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ABSTRACT This study describes the design and implementation of a 256-bit very long instruction

word (VLIW) microprocessor based on the new RISC-V instruction set architecture (ISA). Base integer

RV32I and extension instruction sets, including RV32M, RV32F, and RV32D, are selected to implement

our VLIW hardware. The proposed architecture packs up eight 32-bit instruction flows, each of which

performs fixed operational functions to create a 256-bit long instruction format. However, one obstacle of

studying new ISAs, similar to RISC-V, to design VLIW microprocessors is the lack of dedicated compilers.

Developing an architecture-specific compiler is really challenging. An instruction scheduler is integrated to

dynamically schedule independent instructions into the VLIW instruction format. This scheduler is used

to overcome the lack of a dedicated RISC-V VLIW compiler and leverage the available RISC-V GNU

toolchain. Unlike conventional VLIWs, our proposed architecture is organized into six main stages, namely,

fetch, instruction scheduler, decode, execute, data memory, and writeback. The complete design is verified,

synthesized, and implemented on a Xilinx Virtex-6 (xc6vlx240t-1-ff1156). Maximum synthesis frequency

reaches 83.739 MHz. The proposed RISC-V-based VLIW architecture obtains an average instructions per

cycle value that outperforms that of existing open-source RISC-V cores.

INDEX TERMS Very long instruction word (VLIW), RISC-V, microprocessor, dynamic scheduling,

field-programmable gate arrays (FPGA).

I. INTRODUCTION

Exploiting instruction-level parallelism (ILP) is key to

achieving high performance for microprocessors. The imple-

mentation of processor architectures to exploit high ILP

ranges from pipelining, multiple processors, multithreading,

superscalar, and very long instruction word (VLIW) [1].

Superscalar and VLIW processors exploit spatial parallelism

by utilizing multiple functional units to issue several opera-

tions simultaneously. However, the superscalar architecture

demands specific hardware control to schedule instructions,

thereby making superscalar hardware highly complicated.

In the VLIW, parallelism potential among instructions is

determined through the support of a powerful VLIW com-

piler. Concurrent operations are packed into very long

instructions without any dependency. This compiler-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

scheduling reduces VLIW hardware complexity compared

with superscalar hardware.

This study proposes a general-purpose 256-bit VLIW

architecture based on the new RISC-V instruction set archi-

tecture (ISA) [2]. Formal research on the design and

implementation of VLIW microprocessors based on the

RISC-V ISA is rarely reported. The selected instruction

sets include base integer RV32I and optional extensions,

including multiply-and-divide integer RV32M, single- and

double-precision floating-point RV32F, andRV32D.Our pro-

posed VLIW implementation includes eight 32-bit opera-

tional flows, creating a 256-bit VLIW instruction format.

Nevertheless, the difficulty of studying and constructing

VLIW architectures based on the latest ISAs, such as

RISC-V, lies in the lack of a specific compiler to schedule the

sequential instructions of an original program into the VLIW

instruction format. Moreover, programs scheduled for a given

VLIW implementation are not binary compatible with other

implementations with a different number of functional units
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or functional units with different latencies [3]. To solve this

lack of a dedicated RISC-V VLIW compiler, we integrate an

instruction scheduler to dynamically fit independent instruc-

tions in the instruction memory into their corresponding flow

in our VLIW instruction format. Thus, leveraging the avail-

able RISC-V GNU toolchain [4] is possible. Consequently,

the VLIW architecture is organized into six stages, namely,

fetch, instruction scheduler, decode, execute, data memory,

and writeback. The main contributions of our paper can be

summarized as two folds:

+ We study the new RISC-V ISA and propose a general-

purpose VLIW architecture based on the selected RISC-V

subsets, each of which can be implemented as one or more

flows in VLIW architecture.

+ We integrate a dynamic instruction scheduler to over-

come the shortage of a specific RISC-V VLIW compiler for

the proposed VLIW architecture. Thus, we can utilize the

existing RISC-VGNU toolchain rather than developing a new

compiler.

The entire design is constructed, simulated, synthesized,

and implemented on a targeted Xilinx field-programmable

gate array (FPGA) Virtex-6 (xc6vlx240t-1-ff1156) using

Verilog Hardware Description Language (HDL) in ISE

14.7 software suite. The synthesis results demonstrate that the

dynamic instruction scheduler is simple and consumes mini-

mal hardware resources. The burden of instruction scheduling

is shouldered by the hardware. The existing RISC-V GNU

toolchain can be used to compile and execute C programs for

functional verification and performance measurement. The

performance of our VLIW core is measured by using bench-

mark programs. The average instructions per cycle (IPC) of

the proposed design outperforms that of open-source RISC-V

cores. The rest of this paper is organized as follows. Section II

reviews the previous VLIW designs. Section III introduces

the selection of RISC-V ISAs, and Section IV reveals the

VLIW instruction format structured with selected ISAs.

Section V presents the entire VLIW architecture. Section VI

shows the simulation, synthesis, and implementation results.

Section VII provides the conclusions.

II. RELATED WORKS

In academia, several studies have been conducted on VLIW

architecture implementation on application-specific inte-

grated circuit (ASIC) and FPGA technology. An ASIC-based

four-slot VLIW for multiple stream cipher operations is fab-

ricated on a 180 nm technology to achieve an operating fre-

quency of 200 MHz [5]. It achieves a good tradeoff between

high performance and flexibility for multiple basic stream

cipher operations. Another 28 nm four-slot VLIW based on

a vector ISA operates at 400 MHz [6] at the expense of high

power consumption. Despite achieving competitive area and

throughput efficiency, high power consumption is the demerit

of this design compared with its counterparts. In general,

the ASIC implementation provides the best solution for high

performance of VLIW processors. Besides, studies have been

conducted on FPGA-based VLIW design. A 90- and 45-nm

sub-word parallelism RISC architecture with various sub-

word-sizes [7] is proposed to obtain the performance com-

parable with the DSP core TMS320C64X [8]. An adaptable

VLIW, whose main parameters are reconfigured at design

time [9], is built into the 32-bit VEX ISA [10] to oper-

ate up to 174.89 MHz. However, any experimental results

and the IPC used to estimate execution time results are not

reported. Another VLIW architecture, which is also based

on the VEX ISA, is the 32-bit four-issue ρ-VEX [11]. Its

maximum frequency reaches up to 74.369MHz. The substan-

tial advantage of the VEX compiler involves the scheduling

of multicycle memory operations to maintain high ILP [12].

VEX-based architectures can be kept relatively simple by

using this powerful compiler to achieve a high frequency.

Next, a two-stage VLIW based on the HPL-PD ISA [13] can

reach 41.8 MHz [14]; its compiler and assembler are based

on the Trimaran framework [15]. However, the frequency

of this design is relatively low. Another 128-bit four-slot

VLIW for issuing multiscalar and vector instructions can

achieve 75.825 MHz [16]. Nevertheless, only the synthesis

results of stages in the architecture are shown, without any

experimental and performance results.

Several VLIW architectures share the burden of ILP

exploitation by applying dynamic instruction scheduling

methods in the hardware. Thus, they can avoid the problem of

binary incompatibility caused by different instruction formats

and provide higher performance than traditional VLIW mod-

els. Dynamic instruction scheduling VLIW (DISVLIW) [17],

which is a hybrid architecture with inherited features, such as

ILP exploitation at the compile time of the VLIW processor

and dynamic scheduling at the run time of the superscalar,

is proposed. The dynamically trace scheduling VLIW [3]

integrates a VLIW engine with a conventional superscalar

core into a processor with a complicated hardware scheduler.

This architecture is used to maintain instruction trace and

dispatch suitable instructions to the VLIW engine superscalar

core. Besides, the Avatar VLIW processor [18] integrates

DynaPack scheduling and packing mechanisms that can ana-

lyze the dependence relations of instructions, maintain their

correctness, and pack concurrent instructions into a VLIW

bundle during run time. Generally, DISVLIW architectures

are complicated in terms of hardware implementation owing

to their complex instruction tracing and scheduling mecha-

nisms. Furthermore, such architectures require considerable

amounts of hardware resources and execution time.

III. RISC-V ISA

In this section, we introduce the RISC-V ISA sets selected for

our VLIW implementation, comprising base integer RV32I,

multiply-and-divide RV32M, single- and double-precision

floating-point RV32F, and RV32D. The details of these

ISAs, including instruction layout, opcodes, format types,

names, and usage, can be referred in the specifications [2].

Although we choose 32-bit RISC-V subsets to implement our

VLIW, this selection does not indicate that RISC-V has only

32-bit instructions. RISC-V proposes 16-bit, 32-bit, 48-bit,
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TABLE 1. Summary of selected RISC-V ISAs.

and 64-bit instructions. Migration to the VLIW architec-

ture has several attractive advantages. For instance, a 64-bit

instruction interface can fetch and process three instructions

(1 × 32-bit + 2× 16-bit) in parallel. In various applications,

designers can select suitable RISC-V instruction subsets and

lengths for the VLIW instruction format. Table 1 summarizes

the RISC-V instruction sets selected to implement our VLIW

design.

A. RV32I: BASE INTEGER

The first essential subset requirement in any implementation

is the base integer RV32I, because it can run a full software

stack at the core. RISC-V simplifies instruction decoding.

Register operands are consistently in the same locations for

all instructions, which means that registers to be read and

written are consistently accessed before an instruction is

decoded [19]. R-type offers arithmetic instructions (add, sub),

logical instructions (and, or, xor), shift instructions (sll, srl,

sra), and set less than instructions (slt). I-type provides imme-

diate versions of R-type instructions and loads for words (lw),

halfwords (lh), and bytes (lb). S-type has store instructions

for words (sw), halfwords (sh), and bytes (sb). B-type instruc-

tions compare two registers, and a conditional branch is taken

if they are equal (beq), not equal (bne), greater than or equal

(bge) or less than (blt). I-type jump and link register (jalr)

and J-type jump and link (jal) are unconditional jumps that

support procedure calls. In U-type, the load upper immediate

(lui) instruction followed by an immediate instruction creates

a 32-bit constant. The add upper immediate to PC (auipc) can

combine with a jalr for control flow transfers or with a load

or store for data accesses.

B. RV32M: MULTIPLY AND DIVIDE

An evident characteristic of RISC-V is its modularity. In addi-

tion to the base ISA, RISC-V supports optional standard

extensions. One extension can be implemented as one ormore

separate flows in the VLIW architecture. Next, we expand our

implementation to RV32M operations. RV32M adds integer

multiply, divide, and remainder instructions to RV32I. Multi-

plying two 32-bit integers produces a 64-bit product, and the

length of registers in the integer register file is 32 bits. RV32M

requires two multiply instructions to obtain the 64-bit prod-

uct. The instructionmul is to obtain the lower 32-bit of the full

product, and mulh is to obtain the upper 32 bits. RV32M also

offers divide instructions: divide (div) and remainder (rem).

C. RV32F AND RV32D: SINGLE- AND DOUBLE-

PRECISION FLOATING POINT

Our design also supports floating-point RV32F and RV32D

operations. The implementation complies with the IEEE

754-2008 floating-point standard [20]. RISC-V provides two

L-type load instructions (flw, fld) and two S-type store

instructions (fsw, fsd) for RV32F and RV32D. In R-type,

RV32F and RV32D also support instructions finding maxi-

mum (fmax.s, fmax.d) and minimum values (fmin.s, fmin.d)

from the pair of source operands in addition to apparent

arithmetic operations (fadd.s, fadd.d, fsub.s, fsub.d, fmul.s,

fmul.d, fdiv.s, fdiv.d, fsqrt.s, fsqrt.d). No floating-point

branch instructions are found. RV32F and RV32D estab-

lish conditions for integer branch by comparing two

floating-point values and setting the destination register to

be one if they are equal (feq.s, feq.d), less than (flt.s, flt.d)

or less than or equal (fle.s, fle.d). Conditional integer branch

is taken or not taken on the basis of the value at the desti-

nation register. For many floating-point algorithms, RISC-V

defines fused R4-type instructions that multiply two floating-

point values. It then adds (fmadd.s, fmadd.d) or subtracts

(fmsub.s, fmsub.d) that product to the third value. Versions

that negate the product before summation or subtraction

(fnmadd.s, fnmadd.d, fnmsub.s, fnmsub.d) are also found.

The purpose of these instructions is to increase the accuracy:

they only round once (after multiply) rather than twice (after

multiply, then after add or subtract). RV32F and RV32D

also support data conversion instructions between data types:

integers, 32- and 64-bit floating points (fcvt.w.s, fcvt.s.w,

fcvt.w.d, fcvt.d.w, fcvt.d.s, fcvt.s.d). Only RV32F can trans-

pose data between integer and floating-point register files

(fmv.x.w, fmv.w.x).

IV. VLIW MICROPROCESSOR ARCHITECTURE

A. VLIW INSTRUCTION FORMAT

After the ISAs to be used are selected, a VLIW instruction

format is structured. Eight 32-bit instruction flows are packed
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together, forming a 256-bit VLIW instruction, as shown in

Figure 1. Each flow in the long instruction performs fixed

functions. In various applications, the format of a VLIW

instruction, and the number, type, and order of operations in

the VLIW instruction can be customized by designers. In our

architecture, five flows (1–5) perform the RV32I instructions.

Flow 1 performs R-type operations (R), and Flow 2 com-

putes between one register value and one immediate (I/U).

Flows 3 and 4 are memory loads and stores (L/S), and

Flow 5 is for branch and jump operations (B/J). Flow 6 is used

for the multiply and divide instructions of RV32M (M/D).

The last two flows (i.e., 7 and 8) contain floating-point RV32F

and RV32D instructions (F/D).

FIGURE 1. VLIW instruction format.

FIGURE 2. Diagram of latency of eight flows.

The datapath for each flow in the architecture is designed

with different latencies, as described in Figure 2. Instructions

in Flows 1 and 2 are issued through three stages of decode,

execute, and writeback without accessing the data memory

stage. Load and store instructions in Flows 3 and 4 need

to access data memory to read out or store values. Jump or

conditional branch decision is taken on the basis of register

file values. B/J instructions in Flow 5 are completely pro-

cessed at the decode stage. However, in the execute stage,

multiply operations for Flow 6, consume four cycles (anno-

tated as E1, E2, E3, and E4) to complete the calculation.

The latency of divide in Flow 6 and the floating-point cal-

culations in Flows 7 and 8 are usually unpredictable. The

time interval to achieve the final result of these operations

is usually unknown and is dependent on the magnitude of

input values. Therefore, our design must include stalls during

these operations owing to the hazard unit. In conventional

VLIW architectures, the instruction scheduling method relies

on dedicated compilers. Thus, their compilers must know

the latency of all supported operations. They insert suffi-

cient no operations (NOPs) equal to the most prolonged

latency of independent operations within a VLIW instruction

to solve data dependencies between VLIW instructions [21].

In other words, the subsequent instruction cannot be pro-

cessed until the previous one passes the writeback stage.

Despite solving dependencies, inserting long NOPs among

VLIW instructions exaggerates code size. In our architecture,

the hazard unit can perform data forwarding among long

instructions to puzzle out data dependencies without long

intermediary NOPs.

B. PROPOSED VLIW ARCHITECTURE

After the datapath latencies are determined, each flow is

cumulatively designed. The design steps are conceptualized

similar to those of building a classical pipepined five-stage

RISC-V architecture in [22] with minor changes. Figure 3

describes the entire VLIW hardware architecture, including

the modules, namely, fetch, instruction scheduler, decode,

execute, data memory, and writeback. Fetch is responsible

for reading out original sequential instructions from the

instruction memory. Subsequently, the instruction scheduler

exploits potential parallelism among the instructions from

fetch. Next, independent instructions are packed into one

VLIW instruction and delivered to the decode stage. In this

stage, the control units receive opcode and function fields

in sub-instructions to generate appropriate corresponding

control signals for the execute, data memory, and writeback

stages. In addition, source operands required for calculations

in the execute stage are read out from floating-point 64-bit F

and integer 32-bit X register files based on source addresses.

The execute module contains arithmetic logic units (ALUs)

that perform on source operands. Moreover, multiplexers

exist ahead of ALUs for the data forwarding mechanism.

Only load and store instructions of two L/S and two F/D

flows (i.e., 3–4 and 7–8) need to access the data memory.

The last writeback stage merely writes the calculation results

or data from the data memory back to the register files with

a corresponding destination address.

1) FETCH STAGE

The design of fetch stage is illustrated in Figure 4. The signif-

icant functionality of the fetch stage is to control the reading

out of eight 32-bit instructions from the instruction memory

simultaneously based on the program counter (PC). Given the

original sequential program stored in the instruction memory,

the fetch stagemust integrate a BJCheckermodule to examine

whether branch or jump instructions are present in the eight

received 32-bit instructions. The BJChecker module then cal-

culates the address of branch instructions (BrInstAdd) or the
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FIGURE 3. The diagram of entire implemented VLIW microprocessor.

FIGURE 4. Structure of fetch module.

address of jump instructions (JpInstAdd) based on the current

PC and the positions of these branch or jump instructions.

Subsequently, the eight instructions are transferred to the

instruction scheduler along with a ScheStart signal. When

scheduling is completed, the scheduler notifies fetch using a

ScheFinish signal to retrieve the next eight instructions. The

decode stage calculates the branch targeting address BJTar-

getAdd based on BrInstAdd and JpInstAdd from fetch. If the

branch or jump is taken, then fetch moves to the BJTargetAdd

to retrieve the eight new instructions.

2) DYNAMIC INSTRUCTION SCHEDULER

As aforementioned, the shortcoming of studying a new ISA

and implementing a VLIW architecture based on that ISA

is the lack of a powerful compiler to schedule original

instructions in accordance with the VLIW instruction format.

Designing a compiler for a new VLIW architecture is rigor-

ous, despite the compiler being designed to be compatible

with the instruction format of only a specific VLIW archi-

tecture. This binary incompatibility restricts VLIW usage

popularity. Meanwhile, the RISC-V GNU toolchain, which

can be downloaded from [4], is a capable C compiler that
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FIGURE 5. Block diagram of instruction scheduler.

supports 32-bit and 64-bit RISC-V ISAs. We design a simple

instruction scheduler to exploit the parallelism potential of

sequentially original instructions dynamically. This scheduler

is used to overcome the lack of an RISC-V VLIW compiler

and leverage the open-source RISC-V compiler. The instruc-

tion scheduling algorithm traces dependencies throughout

the original eight instructions from the fetch stage based

on instruction types, source, and destination addresses. Our

goal is to guarantee that (i) no instruction is lost to maintain

program correctness, (ii) no data dependencies occur within

one long instruction, and (iii) the cost of hardware resource

is reasonable. Centered on these principles, the instruc-

tion scheduler is constructed with two submodules, namely,

the dependence checker (DC) and instruction packer (IP),

as shown in Figure 5. The former is responsible for receiv-

ing and checking dependencies between eight instructions

simultaneously. The latter indicates the ready status of eight

instruction slots (InstStt) and fits the extracted instructions

from the checker (ExtrInst) into their corresponding slot. The

instruction scheduling operation is described in the algorithm

flowchart of Figure 6. When receiving the asserted ScheStart

signal from fetch, the scheduler examines eight instructions

line-by-line. If the current instruction I[i] is branch/jump and

independent on previous examined independent instructions

I[1]–I[i−1], all the instructions will be extracted to IP and

removed. However, if I[i] is dependent, I[1]–I[i−1] will be

extracted. In the next scheduling turn, only I[i] will be sched-

uled in another separate VLIW instruction. In case that the

branch decision or jump is taken, instructions behind branch

or jump instruction I[i] will not be scheduled. In another

case, I[i] is not branch or jump and it does not depend on

I[1]–I[i−1], then the instructions will be packed together if its

slot checked by IP is still available. Next, the scheduler will

check the next instruction. In general, when dependencies

occur between I[i] and I[1]–I[i-1], the dependent instruction

I[i] is examined and arranged with subsequent instructions in

the next turn. The whole process is repeated until all eight

instructions are sorted. Given this simplicity, only several

temporary registers are needed to store the remaining instruc-

tions for the next scheduling turn. Figure 7 illustrates the

scheduling method for eight sequential instructions. In the

instruction dependence analysis graph, a node represents an

instruction, and an arrow indicates that the source of subse-

quent instructions utilizes the result of the previous instruc-

tion. The I1 and I2 instructions are independent; thus, the DC

prioritizes them and retains the six remaining instructions for

the next scheduling turn. Next, the IP fits I1 and I2 into their

matching slots, inserts NOPs into empty slots to create a V1

instruction, and transfers it to the decode stage. Dependencies

occur from I3 to I8, as described in the graph. Hence, I3–I8 are

arranged into different V2–V4 instructions. After the arrange-

ment has is completed, the instruction scheduler receives the

next eight instructions from the fetch stage. Our dynamic

instruction scheduling feature ensures the proper matching of

sequential instructions in their slot while preserving program

accuracy.

3) DECODE STAGE

The decode module decodes the instructions passed down

from the fetch module. The structure of the decode stage

is illustrated in Figure 8. The control units (from CuOp1 to

CuOp8) create control signals based on the opcode and func-

tion fields. These control signals must be pipelined alongwith

the data such that they remain synchronized with the instruc-

tion. Moreover, the decode stage reads the source operands

from two integer 32-bit X and floating-point 64-bit F register

files and passes them to the execute module for execution.

RV32F and RV32D use a separate set of 32 64-bit floating-

point registers. Increasing the space of register address fields

for decoding RISC-V instruction formats is unnecessary by

doubling the number of registers. The length of floating-point

registers is 64-bit, and RV32F uses only the lower 32 bits. The

first register of the floating-point register file is not hardwired

to zero, which differs from that of the integer register file.

The values of the registers (Rs1Val, Rs2Val, or Rs3Val of

flows 1 – 8) are read and passed to the execute module,

whereas the results of operations are written back to the

register files (AluReOp1/2/6/7/8 or DmReOp3/4). Besides,

SignExmodules are used to extend the bit sign of immediates.

Branch instructions may pose control hazards when the

VLIW processor cannot decide which instructions to pick

next, as the branch decision has yet to be made. Waiting

until the end of the execution stage to determine whether

the branch is taken can result in a substantial mispredic-

tion penalty. The VLIW makes a branch decision early in

the decode stage of Flow 5 by integrating BranchCheck

module to reduce the penalty. The decision is simply a

comparison between the values of two registers Rs1ValOp5

and Rs2ValOp5. If the branch is taken, then the instruction

scheduler discards the long instruction being processed, and

fetch moves to the new target PC BJTargetAdd. If a previous

instruction is issued to determine one of the sources operating

for the branch and has not been written into the register files,

then the data forwarding forwards the necessary operands

through multiplexers when available, or the pipeline is stalled

by the hazard unit until the data are ready.

4) EXECUTE STAGE

From the decode stage, the execute stage receives appropriate

control signals and source operands to perform calculations.

As shown in Figure 9, this stage consists of several functional
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FIGURE 6. The algorithm flowchart of sequential dynamic instruction scheduling.

FIGURE 7. Illustration of sequential dynamic instruction scheduling algorithm.

units, such as R-type register–register (AluR), I- and U-type

register–immediate (AluIU), two 32-bit adders for L/S flows,

AluM for M/D operations, and two floating-point ALUs for

F/D flows (AluFDs). Moreover, multiplexers exist ahead of

the functional units to select source operands directly from

register files or either the data memory or writeback in case

of data dependencies. Operations in AluR andAluIU take one

clock cycle to complete their calculation. Whereas, in AluM,

integer multiply consumes four clocks and divide loops in

a variable iteration number to obtain the final result. The

execute unit of Flows 3 and 4 are simply 32-bit adder to

calculate the address for data memory access.

The floating-point coprocessor operates in parallel with

integer cores in most general-purpose processors to offload

massive computational and high-latency floating-point

instructions from the central processor [23]. In the VLIW,

floating-point operations can be combined within a long

VLIW instruction and run in parallel with integer operations.

In particular, the AluFD of Flows 7 and 8 are integrated to per-

form single- and double-precision floating-point operations,

such as add (ADD), subtract (SUB), divide (DIV), square

root (SQRT), multiply (MUL), fused multiply and accumu-

late (FUSED), convert (CVT), compare (CMP), and clas-

sify (CLS). The particular architecture for the floating-point
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FIGURE 8. Structure of decode module.

adder, subtractor, divider, multiplier, and comparator mod-

ules are detailed in [24]. The two floating-point flows

designed with floating-point RISC-V instructions adhere

to the IEEE 754-2008 specification. They obtain source

operands, a rounding mode, enable, and control signals

from the decode stage. Only the module with an asserted

enable signal calculates the input data operands. Next, it

outputs the computational results and exceptions as invalid

(invalidOp7/8), divide-by-zero (divByZeroOp7/8), overflow

(overflowOp7/8), underflow (underflowOp7/8), and inexact

operations (inExactOp7/8). During the floating-point cal-

culations, the pipeline stages are stalled. Upon completion

FIGURE 9. Structure of execute module.

of the current calculation, a finish signal is asserted, and

the final results (AluReOp7/8) are transferred back to the

floating-point register file. Furthermore, an extra special case

detector module examines particular inputs, such as not-

a-number, infinity, denormalized, and zero. In exceptional

matched cases, the module provides output for these specific

inputs, as defined in the IEEE 754-2008 standard.

FIGURE 10. Block diagram of hazard unit.

5) HAZARD UNIT

A hazard unit is designed as a combinational logic block to

solve pipeline hazards through data forwarding and instruc-

tion stalling. The forwarding technique is used to address

data hazards that occur when an instruction requires the

results of previous pipeline instructions that have not been

written on the register file by the time the current instruction

reads its source operands from the register file. As shown

in Figure 10, the hazard unit receives the source and des-

tination addresses from the decode, execute, data memory,
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and writeback stages of flows (annotated asRs1Opx,Rs2Opx,

Rs3Opx, and RdOpx). The hazard unit bypasses the nec-

essary operands from the memory or writeback stage to

the ALUs in the execute stage or to the BranchCheck in

the decode stage. This technique requires additional mul-

tiplexers ahead of the ALUs to select the operands from

either the register file, execute (only for BranchCheck), mem-

ory, or writeback. For ALUs, if the memory and writeback

stages contain matching destination addresses, then the mem-

ory stage is prioritized, as it contains the latest executed

instructions. In addition, the hazard unit stalls the pipelined

stages (when StartOp6/7/8 are asserted) until the results from

the load, divide, or floating-point calculations are usable

(FinishOp6/7/8 are asserted). When the calculations of exe-

cute stage in Flow 7 and 8 are finished, a Clear signal is used

to clear internal registers for avoiding bogus information.

V. EXPERIMENTAL RESULTS

A. FUNCTIONAL VERIFICATION METHOD

To validate the function of our proposed VLIW architecture,

we verify each flow and the entire design. First, we write C

programs corresponding to the operations of the tested flow

to test each flow separately. Second, we install the RISC-V

GNU toolchain available at [4] to compile the C programs

in RISC-V-executable and machine code files. In addition,

we build the Whisper simulator [25], which is an RISC-V

instruction set simulator developed to verify the Swervmicro-

controller. This simulator allows the user to run RISC-V

codes without an RISC-V hardware, as a ‘‘golden model,’’

to compare results. The C programs are compiled and run

on the Whisper simulator to obtain the execution results.

Next, we input the same testing values into the testbench

written in Verilog HDL to conduct the simulation. Ultimately,

we compare the execution results from theWhisper simulator

with the simulation results from the VLIW.

Subsequently, we utilize five integer benchmark programs,

including quick sort (qsort), matrix multiplication (matmul),

vector–vector addition (vvadd), median filter (median), and

binary multiply (multiply) to verify the overall design. These

benchmarks are available in RISC-V GNU toolchain [26].

Given that they mainly operate on six integer flows (1–6),

to verify the entire design, including both Flows 7 and 8,

we define a floating-point benchmark (fbench). This program

performs floating-point operations on 100 pairs of different

float and double values. These programs are then compiled

and run on the Whisper simulator to obtain the execution

results. Next, we dump corresponding RISC-V assembly

codes and store them into the instruction memory as text files

to conduct simulations. The results processed by the VLIW

engine are retained in the data memory. Finally, we compare

the execution results from the Whisper simulator with the

simulation results from the VLIW design.

To prove that our proposed VLIW design functions

properly after implementation, we conduct experiments on

a Xilinx FPGA Virtex-6 platform (xc6vlx240t-1-ff1156).

Each benchmark program is still compiled and stored in the

instruction memory. The whole system is then downloaded

to the FPGA board. The output results processed by VLIW

engine are stored in the data memory. Given that the data in

the data memory are stored in bytes, we integrate a memory

controller to control reading bytes. We use ChipScope [27],

which is a software-based logic analyzer, to observe the

onboard results. We can set triggering options and display the

waveform of the desired FPGA chip signals by inserting an

integrated controller core and logic analyzer into the design.

The simulation and onboard experimental results show that

our VLIW core functions correctly as expected. The design

performance is evaluated through these benchmarks, as pre-

sented in the succeeding IPC section.

TABLE 2. Performance of the VLIW core with the single-ended oscillator
frequency fosc = 66 MHz.

B. IPC

IPC is used to evaluate the performance of a processor archi-

tecture. IPC is defined as the average instruction number

executed in every clock cycle. In addition to the statistical

counters for exceptional cases mentioned in the Execute

Stage section, we integrate two other performance counters

into our design: one to count the number of operations and

one to count the total clock cycles to complete a bench-

mark program. The final IPC result is derived by dividing

the number of instructions with the number of clock cycles.

Table 2 presents the performance of our VLIW architecture

on six selected benchmarks. The proposed VLIW obtains the

highest IPC for the median benchmark (1.024). By contrast,

the lowest IPC value belongs to the fbench program (0.395),

as the floating-point program execution time is generally

unpredictable. The larger the number is, themore time the cal-

culation needs. This finding leads to an unexpectedly low IPC

for floating-point-related programs. The table also shows the

throughput for each benchmark that is defined by the number

of operations or floating-point operations per second. The

throughput can be derived by multiplying the number of IPC

with the operating frequency of the design. In particular, our

design utilizes the onboard single-ended oscillator frequency

fosc = 66 MHz. The average IPC from five integer bench-

marks obtains 0.955 and the average throughput value is

173004 VOLUME 8, 2020



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

TABLE 3. Device utilization for the entire VLIW architecture and its main modules.

63.044 million operations per second (MOPS). Correspond-

ing to the IPC of 0.395 from fbench, the throughput gains

26.07 million floating-point operations per second (MFOPS).

For all six benchmarks, our eight-issue VLIW core achieves

the average IPC of 0.862.

To measure the acceleration of our VLIW core compared

with a single-issue core, we design a single-issue pipelined

five-stage 32-bit RISC-V architecture. The architecture’s

ALU supports the same integer and floating-point instruc-

tions with the same latencies, as described in Figure 2.

Subsequently, the same benchmarks are utilized to ver-

ify the function and measure of the IPC values for the

single-issue core. Figure 11 shows a comparison of IPC

values from six benchmarks between the proposed VLIW and

the single-issue core. Figure 12 presents the IPC speedup of

our VLIW engine for each benchmark. The speedup results

show that our VLIW architecture accelerates 1.344 times

faster than the single-issue core on average.

FIGURE 11. IPC comparison between the VLIW and single-issue core.

C. SYNTHESIS RESULTS

The complete architecture of our proposed VLIW is synthe-

sized on the targeted Virtex-6 using ISE 14.7 software suite.

FIGURE 12. Speedup of the proposed VLIW over the single-issue core.

The platform has 37,680 slices, with each slice structured

with four six-input LUTs and eight D-type FFs, totaling

to 150,720 LUTs and 301,440 FFs [28]. Table 3 illustrates

the slice logic utilization and distribution of the entire pro-

posed VLIW design and its main modules, including fetch,

instruction scheduler, decode, execute, and data memory. For

slice logic utilization, the ISE XST synthesizer represents the

number of slice registers (or FFs) and LUTs used. The decode

module consumes 18,469 (12%) slice LUTs, with an avail-

able frequency of 150.082 MHz. The execute module uses

the greatest number of slice registers, that is, 9,188 (3% com-

pared with a total number of 301,440 FFs), and 14,398 LUTs

(14,353 LUTs are used to generate combinational functions

and 45 LUTs are configured as distributed RAM because

the HDL may contain a small array of read/write registers).

In terms of slice logic distribution, the execute module has

7,686 unused FFs (using only slice LUTs), 2,476 unused

LUTs (using only FFs in slices), and 6,712 fully used

LUT–FF pairs. Compared with other modules, the instruction

scheduler consumes reasonable resources, and its operating

frequency is at 173.805 MHz. It satisfies one of our ini-

tial criteria about hardware resource for dynamic instruction
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TABLE 4. Performance comparison among RISC-V cores.

scheduling. Our VLIW architecture can reach the maximum

frequency of 83.739MHz. In addition, we strive to synthesize

our design without two floating-point flows. We find that

the maximum frequency of our proposed design can reach

97.943 MHz, with slice registers reduced to 6,177 and slice

LUTs reduced to 20,109, respectively.

D. DISCUSSION

Dynamic instruction scheduler integration can overcome the

lack of a specialist compiler for our architecture. The avail-

able RISC-V GNU toolchain can be leveraged for func-

tional verification and performance evaluation. However, our

design recognizes a few tradeoffs. First, as stated in the

Synthesis Results section, the instruction scheduler consumes

substantial hardware utilization. The instruction scheduler is

simple to utilize less hardware than other modules. Second,

scheduling eight sequential instructions from the fetch stage

requires one extra clock cycle for each scheduling turn. This

requirement increases program execution time, indicating

that IPC is slightly degraded. Our VLIW core still achieves

higher IPC compared with existing open-source RISC-V

cores at the expense of hardware resource, as presented

in Table 4. The integration of floating-point flows is the main

reason for this high resource consumption. Hardware opti-

mization and effective scheduling algorithm implementation

should be considered in future studies to achieve outstanding

performance.

VI. CONCLUSION

RISC-V is a potential ISA that is promising for academic

studies and as a future industry standard. VLIW micropro-

cessors can benefit from the flexibility and modularity of the

RISC-V ISA. This study describes how the VLIW architec-

ture can be implemented with an instruction format for eight

operations from RISC-V subsets, including RV32I, RV32M,

RV32F, and RV32D. This study suggests that an instruc-

tion scheduler should be integrated with sequential algorithm

scheduling instructions to solve the compiler shortage for

our VLIW architecture. Thus, we can utilize the available

RISC-V GNU toolchain without needing to develop a new

RISC-V VLIW compiler. The instruction scheduling algo-

rithm is relatively simple and requires less hardware utiliza-

tion. Functional correctness is verified through benchmark

programs by comparing the results of our VLIW with those

of the Whisper simulator and observing onboard waveforms

using ChipScope. The benchmark programs are also used

to evaluate the IPC performance of our VLIW and demon-

strate that our design still speeds up compared with existing

open-source RISC-V cores. The maximum frequency of our

proposed VLIW reaches 83.739 MHz, and the number of

slice registers and LUTs are 21,476 (7%) and 69,572 (46%),

respectively.
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