
Newcastle University e-prints

Date deposited: 4th
 April 2011

Version of file: Author final

Peer Review Status: Peer reviewed

Citation for item:

Morgan G, Shrivastava SK, Ezhilchelvan PD, Little MC. Design and Implementation of a CORBA Fault-

Tolerant Object Group Service. In: Distributed applications and interoperable systems II : IFIP TC6

WG6.1 second International Working Conference on Distributed Applications and Interoperable

Systems (DAIS'99). 1999, Helsinki, Finland: Kluwer Academic Publishers.

Further information on publisher website:

http://www.springer.com

Publisher’s copyright statement:

© IFIP, (1999). This is the author's version of the work. It is posted here by permission of IFIP for your

personal use. Not for redistribution. The definitive version was published in Distributed applications and

interoperable systems II (Boston: Kluwer Academic Publishers), pp 361-374.

Always use the definitive version when citing.

Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,

without prior permission or charge, for personal research or study, educational, or not for profit

purposes provided that:

• A full bibliographic reference is made to the original source

• A link is made to the metadata record in Newcastle E-prints

• The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the

copyright holders.

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.

NE1 7RU. Tel. 0191 222 6000

DESIGN AND IMPLEMENTATION OF A CORBA
FAULT-TOLERANT OBJECT GROUP SERVICE

G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan and M.C. Little

Department of Computing Science, Newcastle University,
Newcastle upon Tyne, NE1 7RU, England.

ABSTRACT

Many fault-tolerant distributed applications can be structured as one or more groups of objects that cooperate by
multicasting invocations on member objects. The building of group based applications is considerably simplified if the
members of a group can multicast reliably and have a mutually consistent view of the order in which events (such as
invocations, host machine failures) have taken place. With this observation in mind, this paper describes the design and
implementation of a CORBA middleware service for managing object groups. The object group service is portable and
intended for a wide variety of applications; objects can simultaneously belong to many groups, group size could be large,
and objects could be geographically widely separated. The service can provide causality preserving total order delivery to
members of a group, ensuring that total order delivery is preserved even for multi-group objects. Both symmetric and
asymmetric total order protocols are supported, permitting a member to use say symmetric version in one group and
asymmetric version in another group simultaneously. The service is both dynamic and fault-tolerant: ordering and liveness
is preserved even if membership changes occur due to (real or suspected) member failures, voluntary member departures
and new group formations.

 Key words: CORBA, fault tolerance, middleware service, object groups, atomic multicast, total order.

�

1 INTRODUCTION

Object Management Group’s (OMG’s) Common Object Request Broker Architecture (CORBA) specification
provides an industry standard for building applications from distributed objects [1]; two of its main features are:
• Object Request Broker (ORB), which enables objects to invoke operations on objects in a distributed,

heterogeneous environment. This component is the core of the OMG reference model. Internet Inter-
ORB-Protocol (IIOP) has been specified to enable ORBs from different vendors to communicate with
each other over the Internet.

• Common Object Services, a collection of ‘middleware’ services that support functions for using and
implementing objects. Such services are considered to be necessary for the construction of any
distributed application. These include transactions, concurrency control, persistence, and many more.

Currently there is no OMG standard for an object group service. However, such a service would be highly
desirable, as many fault-tolerant distributed applications can be structured as one or more groups of objects that
cooperate by multicasting invocations on member objects. OMG is currently considering proposals for fault
tolerance in CORBA that would require facilities for managing groups of objects [2]. The building of group based
applications is considerably simplified if the members of a group can multicast reliably and have a mutually
consistent view of the order in which events (such as invocations, host machine failures) have taken place. Design
and development of fault-tolerant group communication protocols for distributed systems satisfying such properties
has therefore been a very active area of research (e.g., [3-9]). More recently, the emphasis of research on fault
tolerant group communication has shifted towards the provision of group communication as a CORBA middleware
service [10-13]. This paper represents a research effort in the same spirit and describes the design and
implementation of a CORBA middleware service for managing object groups.

Our CORBA object group service is intended for a wide variety of applications. This has been made possible
because it has been implemented using a general purpose group communication protocol suite, Newtop [8], that
contains several features not supported by other object group services. These and related aspects are discussed in
section two; sections three and four then describe the Newtop object group service in detail; concluding remarks are
presented in section five. The actual algorithms used in Newtop for ordered delivery and membership management
are presented in [8], and will not be discussed here as they are not necessary for understanding this paper.

2 BACKGROUND, MOTIVATION AND RELATED WORK

2.1 INTRODUCTION TO GROUPS

A group is defined as a collection of distributed entities (objects, processes) in which a member entity can
communicate with other members by multicasting to the full membership of the group. A desirable property is that a
given multicast be failure atomic: if a process crashes while multicasting a message, either all or none of the
functioning members deliver the message. An additional property of interest is guaranteeing total order: all the

�

functioning members are delivered messages in identical order. As an example, these properties are ideal for
replicated data management: each member manages a copy of data, and given atomic delivery and total order, it can
be ensured that copies of data do not diverge. However, as we discuss below, achieving these properties in the
presence of process and network failures is not simple.

We assume that group members could be geographically widely separated, say communicating over the Internet.
We therefore model the communication environment as asynchronous, where message transmission times cannot be
accurately estimated, and the underlying network may well get partitioned, preventing functioning members from
communicating with each other.

Suppose that a multicast is interrupted due to the crash of the member making the multicast; this can result in
some members not receiving the message. Member crashes should ideally be handled by a fault tolerant protocol in
the following manner: when a member does crash, all functioning members must promptly observe that crash event
and agree on the order of that event relative to other events in the system. In an asynchronous environment this is
impossible to achieve: when members are prone to failures, it is impossible to guarantee that all functioning
members will reach agreement in finite time [14]. This impossibility stems from the inability of a process to
distinguish slow members from crashed or disconnected ones. One way to circumvent this impossibility result is to
permit processes to suspect [15] process crashes (sometimes incorrectly) and to reach agreement only among those
processes which do not suspect each other [5] [6]. This leads to a partitionable membership service which ensures
that the functioning members that do not suspect each other install an identical sequence of membership views, with
each view installation being identically synchronised with respect to message delivery events.

2.2 MOTIVATION

Newtop object group service has been designed to support a wide variety of group interactions, some of which will
be illustrated in this section. Objects can simultaneously belong to many groups, group size could be large, and
objects could be geographically widely separated. Newtop can provide causality preserving atomic, total order
message delivery to members of a group, ensuring that total order delivery is preserved even for multi-group objects.
Both symmetric and asymmetric order protocols (see below) are supported, permitting a member to use say
symmetric version in one group and asymmetric version in another group. Newtop is both dynamic and fault-
tolerant: ordering and liveness is preserved even if membership changes occur due to (real or suspected) member
failures, voluntary member departures and new group formations. We do not know of any CORBA object group
service that simultaneously supports all of these features.

We present a few examples of group based applications to justify the features provided by our service.
• Replication: A service may be replicated over a number of nodes to increase its availability. The

replicated service may be consigned to a single group with all the required replica group services -
such as replacing failed members and state transfer- confined within the server group. Clients may
participate with the replica group by forming a group consisting of the replica group and itself (a
client/server group). When a client no longer requires a service, the client/server group may be
disbanded. Fig.. 1 (a) shows a client/server group. Client X forms the client/server group g1 to
enable participation with server group g2 with three replicas P1, P2, P3. An alternative method
suited to situations where it is impractical for clients to participate in group communications is
shown in fig. 1 (b). In this method client invocations are directed at a single member of a group. A
group member receiving invocations from a client in this manner is then responsible for
redistributing the client invocation to the other group members.

�

P1

P3
P2

X
g1

P1
P2
P3
g2g2

X

(a) (b)

Fig. 1: Client-server group interactions
• Online server migration: Assume that it is necessary to migrate a member of a replicated server

group to some other machine. The task is complicated (in this example) because each server replica
maintains a substantial amount of state (say several megabytes of data), but it is required that the
migration process must not cause any noticeable disruption in service or compromise availability. A
possible solution will work as follows. Assume group g1 (fig. 2(a)) to be the server group, and P2
is to be migrated. A server process P3 is created at the intended location. This process initiates the
formation of a new group, g2, containing P1, P2 and itself (fig. 2 (b)). Within g2, P1 and P2 use
some specific protocol for updating the state of P3; at the same time, P1 and P2 remain responsive
to clients by servicing requests directed to g1; eventually P1 departs from g1, and P2 departs from
both g1 and g2, leaving g2 to be the surviving group with P1 and P3. This specific solution also
suggests the possibility of using multiple groups for developing a general approach for performing
online software upgrades in a system (e.g., replace component P2 by P3).

P1 P3

g1

g2 P3
g1

g1

g2P1

(a) (b) (c)

P2
P1
P2

P2

Fig. 2: Multiple groups
• Computer supported co-operative work (CSCW): We consider two online conference groups g1 and

g2, where some members (P1 and P2, fig. 2(c)) are common to both. We require the functionality

�

that the members of each group are delivered messages in causality preserving total order; this total
order delivery must also be preserved when members that belong to multiple groups are delivered
messages of different destination groups in an identical order (this latter requirement makes it
harder to deal with overlapping groups). Imagine that g1 represents a moderated discussion group,
so members direct the messages to the moderator, who then distributes the message to all the
members. It is natural to use a sequencer based (asymmetric) total order protocol for g1, with the
moderator acting as the sequencer. Members of g2 on the other hand are collaborating via a shared
whiteboard; here all the members have equal status. Within g2 then, it seems natural to employ a
symmetric total order protocol that does not require a sequencer. There could be other system
specific reasons (e.g., network topology, frequency of multicasts etc.) for preferring a symmetric
version over an asymmetric one and vice versa [16]. Thus, in addition to being capable of
belonging to multiple groups, a member should be capable of using an asymmetric protocol in one
group and a symmetric one in another group.

Newtop object group service supports all of the above forms of group interactions.

2.3 RELATED WORK

Three ways of incorporating object groups in CORBA have been identified [12,13]. The integration approach takes
an existing group communication system and replaces the transport service of the ORB by the group service [10].
Although this is a very efficient way of incorporating group functionality in an ORB, the main disadvantage is that
this approach is not CORBA compliant, lacking in interoperability. The second approach called the interceptor
approach also makes use of an existing group communication system; here (IIOP) messages issued by an ORB are
intercepted and mapped on to calls of the group communication system. The best known example of this approach is
the Eternal system [11] for object replication that makes use of Totem group communication system [4] in this
manner. The major advantage of this approach is that no modifications to the ORB are required. The shortcomings
are that the approach is only possible if the host operating system permits interception (Unix in the case of Eternal);
secondly, as the group communication system is not available to CORBA application builders, it can only be used in
a fixed manner (replication in the case of Eternal). The third approach is the service approach: it does not make use
of any existing group communication system; rather the group communication system is implemented as a CORBA
service from scratch. In addition to being CORBA compliant, the advantage here is that the service is available to
application builders so can be used for a variety of purposes. This approach was first developed in the Object Group
Service (OGS) [12,13], and has been taken in the Newtop service. We briefly compare and contrast our service with
OGS.

The Newtop service offers a more comprehensive set of group management facilities than OGS. In terms of
functionality, OGS essentially supports the type of group interaction depicted in fig. 1(b) and does not support
objects belonging to multiple groups like Newtop. OGS supports only the asymmetric way of total ordering,
whereas our system supports the symmetric way as well. Newtop and OGS take differing approaches to the handling
of failures. Newtop permits a group to be partitioned into connected subgroups and guarantees that message delivery
in each subgroup is totally ordered; whereas, OGS attempts to preserve a unique (majority) subgroup; so, when
failures increase beyond a threshold, OGS blocks message delivery until it becomes possible to form the unique
subgroup again.

�

3 NEWTOP OBJECT GROUP SERVICE

3.1 OVERVIEW

An application developer creates potential group members as CORBA objects. Such objects are defined by an IDL
interface. A single group member is addressable via a single object reference (IOR). This enables the Newtop
service to identify group members and associate them to groups. A group member will also be referred to as a client
of the Newtop service.

The Newtop service is a distributed service and achieves distribution with the aid of the Newtop service object
(NSO). Each client (group member) is allocated an NSO. Group related communication required by a client is
handled by its NSO. Only one NSO is required by a client, irrespective of how many groups the client participates
in. Communication between a client and its NSO is handled by the ORB. Therefore, the NSO may reside within the
same address space, in a different address space, or on a different node in the network to the group member
associated with it. The most efficient configuration would be the client and its NSO within the same address space.
Fig. 3 shows the communication relationships between Newtop service clients and their NSOs.

Client A

Client B

Client CNSO (C)

NSO (A)

NSO (B)

Newtop service

Messages governed
by Newtop
protocols

Application
dependent
messages

Fig. 3: Clients of the Newtop service and associated NSOs.

The Newtop service object factory (NSOF) supports the function of creating NSOs and associating them to
potential group members.

�

Membership service object

Invocation/multicast service object

Group management service object

Client

NSO: Newtop service object

Fig. 4: Newtop services
The Newtop service itself consists of three services implemented by corresponding objects within the NSOs: (i)

membership; (ii) invocation/multicast; and (iii) group management (see fig. 4). The management service provides
clients with create, delete and leave group operations. The invocation/multicast service provides three group
invocation operations (wait for responses from all, from one and an asynchronous, no wait invocation). The
membership service maintains the membership information and ensures that this information is mutually consistent
at each member. This is achieved with the help of a failure suspector that initiates membership agreement as soon as
a member is suspected to have failed. The client can obtain the current membership information by invoking
’groupDetails’ operation. Fig. 5 summaries the main operations provided by an NSO.

NSOF
create()

NSO

leaveGroup()

createGroup()

invokeWaitForAll()

deleteGroup()

invokeWaitForNone()
invokeWaitForFirst()

groupDetails()

creates

Fig. 5: Summary of NSO operations
We now describe each service in more depth.

�

3.2 MANAGEMENT SERVICE

The management service manages the creation of new groups, the deletion of existing groups, and the change of
membership for existing groups.
• Creating a group – The creation of a group is initiated by a potential client of the Newtop service; it is

assumed that the relevant NSOs have already been created. The client is required to give the group an
identifier that can aid the client and the Newtop service in differentiating between groups. This
identifier should be unique and consists of a string of ASCII characters. The client is also required to
supply an initial member list containing the IORs of the NSOs. The objects identified by the list are
considered group members at the start of a group’s life.

• Deleting a group – A client may specify, at any time, that a group is to be deleted. The deletion of a
group does not result in the deletion of the individual group members, but only of the abstract group
entity. When a group has been marked for deletion all group members are told by the management
service to voluntarily leave the group. The group membership service may, due to members leaving
and/or members failing, indicate to the management service that the membership of a group has
reduced to a singleton. This results in the management service deleting this group.

• Leaving a group - At anytime during the lifetime of a group a member may request to leave the group.

A note on joining a group. Since members are permitted to belong to several groups, it turns out that there is no
need for supporting an explicit facility for joining a group, as a similar effect can be obtained by members forming a
new group and exiting the previous ones (as illustrated by the online migration example, figs. 2(a, b)). Joining a
group in this manner results in the name of the group changing after each join is accomplished. This may at first
appear to be a drawback. However, a member join usually requires some application specific processing (e.g., state
transfer as described in the online migration example), which is very easy to support if the Newtop way of group
joining is employed.

3.3 INVOCATION/MULTICAST SERVICE

The Newtop service relies on the message passing capabilities of the ORB for enabling multicast communication
between group members. Since at present ORBs only provide one to one synchronous communication, multicasting
has been implemented by making invocations in turn to all the members. Multiple threads of execution are used to
obtain parallelism and prevent client blocking. It is expected that in the near future asynchronous messaging service
will be available on ORBs; we can easily exploit this service to gain efficiency. Three types of invocations are
currently supported by the NewTOP service: two synchronous invocations (wait for responses from all the members,
wait for a response from any one) and an asynchronous, wait for no response invocation.

�

m7 m9 m8m5 m4m11m10 m3m12m1
ORB

NSO1

 m2 m6

Client1 NSOn Clientn

Fig. 6: Message interactions in a group multicast
We describe now the principal message exchanges involved in making a group invocation. Assume a group on n

identical objects and object1 wants to make a synchronous group invocation on some operation of the objects; this
invocation will have to be made via the group service. Fig. 6 shows two of these objects and their respective NSOs.
The client of the Newtop service making the invocation is required to marshall the invocation request, consisting of
the name of the function and associated parameter list, into a single structure and send it to its NSO. Message 1 (m1
for short) is such a message; m2 is its reception. As a result, NSO1 sends Newtop specific messages to other NSOs;
in fig. 6, m3 is such a message and m4 is its reception at NSOn. NSOn responds by composing and sending the
appropriate invocation message, m5, to its target object (objectn); m6 is its reception at objectn. The response from
objectn (m7) is received by NSOn (m8); NSOn then sends Newtop specific message (m9), it is received at NSO1
(m10), from here m11 and m12 indicate the final journey back to the invoker. An NSO (such as NSOn) that is
receiving an invocation on behalf of its target object must be able to compose the type specific invocation on the fly;
this is made possible by making use of the Dynamic Invocation Interface (DII) feature of the ORB (in the fig., the
invocation represented by the message pair m5, m8 uses DII).

Clients of the Newtop service are aware of the difference between a request issued to a group and a request issued
to a single object. Making a group request appear the same as a singleton request is actually straightforward, and
involves inserting a proxy object between the client and its NSO and letting the proxy object do the marshalling.

Message delivery is atomic with three types of ordering guarantees (causal, causality preserving total and
arbitrary) and in the case of total order, two types of protocols are supported for enforcing the ordering.
• Arbitrary ordering - This type of ordering results in the speediest message delivery. Messages are

delivered to group members as they are received.
• Causal ordering – Messages are delivered to group members in accordance with the causal

dependencies that exist between messages [17].
• Total ordering – Members of a group deliver messages in the same order; causal relationships are

preserved.

Two types of ordering techniques, symmetric and asymmetric, are supported. In the asymmetric version, one of
the members of the group assumes the responsibility for the ordering of messages within the group. Such a member
is commonly termed a sequencer. Electing a new sequencer, in case the original one departs from the group, is
straightforward as the underlying membership service maintains consistent group views; so any deterministic
algorithm can be used. In the symmetric version, all the members use a derterministic algorithm for message
ordering. Experimental work has shown that symmetric protocols tend to be more attractive in situations where all

��

the members are lively, and multicasting regurarly (e.g, a conferencing application) whereas asymmetric protocols
are better in other situations [16]. Our performance figures presented in the next section confirm this behaviour. The
client of the Newtop service specifies the ordering properties and the type of protocol when creating a group. The
created group will then manage message passing and ordering guarantees using the specified protocols.

3.4 GROUP MEMBERSHIP SERVICE

The group membership service maintains a mutually consistent view of a group membership for each member of a
group.
• Detecting member failure – Like other group communication systems, the Newtop service may suspect

member failures with the aid of a timeout based failure suspicion protocol. Suspecting a member of
failure results in the execution of the membership agreement protocol; the suspected member will be
removed from the group or will remain in the group with all suspicions removed. Whatever the
outcome of the protocol, group members will retain mutually consistent views of the group
membership.

• Single group membership – When membership of a group falls to singleton the group is marked for
deletion, the management service is informed and all information relating to the group is removed.

In a group communication system a member is often required to stay lively within a group to avoid being
suspected by other members. This usually takes the form of a member periodically sending “I am alive” or “NULL”
messages during periods it has no application level messages to send. In Newtop, after a member has negleted to
send a message for a period of time, the Newtop time-silence mechanism will send a “I am alive” message. A client
of the Newtop service creating a group may decide if the group is to be lively or event driven:
• Lively – time-silence mechanism and failure suspicion is active throughout the lifetime of a group; the

duration of the time-silence period is specified at the creation time.
• Event – The time-silence mechanism is only active when application dependent messages exist within

the Newtop service environment. Once all these messages are delivered to group members the failure
suspicion and time-silence mechanisms are shutdown. The appearance of further application dependent
messages wakes up these mechanisms.

4 PERFORMANCE

Performance figures were obtained using the C++ version of the Newtop service, compiled with omniORB2 [18].
Group members reside in the same address space as their NSOs. Each group member is hosted on a different node in
the network. The system consisted of 8 Pentium II PCs running Red Hat Linux 2.0.34, each with 64 megabytes of
RAM, connected together using 100 Mbit fast Ethernet. The marshalled message used in all experiments was a
CORBA string consisting of 100 characters.

��

Member 1

Request
Member n

Member 2

Reply(i)

Member 1

Member 2 Member n

(ii)

One way invoke

fig. 7: Groups for performance evaluation
Two experiments were carried out. In the first one (fig. 7(i)), member 1 multicasts a request to the group and

waits for replies; this represents a commonly occurring scenario when services are replicated. The group was
configured to be event driven. The asymmetric protocol is expected to perform better here. The time interval
between the client issuing the request and receiving replies from all the other members was measured in
milliseconds and shown in table I for various group sizes, for both types of the order protocol. The cost of making a
unicast invocation in omniORB2 is 0.77 msec, whereas the same unicast call made via the NewTOP group service
doubles the cost. For group invocations to n>1 members, we measured the cost of making n such calls directly using
omniORB2; these figures appear under the column ‘unreliable invocations’. The sequencer based scheme clearly
outperforms its symmetric counterpart. The cost of obtaining atomicity and ordering properties are high, but the
figures for small groups are still around 10 msecs which would be acceptable in a number of applications.

The second experiment (fig. 7(ii)) involves a group where all the members are regularly multicasting by using the
asynchronous method invocation operation (as in say, a teleconferencing application). The group was configured to
be lively; here the symmetric protocol is expected to perform better. The time interval between a member sending a
message to that message becoming deliverable at all other members was measured; table II gives the figures. We see
that the symmetric protocol is superior.

��

Table I (units of measurement = milliseconds)

Number of
members

Asymmetric Symmetric Unreliable
invocations

2 5.400 5.400 1.100
3 8.200 13.230 1.490
4 12.000 28.910 1.800
5 17.900 48.500 2.300
6 25.500 78.800 2.700
7 33.200 120.170 3.100
8 42.900 173.400 3.500

Table II (units of measurement = milliseconds)

Number of members Asymmetric Symmetric
2 5.300 4.100
3 8.900 7.500
4 11.900 9.500
5 21.600 15.000
6 31.200 23.000
7 44.200 35.000
8 66.900 43.000

5 CONCLUDING REMARKS

The Newtop object group service is intended for a wide variety of group based applications; objects can
simultaneously belong to many groups, group size could be large, and objects could be geographically widely
separated. The service implementation is portable; currently it runs on Orbix and OmniORB2. For future work we
intend to build a number of group based fault tolerant applications; one of our aims is to use the service for
supporting replication of transactional objects for high availability and evaluate against schemes that do not use
groups [19].

6 ACKNOWLEDGEMENTS

G. Morgan was supported by EPSRC CASE PhD studentship with industrial sponsorship from HP Laboratories,
Bristol.

��

References

[1] R. Orfali, D. Harkey and J. Edwards, “The essential distributed objects”, John Wiley and Sons Ltd., 1996.
[2] http://www.omg.org/techprocess/meetings/schedule/Fault_Tolerance_RFP.htm
[3] Birman, K., Schiper, A. and Stephenson, P.,"Lightweight Causal and Atomic Group Multicast", ACM

Transactions On Computer Systems, Vol. 9, No. 3, August 1991, pp. 272-314.
[4] L.E. Moser, P.M. Melliar-Smith et al, “Totem: a Fault-tolerant multicast group communication system”, CACM,

39 (4), April 1996, pp. 54-63.
[5] Amir, Y., et al, “Transis: A Communication Sub-system for High Availability”, Digest of Papers, FTCS-22,

Boston, July 1992, pp. 76-84.
[6] D. Dolev and D. Malki, “The Transis approach to high availability cluster communication”, CACM, 39 (4),

April 1996, pp. 64-70.
[7] Chang, J. and Maxemchuk, N. F., "Reliable Broadcast Protocols", ACM Transactions on Computer Systems, Vol.

2, No. 3, August 1984, pp. 251-273.
[8] P. Ezhilchelvan, R. Macedo and S. K. Shrivastava, “Newtop: a fault-tolerant group communication protocol”,

15th IEEE Intl. Conf. on Distributed Computing Systems, Vancouver, May 1995, pp. 296-306.
[9] C. T. Karamanolis, "Configurable Highly Available Distributed Services", PhD thesis, Imperial College of

Science, Technology and Medicine, June 1996
[10] S. Maffeis, "Run-time support for object-oriented distributed programming", PhD thesis, University of Zurich,

February 1995.
[11] P. Narasimhan, L, E. Moser and P. M. Melliar-Smith, "Replica consistency of CORBA objects in partitionable

distributed systems", Distributed Systems Eng., 4, 1997, pp. 139-150.
[12] P. Felber, R. Guerraoui and A. Schiper, "The implementation of a CORBA object group service", Theory and

Practice of Object Systems, 4(2), 1998, pp. 93-105.
[13] P. Felber, "The CORBA Object Group Service: a Service Approach to Object Groups in CORBA", PhD thesis,

Ecole Polytechnique Federale de Lausanne, 1998.
[14] Fischer, M., Lynch N., and Paterson, M., "Impossibility of Distributed Consensus with One Faulty Process", J.

ACM, 32, April 1985, pp 374-382.
[15] T.D. Chandra and S. Toueg, "Unreliable failure detectors for reliable distributed systems", J. ACM, 43(2), 1996,

pp. 225-267. (prelim. Version in 10th ACM PODC, August 1991, pp. 325-340)
[16] L. Rodriguez, H. Fonseca and P. Verissimo, "Totally ordered multicasts in large scale systems", 16th IEEE Intl.

Conf. on Distributed Computing Systems, Hong Kong, May 1996, pp. 503-510.
[17] L. Lamport, "Time, clocks, and ordering of events in a distributed system", Commun. of ACM, 21, 7, July

1978, pp. 558-565.
[18] http://www.orl.co.uk/omniORB/omniORB.html
[19] M.C. Little and S K Shrivastava, “Understanding the Role of Atomic Transactions and Group Communications

in Implementing Persistent Replicated Objects”, POS98, Eighth International Workshop on Persistent Object
Systems: Design, Implementation and Use, Tiburon, CA, September 1998.

