
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:3374–3401

https://doi.org/10.1007/s11227-021-03955-6

1 3

Design and implementation of a cloud‑based event‑driven 
architecture for real‑time data processing in wireless sensor 
networks

Sabrine Khriji1  · Yahia Benbelgacem1 · Rym Chéour2 · Dhouha El Houssaini1 · 

Olfa Kanoun1

Accepted: 17 June 2021 / Published online: 26 July 2021 

© The Author(s) 2021

Abstract

The growth of the Internet of Things (IoTs) and the number of connected devices is 

driven by emerging applications and business models. One common aim is to pro-

vide systems able to synchronize these devices, handle the big amount of daily gen-

erated data and meet business demands. This paper proposes a cost-effective cloud-

based architecture using an event-driven backbone to process many applications’ 

data in real-time, called REDA. It supports the Amazon Web Service (AWS) IoT 

core, and it opens the door as a free software-based implementation. Measured data 

from several wireless sensor nodes are transmitted to the cloud running application 

through the lightweight publisher/subscriber messaging transport protocol, MQTT. 

The real-time stream processing platform, Apache Kafka, is used as a message bro-

ker to receive data from the producer and forward it to the correspondent consumer. 

Micro-services design patterns, as an event consumer, are implemented with Java 

spring and managed with Apache Maven to avoid the monolithic applications’ prob-

lem. The Apache Kafka cluster co-located with Zookeeper is deployed over three 

availability zones and optimized for high throughput and low latency. To guaran-

tee no message loss and to simulate the system performances, different load tests 

are carried out. The proposed architecture is reliable in stress cases and can handle 

records goes to 8000 messages in a second with low latency in a cheap hosted and 

configured architecture.

Keywords Cloud computing · Event-driven · Micro-services · Kafka · Wireless 

sensor network · Internet of things · Amazon web service IoT

 * Sabrine Khriji 

 sabrinekhriji@ieee.org

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0562-0116
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03955-6&domain=pdf


3375

1 3

Design and implementation of a cloud‑based event‑driven…

1 Introduction

The growing popularity of internet and communication technology leads toward a 

society, where everything is connected. The Internet of Thing (IoT) paradigm has 

led to a digital revolution in electronics and computing fields, with a low-cost data 

storage, mobile computing [1], artificial intelligence [2], Software as a Service 

(SaaS) [3] and cloud computing [4]. The number of IoT devices is currently in its 

peak of inflated expectations, predicted to increase by 21% between 2016 and 2022 

to around 18 billion [5]. IoT devices with cellular connections are projected to reach 

1.5 billion in 2022 or around 70% of a wide-area IoT category. In fact, the IoT is 

supported by an alliance of key assets, including the massive proliferation of smart 

devices, the confluence of low-cost technologies such as sensors, large amount of 

data (Big Data), High Performance Computing capabilities (HPC) and Wireless 

Sensor Networks (WSNs) [6–8]. In the context of WSNs, the cloud architecture is 

designed to monitor, control and record many wireless sensor nodes [9, 10]. For this 

reason, it needs to host massive amount of continuously generated data and satisfies 

numerous competing analytical requests.

Cloud computing is designated essentially to adjust rapidly resources to meet 

business demand. Indeed, it allows enterprises to easily deploy their applications 

and run it faster, with improved mechanisms designed to facilitate the maintenance 

and manageability. Cloud providers use a “pay-as-you-go” model, which leads to 

unexpected costs if users are not familiarized with pricing models. Designing an 

enterprise architecture is nowadays a big challenge because system architects require 

to extract the best formula according firstly to the cost model against the core busi-

ness, and the choice between the implementation of the own services or working 

with software as a service for additional costs [3]. The cost saving is a major chal-

lenge facing many cloud applications. Nowadays, different solutions are developed 

to design cloud architectures, which can solve complex problems such as the stand-

ardization, resource metering, HPC application, Quality of Service (QoS), interoper-

ability and security [11]. One of these solutions is the Amazon Web Service (AWS) 

IoT by providing a deep functionality to span the edge to the cloud. Amazon’s serv-

ers allow users to rent-out services in order to scale down hardware to avoid over 

spending. This on-demand infrastructure, for scaling applications or tasks, increases 

massively the hardware power available to the application requirement [12].

Our motivation for creating a novel cloud-computing architecture is the 

requirement of high data availability with low cost. The delay introduced among 

the extensive processing and storage data transferred to the cloud provides irrel-

evant and redundant information, leading to network bandwidth saturation and 

compromising the entire application [13]. Reducing the data flow at the local 

level and only transmitting relevant data to the cloud platform need to be con-

sidered. As the information is duplicated, it is possible to support the loss of sev-

eral servers or even entire data centers, depending on the configuration. Big data 

approaches relying on traditional data warehouses often pose latency problems, 

making them unsuitable for new data use cases [14]. It is important to consider 

the entire flow of incoming events instead of only keeping the results of these 



3376 S. Khriji et al.

1 3

events, at the risk of having data that are not immediately up to date on all the 

hosting machines. Given the astronomical amount of data potentially exploita-

ble, approaches must first be put in place to manage this wealth of information, 

to store and prioritize this data in an adhesive way, with a view to their subse-

quent exploitation. Above all, they must be aggregated in a very short period. 

A response time is made mandatory with regard to the computer values of the 

data. Real-time data processing (streaming) is able to consider time constraints 

and computing, to deliver accurate results with very low latency.

Underpinned by different design patterns such as publish/subscribe systems, 

event-driven and event-stream processing, the flexibility of integrating new func-

tionalities is the primary feature to be considered during the design of the cloud 

architecture. Thereby, a Real-time processing Event-Driven cloud-based Architec-

ture (REDA) is designed based on message-driven reactive systems with a high 

value of resilience and scalability. The implementation of this concept involves sev-

eral key steps including the choice of the processing mechanism, the way of devel-

opment and deployment of micro-services and the appropriate monitoring tools. To 

sum up, the distinctive characteristics of our design are as follows: High-availability, 

elasticity, a distributed infrastructure, with a reduced latency and high throughput 

values. In the next section, IoT cloud solutions are investigated. The main contribu-

tions of the paper are:

– The proposed architecture (REDA) is designed mainly from the Amazon Web 

Service IoT core architecture. It opens the door as a free software-based imple-

mentation hosted independently of any cloud provider or in a local cluster. It 

aims to process, store and visualize devices or generated data in real time. The 

developed architecture is cost-effective since it uses open source technologies. 

Moreover, it guarantees a high reliability by using the load test ensuring no loss 

of data. Furthermore, users can add new applications, and many developers can 

work on different applications in parallel.

– REDA provides important additional features since it is based on the query 

results history, which are cached regardless of the message size. Thereby, the 

user can access the results of previous queries without relaunching them. As con-

sequence, both time and computing power are saved.

– An investigation of optimization methods is carried out including topics with 

more partitions, batching and worker threads for the producer to provide high 

availability, high reliability, high throughput and low latency.

– REDA is evaluated in terms of availability, reliability, high throughput and low 

latency. They are carefully validated and demonstrated during the implementa-

tion and after the deployment. The cloud-connected WSN is implemented in 

order to monitor the soil moisture.

The paper is organized as follows. Section 2 presents relevant previous works related 

to high-level description of IoT cloud solutions. The design of the proposed cloud 

architecture is provided in Sect. 3. Section 4 gives insights about the implementa-

tion. Section 5 deeps into the back-end cloud architecture and components deploy-

ment. Section 7 concludes the paper with discussion and directions for future works.



3377

1 3

Design and implementation of a cloud‑based event‑driven…

2  High-level IoT cloud solutions

The cloud computing paradigm is emerging as a reliable service delivering auton-

omous and smart behavior from virtualized storage technology-based data centres 

[15]. The cloud architecture enables to ensure the data security as well as inter-

application flows. Wherever the data are located, the cloud architecture provides 

end-users with visibility on the location, or status of data transfer. Despite this 

pervasive development, critical challenges affect the reliability of this ongoing 

concept. Authors in [16] present an user-centric cloud-based model of an end-to-

end interaction between various stakeholders in the cloud centric IoT framework. 

The cloud platform is based on the Manjrasoft Aneka and Microsoft Azure plat-

forms to highlight the integration of storage, computing and visualization para-

digms across both public and private clouds. In fact, Aneka Worker Containers 

are deployed as instances of Azure Worker Role. The developed model aims to 

reduce the time and cost involved in engineering IoT applications.

A cloud-based architecture of IT platforms for ubiquitous environments is 

presented in [17]. This architecture includes three layers, namely, cloud service, 

Machine to Machine (M2M) service and ubiquitous service. The interoperabil-

ity between objects is ensured via semantic description models of a cross-layer, 

where the application management layer is correlated with the lower layers to 

gather information related to the specification context. Although this frame-

work is a high-performance in vehicular monitoring, the reliability metric is not 

considered.

In [18], an integrated message-oriented architecture based on the Message 

Queuing Telemetry Transport (MQTT) protocol for smart home is proposed. 

Owing to the limited network bandwidth, restricted access to networks and 

devices, storage, computing, unreliability and energy resources, message-based 

models and MQTT are considered for intelligent objects for the IoT scenario. The 

presented architecture is centered on the publishing/subscribing messages. Some 

smart object models are developed on Raspberry Pi, and the associated applica-

tions are implemented in Python. Only this work remains applicable for limited 

network bandwidth, storage, computing and energy resources.

A cloud system architecture to monitor processes and analyse network perfor-

mance data for industrial wireless sensor network (IWSN) is introduced in [19]. 

A central office is in charge of all interactions between the IWSN coordinating 

node and the outside world. This solution provides reliable and resilient systems 

for the data acquisition, processing and storage.

Many cloud providers such as Google and Amazon offer different IoT solu-

tions. AWS IoT and Google Cloud IoT include several managed and integrated 

services enabling secure link, flexible manageability as well ensuring real-time 

data analysis and visualization. They offer a secure way to connect devices, store 

and analyse data such as sensors and microcontrollers to the cloud via tablets or 

phones [20]. The adoption and dissemination of cloud computing architectures 

are constrained by emerging concepts and the heterogeneity of existing solutions. 

The difficulty of such adoption is manifested by the absence of standards, the 



3378 S. Khriji et al.

1 3

heterogeneity of architectures and Application Programming Interface (APIs). 

Several cloud services offer free cloud storage for consumers, while others offer a 

kind of subscription-based tax.

Notwithstanding the relevant overview of cloud-based architectures for WSNs 

provided by the aforementioned works, showed several limitations that inspire us 

to propose the back-end cloud architecture. Given the astronomical amount of data 

potentially exploitable, approaches must first be put in place to manage this wealth 

of information, to store and prioritize this data in an adhesive way, with a view to 

their subsequent exploitation. Above all, they must be aggregated in a very short 

period. Real-time data processing (streaming) is able to consider time constraints 

and computing, to deliver accurate results with very low latency.

Most of the related works focused on the design and implementation of domain-

specific monitoring systems based on WSNs, rather than on data-intensive services 

or on real-time data processing. Big data approaches relying on traditional data 

warehouses often pose latency problems, making them unsuitable for new data 

use cases like in [21]. It is important to consider the entire flow of incoming events 

instead of only keeping the results of these events at the risk of having data that are 

not immediately up to date on all the hosting machines. Works on [13] and [19] suf-

fer from the bandwidth saturation and needs to reduce or to process the data flow. 

Thus, some cloud-based architectures are simulation-based such as [17] and [18]. 

Finally, a response time is made mandatory with regard to the computer values of 

the data which is a limitation of the work performed in [24].

Considering the limitations of existing solutions and according to the compara-

tive analysis performed in Table. 1, a new cloud-based architecture is designed. To 

sum up, the distinctive characteristics of the proposed design are as follows: high-

availability, elasticity, a distributed infrastructure, with a reduced latency and high 

throughput values as described in the next section.

3  REDA: Proposed back-end cloud-based architecture for real-time 
processing

The main purpose of this paper is to create a cloud-based architecture with high 

availability, high throughput and low latency using open source frameworks. To this 

end, the internal AWS architecture is used, which offers a secure way to connect 

things such as sensors and microcontrollers to the cloud. Moreover, this service ena-

bles users to store and analyse their data and remotely control devices via tablets or 

phones. The AWS IoT internal structure includes, mainly, the message broker, which 

presents the interface between things and AWS IoT. The message broker service is 

responsible for the synchronization of IoT devices and the transmission/reception of 

messages. Devices report their state by publishing packets to a specific topic, and 

the message broker forwards received messages to existed subscribed client(s) or 

AWS services. The AWS message broker is similar to the MQTT message broker, 

but it supports in addition HTTPS or MQTT over the WebSocket protocols to pub-

lish messages. When the message arrives to the AWS IoT, the user can apply same 



3379

1 3

Design and implementation of a cloud‑based event‑driven…

high level tasks such as filtering messages, inserting or updating data in the database 

or same low level tasks such as data processing or data mining [22].

In this level, the system requirements need to be defined. Since components such 

as message broker and database are very important in terms of system reliability and 

availability, those units can cause the entire system crash, in case of fail. To solve 

such problems, it is important to upload a replica of components, which are synchro-

nized together to form one cluster. This cluster of nodes must be accessible from 

devices as one node to avoid system connection complexity. In the other side, the 

number of messages generated from devices is continually increased. The concep-

tion of architecture that offers high throughput, and low latency is highly required. 

The size of the cluster of nodes for these requirements depends on the application 

and processing goals. Other problems such as disk read/write throughput, network 

bandwidth and nodes resources configuration must be investigated during the cluster 

deployment [23].

3.1  Event‑driven architecture

An event-driven architecture is commonly used in advanced micro-services-based 

applications by relying on events to communicate between decoupled services. It 

is push-oriented, where all events are executed on demand [25, 26]. As a result, 

there is no need to pay for continuous polling to verify an event. So, the network 

Table 1  Comparative study of existing cloud-based architecture systems

Features Communication Cloud Limitations

Protocol

[13] Layer of computing based on ZigBee Microsoft Azure Bandwidth saturation

Fog Computing Reducing data flow

Needs for data processing

[17] 3-layers architecture: Cloud, 

M2M

OIDM2M LTE modem The reliability metric

and ubiquitous services Simuialtion-based

[18] Integrated message-oriented MQTT Not mentioned Limited network bandwidth,

architecture based on MQTT storage computing capabilities

and energy resources

[19] Implemented RESTful 

services

IPv6 RESTful Simulation-based

at a coordinator node level

[21] OEC framework for building, Not Mentioned AWS Latency problem

managing, and slicing the 

resources

Abscence of query results 

history

pool No synchronization schemes

[24] Event-driven ETL pipeline SQS AWS SQS data throughput bot-

tleneck

Execution time



3380 S. Khriji et al.

1 3

bandwidth consumption, the CPU usage and Secure Sockets Layer (SSL)/Transport 

Layer Security (TLS) handshakes are decreased significantly. By dividing the ser-

vices into micro-services and decoupling them, they still interoperable, but when 

one service fails, the others are continued operating.

Generally, the internal event-driven architecture includes the event producer 

(publisher), event manager and event consumer (subscriber) [27]. The publisher is 

the creator of events. The subscriber is the entity related to generate events, which 

can be either affected by the events or integrated to process events. The event man-

ager, called also event channel, is a middle-ware application, which receives events 

from the producer and forwards it to correspondent subscribers. Moreover, it is used 

to forward messages from event sources to event consumers. This task presents a 

challenge in a real-time environment by avoiding the direct communication between 

the publisher and the consumer and adding additional internal sub-tasks.

A detailed description of each component of the proposed event-driven back-

bone for the back-end cloud architecture, seen in Fig. 1, is presented in the following 

subsections.

3.1.1  Event producer‑based MQTT message broker

To send data to the remote subscriber (receiver), the choice of the appropriate mes-

saging protocol among considerable protocols such as MQTT, Constrained Appli-

cation Protocol (CoAP), Advanced Message Queuing Protocol (AMQP) and HTTP 

[28] is highly recommended. The MQTT protocol is distinguished by short message 

transmission capability and low bandwidth usage, which makes it suitable for M2M 

communications of the connected object type [29]. In addition, it features more dif-

ferent types of messages than other communication protocols. MQTT’s features 

make it a good option for transmitting high volumes of sensor messages to cloud 

systems [37].

Fig. 1  Proposed event-driven backbone for the back-end cloud architecture



3381

1 3

Design and implementation of a cloud‑based event‑driven…

The MQTT network includes publisher nodes, topics, subscriber nodes and a bro-

ker. It allows devices to concretely send information on a given subject to a server 

that works as a message broker. The broker pushes this information to previously 

subscribed customers. With MQTT, all customer devices that need to communi-

cate with each other have to inter-operate with the same broker. The latter stores the 

messages received from the sending entities (publishers) and relays them to one or 

more receivers (subscribers). Messages are sent via a given information channel (or 

topic). As a result, when the broker receives a published message, it broadcasts it to 

all subscribers but only those who have subscribed to the given information channel 

can receive it.

3.1.2  Event channel‑based Apache Kafka

The rapid evolution of Internet traffic (expansion, complexity, speed, etc.) has mul-

tiplied the problems concerning data traffic, and in particular the processing of data 

flows in real time, such as messages, logs or videos. Many publish/subscribe sys-

tems, known as messages brokers, are introduced on the market, which are fast, reli-

able and scalable [30]. Apache Kafka and RabbitMQ are two popular open-source 

pub/sub systems widely adopted in companies. The results of benchmarking Apache 

Kafka and RabbitMQ (AMQP) in [31, 32] show that Apache Kafka has higher 

throughput than RabbitMQ. Indeed, it outperforms RabbitMq producer by sending 

messages a rate six times faster.

Apache Kafka, as a distributed streaming platform, is designed to play the role 

of a central data pipeline. It is a topic-based message broker, which is presented as 

a stream of records, and it is divided into several partitions and distributed on differ-

ent servers as shown in Fig. 2. A partition gives the possibility to transfer messages 

in parallel. The first step of message replication (noted as [1] in Fig. 2) is that the 

producer has to flush-out all the bytes to the network. The broker leader picks-out 

the message entry timestamp when the producer request reaches the message broker 

to calculate the message committing time (noted as [2] and [3] in Fig. 2). After that, 

Fig. 2  Apache Kafka internal structure



3382 S. Khriji et al.

1 3

the message broker pulls the producer request and appends it to the local log (noted 

as [4] in Fig. 2). Depending on the acknowledgement type, the message broker rep-

licates messages flow on one or all In-Sync broker replicas (noted as [5] in Fig. 2). 

After the message replication, the topic leader puts the producer response into the 

response queue and flushes out the response bytes to the producer (noted as [6] in 

Fig. 2). Apache Kafka offers three types of acknowledgement:

– Acks = 0: The producer does not lose time waiting of acknowledgement from the 

broker.

– Acks = 1: The topic leader commits firstly the record and answers the client.

– Acks = −1: The topic leader needs to wait all In-Sync replicas to acknowledge 

one request.

3.1.3  Event consumer‑based micro‑services

The evolution of the IoT and M2M requires a new structuring of the application 

modules. Based on this observation, analysts recommend switching to micro-ser-

vices to break down the system into partitioned subsystems, but communicating 

according to well-defined protocols [33]. Micro-services are a modularization con-

cept, which serve to divide a larger software system in loosely decoupled services 

and influence the organization and software development processes. Micro-services 

can be deployed independently of each other, and a change on one service can be 

brought into the production regardless of changes to other micro-services. The 

implementation of micro-services can be managed with agile systems. This offers 

also the opportunity of continuous delivery/deployment of complex application pos-

sible functionality. Thus, the reactive capabilities integrated into the services can 

avoid the inevitable spread of failures, and performance problems and the need to 

use numerous tools in application protocols such as HTTP and Representational 

State Transfer (REST).

As seen in Fig. 3, each module has to deal with only one task that is part of the 

overall workflow. According to the dedicated task, each micro-service is written in 

a specific language. Thus, a large application can include micro-services written in 

Node.js, Ruby on Rails, Python and Java.

3.2  Messages serialization/deserialization with Protobuf

A challenge in distributed systems is the choice of communication techniques, and 

data serialization/deserialization libraries between the client and the server. Pro-

tobuf, as a solution provided by google, is a popular serialization/ deserialization 

solution [34]. It offers flexible, efficient and high performance way to solve problem 

related to client server communication such as multiprogramming languages, mes-

sage expansion and processing time.

Many researches aim to compare such technologies to facilitate the choice and to 

get the best performance. The most appropriate way to do this, is to benchmark the 

work of those technologies in a specific context. The benchmark in [34, 35] presents 



3383

1 3

Design and implementation of a cloud‑based event‑driven…

the benefits of using protobuf against other serialization libraries such as JSON and 

Binary JSON (BSON). Protocol buffers offer messages with reduced size up to six-

fold. This benchmark compares obtained message sizes after decoding for more than 

50.000 records, and four message types Command, Response, Request and acknowl-

edgement are investigated. Table 2 gives an overview of binary serialization results 

and the benefits of using protobuf against other serialization library such as JSON 

and BSON. Another benchmark aims to examine the performance in terms of seri-

alization and deserialization time for fixed structured data and message size.

Tables 2 and  3 demonstrate that Protobuf is the best choice against XML and 

JSON from the viewpoint of serialization/deserialization time. To guarantee a high 

performance communication between devices and cloud applications, Protobuf is 

selected as messages serializer/deserializer. Thereby, protobuf is used in the pro-

posed architecture.

To conclude, this section describes in details the back-end core architecture. Basi-

cally, the proposed architecture is integrated to take-up and act on MQTT broker 

Fig. 3  Micro-service architecture

Table 2  Comparison of different serialization libraries: Obtained message sizes after serialization [34]

Message Message count Original 

message size 

[Byte]

Protobuf size [Byte] BSON size [Byte] JSON size [Byte]

CMD 2773 86290 116995 885222 914192

REPS 24918 2486123 6551425 31048951 37116788

REQ 241 2764 5159 47838 48950

ACK 23758 308015 502539 4310316 4377701

TOTAL 51690 2883192 7176118 36292327 42457631



3384 S. Khriji et al.

1 3

forwarded and directed events (records) by offering many benefits. Running one sys-

tem with complex functionalities in only one application is known as monolithic 

application, which causes a good deal of software crisis during the development pro-

cess. This is exactly the reason why the micro-service design pattern are used as 

a set of loosely decoupled services managed with agile development process with 

continuous delivery/deployment of the complex application. One central component 

in micro-service design is the event-manager. It is responsible for routing events 

from the producer to the consumer, and it is characterized with availability, durabil-

ity, throughput and latency. Apache Kafka as stream processing platform outper-

forms RabbitMq in terms of handling massive data input. It is also suitable for the 

event processing, offering an expansion of event-driven architecture known as event-

stream processing architecture.

4  Implementation of cloud-connected wireless network

In this section, the implementation of the proposed cloud-connected wireless net-

work to monitor the soil moisture is presented as depicted in Fig. 4. The first compo-

nent contains a number of wireless nodes integrating a soil moisture sensor. Nodes 

are communicating with the gateway using the Simple Wireless Abstract Protocol 

(SWAP) [36]. The gateway consists of a Raspberry Pi, which is used as a central 

node in the system to run the data processing unit. For reliable and fast data trans-

mission between the sensor network and back-end (cloud data hosting and process-

ing architecture), google protocol buffers are used. After forwarding records to the 

specific micro-service, which represents a Java running application, collected data 

need to be stored on the database. In order to design and implement the whole sys-

tem, certain requirements at each level of the design need to be considered.

4.1  Sensing unit

A real-time IoT-based sensor node to monitor the level of water in a plant is devel-

oped by using a soil moisture sensor. This application is needed for designing an 

automated irrigation system. The control of irrigation is highly recommended to 

reduce the over-use of water and the manpower. To control the level of water on 

the soil, this unit compromises the soil moisture sensor, namely, VH400 [37] and 

the wireless node, called panStamp [38]. Indeed, panStamp is a small low-power 

wireless sensor mote programmable from the Arduino IDE. It uses a MSP430 core 

Table 3  Comparison of 

different serialization libraries: 

Serialization/deserialization 

time [35]

Technology Serialization time [ms] Deserializa-

tion time 

[ms]

XML (XStream) 2.869 5.128

Json (Jackson) 0.148 0.209

Google Protobuf 0.047 0.105



3385

1 3

Design and implementation of a cloud‑based event‑driven…

embedded with a CC1101 RF transceiver, which forms CC430F5137 SoC. It pro-

vides data transfer speeds at a rate up to 600 kbps. It can offer a data range of com-

munication up to 200 meters in outdoor applications. The SWAP protocol offers a 

firmware behind the scenes. It is used to provide an M2M interoperability between 

simple wireless devices. Each endpoint has its own representation which serves as a 

way to read value from sensors.

4.2  Gateway unit

In this unit, the panStamp receiver node collects the sensed data from remote nodes 

and forwards them to the embedded board Raspberry Pi. To ensure the collection 

of data from multiple sensor nodes and running algorithms to exchange messages 

with the cloud in a short time, the MQTT protocol is implemented. In fact, it is 

designed to be a lightweight publisher/subscriber messaging transport protocol. The 

MQTT client integration needs to guarantee no losses of messages and dynamically 

handling of distributed system problems. The SWAPdmt running on the Raspberry 

Pi board has to be connected to the cloud for data exchanging. The listing 1 pre-

sents the protobuf file chosen for messages exchanging between the cloud and the 

Fig. 4  Proposed cloud-connected wireless network architecture



3386 S. Khriji et al.

1 3

application running on Raspberry Pi. Here, the Protobuf file includes two messages 

structures: MainMessage and payload.

Each Raspberry Pi running SWAP-dmt application must have a unique identifier. 

This identifier is the same as the gateway identifier (implemented as an incremental 

integer). Each transmitter node within the SWAP network must be also configured 

with a unique identifier number. With the help of this number, the gateway (Rasp-

berry Pi) can configure the transmitter node remotely. Each transmitted message 

needs to be enriched with timestamp and is uniquely identified with ID field. The 

main message contains the payload field including values generated from the wire-

less node.

4.3  Event‑stream processing unit

The event-stream processing presents an expansion of the event-driven architec-

ture in terms of functionality. Generally, it represents the first computing task on 

event-driven architecture. It contains a set of technologies to assist the processing 

of incoming data flow. In fact, it offers the ability to sense and identify a meaning 

of the incoming data to indicate the occurrence of a logic situation. Thus, enables 

the stream application to fast react to opportunities and threats [39]. The choice of 

event processing pattern over an event-driven architecture depends on the business 

requirements and the target architecture.

Kafka streams are introduced as a lightweight library designed for process-

ing and analyzing data stored in Apache Kafka. Apache Kafka streams ensures 

the fault-tolerant by instances replication. This means running another instances 

of the same application, which are typically located on different machines. After 

nodes replication, the stream application is dynamically scalable and elastic dur-

ing runtime. Kafka streams leverages for this reason the topic partitioning fea-

ture of Apache Kafka consumer to add parallel processing of records capability. 

In this case, each instance is in charge of processing some topic partitions. The 

results of processing can be either reproduced to Apache Kafka or other external 



3387

1 3

Design and implementation of a cloud‑based event‑driven…

system such as the database. In addition, it offers the important processing tools 

such as aggregation of data and the ability to differentiate between many timing 

concept (event time, processing time, etc.). It is also based on many functionali-

ties already implemented in Apache Kafka broker like scaling by partitioning the 

topics and can be integrated into any Java application. Kafka streams leverage the 

transactional sending of messages feature provided by Kafka broker to guarantee 

that the message will be only processed one time. The difference between this 

feature to other processing frameworks is that Kafka streams automatically han-

dles commits on the input topic offsets, saves on the state stores, writes the results 

to output topic and waits for acknowledgements [40]. Kafka streams is a horizon-

tal scalable distributed processing engine. guarantee this option, increasing the 

number of topic partition is the first step. To manually scale down the processing 

capability, one or more streaming instance need to be removed.

To sum up, the aim of creating Kafka streams is to introduce a new framework 

having more performance than Kafka Consumer. In fact, Kafka streams offers 

many benefits by extending Apache Kafka internal working philosophy and by 

avoiding additional effort and cost related to design and deploy new Cluster. For 

these reasons, the stream processing part is implemented with Kafka Streams.

Kafka is actually a bridge between the gateway unit and the processing cluster, 

providing an access point for external systems to consume semantic data. After 

sending records to the cloud, Kafka streams are the first step on the processing 

chain, which serves to implement a complex processor topology.

As represented in Fig.  5, the head of processor topology is the source of 

records, called data source. It presents the source of data input, which receives 

and processes all records. The source node forwards the records to the next pro-

cessor, which is identified with the name entry point, and it is responsible for 

decoding records and sending them to the appropriate processor. The entry point 

processor has the functionality to choose in which direction the message should 

be forwarded. In addition, the cloud destination processor has the functional-

ity of decoding the payload message and testing included values. In this step of 

processing, the message with unsafe and unacceptable values is forwarded to the 

alert processor. Then, the alert processor notifies in the first step the appropriate 

gateway. then, it send it back to Apache Kafka for future processing on micro-

services. The micro-service needs in addition to react in real-time to each wrong 

operation of wireless sensor nodes. An example of message filtering for alerting 

purposes is the node battery level or high soil moisture. The stream processing 

application writes all incoming records after processing back to Apache Kafka. 

The sink processor is also responsible for the serialization and deserialization of 

records key and value. Micro-services are java running applications implemented 

with Spring boot and managed with Apache Maven. Each micro-service handles 

a small task by implementing computational logic and listens to a specific Kafka 

topic, which represents the data source. By distributing the complex function-

alities into small tasks, micro-services are used to reduce the system complexity. 

To hold the real-time capability, micro-services have to deal with the database, 

which also offers this feature.



3388 S. Khriji et al.

1 3

4.4  Persistence unit

The persistence unit is responsible for storing data analyzed by the cluster processing 

layer to allow further analysis. It is also an access point for external systems to retrieve 

the stored data. Several solutions and products for big data databases are introduced. 

Each with its own specification, strengths and limits. MongoDB [41] is used as distrib-

uted document database, which is designed for web applications and big data storage. 

In fact, it extends the functionality of SQL and gives more flexibility for the design of 

data models. Moreover, it provides a powerful query language, index structures and 

many more functions. MongoDB claims also to provide the functionality of SQL while 

achieving the high speed and scalability of key value stores.

Fig. 5  Stream processing application implementation: Processor topology



3389

1 3

Design and implementation of a cloud‑based event‑driven…

5  Architecture deployment

During this section, the back-end cloud architecture and components deployment 

of REDA are described. The target architecture is designed to be running inde-

pendently from the cloud providers, but the choice of the cloud provider is still 

difficult because the aim of this work is to implement a high available architecture 

without long-term contracts or up-front commitments. AWS is one of the most 

known cloud providers. It is designed by Amazon to allow application providers 

to fast and securely host their application. With AWS it’s possible to choice the 

operation system, database and to create a virtual network, additionally it uses an 

end to end approach to secure the resources, offers mechanisms to real time moni-

toring the hardware, include new software metrics.

The back-end cloud architecture and components deployment are described 

besides of the placement of the Virtual Private Cloud (VPC) for resources host-

ing as illustrated in Fig.  6. The VPC allows the definition of the own network 

architectures, which corresponds largely to conventional networks. In addition, 

the VPC gives system architects complete control over their virtual network 

Fig. 6  AWS Architecture for load test



3390 S. Khriji et al.

1 3

environment, including choosing an IP address range, creating subnets and con-

figuring route tables and network gateways.

The AWS hosts a physical machine, namely Amazon Elastic Compute Cloud 

(EC2) instances, which provides a flexible provision of computer resources as a 

primary service. The Amazon EC2 can perform the business requirement with an 

almost unlimited amount of virtual machines. During the creation of EC2 instances, 

it is necessary to provide the Availability Zone, or simply the isolated location 

within the AWS region. As seen in Fig. 6, the AWS offers in each region three Avail-

ability Zones, and this is the key of high availability (Table 4).

The instance model, data persistence strategy and network bandwidth are the key 

of success for the cloud architecture in terms of processing capability, simplicity of 

monitoring and costs. The deployment of MQTT message broker replicas guaran-

tees a high availability in terms of devices synchronization. After this step, Apache 

Kafka cluster co-located with Zookeeper is deployed over three availability zones 

and optimized for high throughput and low latency. The final step of architecture 

deployment is always the creation and execution of load tests or simply the simula-

tion of high input/output traffic.

5.1  MQTT message broker setup

To ensure a dynamic fault-tolerant system and prevent network fails, a MQTT bro-

ker cluster is required, which presents the entry point (synchronization level) in the 

target architecture. Mosquitto is a high available MQTT broker, designed to han-

dle a big number of simultaneous MQTT clients with minimal RAM usage [27]. 

Moreover, Mosquitto enables the transmission of records automatically between a 

duplicated number of brokers [42]. To take advantage of this feature, it is important 

to split topics across many brokers, and each broker forwards messages to the others.

5.2  Zookeeper Quorum architecture

The first step of setting a Zookeeper Quorum is to create replicas across several 

predefined hosts. Each replica runs in a separate AWS availability zones. The Zoo-

keeper cluster expands this features by integrating each node in a separated zone. 

This solution continues working in the worst case, even when two instances fail. 

After the creation of three EC2 instances in the same VPC and assigning a static IP 

Table 4  AWS T2 instances 

configuration and costs
Model CPU Mem [GB] Cost [Dollar/Hour]

t2.nano 1 0.5 0.0058

t2.micro 1 1 0.0116

t2.small 1 2 0.023

t2.medium 2 4 0.0464

. . . .

t2.2xlarge 8 32 0.3712



3391

1 3

Design and implementation of a cloud‑based event‑driven…

address for each instance, Zookeeper servers are settled up. Each server is contained 

in a single Java JAR file, which is related to a specific configuration file. Each Zoo-

keeper broker saves the data in dataDir repository. Then, it listens by default to port 

2181 to connect with Kafka cluster and sends periodically (tickTime) heartbeats to 

all brokers in the quorum as depicted in listing 2.

5.3  Kafka cluster setup

Similar to Zookeeper Quorum, Apache Kafka is deployed across many instances to 

create a fully distributed multi-broker clusters. Zookeeper and Kafka brokers are co-

located on the same instance to save additional costs. Apache Kafka provides more 

than 150 configuration parameters for scaling the desired architecture. It is often 

used to store critical data, therefore it is one of the important components of the 

project data infrastructure. To start a simple message broker, it is not necessary to 

manually control all those parameters. A basic configuration file is presented in the 

listing 3.

The first benchmark is designed to test different acknowledgement types with 

various messages sizes. For a fixed message size and a fixed amount of data (8 GB), 

both throughput and latency will be measured. As presented in Fig. 7a and b, the 

message acknowledgement has a deep impact on the throughput as well as on the 

latency.

Records with small sizes are usually the biggest problem for message brokers. 

Benchmarks presented in Fig. 8a and b demonstrate this by measuring the through-

put (MB/s) and latency (ms) for many records sizes. Almost, Apache Kafka with 

basic configuration weakens with handling the incoming data flow with small sizes. 

Messages exchange in the SWAP network have usually a very small size between 

256 and 512 bytes. Therefore, records transmitted from python application listened 



3392 S. Khriji et al.

1 3

to the gateway node in the serial port are serialized in the Protobuf format. The 

serialization with Protobuf will in addition decrease the record size. Apache Kafka 

as demonstrated in the last benchmark weakens with handling small size records. 

To avoid such problem, three optimization solutions are introduced in this paper. 

The first one consists on the creation of topics with more partitions. The second 

approach is to batch records with the producer, and the third solution is to add more 

worker threads to improve the Kafka producer.

5.3.1  Creation of topic with more partitions

The first message transmission optimization solution is to increase the number of 

partitions for each topic. The topic partitions are the logical parallelism unit offered 

by Kafka broker. The producer can send messages to different partitions in parallel. 

(a) (b)

Fig. 7  Apache Kafka latency for many message acknowledgement: a Throughput, b latency

(a) (b)

Fig. 8  Benchmark for many message sizes: a Throughput, b latency



3393

1 3

Design and implementation of a cloud‑based event‑driven…

The message broker handles those messages from its side also in parallel. Finally, 

the Kafka consumer is able to poll/consume those messages in parallel.

The idea of the next benchmark, as illustrated in Fig.  9a and b, is varying the 

number of partitions for the same record size (in byte) transmitted to topic. For each 

measurement, a fixed amount of data (8 GB) is transmitted.

As presented in Fig. 9a and b, increasing the number of partitions loads generates 

better throughput. In fact, to get better performance, it is important to assign a big 

number of partitions for topics. Starting from a specific number of partitions, both 

throughput and latency of the message broker are constants. Due to resource lim-

its, increasing the number of partition leads to decrease the message broker perfor-

mance. The point of recession is not the optimal number of partitions because this 

benchmark focuses only on the producer performance, and it is running dependably 

on the consumers processes performance.

5.3.2  Batching record by producer

Another optimization behavior is to simulate the case of average message size with 

batching producer out-going messages. The producer can batch outgoing messages 

transmitted to the same partition, i.e., it collects multiple messages to send together 

in a single request. Therefore, a big size message can be processed and handling 

incoming records effort using the message broker is decreased. In real-time, routing 

and processing environment batching can be seen as a latency killer, because the 

Kafka producer postpones transmitted records until the batch size is reached. The 

next benchmark, as seen in Fig. 10a and b, demonstrates the impact of batching on 

improving the throughput and latency by increasing the batch size. Larger batch size 

results in better throughput. This is a result of reducing requests number to the bro-

ker and decreasing requests load on producers as well brokers side. As presented in 

Fig. 10b, increasing the batch size do not have practically a bad effect on the latency.

(a) (b)

Fig. 9  Optimization by increasing number of partitions: a Throughput, b latency



3394 S. Khriji et al.

1 3

The value of latency is reduced noticeably by increasing the batch size from 

0 to 10240 bytes. This is related to the internal structure of the Kafka producer, 

which creates a logical transmission channel with each topic partition leader. 

This channel presents a queue, which follows the FIFO principle, and each 

record transmitted via this queue has a specific time called the queue time. The 

network bandwidth has an impact on records queuing time. So, configuring the 

cluster with a high network throughput can decrease the queuing time of records. 

Saving records with batching from piling up in the transmission queue are the 

reason of decreasing the latency. Otherwise, sending a batch of records in one 

request needs only one acknowledgement from the server, which can reduce 

from its side the network overhead.

5.3.3  Improving Kafka consumer by adding more partitions

Another important part in the optimization process is to setup an efficient Kafka 

consumer, which presents an instance of micro-service in the architecture to 

support a big amount of data stored in Apache Kafka. As seen in Fig. 11, simi-

lar to the Kafka producer, increasing the partitions number of topic and batch-

ing the out-going records dive to more performance. Batching can cause addi-

tional problems by records consuming in case of failure. So, when the Kafka 

producer fails, it needs to repeat records reading from the last record commit-

ted. This requires either an advanced committing strategy or handling records 

redundancy in the micro-service application. Consumers assign to one consumer 

group to distribute records processing of one or more topics. To ensure the par-

allel processing of data on the micro-service, the developer has to implement a 

thread save behavior, which instantiates many consumer instances with the same 

group-name.

(a) (b)

Fig. 10  Apache Kafka producer improving with batching: a Throughput, b latency



3395

1 3

Design and implementation of a cloud‑based event‑driven…

5.4  Load test setup

The load test, also known as system benchmarking, is an important step for distributed 

systems. It aims to simulate high traffic of incoming/outcoming data. The architecture 

used to generate the load test and measure the performance is depicted in Fig. 6. The 

message producer and consumer are located each in a new instance, that makes them 

separate from the Kafka cluster and gives a transparent and real benchmark results. 

After the deployment of Apache Kafka, the load test starts. The goal of such tests is 

to ensure that the message broker does not crash in many conditions. The first load test 

case is to simulate high traffic of incoming data generated from devices. After a high 

load generation, the behavior of systems needs to be checked in many sides such as bro-

kers status or computational resources. The topic added to the Kafka broker is created 

with 10 partitions. This number of partitions can guarantee the desired throughput and 

latency without batching of records. The results from Kafka-Perf are represented in the 

listing 4:

Fig. 11  Increasing consumer throughput by adding more topic partition



3396 S. Khriji et al.

1 3

The load test is started at the time 11:50 and takes nearly 15 minutes execution 

time. As described in listing 4, the producer continues sending records with through-

put 2 MB/s (see Fig.  12). When the records reach the topic leader, they must be 

firstly committed and saved in the disk and then replicated in the other two brokers. 

Figure  14 illustrates the read/write disk throughput. Figure  13 presents the CPU 

consumption during the run of load test on one message broker (leader).

6  Limitations and future works

This research paper can be extended in different ways. One of the primary future 

work is to overcome the limitations of the designed architecture by considering the 

security aspect in different levels, implementing alternatives to manage the limited 

data size of MangoDB. Another future approach in our work is to optimize more the 

developed architecture by adding more availability and scalability features includ-

ing the creation of n nodes MQTT broker cluster, the data parallel processing and 

data replication and scharding. Regarding the architecture design evaluation, some 

parameters need to be considered such as cost, QoS and data reliability. In addition, 

we plan to use the fog computing at the edge of the network, which is an emerging 

Fig. 12  Producer average outgoing data flow



3397

1 3

Design and implementation of a cloud‑based event‑driven…

Fig. 13  CPU consumption during benchmark

Fig. 14  Disk storage throughput



3398 S. Khriji et al.

1 3

technology that provides intelligent connection networks between IoT devices and 

cloud computing platforms. This layer allows local aggregation of data and deletes 

irrelevant data from the network. Implementing the architecture for application with 

high demand of data processing such as healthcare applications are presented as on 

of the main further works. In our solution, the MongoDB is used, which was scal-

able enough to support some hundreds of requests in one second. There is further 

analysis addressing this point by expecting a big size storage database as well high 

memory usage. One possible solution will be there MongoDB Atlas located on the 

cloud or cloud provider MongoDB implementation. Last but not least, we are plan-

ning to extend our evaluation to include recent architectures built on similar or dif-

ferent cloud platforms, such as AWS, IBM and Azure. This will lead to highlight 

more the novelty and the strengths of our architecture.

7  Conclusion

To process a massive flux of data and to react in real-time, a cost-effective cloud 

architecture is developed. REDA is composed mainly of four units. A sensing unit 

contains low-power wireless sensor nodes integrating soil moisture sensors to moni-

tor the water level on the soil. Sensed data are forwarded to the gateway unit (Rasp-

berry Pi), presented as a central node in the system. To collect data from multiple 

sensor nodes in a fast way and to send/receive messages from/to the cloud running 

application, the lightweight publisher/subscriber messaging transport protocol, 

MQTT, is used. The event-stream processing unit is based on an event-driven back-

end core architecture. After records sent to the cloud, Kafka streams are the first step 

on the processing chain, a lightweight horizontal scalable processing framework, 

which serves to implement complex processor topology. To avoid the problem of 

complexity during the system development, micro-services design patterns are used. 

In fact, they are Java running applications implemented with Spring boot and man-

aged with Apache Maven. Each micro-service handles a small task by implement-

ing a computational logic and listens to the specific Kafka topic, which presents the 

data source. To hold the real-time capability, micro-services must deal with data-

base (persistence unit). The MongoDB as distributed document database, is selected 

due to the internal structure, high availability and scaling capabilities. To deploy our 

solution, Apache Kafka cluster co-located with Zookeeper is deployed over three 

availability zones and optimized for high throughput and low latency. To guarantee 

no message loss and to simulate the system performances, different load tests are 

launched. Therefore, it is demonstrated, that the proposed architecture guarantees a 

high data availability by handling about 8000 messages in a second with very low 

latency in a very cheap hosted and configured architecture.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 



3399

1 3

Design and implementation of a cloud‑based event‑driven…

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article 

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 

material. If material is not included in the article’s Creative Commons licence and your intended use is 

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 

ses/ by/4. 0/.

References

 1. Mukherjee A, Roy DG, De D (2019) Mobility-aware task delegation model in mobile cloud comput-

ing. J Supercomput 75:314–339. https:// doi. org/ 10. 1007/ s11227- 018- 02729-x

 2. Talib MA, Majzoub S, Nasir Q et al (2021) A systematic literature review on hardware implementa-

tion of artificial intelligence algorithms. J Supercomput 77:1897–1938. https:// doi. org/ 10. 1007/ 

s11227- 020- 03325-8

 3. Baranwal G, Vidyarthi DP (2016) Admission control in cloud computing using game theory. J Supercom-

put 72:317–346. https:// doi. org/ 10. 1007/ s11227- 015- 1565-y

 4. Park DS (2018) Future computing with IoT and cloud computing. J Supercomput 74:6401–6407. https:// 

doi. org/ 10. 1007/ s11227- 018- 2652-7

 5. Cerwall P, Jonsson P, Möller R, Bävertoft S, Carson S, Godor, I Ericsson mobility report, On the Pulse of 

the Net1030 worked Society. Hg. v. Ericsson

 6. Chéour R, Jmal MW, Abid M (2018) New combined method for low energy consumption in wireless sen-

sor network applications. Simulation 94(10):873–85. https:// doi. org/ 10. 1177/ 00375 49718 759432

 7. Khriji S, Houssaini DE, Kammoun I, Kanoun O (2018) Energy-efficient techniques in wireless sensor net-

works: technology, components and system design. Energy Harvest Wirel Sensor Netw. https:// doi. org/ 

10. 1515/ 97831 10445 053- 017

 8. Chéour R, Khriji S, El Houssaini D, Baklouti M, Abid M, Kanoun O (2019) Recent trends of FPGA used 

for low-power wireless sensor network. IEEE Aerosp Electron Syst Mag 34(10):28–38

 9. Khriji S, Houssaini DE, Kammoun I, Kanoun O (2018) A fuzzy based energy aware unequal clustering 

for wireless sensor networks. In: Montavont N, Papadopoulos G (eds) Ad-hoc, mobile, and wireless 

networks., vol 11104. Springer, Cham (ADHOC-NOW 2018. Lecture Notes in Computer Science)

 10. Chéour R, Khriji S, Kanoun O (2020) Microcontrollers for IoT: optimizations, computing paradigms, 

and future directions. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) pp 1-7. IEEE

 11. Tabrizchi H, Kuchaki Rafsanjani M (2020) A survey on security challenges in cloud computing: issues, 

threats, and solutions. J Supercomput 76:9493–9532. https:// doi. org/ 10. 1007/ s11227- 020- 03213-1

 12. Li C, Bai J, Luo Y (2020) Efficient resource scaling based on load fluctuation in edge-cloud computing 

environment. J Supercomput 76:6994–7025. https:// doi. org/ 10. 1007/ s11227- 019- 03134-8

 13. Mihai V, Dragana C, Stamatescu G, Popescu D, Ichim L, 2018 Wireless sensor network architecture 

based on fog computing. In: 2018 5th International Conference on Control, Decision and Informa-

tion Technologies (CoDIT), Thessaloniki, Greece, 10-13 April . IEEE (2018), pp 743-747. https://doi.

org/10.1109/CoDIT.2018.8394851

 14. Hsu CH, Fox G, Min G et al (2019) Advances in big data programming, system software and HPC con-

vergence. J Supercomput 75:489–493. https:// doi. org/ 10. 1007/ s11227- 018- 2706-x

 15. Zhong RY, Xu X, Klotz E, Newman ST (2017) Intelligent manufacturing in the context of industry 4.0: 

a review. Engineering 3(5):616–630. https:// doi. org/ 10. 1016/J. ENG. 2017. 05. 015

 16. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural 

elements, and future directions. Future Gener Comput Syst 29(7):1645–1660. https:// doi. org/ 10. 1016/j. 

future. 2013. 01. 010

 17. Seo D, Jeon YB, Lee SH et  al (2016) Cloud computing for ubiquitous computing on M2M and 

IoT environment mobile application. Cluster Comput 19:1001–1013. https:// doi. org/ 10. 1007/ 

s10586- 016- 0573-x

 18. Zhou C, Zhang X (2014) Toward the internet of things application and management: a practical 

approach. In: 2014 Proceeding of IEEE International Symposium on a World of Wireless, Mobile and 

Multimedia Networks, Sydney, NSW, Australia, 19 June 2014. IEEE , pp 1-6. https://doi.org/10.1109/

WoWMoM.2014.6918928

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11227-018-02729-x
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1007/s11227-015-1565-y
https://doi.org/10.1007/s11227-018-2652-7
https://doi.org/10.1007/s11227-018-2652-7
https://doi.org/10.1177/0037549718759432
https://doi.org/10.1515/9783110445053-017
https://doi.org/10.1515/9783110445053-017
https://doi.org/10.1007/s11227-020-03213-1
https://doi.org/10.1007/s11227-019-03134-8
https://doi.org/10.1007/s11227-018-2706-x
https://doi.org/10.1016/J.ENG.2017.05.015
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1007/s10586-016-0573-x
https://doi.org/10.1007/s10586-016-0573-x


3400 S. Khriji et al.

1 3

 19. Chenaru O, Stamatescu G, Stamatescu I, Towards Popescu D, cloud integration for industrial wireless 

sensor network systems. In: 2015 9th International Symposium on Advanced Topics in Electrical Engi-

neering (ATEE), Bucharest, Romania, 7–9 May 2015. IEEE 2015:917–922. https:// doi. org/ 10. 1109/ 

ATEE. 2015. 71339 33

 20. Kurniawan A (2018) Learning AWS IoT: effectively manage connected devices on the AWS cloud 

using services such as AWS Greengrass, AWS button, predictive analytics and machine learning. Packt 

Publishing Ltd

 21. Richard Olaniyan, Olamilekan Fadahunsi, Muthucumaru Maheswaran, Faten Zhani Mohamed (2018) 

Opportunistic edge computing: concepts, opportunities and research challenges. Future Gener Comput 

Syst 89:633–645

 22. John O’Loughlin, Lee Gillam (2018) A performance brokerage for heterogeneous clouds. Future Gener 

Comput Syst 87:831–845

 23. la Prieta De F, Rodríguez-González S, Chamoso P, Corchado JM, Bajo J (2019) Survey of agent-based 

cloud computing applications. Future Gener Comput Syst 100:223–236

 24. Pogiatzis A, Samakovitis G (2021) An event-driven serverless ETL pipeline on AWS. Appl Sci 

11(1):191

 25. Helmer S, Poulovassilis A, Xhafa F (2011) Introduction to reasoning in event-based distributed sys-

tems. In: Helmer S, Poulovassilis A, Xhafa F (eds) Reasoning in event-based distributed systems, vol 

347. Springer, Berlin, Heidelberg (Studies in Computational Intelligence)

 26. Bruns R, Dunkel J (2010) Event-driven architecture: Softwarearchitektur für ereignisgesteuerte 

Geschäftsprozesse. Springer-Verlag

 27. Rieke M, Bigagli L, Herle S, Jirka S, Kotsev A, Liebig T, Malewski C, Paschke T, Stasch C (2018) 

Geospatial IoT—the need for event-driven architectures in contemporary spatial data Infrastructures. 

ISPRS Int J Geo Inf 7(10):385. https:// doi. org/ 10. 3390/ ijgi7 100385

 28. Yassein MB, Shatnawi MQ, Aljwarneh S, Internet Al-Hatmi R (2017) Internet of Things: Survey and 

open issues of MQTT protocol. In: 2017 International Conference on Engineering & MIS (ICEMIS), 

Monastir, Tunisia, 8–10 May 2017. IEEE 2017:1–6. https:// doi. org/ 10. 1109/ ICEMIS. 2017. 82731 12

 29. Soni D, Makwana A (2017) A survey on MQTT: a protocol of internet of things (IoT). In: International 

Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), 

Bharath Institute of Higher Education and Research, 173, Agharam Road, Selaiyur, Chennai, India

 30. Philippe D, Kyumars SE (2017) Kafka versus RabbitMQ: a comparative study of two industry refer-

ence publish/subscribe implementations: Industry Paper. In: Proceedings of the 11th ACM Interna-

tional Conference on Distributed and Event-based Systems (DEBS ’17). Association for Computing 

Machinery, New York, NY, USA, pp 227-238. https:// doi. org/ 10. 1145/ 30937 42. 30939 08

 31. John V, Liu X (2017) A survey of distributed message broker queues. arXiv preprint arXiv: 1704. 00411

 32. Kreps J, Narkhede N, Rao J (2011) Kafka: a distributed messaging system for log processing. Proc 

NetDB 11:1–7

 33. Newman S 2015. Building microservices: designing fine-grained systems. O’Reilly Media, Inc

 34. Popić S, Pezer D, Mrazovac B, Teslić N (2016) Performance evaluation of using Protocol Buffers in the 

Internet of Things communication. In: 2016 International Conference on Smart Systems and Technolo-

gies (SST), Osijek, Croatia, 12-14 Oct. 2016. IEEE , pp 261-265. https:// doi. org/ 10. 1109/ SST. 2016. 

77656 70

 35. Maeda K (2012) Performance evaluation of object serialization libraries in XML, JSON and binary for-

mats. In: 2012 Second International Conference on Digital Information and Communication Technol-

ogy and it’s Applications (DICTAP), Bangkok, Thailand, 16-18 May 2012. IEEE , pp 177-182. https:// 

doi. org/ 10. 1109/ DICTAP. 2012. 62153 46

 36. Karagiannis V (2014) Building a Testbed for the Internet of Things. Alexander Technological Educa-

tional Institute of Thessaloniki 1–92

 37. Khriji S, El Houssaini D, Kammoun I, Kanoun O (2021) Precision irrigation: an IoT-enabled wire-

less sensor network for smart irrigation systems. In: Hamrita T (ed) Women in precision agriculture. 

Springer, Cham (Women in Engineering and Science)

 38. Khriji S, Kallel AY, Reedy S, El Houssaini D, Kammoun I, Kanoun O (2019) Dynamic autonomous 

energy consumption measurement for a wireless sensor node. In, (2019) IEEE International Sympo-

sium on Measurements & Networking (M&N), Catania, Italy. 8–10 July 2019. IEEE 2019:1–5. https:// 

doi. org/ 10. 1109/ IWMN. 2019. 88050 01

 39. Etzion O, Niblett P (2011) Event processing in action. Simon and Schuster, New York City

 40. Apache kafka streams documentation, https://kafka.apache.org/documentation/streams/, access (Janu-

ary 2021)

https://doi.org/10.1109/ATEE.2015.7133933
https://doi.org/10.1109/ATEE.2015.7133933
https://doi.org/10.3390/ijgi7100385
https://doi.org/10.1109/ICEMIS.2017.8273112
https://doi.org/10.1145/3093742.3093908
http://arxiv.org/abs/1704.00411
https://doi.org/10.1109/SST.2016.7765670
https://doi.org/10.1109/SST.2016.7765670
https://doi.org/10.1109/DICTAP.2012.6215346
https://doi.org/10.1109/DICTAP.2012.6215346
https://doi.org/10.1109/IWMN.2019.8805001
https://doi.org/10.1109/IWMN.2019.8805001


3401

1 3

Design and implementation of a cloud‑based event‑driven…

 41. Chodorow K (2013) MongoDB: the definitive guide: powerful and scalable data storage. O’Reilly 

Media Inc, Sebastopol

 42. Light RA (2017) Mosquitto: server and client implementation of the MQTT protocol. Int J Open Source 

Softw Process https:// 2(13):265. https:// doi. org/ 10. 21105/ joss. 00265

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Authors and A�liations

Sabrine Khriji1  · Yahia Benbelgacem1 · Rym Chéour2 · Dhouha El Houssaini1 · 

Olfa Kanoun1

 Yahia Benbelgacem 

 benbelgacemyahya@gmail.com

 Rym Chéour 

 rym.cheour@enis.tn

 Dhouha El Houssaini 

 dhouha.el-houssaini@etit.tu-chemnitz.de

 Olfa Kanoun 

 olfa.kanoun@etit.tu-chemnitz.de

1 Chair of Measurement and Sensor Technology, Technische Universität Chemnitz, Chemnitz, 

Germany

2 National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia

https://doi.org/10.21105/joss.00265
http://orcid.org/0000-0002-0562-0116

	Design and implementation of a cloud-based event-driven architecture for real-time data processing in wireless sensor networks
	Abstract
	1 Introduction
	2 High-level IoT cloud solutions
	3 REDA: Proposed back-end cloud-based architecture for real-time processing
	3.1 Event-driven architecture
	3.1.1 Event producer-based MQTT message broker
	3.1.2 Event channel-based Apache Kafka
	3.1.3 Event consumer-based micro-services

	3.2 Messages serializationdeserialization with Protobuf

	4 Implementation of cloud-connected wireless network
	4.1 Sensing unit
	4.2 Gateway unit
	4.3 Event-stream processing unit
	4.4 Persistence unit

	5 Architecture deployment
	5.1 MQTT message broker setup
	5.2 Zookeeper Quorum architecture
	5.3 Kafka cluster setup
	5.3.1 Creation of topic with more partitions
	5.3.2 Batching record by producer
	5.3.3 Improving Kafka consumer by adding more partitions

	5.4 Load test setup

	6 Limitations and future works
	7 Conclusion
	References


