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1.    INTRODUCTION

Bit parallel designs process all of the bits of an 

input simultaneously at a signifi cant hardware cost. In 

contrast, a bit serial structure processes the input one bit 

at a time, generally using the results of the operations on 

the fi rst bits to infl uence the processing of subsequent bits. 

The advantage enjoyed by the bit serial design is that all 

of the bits pass through the same logic, resulting in a huge 

reduction in the required hardware. Typically, the bit serial 

approach requires 1/mth of the hardware required for the 

equivalent m-bit parallel design.

The price of this logic reduction is that the serial hardware 

takes m clock cycles to execute, while the equivalent 

parallel structure executes in one. The time-hardware 

product, however, for the serial structure is often smaller 

than for equivalent parallel designs because the logic delays 

between registers are generally signifi cantly smaller. This 

means that the serial machine can operate at a higher clock 

frequency. In the case of FPGAs, signal routing contributes 

signifi cant propagation delays and often uses up logic cells. 

The serial structures tend to have very localized routing, 

often to only one destination. In contrast, the parallel 

machines usually need signals extended across the width 

of the processing element. The limited and slow routing 

resources in FPGAs make the serial processing elements 

even more attractive. In some cases, the overall throughput 

for a serial design implemented in an FPGA can actually 

exceed that of an equivalent parallel design in the same 

device.

In the case of DSP, the output sample is the sum 

of a number of terms while the term itself represents a 

multiplication of W-bit sample word and m-bit coeffi cient 

word. Accordingly, the processing of the data in case of 

DSP has two levels; the fi rst is on the level of the calculation 

of the term (multiplication process) and the second level is 

on the system level to get the output by accumulating the 

outputs of the fi rst level. The fully serial implementation 

uses one serial-bit multiplier to calculate the terms in serial 

form and one accumulator to accumulate the results. Such 

an implementation guarantees the minimum amount of 

hardware required but at the same time produces a system 

that cannot be used with any real-time application. On the 

other hand, using a parallel multiplier for each term in 

the expression of the fi lter together with a parallel adding 

network to get the output, results in a tremendous amount 

of hardware and very fast. Such high speeds are often not 

required in many applications. Many of the researches 

in the fi eld of DSP concentrate on fi nding algorithms 

and implementation techniques that result in real-time 

systems with reasonable hardware complexity that can be 

implemented using FPGA devices.

In [2] and [3] the main architectural ideas are 

reviewed. The powers-of-two coeffi cients are exploited 

by Evans in [4]. The bit-serial approach is studied in [5], 

[6]. In [7] and [8], the canonic signed digit arithmetic is 

applied with the bit-serial style of implementation. [9] 

constructs several circuits based on the digit-serial systolic 

multiplier. In [10], [11], [13], [14], [15], [16], the distributed 

arithmetic is introduced. Finally, a comparison between 
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In our application, the coeffi cient H
i
has m bits width and 

will be represented in sign-amplitude form. The input 

sample has a word length W-bit and is represented in 2’s 

complement form:

(2)

The fi lter equation, accordingly, will take the form:

(3)

The transposed forms (symmetrical and nonsymmetrical) 

are considered in this paper.

Using sign-amplitude representation for the coeffi cients 

and two’s complement form for the input samples results 

in the following simple multiplication algorithm:

i. If the coeffi cient H
i
 is positive: multiply H

i

with the extended sign X
i ,

ii. If the coeffi cient H
i
 is negative: multiply the 

amplitude of H
i
 with the extended sign two’s 

complement of the input sample X
i
.

The result of the multiplication will be in the two’s 

complement form. Figure 1a shows the direct (transversal 

or canonical) form fl ow diagrams of equation (1) while 

Figure 1b shows the transposed structure form of N-tap 

FIR fi lter.

The main advantage of FIR fi lters is its linear-

phase response. This property is achieved when the 

impulse response satisfi es the symmetry or non-symmetry 

conditions. Symmetric FIR fi lter topologies for both 

canonical and transposed forms are shown in Figure 2. 

The non-symmetrical structure needs N multipliers. This 

number is signifi cantly reduced in the symmetrical case: 

(N-1)/2 if N is odd and N/2 if N is even.

serial and parallel approaches is presented in [1]. From the 

implementation side, references [2], [3], [4], [7], [8], [9], 

[10], [11], [12], [13], [14] use Xilinx chips; [15] and [16] 

Altera devices; [1] both Xilinx and Altera; [4] both Orca 

and Xilinx; and [5] uses CLI. 

The proposed structure calculates each term in 

serial form using multiply-accumulate (MAC) block, and 

uses N MAC blocks (N is the number of taps in the fi lter) 

working in parallel to get the fi nal output sample. In serial 

processing, to keep full precision along the whole datapath 

during the multiplication H
i.
.X

i
 and the accumulation of 

these values, the system needs registers of word length 

(W
in-data

 + m
coeffi cient

 + log
2

N) and the same number of cycles 

is required to complete the multiply/accumulate operation. 

The proposed MAC hardware reduces the number of cycles 

to half this value.

The organization of this paper is as follows. In 

the next section the FIR fi lter architecture, the different 

canonical and inverted form topologies to design FIR fi lters 

are summarized. The expression and the topology that we 

are going to consider in implementation are explained. 

Section 3 covers all the design and implementation aspects. 

The digit-serial architectures are briefl y exposed, the basic 

digit-serial adder cell is explained, the proposed digit-

serial multiplier is also given and fi nally the input/output/

control block is given. Section 4 deals with the FPGA 

implementation while in section 5 some conclusions and 

results are given.

2.    FIR STRUCTURE

The N-tap FIR digital fi lter is normally described by the 

equation:
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Figure 1 FIR fi lter Structures: (a) canonical form; (b) inverted form
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Figure 2 Symmetric FIR fi lter structures: a) canonical 

form; b) transposed form

(a)

(b)
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3.    THE PROPOSED FPGA-BASED FIR FILTER 

STRUCTURE

The N-tap FIR fi lter structure is shown in Figure 3. It 

consists of one input/output unit and an array of N multiply-

accumulate (MAC) blocks with coeffi cient storage. In the 

case of a nonsymmetrical fi lter, each MAC cell receives 

two sets of signals, one from the input/output unit and one 

from the previous cell. The cell processes the received data 

and propagates the result in serial form to the next cell. 

In case of symmetrical fi lter, each cell receives three sets 

of data; one set from the input/output unit, the second an 

accumulated value from the previous cell and the third an 

accumulated value from the next cell. The cell processes 

the received data and generates two accumulated values; 

one of these propagates to the next cell and the other to 

the previous one.  In the following, the basic blocks are 

considered.

3.1    The Multiplier-Accumulator (MAC) Unit

The basic unit in our design is the MAC unit. 

For N-tap fi lter, at sampling instant n, the ith MAC block 

receives the input sample X(n-i) and calculates the partial 

value y
pi
, where:

        (4)

with,

The fi rst term in equation (4) represents the multiplication 

operation and the second term represents the accumulated 

sum of all the terms of the fi lter equation starting from the 

last term (H
N-1

X(n-N+1)) up to H
i+1

X(n-i-1). This means 

that the MAC unit implements the multiplication and 

accumulation operations. To achieve its function, the MAC 

is composed, in general, of three blocks: two’s complement 

circuit controlled by the sign of the coeffi cient; next is a 

serial-multiplier to implement the serial-bit multiplication; 

the third block is a storage section. The storage section 

consists of one parallel-in (or serial-in)-parallel-out register 

to store one of the coeffi cients and one serial-in-serial-out 

register to store the accumulated value. As mentioned in 

section-1, to keep full precision along the whole datapath 

the length of the register storing the accumulated value 

is (W
in-data

 + m
coeffi cient

 + log
2

N) and the serial multiplier 

needs the same number of cycles to complete the multiply/

accumulate operation.

To reduce the hardware requirements and to 

reduce the processing time, we are proposing the use of one 

common two’s complement circuit as part from the input/

output unit and to use a new serial multiplier (serial-digit 

multiplier slice) that needs half the number of cycles to get 

the result. The proposed serial-digit multiplier generates 

two bits simultaneously from the partial value y
pi
 at each 

cycle.

In the following sections we are going to start 

by introducing the serial-bit multiplier and then the other 

blocks that form the MAC cell.

Digit-Serial Architectures

In digit-serial computation, data words of size L 

bits are partitioned into digits of size K bits (the digit-size, 

K, is divisor of the word-size, L) and are processed serially 

one digit at a time with the least signifi cant digit fi rst. A 

complete word is processed in P = L/K clock cycles and 

consecutive words follow each other continuously. The 

time of P cycles is named a sample period. In every digit-

serial operator, it is necessary to add some control signal 

to indicate a new word entry. The digit-serial processors 

include parallel-serial and serial-parallel converters to 

process in digit format and to present the result in parallel 

format. A set of digit-serial architectures can be designed 

by using different digit-sizes.

1

1
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To implement the multiplication operation H.X,

we normally generate a partial product matrix with m (m

is the width of H) rows and W+m vertical lines (W is the 

word length of X). The bits forming vertical line j have the 

same weight 2j. In our proposal we are going to deal with 

the bits of the vertical lines and split them into digits of 

two bits each.

2-bit Full Adder (2 bits Digit-Serial Adder)

Figure 4a shows the conventional single-bit full 

adder with three inputs and two outputs. The single-bit full 

Figure 3 Proposed FPGA Implementation

adder adds bit a
i
 of word A, bit b

i
 of word B and an input 

carry bit c
in
 and generates the sum bit s

i
and the output 

carry bit c
out

. The basic element used to build the MAC of 

the proposed system is a two-bit full adder. In literature it is 

known as digit-serial adder with digit size K=2. This adder 

is shown in Figure 4b. The digit-serial full adder has, in its 

general form, fi ve inputs (a
i
 , a

i+1
, x

i
, x

i+1
, and c

in
) and three 

outputs s
i
, s

i+1
 and c

out
, where s

i
 and s

i+1
 represent the sum 

of the input signals with the carry c
out

 propagates back to 

the input after one delay period. In case of FPGA devices, 

the digit-serial adder element can be implemented using a 

look-up-table (LUT) or, as in our implementation, by using 

two single-bit full adders together with some fl ip-fl ops to 

store the outputs. The digit-serial adder symbol is given in 

Figure 4c. 

Figure 4 a) Full adder; b) digit-serial adder with K=2;

c) symbol of the digit-serial adder

Digit –Serial Multiplier

The proposed digital-serial multiplier is shown in 

Figure 5 for the case of a fi lter coeffi cient word length of 

8 bits. The word length of the input sample has no effect 

on the hardware. In case of using 16 bits coeffi cients, two 

circuits can be cascaded.

It is possible to look to the proposed digit-serial 

multiplier as a modifi ed form of one of the slices used to 

implement the Wallace-tree parallel multiplier. Here, the 

slice processes at the same time two columns of the partial 

product matrix without any horizontal propagation for the 

carry. The depth of the slice equals to the word length of 

the coeffi cient A
i
. The proposed digital-serial multiplier 

splits the partial product matrix of the product A
i
.X

i
 into 

vertical slices each of two columns of weight 2j and 2J+1 and

processes the slices in serial form to reduce the hardware. 

At cycle j, the MAC hardware generates the elements of 

columns number (2j-1) and (2j). The elements of the two 

columns represent the inputs of the digit-serial multiplier 

circuit. The outputs of the multiplier are the two bits s
2j

and

s
(2j-1)

of the fi nal product. The circuit delays the carry bits 

generated within the circuit during cycle j to be used in the 

next cycle. To achieve the accumulation, equation (4), we 

use a one digit-serial adder to add the output bits s
2j

and s
2j-1
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of the multiplier together with the two bits that have the 

same weights of the previous accumulated value to get the 

bits of the new accumulated value. The process is repeated 

(m+W)/2 times to get the output. A control signal is used 

to clear all the carry bits before starting the multiplication 

of new words.

Multiplexer Block

To reduce the hardware requirements, we used 

one common two’s complement circuit as part of the Input/

Output block. The Input/Output block forms directly the 

two’s complement of the received input signal and feeds 

the MAC with the direct and the two’s complement forms 

of the input sample. The input stage of the MAC circuit is 

a set of m 2x1 multiplexers. The bits of the direct and the 

two’s complement forms of the input signal are connected 

to the inputs of the M multiplexers. The sign bit of the 

corresponding coeffi cient controls the multiplexers.  

Register Block

Each MAC has two registers:

1. (m+1)-bit register to store the coeffi cient a
i
 . The 

coeffi cient is stored in sign-amplitude form with m bits 

to store the amplitude. This register can be either serial-

in parallel-out (SIPO) or parallel-in-parallel-out (PIPO) 

register.

The coeffi cients are stored as constant cells in the FPGA 

architecture. Any one or more of the coeffi cients can be 

modifi ed by sending the appropriate bit stream(s) to the 

FPGA.

 2. Serial-in-serial-out (SISO) register:  This register 

is used to store the intermediate values y
pi

. The MAC can 

be designed to processes the data with full precision. The 

length of this register will vary accordingly from W+m+1

for i = N-1 to W+m+log
2
N for the output MAC (i.e. for i = 

0).  In our case, we select double precision, i.e., the register 

length equals to (m+W).

3.2    The Input /Output and Control Unit

Both the input and the output of the fi lter are serial 

data streams with each word presented least signifi cant bit 

fi rst. The input words are of the same length as the output. 

For precision processing, the intermediate word length is 

equal to the sum of the word sizes of the input (number 

of bits excluding sign extension required for processor), 

the coeffi cients (length of multipliers) and the number of 

levels in the digit-serial multiplier slice. The word size of 

the input need not be the same as that of the coeffi cients. 

The input is sign extended to bring it to the same length as 

the output. This requirement is due to the nature of the serial 

processing; the inputs need to be as long as the outputs. 

The extra few bits due to the digit-serial multiplier allow 

the column sum to grow without overfl ow. The multiplier 

array must be reset before each new word begins to shift 

in. The delays, however, cannot be reset since they hold the 

old words. In the FPGA implementation, a local reset was 

wired to the array columns corresponding to the multipliers 

Figure 5 Digit-serial array multiplier with digit-size K=2
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instead of the global reset. This local reset was brought out 

as a control line in addition to the global reset that clears 

the fi lter.

Cascading two fi lters may obtain more taps. This 

is done by adding an extra word delay to the end of the delay 

chain to feed the serial input of the second fi lter. The serial 

outputs of the two fi lters are summed using a serial adder 

to obtain the fi nal output. This expansion scheme can be 

extended to create any number of taps. The block diagram 

of the Input unit is shown in Figure 6. It consists of three 

main blocks: input registers; bit-serial two’s complement 

block; and control unit. 

Bit-Serial Two’s Complement Unit

 In the proposed FIR fi lter, the coeffi cients and the 

sample inputs are signed numbers. As mentioned before, 

the system uses two’s complement representation for the 

input samples, and sign-amplitude representation for the 

coeffi cients. To allow all the MAC blocks used to build the 

fi lter to work in parallel, each block must contain a separate 

bit serial two’s complementor. This solution presents a 

large waste in the hardware. To reduce the hardware, the 

circuit of the proposed MAC has two sets of inputs each 

of m bits. The fi rst set carries the bits of the input sample 

X(n-i) directly, and the other input receives the bits of 

the two’s complement of the input sample. The two sets 

of input signals are connected to an m 2x1 multiplexers 

controlled by the sign bit of the corresponding coeffi cient. 

By this way, the system uses only one common two’s 

complementor which is a part of the input unit of the fi lter. 

The circuit of the two’s complementor consists of two fl ip-

fl ops, an XOR gate and an OR gate. One of the two fl ip-

fl ops acts as detection fl ip-fl op and it must be reset before 

starting processing each new input sample. This is because 

the detection fl ip-fl op causes the XOR to invert the input 

continuously after the fi rst “1” is detected.

Multiple Precision to Single Precision Block

 The full precision data has to be truncated to 

single precision before going into the fi nal serial-parallel 

converter. In the case of W-bit word, the only useful bits for 

us are the W most signifi cant bits of the result. Therefore, 

to feed these W bits into the serial-parallel converter these 

have to arrive with the right format.

Control of the fi lter is achieved by generating an 

initialization signal at each new sample time. This single 

clock-cycle wide pulse is delivered to the fi lter as the LSB 

of each sample is presented to the multipliers. This signal 

ensures that the carry signals are reset at the beginning of 

each process cycle. (Delayed versions of this signal are 

input to the serial column adder, initialising each carry-

save adder in the adder tree).

4.    FPGA IMPLEMENTATION

The fi lter described above was implemented 

in an ALTERA EPF10K200SRC240-1 FPGA. Default 

placement and routing compilation options were selected. 

The FPGA chip accommodated the Input/Output/Control 

unit and 100 MAC units allowing 200-tap symmetrical FIR 

fi lter. The bit-serial implementation reaches a real –time 

operation nearly to 7.5 MHz. As a matter of fact, another 

version is tested using LUT to implement the digit-serial 

adder.

5.    CONCLUSIONS

A study of full precision digital-serial FIR fi lter with 

programmable coeffi cients has been presented. Symmetrical 

and nonsymmetrical inverted form FIR fi lters have been 

considered. The design methodology using each of these 

structures has been detailed and implemented in an ALTERA 

FPGA device. The area-time calculation for the proposed 

system and some of the existing system showed a great 

improvement using our system. The main improvement 

came from the proposed digit-serial multiplier. As a matter 

of fact, the hardware requirement to build one of the digit-

serial multiplier slice is W/2 times less than the hardware 

required to build one parallel multiplier.

The fi lter has been automatically implemented using the 

default parameters of the partitioning, placement, and 

routing tools. Thus, in critical applications, an important 

area reduction and speedup can be expected if some of 

these tasks are manually performed.

Figure 6 Input/Output Unit
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