
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

DOI : 10.5121/vlsic.2012.3402 11

�
���������	�
��
�������������	���������
����������������������
������������

Sliman Arrag
1
, Abdellatif Hamdoun

2
, Abderrahim Tragha

3
and Salah eddine

Khamlich
4

1
 Department of Electronics and treatment of information

UNIVERSITE HASSAN II MOHAMMEDIA, Casablanca, Morocco
arragsliman@yahoo.fr

2
 Department of Electronics and treatment of information

UNIVERSITE HASSAN II MOHAMMEDIA, Casablanca, Morocco
alhamdoun@yahoo.fr

3
 Department of computing and Mathematics

UNIVERSITE HASSAN II MOHAMMEDIA, Casablanca, Morocco
a.tragha@univh2m.ac.ma

4
 Department of Electronics and treatment of information

UNIVERSITE HASSAN II MOHAMMEDIA, Casablanca, Morocco
khamlich.salah@gmail.com

ABSTRACT

This paper details Implementation of the Encryption algorithm AES under VHDL language In FPGA by

using different architecture of mixcolumn. We then review this research investigates the AES algorithm in

FPGA and the Very High Speed Integrated Circuit Hardware Description language (VHDL). Altera

Quartus II software is used for simulation and optimization of the synthesizable VHDL code. The set of

transformations of both Encryptions and decryption are simulated using an iterative design approach in

order to optimize the hardware consumption. Altera Cyclone III Family devices are utilized for hardware

evaluation.

KEYWORDS:

AES, Mixcolumn , FPGA, VHDL code, encryption.

1. INTRODUCTION

The cryptographic algorithms became the main proceeding for protection of very important data,
the security objective called confidentiality [1-3] being the one taken into account by their
hardware implementation and by their integration into the present-day communication systems.

A number of the encryption/decryption algorithm the cryptographie has been developed [2-4].
Keeping pace with maturity of the security technology the hackers, the electronic eavesdroppers,
electronic frauds and the virus have been coming into the field with new improved techniques for
to attack the security mechanism [17], [19]. So to protect any attack to the valuable information
source and their transmission, the algorithm Advanced Encryption Standard (AES or Rijndael), a
Federal Information Processing Standard is approved by National Institute of Standards and
Technology (NIST) [4], [7], [8], [11].But AES has 10 round of complex algebraic and matrix
operation which involve high processing power and introduce delay in encryption and decryption
process. For this reason at the beginning of this work the speed is treated as a major issue and
concentration is provided on hardware based implementation. Field Programmable Gate Array
based implementation is chosen in this operates as FPGA offers lower cost, flexibility and

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

12

reasonable performance than ASIC (Application Specific Integrated Circuit) implementation.
Beforehand researcher proposed application of AES processor on FPGA hardware place a few
security features since earlier version of the FPGA available in the market was low capacity.
Newly the development of a AES CPU using VHDL and its implementation on FPGA Xillinx
without sacrificing any security feature of the algorithm is reported [22]. It offers many FPGA
high capacities in various families. Literatures [10], [12], [13], [18], [20-21] describe design and
implementation of AES processor in the FPGA platform.

This paper presents a hardware implementation for the AES (Advanced Encryption Standard)
symmetric cryptographic algorithm, under VHDL programming language by using different
architecture of Mixcolumn and a hardware simulation of the resulted ciphering & deciphering
module.

2. THE BASIC CRYPTOGRAPHIC ARCHITECTURE

Figure 1. The basic AES-128 cryptographic architecture

AES algorithm is a FIPS standard and is a symmetric key [5], [9], in which the sender and

recipient use only key for encryption and decryption. The data block length is fixed to be 128

bits (Nb = 4 words), while the length of the cipher key can be 128, 192 or 256 bits, and be

represented by Nk = 4, 6, or 8 words respectively. Moreover, the AES algorithm is an iterative

algorithm. The iterations are called rounds, and the total number of rounds, Nr is 10, 12, or 14,

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

13

when the key length is 128, 192, or 256 bits, respectively. The 128 bit plaintext block is divided
into 16 bytes. These bytes are mapped to a 4 x 4 array called the State, and all the internal

operations of the AES algorithm are performed on the State. Each byte in the State is denoted by

Si;j , (0 < i, j < 5) and is considered as an element of Galois Fields, GF(28). The irreducible

polynomial used in the AES algorithm to construct, GF(28) field is

() 8 4 3m x x x x x 1= + + + + . (1)

In (Figure 1) AES encryption processes are presented. In the encryption of the AES algorithm,

each round except for the final round consists of four transformations: the Sub__Bytes(), the

Shift__Rows(), the Mix__Columns(), and the Add__RoundKey(), while the final round does

not have the MixColumns() transformation.

The algorithm AES It can be cut in three blocks:

Initial Round: It is the first and simplest of the stages. it only counts one operation: Add Round
Key.

Remark: The inverse of this operation bloc it is herself.

N Rounds: N being the number of iterations. This number varies according to the size of the
key used. (128 bits need N=9, 192 bits need N=11 need 256 bits. N =13. This second stage is
constituted of N iterations including each the four following operations: Sub Bytes, Shift Rows,
Mix Columns, Add Round Key.

Final Round: This stage is nearly identical to one of the N iterations of the second stage. The
only difference is that it doesn't include the operation Mix Columns

2.1. ADDROUN-key

In this transformation, a round key is added to the State by a simple bit wise XOR operation (that
is a sum in Galois Fields). Each tower key consists of four words from the key schedule
procedure

Figure 2.addround-key bloc

2.2. SubBytes

This transformation is a non-linear byte substitution that operates independently on each byte
of the State using a substitution table (Sbox) [3]. We construct this S-box, which is reversible, by
composing two transformations [9]:

• 1. Taking the multiplicative inverse in the finite field GF(28) with

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

14

() 8 4 3m x x x x x 1= + + + + (1)

• As irreducible polynomial; the element {00} is mapped onto itself.

2. Applying an affine (over GF (2) [1], [8]) transformation defined by:

() ()

() ()

' bi b i 4 mod8 b i 5 mod8

b i 6 mod8 b i 7 mod8 ci

= ⊕ + ⊕ + ⊕

+ ⊕ + ⊕

bi
 (2)

• For 0 � i < 8, where bi is the ith bit of the byte and ci is the ith bit of a constant byte c
with the value {63}.

Figure 3. Sub-Byte bloc

• Remark: The function inverse named Inv_SubBytes consists in applying the same function but
this time while using Inv_SBox that is the inverse table of SBox.

2.3. Shif-Rows

In this transformation, the bytes in the last three rows of the State are cyclically shifted over
different numbers of bytes (offsets). The first row, row 0, is not shifted. Row 1 of the State is left
shifted by 1 byte position; row 2 is left shifted by 2 byte positions; row 3 is left shifted by 3 byte
positions.

• Remark: The inverse function of this Inv_ShiftRoxs operation consists in replacing the shift on
the left on the right by a shift.

Figure 4. Shift-row bloc

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

15

2.4. MixColumns

 This transformation [9] operates on the State column-by-column, treating each column as
a four-term polynomial over GF(28). These polynomials are multiplied modulo (x4 + 1)
with a fixed polynomial a(x), specified in the standard.

Figure 5. Mix-column bloc

Figure 6. Exemple of Multiplication the Mixcolumn

Result [1,1] = 02•D4 XOR 03•BF XOR 01•5D XOR 01•30

• Remark: The inverse function of this operation, InvMixColumns, consists in multiplying the
State_out matrix by the inverse of the constant matrix.

Figure 7. Matrice of Multiplication inverse the Mixcolumn

Previous work

There exist many presentations of hardware implementations of AES algorithms in literature. In

2001, Elbirt et al., [6] compared five candidate algorithms for AES using Field-Programmable

Gate Array (FPGA) implementations. Later FPGA implementations demonstrate better

utilization of FPGA resources. Several architectures using dedicated on-chip memories

implementing S-boxes and Mix-column were developed [23] [24] [25] [26] [27]. Recent research
focused on fast pipelined, paralleled and optimal power calculation for the cryptography AES

implementations in both FPGA [13] [28] [29] [30] [31] [32]. Unfortunately, most of those

implementations are too costly for practical applications.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

16

In this paper, we have developed compared and implemented our new different architectures of
mix-column:

1-Methods permit to calculate the products in GF (28) (architecture (1).

2- Galois Multiplication lookup tables (architecture 2).

3- Properties of the binary calculation (architecture 3).

To achieve a high throughput with small area. The rest of the paper is organized as follows:

Section 3. Implementation of AES (Ciphering & Deciphering) in FPGA.

Section 4.simulation & interpretation.

Section 5 concludes the paper.

2.4.1. methods permit to calculate the products in GF (28).

a) Mathematical application (architecture 1) [14]

{0D}* M(x) = (m0 + m5 + m6) + (m1 + m5 + m7) x + (m0 + m2 + m6) x2 + (m0 + m1 +
m3 + m5 + m6 + m7) x3 + (m1 + m2 + m4 + m5 + m7) x4+ (m2 + m3 + m5 + m6) x5 +
(m3 + m4 + m6 + m7) x6 + (m4 + m5 + m7) x7. (3)

 {0E}* M(x) = (m5 + m6 + m7) + (m0 + m5) x + (m0 + m1 + m6) x2 + (m0 + m1 + m2 +
m5 + m6) x3 + (m1 + m2 + m3 + m5) x4+ (m2 + m3 + m4 + m6) x5 + (m3 + m4 + m5 +
m7) x6 + (m4 + m5 + m6) x7. (4)

{0B}* M(x)= (m0 + m5 + m7) + (m0 + m1 + m5 + m6 + m7) x + (m1 + m2 + m6 + m7)
x2 + (m0 + m2 + m3 + m5) x3 + (m1 + m3 + m4 + m5 + m6 + m7) x4+ (m2 + m4 + m5 +
m6 + m7) x5 + (m3 + m5 + m6 + m7) x6 + (m4 + m6 + m7) x7. (5)

{09}* M(x) = (m0 + m5) + (m1 + m5 + m6) x + (m2 + m6 + m7) x2 + (m0 + m3 + m5 +
m7) x3 + (m1 + m4 + m5 + m6) x4+ (m2 + m5 + m6 + m7) x5 + (m3 + m6 + m7) x6 + (m4
+ m7) x7. (6)

 {03}* M(x) = (m0 + m7) + (m0 + m1 + m7) x + (m1 + m2) x2 + (m2 + m3 + m7) x3 +
(m3 + m4 + m7) x4+ (m4 + m5) x5 + (m5 + m6) x6 + (m6 + m7) x7. (7)

 {02}* M(x) = (m7) + (m0 +m7) x + (m1) x2 + (m2 + m7) x3 + (m3 + m7) x4+ (m4) x5 +
(m5) x6 + (m6) x7. (8)

{01}* M(x) = M(x) (9)

b) Galois Multiplication lookup tables (architecture 2)

Commonly, rather than implementing galois multiplication, Rijndael implementations simply use

pre-calculated lookup tables to perform the byte multiplication by 02, 03, 09, 0B, 0D, and

0E.[15].

These lookup tables are as follows:

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

17

Multiplication by 02

Figure 8. Lookup table of multiplication by 02

Note: Multiplication by 03, 09, 0B, OD and 0E [15]

c) Properties of the binary calculation (architecture 3)

According to the two architectures previous we were able to achieve other method based on
the Properties of the binary calculation that have for goal the easiness the use of this operation to
the material level you find the manner and the stages that we followed in order to calculate the
multiplication mixcolumn below:

Multiplication by 01 (00000001 in binary): The number remains unaltered

Multiplication by 02 (00000010 in binary): The bits of the number are baffled toward the left:

N = 10101110 = > 2N = 101011100

Since the operations make themselves in a number finished of the values (field of Galois GF (28)
of 256 values), the MSB of 2N must be omitted:

2N = 101011100

2N = 01011100

If the MSB was (that we have just omitted) a '0', then 2N are the final result of the multiplication:

2N = 01011100

If the MSB was (that we have just omitted) a '1', what is the case in this example, then it is
necessary to add (XOR) the binary number again 00011011 (1B) to 2N in order to compensate
the loss of the MSB caused (provoked) by the shift:

2N XOR 00011011 = 01011100 XOR 00011011 = 01000111 2N = 01000111

For the Multiplications (03; 09; 0B; 0D; 0E):

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

18

we take The MSB like a mask and one calculates the operations (temp1, temp2 and temp3) of
shift on the left to add by the number (1B) in order to compensate the loss of the MSB caused
(provoked) by the shift.

and_mask := m(7) & m(7) & m(7) & m(7) & m(7) & m(7) & m(7) & m(7);

temp1:= m(6 downto 0) & '0' xor (("00011011") and and_mask);

and_mask := temp1(7) & temp1(7) & temp1(7) & temp1(7) & temp1(7) & temp1(7) & temp1(7)
& temp1(7);

temp2:= temp1(6 downto 0) & '0' xor (("00011011") and and_mask);

and_mask := temp2(7) & temp2(7) & temp2(7) & temp2(7) & temp2(7) & temp2(7) & temp2(7)
& temp2(7);

temp3:= temp2(6 downto 0) & '0' xor (("00011011") and and_mask);

Multiplication par 03 (00000011 en binaire) :temp1 xor m

Multiplication par 09 (00001001 en binaire) : temp3 xor m

Multiplication par 0B (00001011 en binaire) : temp1 xor temp3 xor m

Multiplication par 0D (00001101 en binaire) : temp2 xor temp3 xor m

Multiplication par 0E (00001110 en binaire) : temp1 xor temp2 xor temp3

Note => &: Operators of concatenation

3. Implementation of AES (Ciphering & Deciphering) in FPGA:

To concretize that our modifications give a better results in terms of area and speed than the

previous work, we compare the encryption /decryption codes (original and modified) based on

the three models of mix-column. The comparison considered two criteria: chip speed and area

utilization. The design was implemented on an Cyclone III (EP3C80F780C6 model) device.

Both designs were synthesized using Quartus II v9.1 tool. As shown in Table 1, an increase in

speed about 20% was achieved in our design and a reduction in area about 12% was achieved in
our design. On the other side, since we use Properties of the binary calculation to perform Mix-

Column transformation, we the other encryption (model 1 and 2) design needs more memory (as

shown in Table 1).
Implementation uses the VHDL programming language that nowadays is commonly a language
used very established for FPGA [16]. The drawing & the software of the simulation is Quartus II.

The encryption block is represented in Figure 9, where the main signals used by the
implementation are shown.

Figure 9. AES (ciphering & decoding) block

donner[127..0]

clef [127..0]

clk

rst

e_d

sortie[127..0]

aes_128

inst

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

19

Table1. Comparative table between different blocks constitute AES algorithm

we take in consideration the different architecture (model 1,2 and 3) of Block Mixcolumn that we
already treated, under VHDL language in the Circuit Cyclone III (EP3C80F780C6 model) which
is a low resource: 81264 logical elements; 430 pine to enter / exit; Embedded Multiplier 9-bit
elements 488; capacity of memory 2810880bits; 4PLL.The main signals are: the clock of the
system(CLK), the system reset (RST), signal of the load which load the key and given them and
signal that permits to encode and to decipher given them. A summary of the occupied resources
is presented in the comparative table. (Table 1)

• According to the comparative table we can notice that with first architecture of AES-128 (based
on the model 1 of mixcolumn) of the setting in .implementation occupies more that (75840
slices) of the device, when the second (based on the model 3 of mixcolumn) need of the setting in
.implementation roughly (75147tranches) of capacity total of the device, on the other hand the
last architecture of AES-128 has (based on the model 2 of mixcolumn) need (80829) of the
device.

The conclusion is that the last (model 3) bet in implementation is more efficient than architecture
of the first and the third, about the number of occupation of resources of the device.

4. SIMULATION & INTERPRETATION

Each round has 4 operations and it is iterative in nature. So the output of first round is fed to the

second round as input data and performs the same operations with another set of keys. This

process continued until the last round reach. In the last round, there is no mix-column operation.

The State array obtained after the last round is the required cipher text for transmission

Figure 10 and 11: shows the simulation results of the encrypt and decrypt data, we give 1bit e_d

(to control the encryption and decryption ,e_d=1 Ciphering else Deciphering), 128 bit plaintext

(data that we need to encrypt) and 128 bit key (the key used also to generate another keys), of

course clock (clk) was used to synchronize the various blocks and rst representing the reset the

Implementation FPGA Device

Total

pins

logic cells

Peak virtual

memory

Megabyte

Total

registers

Total

memory

bits

SBOX /invSBOX 18 9 195 1 2048

Bytsub/Invbytesub 285 129 203 1 32768

Shiftrow/Invshiftrow 285 128 183 128 0

Mixcolumn_arch1 285 224 183 128 0

Mixcolumn_arch2 285 200 183 128 0

Mixcolumn_arch3 285 200 195 128 0

InvMixcolumn_arch1 285 372 185 128 0

InvMixcolumn_arch2 285 959 206 128 0

InvMixcolumn_arch3 285 360 183 128 0

Generation_de_clef 261 992 191 0 0

Aes_128_arch1 387 75840 370 128 0

Aes-128_arch2 387 80829 582 128 0

Aes_128_arch3 387 75147 368 128 0

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

20

given if equals 1, finally, we will have in 128 bit output (cyphertext).we use for our simulation
QuartusII simulator.

The diagrams retailed of the simulation the processes for the setting in implementation AES are
presented below, in Figure (10 and 11).The length total of the process of the ciphering is (124s)
and some decoding is (277s).

Ciphering :(figure10)

e_d:1

Plaintext: hamdoun_&_tragha

Key: arragsliman_miti

cyphertext:8[139][195]S[189] :[190]P[206][221][153][132][205]bI*

Figure 10. Simulation of the ciphering of AES-128

Deciphering :(figure 11)

e_d:0

plaintext :8[139][195]S[189] :[190]P[206][221][153][132][205]bI*

Key: arraglsiman_miti

Cyphertext: hamdoun_&_tragha

Figure 11. Simulation of the decoding of AES-128

During our implementation, we met several difficulties among which we mention:

- Differentiation in time of execution between the ciphering and the decoding because of the
structure of some functions and we could remedy this problem by optimization of the code

- The problems of battery overflow caused by the operating system, and we think that it is
preferable to work with machines of big performances (RAM, speed of clock, cache memory.).

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

21

- Calculate it binary in field of Galois notably the multiplication and the inverses of the matrixes.

- The description sometimes dark of the algorithm of RIJNDAEL and especially in the phase of
decoding.

This system of cryptage is used in the domains industrial, commercial and financial and on an
increasing number of the PCs. its domination on the market increases daily.

5. CONCLUSIONS

In this paper, we have presented a novel FPGA implementation of the encryption algorithm AES
under VHDL utilizing high performance Mix-column/inv-Mix-column which uses Properties of
the binary calculation.

The result shows the FPGA implementations allow us to increase flexibility, lower costs, and
reduce time to release enhanced cryptographic equipment, providing a satisfactory level of
security for communication applications, or other electronic data transfer processes where
security is needed.

The modification (AES by using architecture 3 of Mix-column) of gives an 12% reduction in
area and 20% increase in speed compared with the original design (AES by using architectures 1
and 2 of Mix-column) . Our design gives the highest throughput and area utilization over all the
Iterative Looping based FPGA implementations. The decryption algorithm is implemented and
gives better results than the design in previous work.

This compact design can help in implementing AES for smart cards, RFID Tags, and wireless
sensors. This design prevents timing attack on mix-columns as the resultant columns take the
same duration not depending on multiplicand.

Our optimized and Synthesizable VHDL code is developed for the implementation of both
encryption and decryption process. Each program is tested with some of the sample vectors
provided by NIST and output results are perfect with minimal delay. Therefore, AES can indeed
be implemented with reasonable efficiency on an FPGA, with the encryption and decryption
taking an average of 124 and 277(s) respectively (for every 128 bits). The time varies from chip
to chip and the calculated delay time can only be regarded as approximate.

REFERENCES

[1] N .Singh, G .Raj., “Security on bccp trough AES encryption technique”, Special Issue of

INTERNATIONAL journal of engineering science & avanced technology (2250–3676) Jul-Aug

.2012.

[2] Behrouz A.Forouzan “Cryptography and network security “ TATA-Mcgraw hill publication 2007

edition.

[3] Stallings W. “Cryptography and Network Security: Principles and Practices.”4th ed. Pearson

Education, Inc. pp. 63-173. 2006.

[4] “Advanced encryption standard (AES)”, Federal Information Processing Standards Publication

(FIPS PUB) 197, National Institute of Standards and Technology (NIST), November, 2001.

[5] Olivier Frider ETR6 « Advanced Encryption System », école d’ingénieurs du Canton de Vaud, Mai

2004.

[6] A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar, "An FPGA-based performance evaluation of the AES

block cipher candidate algorithm finalists, "IEEE Trans. VLSI Syst. 9 (4) (2001) 545–557.

[7] Daemen J. and Rijmen V., “Rijndael: The Advanced Encryption Standard”. Dr. Dobb’s Journal,

March 2001.

[8] NIST, “DRAFT NIST Special Publication 800-131, Recommendation for the Transitioning of

Cryptographic Algorithms and Key Sizes”, Federal Information Processing Standards Publication

(FIPS PUB) 197, National Institute of Standards and Technology (NIST), January, 2010.

[9] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Algorithm Submission, Sept. 3, 1999.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.4, August 2012

22

[10] Qin H., Nonmember, SASAO T. and IGUCHI Y.,Members ,“A Design of AES Encryption Circuit

with 128 bit keys using Look-UP Table Ring on FPGA”,IEICE TRANS. INF. & SYST.,VOL.E89-

D,NO.3 MARCH 2006.

[11] Rahman T., Pan S. and Zhang Q., “Design of a High Throughput 128-bit (Rijndael Block Cipher)”,

Proceeding of International Multiconferrence of Engineers and computer scientists 2010 Vol II

IMECS 2010, March 17- 19,2010, Hongkong.

[12] Hodjat A. and Varbauwhede I.,“A 21.54 Gbits Fully Pipelined AES Processor on FPGA”, IEEE

Symposim on Field-Programmable Custom Computing Machines,April 2004.

[13] Jarvinen et al, “A fully pipelined memoryless 17.8 Gbps AES-128 encrypter”,International

Symposium on Field Programmable Gate arrays,pp.207-215.2003.

[14] Sounak Samanta., “FPGA Implementation of AES Encryption and Decryption, B.E. III Yr,

Electronics & Communication Engg,Sardar Vallabhbhai National Institute of Technology, Surat,

2007.

[15] Rijndael mix colum, availlable at: http://en.wikipedia.org/wiki/Rijndael_mix_columns

[16] Mroczkowski P., “Implementation of the block cipher Rijndael using Altera FPGA”, May 2000.

[17] J. Lu, O. Dunkelman, N. Keller, and J. Kim. New impossible differential attacks on AES. In D. Roy

Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology — INDOCRYPT 2008,

volume 5365 of Lecture Notes in Computer Science, pages 279–293. Springer Verlag, 2008.

[18] Zambreno J., Nguyen D. and Choudhary A., “Exploring Area/Delay Tradeoffs in an AES FPGA

Implementation”,FPL 2004, LNCS 3203, pp. 575–585, 2004.

[19] T. Jacobsen and L. R. Knudsen, The Interpolation Attack on Block Ciphers, Fast Software

Encryption, LNCS 1267, E. Biham, Ed., Springer – Verlag, 1997, pp. 28 – 40.

[20] Kenny D., “Energy Efficiency Analysis and Implementation of AES on an FPGA”, University of

Waterloo,2008.

[21] Xiao S.,Chen y. and Luo P., “The Optimized Design of Rijndael Algorithm Based on SOPC”,

International Conference on Information and Multimedia Technology,2009.

[22] E. Gamal ,A. Eman and S. Mohamed Hashem., “The Optimized Design Lightweight Mix Columns

Implementation for AES”, the 9th WSEAS International Conference on APPLIED INFORMATICS

AND COMMUNICATIONS ,2009.

[23] G. Di natale, M.-L. Flottes, B. Rouzeyre, "A Dependable Parallel Architecture for SBoxes",

Reconfigurable Communication-Centric SoCs ReCoSoc'07, 2007.

[24] P.Dakua , M. Pradhan and S. Polamuri., “Hardware Implementation of Mix Column Step in AES”,

Special Issue of International Journal of Computer Applications (0975 – 8887) on

Communication and Networks, No.2, Dec ,2011.

[25] R.Elumalai, Dr.A.R.Reddy.,’’ Improving Diffusion Power of AES Rijndael with 8x8 MDS

Matrix’’, Special Issue International Journal of Scientific & Engineering Research Volume 2, Issue

3, March ,2011.

[26] D .Gligoroski and M .Moe.,’’ On Deviations of the AES S-box when Represented as Vector Valued

Boolean Function’’, Special Issue IJCSNS International Journal of Computer Science and

Network Security, VOL.7 No.4, April 2007.

[27] M. T. Tran, D. K. Bui, and A. D. Doung, “Gray S-box for Advanced Encryption Standard,”

International Conference on Computational Intelligence and Security, Pages 253-256, 2008.

[28] Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin and Hung-Yun Tai, ‘’The FPGA Implementation

of 128-bits AES AlgorithmBased on Four 32-bits Parallel Operation’’, Data, Privacy, and

ECommerce, 2007.

[29] M.R.M. Rizk, Senior Member, IEEE and M. Morsy, ‘’optimized area and optimized speed hardware

implementions of AES on FPGA’’, Design and Test Workshop, 2007.

[30] S .Choi, J. Hyun.,‘’Low Power AES Design Using Parallel Architecture’’; International Conference

on Convergence and Hybrid Information Technology.2008.

[31] S .Punnaiah.,G . Ganesh,N .Beechu., “Hardware optimal power calculation for the cryptography

AES algorithm using clock gating technique”, Special Issue of international journal of engineering

science & advanced technology (2250–3676) Jan-Feb .2012.

[32] T .Subashri,R . Arunachalam,B . Gokul,V . Vaidehi ., “Pipelining Architecture of AES Encryption

and Key Generation with Search Based Memory”, International journal of VLSI design &

Communication Systems (VLSICS) Vol.1, No.4, December 2010.

