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Abstract: - The BIC (Bureau International des Containers et du Transport Intermodal) Code is the identification 
code for ocean shipping containers and is crucial for logistics, transportation, and security. Accurate 
recognition of container BIC Code is essential for efficient import and export processes, authorities' ability to 
intercept illegal goods and safe transportation. Nevertheless, the current practice of employees recognizing and 
manually entering container BIC codes is inefficient and prone to error. Although automated recognition efforts 
have been made, challenges remain due to the aging of containers, manufacturing differences between 
companies, and the mixing of letters and numbers in the 11-digit combination. In this paper, we propose the 
design and implementation of a BIC Code recognition system using an open source-based OCR engine, deep 
learning object detection algorithm, and text detector model. In the logistics industry, various attempts are 
being made to seamlessly link the data required at each stage of transportation between these systems. If we can 
secure the stability and consistency of BIC Code recognition that can be used in the field through our research, 
it will contribute to overcoming the instability caused by false positives. 
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1 Introduction 
The Container BIC Code can be written in different 
languages and fonts, so it is important to use robust 
algorithms and development logic when developing 
a container BIC Code recognition system, [1]. To 
achieve this, it is essential to conduct intensive 
studies on Object Detection models and build a 
model with good performance, [2]. Object detection 
is a technique that utilizes deep learning to 
recognize and locate specific objects in images or 
videos, [3]. There are various types of object 
detection models, which can be categorized into 1-
Stage and 2-Stage models. In a two-stage model, the 
location of the object is first predicted and then the 
object is classified based on that location. To 
accomplish this, the system first utilizes an 
RPN(Region Proposal Network) to extract regions 
in the image that are likely to contain objects. These 
regions are then processed through a backbone 
network of CNNs to generate a feature map. The 
feature map is subsequently transformed into a 
fixed-size feature map using RoI(Region of Interest) 
Pooling. Finally, the RoI features are fed into the 
Classification and Bounding Box Regression Layer, 

consisting of a Fully Connected Layer and a 
Softmax Layer, to predict the object class and 
location. A well-known model in this category is 
Faster R-CNN, [4]. On the other hand, 1-Stage 
models, such as YOLO, are known for their faster 
processing speed. YOLO divides the image into grid 
cells to identify objects and predicts the probability 
and location of objects within each grid cell. 
Another algorithm called SSD extracts feature maps 
of different sizes to predict the location and class of 
objects, [5]. 

Since container BIC Codes are typically found 
in specific areas of the container, a Bounding Box 
can be created to identify and extract those regions, 
[6]. Object Detection employs a CNN 
(Convolutional Neural Network) based algorithm to 
generate bounding boxes and extract features for 
extracting the BIC Code from images, [7]. To read 
the text within the extracted region, OCR (Optical 
Character Recognition) is necessary, wherein the 
character recognition algorithm considers the 
object's size and position when processing the 
image, [8].  

In the past, it was common practice to extract 
container BIC codes by separately conducting object 
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detection and OCR. However, this study evaluates 
object detection and OCR in an integrated manner, 
which can serve as a reference in real-world 
industrial applications. It is also worth noting that 
we carefully selected a model with an outstanding 
performance by comparing various open-source 
OCR engines, as well as the actual performance of 
object detection models such as Faster R-CNN, 
YOLOv5, and the CRAFT text detection model. 
This enables us to assess the strengths and 
weaknesses of each model and contribute to the 
methodology of selecting the optimal model for the 
field. The main idea of this study is to generate BIC 
Code coordinates extracted through object detection 
as custom input for OCR, thereby generating images 
for analysis. By comparing different object 
detection techniques and models to identify a model 
that can be customized for industrial applications, 
valuable insights, and practical solutions can be 
obtained. Ultimately, the extraction of container 
BIC codes plays a crucial role in the logistics and 
shipping industry, and this research can contribute 
to the development of more accurate and efficient 
logistics and shipping management systems. This 
paper is highly relevant in the field of computer 
vision and artificial intelligence, and it is expected 
to generate significant interest in logistics-related 
domains such as transportation and ports.  

The paper is organized as follows: Section 2 
provides an overview of the technology and the 
concept of OCR using deep learning, Section 3 
presents the overall architecture of the system, 
Section 4 describes the implementation process, and 
Section 5 concludes with future research 
considerations. 
 
 
2 Related Work 
 
2.1 Object Detection  
Object detection is a technique for detecting and 
recognizing specific objects in images or videos. 
The Object Detection model determines where a 
particular object exists in the input image and marks 
the region of the object as a bounding box, [9]. 
These bounding boxes represent the location and 
size of the object and are used to extract the object's 
location, which is a detail as well as the 
classification of the object. Some of the algorithms 
that can be used to perform object detection are 
YOLO, Faster R_CNN, and SSD, [10]. 

These algorithms divide the image into multiple 
grid cells and train a deep-learning model that 
predicts the presence of objects and bounding box 
information for each cell. These deep learning 

models are typically based on CNNs. Each 
algorithm works slightly differently, but they all 
preprocess the input image and then use a CNN to 
generate a feature map. This feature map is used to 
predict the presence of an object in each cell and its 
bounding box information. Bounding boxes are then 
generated based on the predicted information in 
each cell, and redundant bounding boxes are 
removed using the NMS(Non-Maximum 
Suppression) algorithm. The Object Detection 
model is trained using a large dataset, and the 
trained model can identify and recognize objects in 
new images. You can also use Transfer Learning 
techniques to fine-tune the pre-trained model to 
improve object detection accuracy. Thus, Object 
Detection can be used to identify the location of an 
object in an image containing a container BIC Code. 
The image at that location can then be passed to 
OCR to extract text, classify it, and recognize the 
container BIC Code. 

 
2.1.1 Faster R_CNN 
Faster R_CNN is a deep learning model that 
combines RPN and Fast R_CNN to perform object 
detection. The architecture of Faster R_CNN 
consists of RPN, RoI Pooling Layer, and Classifier. 
Fig. 1 explains the architecture and behavior of the 
described Faster R-CNN. 
 RPN: It is responsible for finding regions in the 

input image where objects are likely to be 
present. To do this, RPN uses a CNN that 
performs a sliding window on the image and 
predicts the likelihood of an object being 
present in each window. 

 RoI Pooling Layer: The candidate object 
regions found by the RPN are passed to the RoI 
Pooling Layer to create a fixed-size feature 
map. This allows it to effectively handle 
objects of different sizes. 

 Classifier: Takes the feature map generated by 
the RoI Pooling Layer as input and is used to 
predict the class and bounding box of an 
object. 
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Fig. 1:  Contrasting the Faster R-CNN architecture 
for object detection in images, [11]. 

 
2.1.2 YOLO5 

YOLOv5 is based on the concept of YOLO (You 
Only Look Once) and provides faster processing 
speed and higher accuracy, [12]. YOLOv5 is mainly 
composed of Backbone Network, Neck, and Head. 

   The Backbone Network is responsible for 
extracting the feature map from the input image. 
YOLOv5 can use backbone networks such as 
EfficientNet and CSPDarknet53, and the Neck 
processes the feature map to predict the location and 
size of objects. YOLOv5 can use Necks such as 
SPP, PANet, etc. Finally, the Head takes the feature 
map generated by the Neck as input and predicts the 
class and bounding box of the object. Like 
YOLOv3, YOLOv5 uses feature maps of various 
scales to predict the location and size of objects and 
uses concepts such as anchors and grid cells to 
generate bounding boxes. 

When you input an image containing a container 
BIC Code using a model trained with Object 
Detection, the model determines the location of the 
object in the input image and creates a bounding 
box around it. From this, the location of the 
container BIC Code can be determined, and the text 
can be extracted, classified, and recognized using 
the OCR model. The OCR network and architecture 
can be divided into three parts. First, there are the 
Convolutional Layers, which preprocess the input 
images and convert them into a format that can be 
used as input to the CNN. Then there are the 
Recurrent Layers, which use the output of the 
Convolutional Layers as input to the RNN. The 
Recurrent Layers process the features of the image 
as a continuous sequence, from which the textual 
information of the image is extracted. Finally, there 
are Fully Connected Layers to identify the extracted 
textual information. Through this process, the 
trained model can recognize patterns of container 
BIC Code in the input image, separate each pattern 
and combine the recognized text to recognize the 
entire container BIC Code. However, in the case of 

the container BIC Code, there is a problem in that 
the check digit needs to be recognized separately. In 
this case, you can extract the check digit by first 
recognizing 4 alphanumeric characters and 6 
numeric characters, combining them to get a 10-
digit number, and then applying an algorithm to 
calculate the check digit. 

 
2.2 OCR 
OCR is a technology that recognizes text in images 
and converts it into machine-readable text. OCR is 
used in a variety of fields and is widely used in 
areas such as document recognition, license plate 
recognition, and handwriting recognition. The 
general way OCR works starts with preprocessing. 
Before text can be recognized from an image, 
preprocessing is necessary and can include image 
resizing, denoising, contrast enhancement, and 
binarization, [13]. Next comes feature extraction. To 
extract text from a preprocessed image, various 
feature extraction algorithms can be used to extract 
features of the text, [14]. For example, algorithms 
such as HOG (Histogram of Oriented Gradients), 
SIFT (Scale-Invariant Feature Transform), SURF 
(Speeded Up Robust Feature), and CNN are used. 
Character recognition involves extracting features 
and then recognizing them in an image. Character 
recognition can be performed with a variety of 
algorithms, including machine learning algorithms 
(SVM, KNN, Neural Networks, etc.), statistical 
models (Hidden Markov Model, Conditional 
Random Field, etc.), and rule-based approaches. 

Finally, the text generated by the character 
recognition process is subjected to post-processing 
to improve its accuracy. Post-processing can include 
error correction, character segmentation and 
merging, word segmentation, and application of 
language models, [15]. The performance of OCR is 
affected by a variety of factors. For example, image 
quality, character size, font, background, etc. affect 
the accuracy of OCR. OCR also performs 
differently in different languages, and models must 
be built for each language. 

 
2.3 Text Classification 
Text Classification is a technique for assigning a 
given piece of text to a predefined class or category. 
It is used for spam filtering, sentiment analysis, 
category categorization, etc., and trained and 
consists of five main steps. The first is data 
collection and preprocessing, where the collected 
data must be stored in text format and have a 
balanced distribution of all possible classes or 
categories. The preprocessing step normalizes the 
textual data, removes special characters, dead 
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words, etc., tokenizes words, and creates a vector 
representation for each word, [16]. Each text sample 
must then be converted to a vector, [17]. Several 
techniques can be used to generate these vector 
representations. Techniques such as BoW(Bag of 
Words), TF-IDF(Term Frequency-Inverse 
Document Frequency), Word2Vec, GloVe, etc. can 
be used in this step to convert the text into vectors 
that the model can understand. Finally, the model is 
selected and trained, and evaluated to tune the 
model and make predictions. There are many 
different text classification models. These models 
take the vectors generated from feature extraction as 
input and learn to assign every input vector to a 
corresponding class, [18]. Typical text classification 
algorithms include Naïve Bayes, SVMs, Random 
Forests, and Neural Networks. Recently, 
transformer-based models, such as BERT and GPT, 
have become popular. Model evaluation metrics 
include accuracy, precision, recall, and F1 score, 
and hyper-parameter tuning is performed to improve 
model performance, and the final model is 
generated. 
 
2.4 Deep Learning Frameworks 
Deep Learning Frameworks enable the 
implementation and training of large-scale complex 
models and provide high performance by utilizing 
hardware accelerators such as GPUs or TPUs, [19]. 
Major deep learning frameworks include 
TensorFlow, Pytorch, Keras, MXNet, and Caffe. All 
these frameworks, [20], are open-source and 
continuously evolved by the community. Of these, 
TensorFlow and PyTorch are among the most 
widely used frameworks. TensorFlow is an open-
source library developed by Google that is very 
efficient for implementing large-scale neural 
network models. Pytorch is an open-source library 
developed by Facebook that supports native Python 
code for easy debugging and development and 
supports dynamic graph computation for fast model 
development and experimentation.  

Pytorch provides various functions such as 
model design, data processing, model training, and 
deployment. Model design can be easily 
implemented by inheriting the nn. Module class and 
data processing can be easily implemented using 
Pytorch's Dataset and DataLoader. Model training 
provides various techniques such as learning rate 
schedule, weight initialization, and normalization, 
and supports GPU acceleration for high 
performance. Pytorch also allows you to deploy 
your models on a variety of platforms, including 
mobile and web.  

Pytorch is based on the Torch library, a tensor 
computation library, which provides various 
modules, projects, and libraries to support various 
operations, making it easy to implement various 
deep learning models such as CNN, RNN, and 
Transformer. Due to these features, Pytorch has an 
active community and is used by many researchers 
and developers, making it easier and faster to 
implement deep learning models. 

 
2.5 CRAFT  
The CRAFT (Character-Region Awareness For Text 
Detection) model is based on the VGG16 
architecture, and Basenet defines the structure of 
VGG16. Basenet is divided into five sections from 
Slice1 to Slice5, and each section consists of a CNN 
layer, Batch Normalization, ReLU activation 
function, and Max Pooling layer. The four slices 
from Upconv1 to Upconv4 use a U-Net structure, 
each using a Double Convolution layer to expand 
the feature map. Finally, Conv_cls processes the 
feature map using the Convolutional layer and 
ReLU activation function and finally generates an 
output to the Convolutional layer with two output 
channels, which is a two-dimensional binary map 
representing the character region detection result. 
Fig. 2 illustrates the CRAFT processing process. 

 

 
Fig. 2: CRAFT  Schematic illustration of our 
network architecture, [21] 
 
 
 
 
 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2023.11.6

Hangseo Choi, Jongpil Jeong, 
Chaegyu Lee, Seokwoo Yun, 
Kyunga Bang, Jaebeom Byun

E-ISSN: 2415-1521 65 Volume 11, 2023



3 Proposed Method 
 
3.1 Container BIC Code Recognition System  
The container BIC code consists of 11 characters. 
The 11 characters consist of the Owner Code, 
Product Group Code, Serial Number, and Check 
Digit, as shown in Fig. 3. 
 

 
Fig. 3: Container BIC Code Structure  

 
Since the container code requires all 11 

characters to be detected to be meaningful as a code, 
if any of these characters are missing, it is difficult 
to recognize the BIC Code. In addition to the 
difficulty of recognizing the BIC Code, noise, blur, 
deformation, etc. may occur due to varying image 
quality, making object recognition difficult. As 
shown in Fig. 4, the check digit at the end of the 
code, which is a number for accurate data delivery 
and verification of the container, is located at the 
end of the container BIC Code and cannot be easily 
detected by the OCR algorithm because it is a 
number in a box. 

 

 
Fig. 4: Check Digit location and Shape 
 

The idea of this paper is to use the Object 
Detection model to detect the image region 
containing the container BIC Code, identify the 
location of the object, and pass the location of the 
object to OCR to extract the text at that location, 
classify it, and recognize the container BIC Code. 
An additional task in this process is to check the 

Check Digit.  It is used to self-verify the BIC Code 
without relying on preprocessing, as shown in the 
last step in Fig. 5. 
 

 
Fig. 5: System Concept 
 
3.2 Deep Learning Object Detection 

Algorithms 
To recognize the container BIC Code, an OCR 
model must be used, which is responsible for 
recognizing and converting text from a given image 
into text, [22]. Since the Container BIC Code 
consists of 4 alphanumeric characters, 6 numeric 
characters, and 1 check digit, the OCR model must 
be able to recognize and classify this pattern to 
extract the corresponding Container BIC Code, [23]. 
For this purpose, we selected Faster R_CNN and 
YOLOv5 as the Object Detection to use. Object 
detection models such as Faster R_CNN and 
YOLOv5 can be used to localize the container BIC 
Code in the input image and generate the bounding 
box of the object, [24]. However, the most 
important thing is the detection of Check Digit. This 
is because the container image may contain multiple 
texts, and if the Check Digit is not detected, the BIC 
Code cannot be matched even if the other texts are 
extracted normally. Fig. 6 shows the training 
structure using a table detection model to find 
Check Digit. 
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Fig. 6: Table detection model training structure for 
check digit recognition 
 
3.3 Text Object 
CRAFT is one of the deep learning models 
responsible for text regions. It can extract text 
regions because it works by segmenting text regions 
in detail to detect character boundaries and then 
predicting character boundaries. As a result, CRAFT 
is highly accurate in text recognition tasks and can 
be analyzed by object detection models and OCR 
engines because of this characteristic. However, 
CRAFT does not recognize the content of characters 
in text recognition tasks, only the boundaries of 
characters.  

    CRAFT, as well as other object detection 
algorithms, must locate the BIC Code location and 
integrate it with an OCR library based on the 
coordinates to extract, classify, and recognize the 
BIC Code. At this point, the OCR model will 
segment the image to find the exact location and 
boundaries of the recognizable characters in the 
image. A segment is a part of an image that contains 
a character. The OCR model finds and extracts 
segments containing characters from the input 
image and converts them into strings. To do this, the 
OCR model performs segmentation during image 
preprocessing. The segmentation process consists of 
two steps: first, finding the character regions, and 
second, separating the character regions. There are 
several ways to find character regions, including 
global thresholding and local thresholding. After 
finding the text area, there are methods to separate 
the actual character from the area, such as 
Connected Component Analysis, Split and Merge, 
Labeling and Segmentation, etc. 

 
3.4 Find Text Area 
To read the text in the container, it is necessary to 
preprocess the text clarity, boundaries, and size of 
the aging equipment so that text detection can 
proceed efficiently. The preprocessing process can 
be divided into image preprocessing and OCR 
preprocessing. As shown in Fig. 7, the container has 
a lot of text information as well as the BIC Code. To 

determine the BIC Code among them, the quality of 
the input data is important and needs to be 
preprocessed. 

 

 
Fig. 7: Container Text Area 

 
Image preprocessing is the process of 

preprocessing the images that are input to the Object 
Detection model. This can include image resizing, 
rotating and flipping, denoising, and color 
equalization. Image resizing and rotation first resize 
the image to fit the input size of the model, [25]. 
This is essential because the input size of the model 
must be constant. Image rotation and inversion 
increase the diversity of the image and allow the 
model to detect objects from different angles. Noise 
is then removed so that the model can identify the 
exact location of the object, and color equalization 
of the image is performed to make the object more 
visible.  

 
3.5 Open-Source OCR 
For open-source OCR, we chose EasyOCR and 
TesseractOCR. EasyOCR is based on deep learning 
technology, supports multilingual OCR recognition, 
and has a simple API and high recognition accuracy. 
It is also a robust OCR engine that works well with 
slightly noisy images. 

TesseractOCR is an open-source OCR engine 
developed by Google that uses statistical-based 
techniques along with deep learning techniques like 
LSTM. Tesseract offers high accuracy and 
reliability and is known to have high recognition 
rates for several languages, including English and 
other European languages. EasyOCR and 
TesseractOCR were selected as representative 
models for the performance comparison because 
they have good performance in terms of recognition 
accuracy, multilingual recognition support, and 
options.  
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4 Experiment and Results 
 
4.1 Experimental Environments 
System and workload parameters are important for 
evaluating and optimizing the performance of an 
algorithm. These parameters include system and 
hardware configuration, image resolution, image 
format, processing speed, etc. The hardware and 
software environments were tested on Google Corel, 
with NVIDIA T4 as the graphics card and Python 
3.8, CUDA 11.8, and torch2.0.0 as the development 
language. For the learning model, the open source-
based OCR engine used the library in its pre-trained 
form without modification, the object detection 
algorithm used a pre-trained model with COCO 
data, and CRAFT used craft_mlt_25k.pth. Container 
images and label data were prepared separately for 
training, verification, and testing, and the image 
resolution, format, and label data structure were 
modified according to each pre-trained model.  
 
4.2 Data Set 
To recognize container BIC Code using Faster 
R_CNN or YOLOv5, we need a dataset to train on. 
Table. 1 shows the training and testing targets, 
organized after ingestion.  
 

Table 1. Training Target 
Train Test Image Label Source 
100 20 JPG JSON AI-Hub 

3,000 600 JPG JSON AI-Hub 
6,000 1,200 JPG JSON AI-Hub 

 
We used A.I. Hub's 2021 "Logistics 

Infrastructure Data for Connected Ports" dataset. 
This dataset is the result of securing source data to 
provide BIC Code, a method of identifying actual 
containers, and yard trailers, a means of 
transportation, and basic data to build realistic and 
business-applicable port logistics data, which is the 
basis for the development of smart port 
construction. The data source was collected from 
quay cranes (2 Terminals) and deck gates (3 
Terminals, 12 Lanes). Images and labels are in 
pairs. Fig. 8 shows the JSON structure of the label 
data, which provides the text of the BIC Code and 
the coordinates of the area to help learn. 
 

 
Fig. 8: Label Data Structure 
 
4.3 Results 
 
4.3.1 Faster R-CNN 

We evaluated the performance (mAP, Precision, 
Recall) by applying Faster R-CNN, the most famous 
2-Stage Detector model, and experimented with 
various hyperparameters to find the optimal results. 
The Learning_Rate, which is used to update the 
weights during training, was set to 0.005.  The 
Optimizer was set to SGD, Momentum to 0.9, and 
Weight_Decay to 0.0005. Batch_Size is the number 
of data used for training at a time, and since we 
were running with Colab-pro, we set 16 and 32 to 
account for GPU memory, but there was no 
significant difference in training speed between the 
two settings. Finally, Num_Epochs, which 
determines the number of training times, was set to 
40 depending on the amount of data and the 
possibility of overfitting. The results of the 
experiment showed that the values of mAP, 
Precision, and Recall increased as the amount of 
training data increased, indicating that it became 
more accurate as it learned more data. However, 
Recall has a lower detection rate for Check Digit 
than mAP, so We had tried to train with more 
training data and changed hyperparameters. Table. 2 
shows that the performance of the Faster R-CNN 
model improves slightly as the number of training 
data increases. 
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Table 2. Check Digit Detection Experiment Results 
by Increasing Faster R_CNN Training Data 

Train Test mAP Precision Recall 
100 20 0.34 0.56 0.12 

3,000 600 0.41 0.64 0.17 
6,000 1,200 0.46 0.68 0.24 

 
4.3.2 YOLOv5 

To optimize the 1-Stage Detector model, YOLO, we 
used hyper-parameter optimization techniques, Grid 
Search and Bayesian Optimization, to derive the 
optimal hyper-parameters. Grid search involves 
trying all possible combinations of hyper-parameter 
values to find the optimal combination, while 
Bayesian optimization is an automatic optimization 
technique. We compared the performance of the 
model by applying two methods, Pre-defined 
Anchor Box and Anchor Box free. Pre-defined 
Anchor Box method detects objects using 
predefined anchor boxes, and Anchor Box free 
method detects objects without using anchor boxes.  

To proceed with YOLOv5, image files and 
YOLO Text files containing label information must 
be configured as a Dataset. The set of image files 
and label files are divided into Train, Validation, 
and Test, and the label file consists of the class 
index and the coordinate information of the 
bounding box. The coordinate information is 
expressed as the center (x, y) coordinate and the 
width and height of the object, and the value is 
expressed as a value relative to the width and height 
of the image. Typically, coordinate values are 
normalized to a range between 0 and 1. The closer 
the object's Width and Height values are to 0, the 
smaller the image, and closer to 1, the larger the 
image, so that the same label format can be 
maintained regardless of the image size.  

The YAML file is the configuration file used by 
YOLOv5, which sets the training datapath, 
validation datapath, batch size, and number of 
epochs according to the predefined format, and 
finally, the performance evaluation metric for 
YOLOv5 uses the same mAP for comparison with 
Faster R_CNN. Table. 3 shows that the performance 
of the YOLOv5 model improves slightly as the 
number of training data increases. 
 
 
 
 
 
 
 
 

Table 3. Check Digit Detection Experiment Results 
by Increasing YOLOv5 Training Data 

Train Test mAP Precision Recall 
100 20 0.30 0.50 0.10 

3,000 600 0.37 0.58 0.16 
6,000 1,200 0.43 0.65 0.20 

 
4.3.3 CRAFT 

Each model recognizes text in a given image, finds 
the bounding box of the text, and outputs the 
coordinates in a result file, based on the data 
characteristics for training the model. Ideally, the 
four parameters should produce a four-sided 
rectangle with vertices, but the results can predict 
irregular shapes such as trapezoids or polygons.  

Fig. 9 shows the output after running CRAFT, 
which returns regions with a polygonal structure, as 
opposed to the label data for training. Because the 
dimensions of the training and output data were 
different, post-processing was performed to match 
the same dimensions. 

Fig. 9: CRAFT Results Data Structure 
 

Many Object Detect algorithms are based on the 
following criteria: WA(Word Accuracy): The 
percentage of matches between the extracted text 
and the actual text, CA(Character Accuracy): The 
percentage of matches between extracted and real 
characters, and Precision, Recall, and F1-score: 
Precision, Recall, and F1-score values between 
extracted and real text as performance metrics. 
However, in the case of CRAFT, the accuracy 
measurement method for text recognition is 
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different from the commonly used method. In 
general, the IoU value between the ground truth and 
the predicted value is 0.5 or more, and the Precision, 
Recall, F1-score, etc. are calculated based on that, 
but unlike other algorithms, CRAFT aims to 
generate multiple candidate regions and miss as few 
real text regions as possible, rather than producing 
highly accurate predictions. In training and testing, 
CRAFT outperformed comparable OCR engines 
and object detection models and achieved a success 
rate of 74.5% in detecting check digits in the test 
data. Table. 4 shows that the CRAFT model 
performs well from the first training, and like other 
algorithms, the performance improves as the 
number of training data increases. 
 
Table. 4. Check Digit Detection Experiment Results 
by Increasing CRAFT Training Data  

Train Test mAP Precision Recall 
100 20 0.66 0.70 0.62 

3,000 600 0.69 0.74 0.63 
6,000 1,200 0.75 0.78 0.71 

 
4.4 Text Recognition 
Since EasyOCR and TesseractOCR already include 
an Object Detection algorithm, we tested them 
without customization to handle detection and 
recognition as a 1-Stage method. As a result, the 
OCR engine had a good text detection rate for the 
total number of characters in the image, which was 
sufficient to recognize text after detecting the BIC 
Code. However, the function of recognizing BIC 
Code as a single string and recommending them as 
text by combining them, and the detection of check 
digits were more than 95% in error, so the 
evaluation method through index evaluation was 
meaningless.  
 
 
5 Conclusions 
In this paper, we compared and evaluated OCR 
engines, object detection algorithms, and text 
detection models to identify the location of 
container BIC Code objects, and then passed the 
location of the objects to OCR to extract and 
classify the text at the location to recognize 
container BIC Code. In general, container BIC 
codes are recorded manually in logistics, but this 
process is cumbersome and needs to be improved 
due to the possibility of human error. Therefore, we 
expect that if this result is developed and optimized 
by applying it to the field, it will lay the foundation 
for the automatic recognition and processing of BIC 
Code. As a result, high accuracy and fast processing 

speed can be expected compared to manual 
recognition, and it can be used not only in logistics 
but also in various industries to increase user 
satisfaction. 

   It is also an achievement that we have 
confirmed that there is a need for improvement in 
accuracy and consistency while conducting this 
experiment. In terms of accuracy, the detection rate 
for the entire text is satisfactory because the open 
source-based OCR does not have a fixed and partial 
purpose of recognizing container numbers. 
However, in the case of the object detection 
algorithm, a stronger preprocessing and 
postprocessing could have resulted in higher 
performance, but the lack of training data and 
various hyperparameter settings are disappointing. 
The results from all the tested models were 
inconsistent even on the same data. This can 
probably be overcome with technical improvements.  
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