
African Physical Review (2008) 2 Special Issue (Microelectronics): 0004 7

Design and Hardware Implementation of Embedded Controller Devices

Slim Ben Othman and Slim Ben Saoud
INSAT / LECAP-EPT, Tunisia

1. Introduction

The goal of this work is to implement a PI
controller on FPGA device using RTL Processor
architecture composed of specific Finite State
Machine associated with the custom Data-path
(FSMD). In this project, we are interested in the
current loop controller with a variable speed DC
motor control. However, in order to generalize
this study to any other system, control can be
done easily using the same steps discussed in the
following sections.

We present at the beginning, a brief
presentation of the DC control loops, and we
describe the digitalization of the control
algorithm in order to obtain an easy and efficient
implementation. From this description and
according to the FPGA design flow, we deduce
the dataflow graph (DFG) behavioural description
of the current PI controller. Then, we discuss two
FSMD architectures with timing and surface
optimization.

After that, we present the implementation
results of these architectures. Finally, we present
the used Co-simulation model for the validation
of the FPGA PI current components in the
cascade control loop.

2. Command device

The case study is a physical process composed of
a loaded DC motor supplied with a DC chopper,
an optical incremental encoder (OIE) speed
sensor and a Hall effects current sensor. The
control device is composed of a PI current loop
(fast loop) in a cascade with PI speed loop (slow
loop).

The design of such control device was
specified and validated in [1, 2] by using Spec C
methodology [3, 4]. In the model obtained, the
system is composed of a software part including
the speed control loop and a hardware part
including the current control loop as well as the
various interfaces circuits. Subsequently, we have
been interested in the hardware FPGA
implementation of current PI controller.

3. FSMD architectures [4]

For the given system, there are several FSMD
architectures that are different due to their
implementation. In our application case, we have
developed two FSMD architectures:

- In the first architecture, we aim for the space
optimization. The command computing is
carried out in a sequential way.

- In the second architecture, we aim timing
optimization. Some operations are then,
computed in a parallel way.

3.1. First architecture

Fig. 1 shows the data-path unit structure adapted
for a PI controller. According to the control
signals, this unit allows us to restore external data
inputs and output results, to generate command
value and to keep it at output.

Clk

Adr_A

Data_B

We_A

DataA

DataB

ALU
Sel

RAM

M
U
X

Regαααα

4

29

29

16

29

29

3

Data_Sel

Alpha_en

ααααnum(n)
S_UAL

Iref_num

Data_A

We_B
4

29

Adr_B

Im_num
16

101029

Fig.1: Datapath structure of the first architecture.

The control unit is described by a finite state
machine (FSM). It carries out one computing
cycle in 27 states. Fig. 2 illustrate this unit
structure.

African Physical Review (2008) 2 Special Issue (Microelectronics): 0004 8

Top
S0

S1

S2

S25

S26

Start='1'

Start='1'

Start='0'

Reset='1'

Start='0'

Clk
Adr_A
Adr_B
Adr_W

Read
Write

Sel
Data_Sel
Load_S

Control
Unit

Start

Reset 3

2

4

4

4

Fig. 2: Control unit diagram of the first architecture.

3.2. Second architecture

Starting from the first architecture data-path
structure, we add to the ALU, two multipliers
instead of one, so that multiplication is done in
parallel

With this architecture, computing cycle in the
control unit is reduced to 25 states.

4. Implementation results

We present on the following table, the structural
and functional characteristics of the two
architectures implemented on Xilinx FPGA type
Virtex2 XC2V250.

Table 1: Implementation results.

 1st Arch. 2nd Arch.

Number of External IOBs 45 (22%) 45 (22%)
Number of SLICEs 389 (25%) 543 (35%)
Minimum period (ns) 15.212 16.113
Number of state 27 25
Minimal latency (ns) 410.724 402.825

Although the second architecture is better in
execution time, it is clear through this table that
the first architecture presents a more interesting
surface/latency compromise.

5. Simulation setups

We have integrated these two architectures in the
Xilinx System Generator tool [5] installed on
Matlab. This tool allows us to test our design in
the control loop environment as shown in Fig. 3.

We have simulated these two architectures
with different speed targets and load disturbances.
Then, we compared these simulations with
responses produced by continuous model. We
note that errors are relatively very low for both

architectures. Fig. 4 shows an example of
simulation using the first architecture.

Fig. 3: Co-simulating of the designed system.

6. Conclusion

In this paper, we presented a hardware
implementation of PI controller that benefit from
the high-performance and high-integrity of
programmable logic device. We studied the case
of a DC motor cascade command, which can be
easily generalized to any other process control.

0 0.2 0.4 0.6 0.8 1 1.2
-10

-5

0

5

10

t (s)

C
ur

re
nt

 (
A

)

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

t (s)

R
el

at
iv

e
E

rr
or

 (
%

)

0 0.2 0.4 0.6 0.8 1 1.2
-75

-50

-25

0

25

50

75

t (s)

S
pe

ed
 (

ra
d/

s)

0 0.2 0.4 0.6 0.8 1 1.2

0

0.05

0.1

0.15

0.2

0.25

t (s)

R
el

at
iv

e
E

rr
or

 (
%

)

Fig.4: Responses example with speed target of
±50rad/s and load disturbance of 1Nm.

We proposed two RTL Processors

architectures to implement integer PI algorithm.
These architectures allowing the surface and
timing optimization, respectively, are mapped
using Xilinx FPGA and are validated
successfully.

References

[1] S. B. Saoud, A. Gerstlauer and D. D. Gajski,
American Journal of Applied Sciences 2,
1331 (2005)

[2] S. B. Saoud, and D. D. Gajski,
"Specification and validation of new control

African Physical Review (2008) 2 Special Issue (Microelectronics): 0004 9

algorithms for electric drives using SpecC
language", Technical Report ICS-TR-01-44,
UC Irvine, 2001.

[3] A. Gerstlauer, R. Dömer, J. Peng, and D. D.
Gajski, System Design: A Practical Guide
with SpecC (Kluwer Academic Publishers,
CECS, 2001).

[4] D. D. Gajski, J. Zhu, R. Dömer, A.
Gerstlauer and S. Zhao, SpecC:
Specification language and methodology
(Kluwer Academic Publishers, CECS,
2001).

[5] Xilinx, Xilinx System Generator for DSP
version 3.1 Using the Xilinx Software
(Xilinx INC, USA, 2003).

