle: plasma shape and location of the gap measurements. Right: time traces of the gaps. The vertical dashed blue line 
indicates the time at which the vertical control is switched off.
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been developed in the EU-ITM project to enable the usage of 

MPI and OpenMP for Kepler workflow components, together 

with various distributed computing strategies (remote submis-

sion on grid or high performance computers, web services) 

[17, 18]. These solutions could be ported in the near future 

to the IMAS infrastructure to optimize the performance of 

various applications.

In preparation of the implementation of a fine grain trans-

port solver, basic and essential components such as a prescribed 

boundary equilibrium code (CHEASE [19]) and a neoclassical 

component (NCLASS [20]) have been integrated to IMAS.

4. Co-simulation with the plasma control system 

simulation platform

In this section, we describe a technical development allowing 

co-simulation between the tokamak plant simulator (imple-

mented under IMAS) and the plasma control system simulator 

(implemented under a separate platform, named the Plasma 

Control System simulation platform (PCSSP) [9–11]). The 

full tokamak simulator represented in figure 2 is thus imple-

mented using two different workflow engines for IMAS and 

the PCSSP, respectively Kepler and Simulink® [21]. This 

required the development of this co-simulation technique.

4.1. Synchronization scheme

In ITER, the PCS runs the tokamak by exchanging informa-

tion with the plant every specified ∆tsync time-steps, typically 

every 1 ms.

The dashed box represented in figure  7 repeats itself 

throughout the tokamak/simulation pulse and can be repre-

sented as follows:

The schema represented in figure 8 is what is implemented 

in simulators. The write/read data exchange is performed only 

once per time-step, to reduce synchronisation burden. This 

implies that the PCS delivers new actuator demands at time 

k  +  2 based on information received at time k  +  1. This delay 

is of course taken into account in the PCS model, to control 

the tokamak properly.

Figure 6. Overview of the implemented DINA-IMAS simulator (workflow designed and executed using the Kepler workflow engine), 
highlighting the coupling between the various elements of the full tokamak simulator: actuators, tokamak, diagnostics, plasma control 
system (PCS). The boxes correspond to high level components of the workflow and contain themselves more detailed sub-workflows. The 
arrows connecting the boxes represent the data flow, which consists of two main streams: the DINA simulation data bus (BUS), which stays 
on the IMAS side, and a representation of the ITER SDN, which is the interface between the PCS and the plant.

Figure 7. Schematic view of the tokamak-PCS coupling with 
synchronisation of information through the SDN every k predefined 
time-step. The PCS delivers actuators at k  +  2 based on plasma 
parameters obtained at k  +  1. A ∆tsync difference which is taken 
into account in the PCS controller.
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4.2. Global scheduling of the co-simulation

A co-simulation requires a master which will drive the whole 

calculation and schedule the execution of the worfklow 

engines according to the synchronization principles described 

above. Three options have been identified:

 1. IMAS/Kepler is the driver and the PCSSP is called via a 

Kepler component

 2. Simulink is the driver and the IMAS is called via an 

S-function

 3. The two suites are executed from outside, typically from 

a script/light framework and are executing in parallel.

One of the features of both Kepler and Simulink is to allow 

a graphical visualisation of the workflow and interactivity 

during its execution: a user may visualise part of the data flow, 

pause the workflow, change a parameter and then continue 

the workflow execution. These features are quite useful for 

development of control algorithms, which can be fine-tuned 

by trial and error. Therefore the requirement was to maintain 

those interactive features of the workflow engines during the 

co-simulation. The three scheduling options described above 

have been tested and it has been found that, due to the par-

ticularity of Simulink, full interactivity within Simulink was 

not guaranteed unless Simulink (that is the PCS environment) 

drove the coupled workflows. For this reason, it was decided 

to develop the co-simulation prototype using option 2.

The communication between the two workflow engine 

is implemented via TCP/IP sockets using the open source 

ZeroMQ software [22]. The content of the simulated 

Figure 8. IMAS/Tokamak-PCS coupling view as a time-loop incremental schema. This schema has been tested with a KEPLER-Simulink 
prototype.

Figure 9. Simulink part of the PCS-IMAS-Option 2 coupling. The box ‘simimasdialog’ contains an S-function within which the dialog 
with IMAS is provided.
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‘synchronous data network’ (SDN) is exchanged via this 

technology at every synchronisation time step. Potentially, the 

usage of TCP/IP sockets allows executing the two simulators 

on different computers.

4.3. General structure of the workflows

The two workflows have a similar general structure: a time 

loop implementing a step by step evolution of duration ∆tsync, 

communication components to read/write the SDN messages 

from/to the other simulator, an application specific workflow 

for simulating either the plant (IMAS) or the PCS.

Figure 9 shows the top level of the Simulink workflow. It 

contains the PCS algorithm itself (‘PCS simulator’ box) and 

other elements to couple to the IMAS workflow engine, which is 

viewed from the Simulink side as an S-function (red ‘communi-

cation with IMAS’ box). The ‘EventConf’ box provides a simple 

implementation of the event generator described on figure 2.

Clicking on the ‘start’ button in Simulink, in addition to 

initializing the Simulink workflow, also launches Kepler and 

starts the Kepler workflow execution. During the termination 

phase, Kepler is similarly closed from Simulink.

During normal execution, from time-step to time-step, 

the outputs of the PCS simulator are converted to the SDN 

Figure 10. IMAS part of the PCS-IMAS-Option 2 coupling. The box ‘PCSdialog’ contains an actor within which the dialog with PCS is 
provided. The conversion of the Kepler variables from/to the SDN structure is performed within the SDN2IMAS/SDN2PCS boxes.

Figure 11. Position of the magnetic axis, major radius (left) and height (right) during the DINA-PCSSP co-simulation of an ITER scenario. 
The vertical position controllers has a target of Z  =  0.52 m (dashed line) and reacts to scenario events (this explains the transient observed 
at t  =  0.39 s). 200 steps of ∆tsync  =  5 ms have been carried out in this first co-simulation with DINA.
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structure (in our case an array of 150 values called ‘SDN 

simulator’ on the figure). A trigger event value, emulating an 

event configuration (see below), is added to the SDN array 

and these 151 values are made available to the IMAS dialog 

S-function. The simimasdialog function sends these data to 

IMAS via ZeroMQ and then awaits the IMAS output that con-

sists of an array of the 150 values contained in the SDN struc-

ture. Once received, they are converted back into PCS inputs. 

The controller then calculates the new actuators values and the 

loop may continue.

The plant simulator is included within Kepler as shown in 

figure 10. The ‘Actuators Simulator’, ‘Diagnostic Simulator’ 

and ‘Plasma Simulator’ boxes correspond to the boxes shown 

in figure  2. Since we are showing here the DINA-IMAS 

workflow implemented as a co-simulation, the workflow is 

almost identical to the one of figure 6, the difference being the 

‘PCSdialog’ box which now contains the send/receive dialog 

with the PCS simulator. The logic of this workflow is sym-

metric to the Simulink one, i.e. the simulator calculates one 

time step ∆tsync, converts its output to the SDN, communi-

cates the SDN to the PCS, waits for receiving the new PCS 

commands, converts this input from SDN to input variables 

for the actuators and the time loop continues.

4.4. Demonstration case: DINA-IMAS

After having demonstrated with toy models the fully interac-

tive properties of the coupled simulators, namely event trig-

gering, live display and interactive parameter modification in 

both simulation engines, the co-simulation has been applied to 

a vertical position control algorithm with DINA as the plasma 

simulator. The very first results of this co-simulation are dis-

played in figure 11. Although the simulation parameters still 

need some tuning, this represents the first application of the 

co-simulation scheme to a true physical use case.

5. Conclusions

The main results of the IMAS design and prototyping phase 

are (i) a machine generic physics data model (ii) a proto-

type set of tools to access data and design integrated model-

ling workflows, (iii) first plasma simulators workflows and 

components implemented with various degrees of modu-

larity, (iv) a co-simulation scheme enabling coupled Plant/

PCSSP full tokamak simulations with two separate work-

flow engines, fully maintaining the interactive features of 

both engines.

The IMAS is still at an early stage of its development.  

It requires the help of the ITER members fusion community 

to progressively grow (primarily through the contribution of 

components), start being used (i.e. validate workflows for use 

on ITER) and gain maturity. The near future developments 

will include further extension of the data model, the integra-

tion of more physics components and the implementation of a 

transport solver as a fine grained workflow.

The IMAS is developed in support to the operation and 

research activities of the ITER experiment but has the poten-

tial to be applied to any fusion experiment. The data model 

and access layer will provide seamless access to any experi-

ment using a unique data dictionary. The IMAS components 

will be machine generic and receive all machine data as an 

input (thus getting away from the traditional hard-coding of 

machine data in some hidden part of physics codes). This 

represents a unique opportunity for the research commu-

nity in the ITER Members to start developing and testing 

the ITER Integrated Modelling & Analysis Suite to simulate 

present day tokamak devices and to analyse experimental 

data in preparation for ITER experiments. The ITER physics 

data model is already at a stage that allows deploying the 

first physical applications, such as e.g. equilibrium recon-

struction, various versions of the Plasma Simulator and the 

plasma reconstruction chain. The deployment of the IMAS 

with these applications will be carried out in 2016 on a real 

tokamak, namely the WEST experiment. ITPA activities will 

also use more and more IMAS in the near future for e.g. 

benchmarking exercises or ITER predictions. These activi-

ties will bring several new physics components in IMAS, 

further extending its capabilities and the scope of its scien-

tific applications.

Disclaimer

The views and opinions expressed herein do not necessarily 

reflect those of the ITER Organization.
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