
216 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(3) September 2006

1. INTRODUCTION

Bit parallel designs process all of the bits of an

input simultaneously at a signifi cant hardware cost. In

contrast, a bit serial structure processes the input one bit

at a time, generally using the results of the operations on

the fi rst bits to infl uence the processing of subsequent bits.

The advantage enjoyed by the bit serial design is that all

of the bits pass through the same logic, resulting in a huge

reduction in the required hardware. Typically, the bit serial

approach requires 1/mth of the hardware required for the

equivalent m-bit parallel design.

The price of this logic reduction is that the serial hardware

takes m clock cycles to execute, while the equivalent

parallel structure executes in one. The time-hardware

product, however, for the serial structure is often smaller

than for equivalent parallel designs because the logic delays

between registers are generally signifi cantly smaller. This

means that the serial machine can operate at a higher clock

frequency. In the case of FPGAs, signal routing contributes

signifi cant propagation delays and often uses up logic cells.

The serial structures tend to have very localized routing,

often to only one destination. In contrast, the parallel

machines usually need signals extended across the width

of the processing element. The limited and slow routing

resources in FPGAs make the serial processing elements

even more attractive. In some cases, the overall throughput

for a serial design implemented in an FPGA can actually

exceed that of an equivalent parallel design in the same

device.

In the case of DSP, the output sample is the sum

of a number of terms while the term itself represents a

multiplication of W-bit sample word and m-bit coeffi cient

word. Accordingly, the processing of the data in case of

DSP has two levels; the fi rst is on the level of the calculation

of the term (multiplication process) and the second level is

on the system level to get the output by accumulating the

outputs of the fi rst level. The fully serial implementation

uses one serial-bit multiplier to calculate the terms in serial

form and one accumulator to accumulate the results. Such

an implementation guarantees the minimum amount of

hardware required but at the same time produces a system

that cannot be used with any real-time application. On the

other hand, using a parallel multiplier for each term in

the expression of the fi lter together with a parallel adding

network to get the output, results in a tremendous amount

of hardware and very fast. Such high speeds are often not

required in many applications. Many of the researches

in the fi eld of DSP concentrate on fi nding algorithms

and implementation techniques that result in real-time

systems with reasonable hardware complexity that can be

implemented using FPGA devices.

In [2] and [3] the main architectural ideas are

reviewed. The powers-of-two coeffi cients are exploited

by Evans in [4]. The bit-serial approach is studied in [5],

[6]. In [7] and [8], the canonic signed digit arithmetic is

applied with the bit-serial style of implementation. [9]

constructs several circuits based on the digit-serial systolic

multiplier. In [10], [11], [13], [14], [15], [16], the distributed

arithmetic is introduced. Finally, a comparison between

DESIGN AND FPGA IMPLEMENTATION OF

DIGIT-SERIAL FIR FILTERS

D.S. Dawoud* and S. Masupa**

*Research Centre for Radio Access Technologies, School of Electrical, Electronic and

Computer engineering, University of KwaZulu Natal, King George V avenue, Durban, 4041,

South Africa

**University of Botswana, Faculty of Engineering, P.Bag 0022 , Gaborone, Botswana

Abstract: In this paper the design of a digital-serial N-tap FIR fi lter with programmable

coeffi cients is presented. The design considers the general case of W-bit sample word and m-

bit coeffi cient word. The processing of the data within the fi lter takes place with full precision.

The output data is truncated to W bits. The design introduced the new digit-serial multiplier

that guarantees minimum processing time and reduces the hardware requirements. Sign-

amplitude representation for the coeffi cients and two’s complement for the input samples

simplifi ed the circuit confi guration and allows the use of a single common two’s complement

circuit for all the fi lter sections. A 100-tap, 8-bit word length version fi lter is implemented

using an ALTERA FPGA device. The fi lter can be used in real-time processing with sample

rates ranging from 7.5 to 22 MHz

Key words: FIR fi lter, canonical and transposed forms, digit-serial multiplier, FPGA,

Multiply-accumulate unit.

“Copyright © 2004 IEEE”:“This paper was � rst published in AFRICON ’04, 15-17 September 2004, Gabarone, Botswana.”

Vol.97(3) September 2006 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 217

In our application, the coeffi cient H
i
has m bits width and

will be represented in sign-amplitude form. The input

sample has a word length W-bit and is represented in 2’s

complement form:

(2)

The fi lter equation, accordingly, will take the form:

(3)

The transposed forms (symmetrical and nonsymmetrical)

are considered in this paper.

Using sign-amplitude representation for the coeffi cients

and two’s complement form for the input samples results

in the following simple multiplication algorithm:

i. If the coeffi cient H
i
 is positive: multiply H

i

with the extended sign X
i ,

ii. If the coeffi cient H
i
 is negative: multiply the

amplitude of H
i
 with the extended sign two’s

complement of the input sample X
i
.

The result of the multiplication will be in the two’s

complement form. Figure 1a shows the direct (transversal

or canonical) form fl ow diagrams of equation (1) while

Figure 1b shows the transposed structure form of N-tap

FIR fi lter.

The main advantage of FIR fi lters is its linear-

phase response. This property is achieved when the

impulse response satisfi es the symmetry or non-symmetry

conditions. Symmetric FIR fi lter topologies for both

canonical and transposed forms are shown in Figure 2.

The non-symmetrical structure needs N multipliers. This

number is signifi cantly reduced in the symmetrical case:

(N-1)/2 if N is odd and N/2 if N is even.

serial and parallel approaches is presented in [1]. From the

implementation side, references [2], [3], [4], [7], [8], [9],

[10], [11], [12], [13], [14] use Xilinx chips; [15] and [16]

Altera devices; [1] both Xilinx and Altera; [4] both Orca

and Xilinx; and [5] uses CLI.

The proposed structure calculates each term in

serial form using multiply-accumulate (MAC) block, and

uses N MAC blocks (N is the number of taps in the fi lter)

working in parallel to get the fi nal output sample. In serial

processing, to keep full precision along the whole datapath

during the multiplication H
i.
.X

i
 and the accumulation of

these values, the system needs registers of word length

(W
in-data

 + m
coeffi cient

 + log
2

N) and the same number of cycles

is required to complete the multiply/accumulate operation.

The proposed MAC hardware reduces the number of cycles

to half this value.

The organization of this paper is as follows. In

the next section the FIR fi lter architecture, the different

canonical and inverted form topologies to design FIR fi lters

are summarized. The expression and the topology that we

are going to consider in implementation are explained.

Section 3 covers all the design and implementation aspects.

The digit-serial architectures are briefl y exposed, the basic

digit-serial adder cell is explained, the proposed digit-

serial multiplier is also given and fi nally the input/output/

control block is given. Section 4 deals with the FPGA

implementation while in section 5 some conclusions and

results are given.

2. FIR STRUCTURE

The N-tap FIR digital fi lter is normally described by the

equation:

(1)

1

0

)(
N

i

ini XHny

2

0

1

1 22
W

i

i

iW

W

n xxX

1

0

1

0

2

0

,

1

1, 2)2()(
N

i

N

i

W

j

j

jini

W

Wini xHxHny

Figure 1 FIR fi lter Structures: (a) canonical form; (b) inverted form

(a)

(b)

218 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(3) September 2006

Figure 2 Symmetric FIR fi lter structures: a) canonical

form; b) transposed form

(a)

(b)

1

0

1

1

00)()()()()(
N

j

j

N

j

jp jnXHjnXHnXHnyny

3. THE PROPOSED FPGA-BASED FIR FILTER

STRUCTURE

The N-tap FIR fi lter structure is shown in Figure 3. It

consists of one input/output unit and an array of N multiply-

accumulate (MAC) blocks with coeffi cient storage. In the

case of a nonsymmetrical fi lter, each MAC cell receives

two sets of signals, one from the input/output unit and one

from the previous cell. The cell processes the received data

and propagates the result in serial form to the next cell.

In case of symmetrical fi lter, each cell receives three sets

of data; one set from the input/output unit, the second an

accumulated value from the previous cell and the third an

accumulated value from the next cell. The cell processes

the received data and generates two accumulated values;

one of these propagates to the next cell and the other to

the previous one. In the following, the basic blocks are

considered.

3.1 The Multiplier-Accumulator (MAC) Unit

The basic unit in our design is the MAC unit.

For N-tap fi lter, at sampling instant n, the ith MAC block

receives the input sample X(n-i) and calculates the partial

value y
pi
, where:

 (4)

with,

The fi rst term in equation (4) represents the multiplication

operation and the second term represents the accumulated

sum of all the terms of the fi lter equation starting from the

last term (H
N-1

X(n-N+1)) up to H
i+1

X(n-i-1). This means

that the MAC unit implements the multiplication and

accumulation operations. To achieve its function, the MAC

is composed, in general, of three blocks: two’s complement

circuit controlled by the sign of the coeffi cient; next is a

serial-multiplier to implement the serial-bit multiplication;

the third block is a storage section. The storage section

consists of one parallel-in (or serial-in)-parallel-out register

to store one of the coeffi cients and one serial-in-serial-out

register to store the accumulated value. As mentioned in

section-1, to keep full precision along the whole datapath

the length of the register storing the accumulated value

is (W
in-data

 + m
coeffi cient

 + log
2

N) and the serial multiplier

needs the same number of cycles to complete the multiply/

accumulate operation.

To reduce the hardware requirements and to

reduce the processing time, we are proposing the use of one

common two’s complement circuit as part from the input/

output unit and to use a new serial multiplier (serial-digit

multiplier slice) that needs half the number of cycles to get

the result. The proposed serial-digit multiplier generates

two bits simultaneously from the partial value y
pi
 at each

cycle.

In the following sections we are going to start

by introducing the serial-bit multiplier and then the other

blocks that form the MAC cell.

Digit-Serial Architectures

In digit-serial computation, data words of size L

bits are partitioned into digits of size K bits (the digit-size,

K, is divisor of the word-size, L) and are processed serially

one digit at a time with the least signifi cant digit fi rst. A

complete word is processed in P = L/K clock cycles and

consecutive words follow each other continuously. The

time of P cycles is named a sample period. In every digit-

serial operator, it is necessary to add some control signal

to indicate a new word entry. The digit-serial processors

include parallel-serial and serial-parallel converters to

process in digit format and to present the result in parallel

format. A set of digit-serial architectures can be designed

by using different digit-sizes.

1

1

)]([)()(
N

iJ

jipi jnXHinXHnyy
pi

(n–j)]

Vol.97(3) September 2006 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 219

To implement the multiplication operation H.X,

we normally generate a partial product matrix with m (m

is the width of H) rows and W+m vertical lines (W is the

word length of X). The bits forming vertical line j have the

same weight 2j. In our proposal we are going to deal with

the bits of the vertical lines and split them into digits of

two bits each.

2-bit Full Adder (2 bits Digit-Serial Adder)

Figure 4a shows the conventional single-bit full

adder with three inputs and two outputs. The single-bit full

Figure 3 Proposed FPGA Implementation

adder adds bit a
i
 of word A, bit b

i
 of word B and an input

carry bit c
in
 and generates the sum bit s

i
and the output

carry bit c
out

. The basic element used to build the MAC of

the proposed system is a two-bit full adder. In literature it is

known as digit-serial adder with digit size K=2. This adder

is shown in Figure 4b. The digit-serial full adder has, in its

general form, fi ve inputs (a
i
 , a

i+1
, x

i
, x

i+1
, and c

in
) and three

outputs s
i
, s

i+1
 and c

out
, where s

i
 and s

i+1
 represent the sum

of the input signals with the carry c
out

 propagates back to

the input after one delay period. In case of FPGA devices,

the digit-serial adder element can be implemented using a

look-up-table (LUT) or, as in our implementation, by using

two single-bit full adders together with some fl ip-fl ops to

store the outputs. The digit-serial adder symbol is given in

Figure 4c.

Figure 4 a) Full adder; b) digit-serial adder with K=2;

c) symbol of the digit-serial adder

Digit –Serial Multiplier

The proposed digital-serial multiplier is shown in

Figure 5 for the case of a fi lter coeffi cient word length of

8 bits. The word length of the input sample has no effect

on the hardware. In case of using 16 bits coeffi cients, two

circuits can be cascaded.

It is possible to look to the proposed digit-serial

multiplier as a modifi ed form of one of the slices used to

implement the Wallace-tree parallel multiplier. Here, the

slice processes at the same time two columns of the partial

product matrix without any horizontal propagation for the

carry. The depth of the slice equals to the word length of

the coeffi cient A
i
. The proposed digital-serial multiplier

splits the partial product matrix of the product A
i
.X

i
 into

vertical slices each of two columns of weight 2j and 2J+1 and

processes the slices in serial form to reduce the hardware.

At cycle j, the MAC hardware generates the elements of

columns number (2j-1) and (2j). The elements of the two

columns represent the inputs of the digit-serial multiplier

circuit. The outputs of the multiplier are the two bits s
2j

and

s
(2j-1)

of the fi nal product. The circuit delays the carry bits

generated within the circuit during cycle j to be used in the

next cycle. To achieve the accumulation, equation (4), we

use a one digit-serial adder to add the output bits s
2j

and s
2j-1

220 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(3) September 2006

of the multiplier together with the two bits that have the

same weights of the previous accumulated value to get the

bits of the new accumulated value. The process is repeated

(m+W)/2 times to get the output. A control signal is used

to clear all the carry bits before starting the multiplication

of new words.

Multiplexer Block

To reduce the hardware requirements, we used

one common two’s complement circuit as part of the Input/

Output block. The Input/Output block forms directly the

two’s complement of the received input signal and feeds

the MAC with the direct and the two’s complement forms

of the input sample. The input stage of the MAC circuit is

a set of m 2x1 multiplexers. The bits of the direct and the

two’s complement forms of the input signal are connected

to the inputs of the M multiplexers. The sign bit of the

corresponding coeffi cient controls the multiplexers.

Register Block

Each MAC has two registers:

1. (m+1)-bit register to store the coeffi cient a
i
 . The

coeffi cient is stored in sign-amplitude form with m bits

to store the amplitude. This register can be either serial-

in parallel-out (SIPO) or parallel-in-parallel-out (PIPO)

register.

The coeffi cients are stored as constant cells in the FPGA

architecture. Any one or more of the coeffi cients can be

modifi ed by sending the appropriate bit stream(s) to the

FPGA.

 2. Serial-in-serial-out (SISO) register: This register

is used to store the intermediate values y
pi

. The MAC can

be designed to processes the data with full precision. The

length of this register will vary accordingly from W+m+1

for i = N-1 to W+m+log
2
N for the output MAC (i.e. for i =

0). In our case, we select double precision, i.e., the register

length equals to (m+W).

3.2 The Input /Output and Control Unit

Both the input and the output of the fi lter are serial

data streams with each word presented least signifi cant bit

fi rst. The input words are of the same length as the output.

For precision processing, the intermediate word length is

equal to the sum of the word sizes of the input (number

of bits excluding sign extension required for processor),

the coeffi cients (length of multipliers) and the number of

levels in the digit-serial multiplier slice. The word size of

the input need not be the same as that of the coeffi cients.

The input is sign extended to bring it to the same length as

the output. This requirement is due to the nature of the serial

processing; the inputs need to be as long as the outputs.

The extra few bits due to the digit-serial multiplier allow

the column sum to grow without overfl ow. The multiplier

array must be reset before each new word begins to shift

in. The delays, however, cannot be reset since they hold the

old words. In the FPGA implementation, a local reset was

wired to the array columns corresponding to the multipliers

Figure 5 Digit-serial array multiplier with digit-size K=2

Vol.97(3) September 2006 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 221

instead of the global reset. This local reset was brought out

as a control line in addition to the global reset that clears

the fi lter.

Cascading two fi lters may obtain more taps. This

is done by adding an extra word delay to the end of the delay

chain to feed the serial input of the second fi lter. The serial

outputs of the two fi lters are summed using a serial adder

to obtain the fi nal output. This expansion scheme can be

extended to create any number of taps. The block diagram

of the Input unit is shown in Figure 6. It consists of three

main blocks: input registers; bit-serial two’s complement

block; and control unit.

Bit-Serial Two’s Complement Unit

 In the proposed FIR fi lter, the coeffi cients and the

sample inputs are signed numbers. As mentioned before,

the system uses two’s complement representation for the

input samples, and sign-amplitude representation for the

coeffi cients. To allow all the MAC blocks used to build the

fi lter to work in parallel, each block must contain a separate

bit serial two’s complementor. This solution presents a

large waste in the hardware. To reduce the hardware, the

circuit of the proposed MAC has two sets of inputs each

of m bits. The fi rst set carries the bits of the input sample

X(n-i) directly, and the other input receives the bits of

the two’s complement of the input sample. The two sets

of input signals are connected to an m 2x1 multiplexers

controlled by the sign bit of the corresponding coeffi cient.

By this way, the system uses only one common two’s

complementor which is a part of the input unit of the fi lter.

The circuit of the two’s complementor consists of two fl ip-

fl ops, an XOR gate and an OR gate. One of the two fl ip-

fl ops acts as detection fl ip-fl op and it must be reset before

starting processing each new input sample. This is because

the detection fl ip-fl op causes the XOR to invert the input

continuously after the fi rst “1” is detected.

Multiple Precision to Single Precision Block

 The full precision data has to be truncated to

single precision before going into the fi nal serial-parallel

converter. In the case of W-bit word, the only useful bits for

us are the W most signifi cant bits of the result. Therefore,

to feed these W bits into the serial-parallel converter these

have to arrive with the right format.

Control of the fi lter is achieved by generating an

initialization signal at each new sample time. This single

clock-cycle wide pulse is delivered to the fi lter as the LSB

of each sample is presented to the multipliers. This signal

ensures that the carry signals are reset at the beginning of

each process cycle. (Delayed versions of this signal are

input to the serial column adder, initialising each carry-

save adder in the adder tree).

4. FPGA IMPLEMENTATION

The fi lter described above was implemented

in an ALTERA EPF10K200SRC240-1 FPGA. Default

placement and routing compilation options were selected.

The FPGA chip accommodated the Input/Output/Control

unit and 100 MAC units allowing 200-tap symmetrical FIR

fi lter. The bit-serial implementation reaches a real –time

operation nearly to 7.5 MHz. As a matter of fact, another

version is tested using LUT to implement the digit-serial

adder.

5. CONCLUSIONS

A study of full precision digital-serial FIR fi lter with

programmable coeffi cients has been presented. Symmetrical

and nonsymmetrical inverted form FIR fi lters have been

considered. The design methodology using each of these

structures has been detailed and implemented in an ALTERA

FPGA device. The area-time calculation for the proposed

system and some of the existing system showed a great

improvement using our system. The main improvement

came from the proposed digit-serial multiplier. As a matter

of fact, the hardware requirement to build one of the digit-

serial multiplier slice is W/2 times less than the hardware

required to build one parallel multiplier.

The fi lter has been automatically implemented using the

default parameters of the partitioning, placement, and

routing tools. Thus, in critical applications, an important

area reduction and speedup can be expected if some of

these tasks are manually performed.

Figure 6 Input/Output Unit

222 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.97(3) September 2006

6. REFERENCES

[1] R. Petersen and B. Hutchings, “An Asssesment of the

Suitability of FPGA-based Systems for Use in DSPs”,

in Lecture Notes in Computer Science, nº975, pp.293-

302, Springer-Verlag, Berlin: 1995.

[2] Chi-Jui Chou, Satish Mohanakrishnan, and Joseph

B. Evans, “FPGA Implementation of Digital

Filters”, Proc. Int. Conf. Signal Proc. Appl. & Tech.

(ICSPAT’93), 1993.

[3] J. Isoaho, J. Nousiainen and O. Vainio, “FPGA-

implementable Digital Filters”, More FPGAs, Eds.

W.R. Moore and W. Luk, Abindon EE&CS books,

1994.

[4] Joseph B. Evans, “Effi cient FIR Filter Architectures

Suitable for FPGA Implementation”, IEEE Trans.

Circuits & Systems, July 1994.

[5] R.J.Andraka, “FIR fi lters fi ts in an FPGAs using a Bit-

Serial approach”, 3rd PLD Conference, Mar 1993.

[6] J. Hancq, H. Leich, “Implementation of digital fi lters

on reconfi gurable Field-Programmable Gate Arrays”,

Signal Processing VII: Theories and Applications, Eds.

M.Holt, C. Cowan, P. Grant, W. Sandham, 1994.

[7] L.E. Turner, P.J.W. Graumann, and S.G. Gibb, “Bit-

serial FIR Filters with CSD Coeffi cients for FPGA”,

in Lecture Notes in Computer Science, nº975, pp.310-

320, Springer-Verlag, Berlin: 1995.

[8] Shousheng He, Mats Torkelson, “FPGA Implementation

of FIR Filters Using Pipelined Bit-Serial Canonical

Signed Digit Multipliers”, IEEE 1994 Custom

Integrated Circuits Conference.

[9] H. Lee and G. Sobelman, “FPGA-Based FIR Filters

Using Digit-Serial Arithmetic,”, Proc. of the Tenth

Annual IEEE International ASIC Conference and

Exhibit, pp. 225-228, 1997.

[10] Les Mintzer, “FIR Filters with Field-Programmable

Gate Arrays”, Journal of VLSI Signal Processing, vol.

6, pp. 119-127, 1993.

[11] Xilinx, “The fastest fi lter in the west”, Xilinx Inc.,

http:\www.xilinx.com.

[12] “The role of the distributed aritmetic in FPGA-based

signal processing”, Xilinx Inc., http://www.xilinx.

com.

[13] G.Goslin. A Guide to Using FPGAs for Application-

Specifi c Digital Signal Processing Peformance. Xilinx

Inc.

[14] G.Goslin, and and Bruce Newgard, “16-Tap, 8-bit FIR

Filter Application Guide”, Xilinx Inc., http://www.

xilinx.com, 1994.

[15] Altera, “Implementing FIR Filters in FLEX Devices”,

A-AN-073-01, http;//www.altera.com.

[16] Altera, “FIR Filters”,A-FS-01-01, http:// www.altera.

com, 1996.

[17] ALTERA, “Data Book”, 2000.

