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Resumo

Veı́culos pessoais tais como carros são o meio de transporte escolhido por grande parte

da população, pelo que as nossas cidades hoje em dia estão construı́das muito em volta

deste meio de transporte. Tendo isto em conta, e a falta de investimento em outros tipos de

transportes (tais como transportes públicos e ciclovias), é praticamente impossı́vel viver

sem automóveis em certas localidades, principalmente fora das grandes cidades e em

paı́ses como Portugal.

Tendo em conta a quantidade de veı́culos que andam diariamente nas nossas cidades,

os nı́veis de poluição e trânsito são maiores do que nunca e há filas intermináveis para ir

a qualquer lugar, o que dificulta bastante a vida das pessoas em grandes cidades. Já foram

sugeridas múltiplas propostas para resolver este problema tais como adicionar mais vias

de trânsito, novos tipos de interseções mais eficientes, adicionar taxas de congestão, ou

até mesmo banir certos veı́culos de certas localizações a certas alturas tal como já foi feito

previamente na China. Infelizmente, nenhuma destas soluções funciona como esperado, e

o problema acaba sempre por reaparecer e/ou até mesmo piorar. Gestão de trânsito é mais

complicada do que parece, e é difı́cil arranjar uma solução que seja eficiente e funcione a

longo termo.

Hoje em dia, os primeiros veı́culos autônomos estão a começar a aparecer, e dão-

nos uma grande oportunidade para tentar resolver este problema. Os poucos veı́culos

autônomos já existentes são simples e ainda não são uma opção viável para transporte

diário, embora tudo mostre que isso esteja prestes a mudar em breve. Embora aju-

dem quanto à poluição e trânsito (já que não há o factor de erro humano e têm maior

segurança), não resolvem o problema totalmente, pelo que esta solução só por si não é

suficiente. Esses mesmos veı́culos autônomos, hoje em dia tomam as suas decisões com

base apenas em sensores próprios e a perceção que têm do mundo exterior. Tendo isto

em conta, estes veiculos não são perfeitos e há uma área não muito explorada que está em

falta nos já existentes, a comunicação com outros veı́culos e/ou sistemas externos.

A comunicação entre veı́culos é um fator fundamental em falta que tem de ser ex-

plorado e considerado para a próxima geração de veı́culos autônomos. Se estes veı́culos

tiverem a possibilidade de comunicar entre si, é possı́vel que estes cooperem uns com os

outros e que troquem informações úteis entre si, seja sobre o ambiente ou sobre tomadas

de decisões.
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Uma solução destas iria ajudar consideravelmente, sendo uma solução que teorica-

mente funcionaria mesmo a longo termo e reduziria bastante a poluição (já que os veı́culos

circulariam com maior eficiência), o trânsito das nossas cidades, e a segurança dos passa-

geiros, tornando as nossas vidas mais simples.

A este tipo de veı́culos é dado um novo nome: veı́culos cooperativos. Tal como o

nome indica, veı́culos cooperativos são um subconjunto de veı́culos autônomos que não

são totalmente independentes e dependem de infraestrutura externa e/ou comunicação

com outras entidades de modo a executarem a sua condução autónoma e tomadas de

decisões.

Existem duas abordagens principais para cooperação: os veı́culos comunicarem com

outros veı́culos, ou usarem infraestrutura externa como intermediário para a comunicação.

Ambas estas abordagens têm várias vantagens e desvantagens. No caso de comunica-

ção direta temos intervalos de comunicação muito baixos, o que é o ideal para um sistema

destes, mas é necessario usar comunicações de baixo alcance, o que significa que há

muitas falhas de comunicação já que os veı́culos estão constantemente em movimento.

Outro problema é a falta de visibilidades, já que devido à natureza das comunicações de

curto alcance, cada veı́culo só sabe informações de outros veı́culos bastante próximos.

No caso de usar infraestrutura como intermediário, a principal vantagem é o aumento

da visibilidade, já que a infraestrutura pode ter informação de qualquer veı́culo, seja qual

for a sua posição, mas não é adequado para situações em que é preciso comunicação

rápida, como por exemplo manobras devido ao grande intervalo entre comunicações.

Tendo isto em conta, achamos que a melhor solução é uma mistura entre estas duas

abordagens, tentando manter as vantagens de cada uma mas sem as suas desvantagens.

Um sistema que segue essa abordagem mista já foi previamente proposto, mas ainda

precisa de uma implementação, que é o que esta dissertação pretende tratar.

Este projeto apresenta uma possı́vel solução para cooperação entre veı́culos autôno-

mos usando como apoio um serviço na cloud. Os veı́culos comunicam a sua posição pe-

riodicamente a um sistema de membership na cloud que guarda e analisa esta informação

de modo a ter uma visão global de todos os veı́culos nas estradas. Sempre que cada

um destes veı́culos quer executar uma manobra, este envia um pedido para o serviço na

cloud, de modo a receber a informação sobre os veı́culos em alcance de comunicação que

são importantes para a realização da manobra em questão. Tendo conhecimento desta

informação, cada agente tenta entrar em contacto com esses mesmos veı́culos usando

comunicações sem fios de baixo alcance de modo a tentarem combinar a melhor e mais

eficiente forma para a execução das manobras.

Tendo isto em conta, esta dissertação apenas tem como objetivos implementar a apli-

cação servidor usando um algoritmo de Membership muito básico, bem como desenhar

e implementar o protocolo de comunicação cliente-servidor que vai ser usado para os

veı́culos comunicaram com a aplicação na cloud.
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A membership de um veı́culo é a lista de todos os veı́culos em alcance de comunicação

que são relevantes para a execução de uma manobra.

Questões de escalabilidade foram pensadas durante a implementação, pelo que foi

construı́da uma forma de poder dividir por vários servidores através de um conceito que

criamos, os segmentos. Um segmento é uma zona bastante especifica e delimitada de

um mapa 2D, cobrindo-o na sua totalidade. Todos os segmentos têm de ser o mesmo

tamanho, e ter uma zona sobreposta com todos os segmentos adjacentes. Cada servidor

de membership pode controlar um ou mais segmentos.

O protocolo de comunicação foi desenvolvido com uma aplicação cliente e uma apli-

cação servidor usando o Zookeeper, que é um serviço de coordenação usado para ajudar

a criação e uso de ferramentas distribuı́das. O Zookeeper é um servidor extra que serve

de intermediário entre a aplicação cliente e a aplicação servidor. Periodicamente o cliente

escreve no Zookeeper informações relevantes sobre o seu estado atual, tais como as suas

coordenadas e velocidade. Periodicamente, o servidor vai buscar a informação sobre os

veı́culos que controla ao Zookeeper, calcula a membership de cada um e coloca-as no Zo-

okeeper. Quando cada veı́culo quer efetuar uma manobra, vai buscar a sua membership ao

Zookeeper de modo a saber com que veı́culos tem de comunicar localmente para efetuar

a manobra.

A implementação foi feita em Java, e foi feita da forma mais modular possı́vel, de

modo a poder facilmente adicionar novas funcionalidades, bem como integrar este traba-

lho com um algoritmo de coordenação externo.

Para efeitos de testes e demonstração, foram feitos dois tipos de avaliação, isto é/no-

meadamente, avaliação funcional e avaliação de desempenho.

Para a avaliação funcional foi desenvolvida uma simulação para visualizar a aplicação

a funcionar. Para usar a simulação, foi necessario integrar o trabalho desenvolvido com

um protocolo de cooperação que usa a informação do sistema de membership para con-

trolar os veı́culos presentes na simulação.

Para a avaliação de desempenho foram feitos testes de carga com a intenção de per-

ceber qual é o bottleneck do sistema, e testes de execução, em que foi testado quanto

tempo é que o servidor demora a calcular a membership para um numero incremental de

clientes.

Palavras-chave: Veı́culo, Autônomo, Comunicação, Cooperação, Cloud
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Abstract

Personal vehicles such as cars are the transportation method chosen by most people,

and thanks to this, our cities are built around them, with roads that go to any place you

could ever need to go.

Given the number of daily vehicles in our cities, the pollution levels and traffic con-

gestion are higher than ever. Traffic makes everyone’s life harder, and just creates more

pollution, which ends up making living in a city a lot harder than it should. Multiples so-

lutions have been proposed to help fixing this problem, but none of them work as expected

or in the long run.

Nowadays, the first autonomous vehicles are starting to appear, and consequently,

bringing the opportunity to once again, try to solve this problem. Current autonomous

vehicles are simple and still not a viable option for daily transportation, but everything

shows that is likely to change soon. They already help a lot with traffic and pollution, but

sadly, not as much as we would like, which means it will not be enough in the long run

and another solution is needed. The existing ones make their decisions solely based on

their own sensors and nothing else. That is, it is the only view they have of the external

world. Even considering this, these vehicles are still not perfect as there is still a subject

that was not well explored, communication between vehicles.

Vehicle coordination is the next big step and an essential missing factor that has to be

considered for the next generation of autonomous vehicles. By being able to communicate

with each other, vehicles will be able to cooperate and share useful information about their

own decisions or the outside environment.

A solution such as this would help considerably with our current traffic issue and we

believe that this could be a long term solution with the advantage of reducing pollution

(due to higher efficiency), higher passenger security, and making everyone’s lives easier.

Keywords: Autonomous, Vehicle, Communication, Cooperation, Cloud
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Chapter 1

Introduction

Pollution and traffic congestion are two big problems that affect our daily life in cities and

it is something that needs to be addressed as fast as possible. Multiple solutions to solve

this have been suggested before, such as adding more lanes, new types of more efficient

intersections, e.g., the Diverging Diamond Interchange [6], adding congestion charges, or

even going as far as banning certain vehicles from certain locations at certain hours and/or

days based on a very specific set of rules, e.g., it has been done previously in China [10].

All of these solutions help in the short term, but they will always end up coming back

due to more traffic coming in as soon as people start seeing free space on the roads. This is

something called Induced Demand [20], and it basically means that trying to solve traffic

just creates more traffic, which means we need a different approach that works as a long

term solution and ends up eliminating traffic congestion for good.

Vehicles are also becoming more sophisticated and nowadays they have a wide range

of sensors and other tools available that allow them to do things that would be unimagin-

able a few years ago. Some examples are constant location tracking thanks to GPS, and

detection of other vehicles and objects thanks to distance sensors.

Due to the latter, and more than ever before, autonomous vehicles are going to become

everyday objects in a near future and a big part of our lives, influencing the way we interact

with the world. Everyone talks about them, every big automotive company is working

on them, they are important, and they are clearly the next big step in the transportation

industry.

1.1 Motivation

Currently, autonomous vehicles rely mainly on data provided by their sensors, and that

is the only way they have to get a view of the external environment. What is missing is

exactly a way of vehicles communicating with each other, so they can cooperate while

doing maneuvers. On the other hand, enabling cooperation is not an easy task as there

are multiple factors to be taken into consideration. The biggest issue when considering

1
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vehicular cooperation is how fast they are and how big the road system is. It is hard to

cooperate when vehicles do not know who they are going to encounter and when. By

using an external cloud service we could have a global view of the external environment,

nearby vehicles, possible risks and threats, and with this, we could make predictions to

aid vehicles on the road know what to expect and performing maneuvers.

Mobile cellular networks are also becoming cheaper, to the point where it is starting

to be viable to have every single vehicle always connected to the internet, which is needed

to allow the use of a centralized cloud service.

A system like this was previously proposed [5], and is currently just missing an im-

plementation, which is what this project intends to do.

1.2 Objectives

The main goal of this MSc Dissertation is to design and implement a server application

and a client-server communication protocol together with a simple Membership algo-

rithm to be used in a Vehicle to Infrastructure (V2I) environment that can be used to aid

vehicular maneuvers. This application needs to be scalable, so it can be used to man-

age thousands of vehicles, and modular so it can be easily extended or used by external

systems.

In order to achieve this goal, we will break down the main objective into two separate

objectives:

• To implement the membership service proposed in [5], designing the client-server

protocol to use for the V2I communication and integrating it into the full project

that includes the Vehicle to Vehicle (V2V) communication.

• To build a simulation scenario consisting of multiple vehicles and test cases to pro-

vide visual feedback and use it for evaluation and testing of the complete system.

1.3 Document structure

The remainder of this document will be structured as follows:

• In Chapter 2 we present the state of the art in cloud computing, vehicular networks

and other related concepts, together with some advantages and disadvantages of the

existing and proposed solutions.

• In Chapter 3 we present our approach to vehicular cooperation and propose a solu-

tion design, analyzing the problem definition as well as some details things to have

in consideration.
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• In Chapter 4 we present our implementation of the proposed solution design, as

well as a detailed description of its inner workings.

• In Chapter 5 we evaluate the performance and viability of the implemented solu-

tion by doing performance tests as well as testing the system using a simulation.

• In Chapter 6 we present our conclusions of the project as well as possible ways to

extend it with future work.





Chapter 2

Context and related work

In this chapter we will introduce the state of the art on the subjects related to this project

such as cloud services, membership services, autonomous and cooperative vehicles, and

communication technologies.

2.1 Cloud services

According to National Institute of Standards and Technology (NIST) [21], cloud service

is the name given to a service running on a remote machine somewhere in the world. The

exact location is unknown (unless it is disclosed by the provider). This computing power

is provided and can be changed on-demand, and is pooled among the different clients of

the cloud provider.

Cloud Computing (CC) offers a lot of advantages, such as not having to worry about

server maintenance or backups, hardware issues, replication, scalability as the cloud

provider takes care of all of these issues. Given the fact that the location and internal

details do not matter, users can focus on their main goal instead of having to worry about

system details and maintenance.

There are three main CC models defined by NIST [21]:

Infrastructure as a service (IaaS) In this model, the cloud provider offers pay-as-you-

go access to computing resources. The user is free to manage these resources at

will (ie, Virtual Machines (VMs))

Platform as a service (PaaS) In this model, the cloud provider offers an online platform

where the user can deploy and run their own apps (i.e., JVM, .NET Framework,

etc). The user does not have direct access to the computing resources or machine

settings, but has full control over the deploying environment.

Software as a service (SaaS) In this model, the cloud provider offers access to only a

very specific piece of Software that the user can use in a remote environment (i.e.,

5
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❳
❳
❳

❳
❳

❳
❳
❳
❳
❳
❳
❳

Feature

Model
Self-hosted

Software

Infrastructure

as a Service

Platform as

a Service

Software as

a Service

Applications User User User Provider

Data User User User Provider

Runtime User User Provider Provider

Middleware User User Provider Provider

OS User User Provider Provider

Virtualization User Provider Provider Provider

Servers User Provider Provider Provider

Storage User Provider Provider Provider

Networking User Provider Provider Provider

Table 2.1: Cloud models management differences

Google Docs, email). The user does not have control over anything other than what

the Software provides

Table 2.1 compares what is managed by the user and the Cloud Provider for each of

these models as well as usual self-hosted software.

2.2 Membership services

Group Membership systems detect entities in a group and keeps their information up-

dated. These kind of systems keeps track of existing members of a group, as well as the

ones entering or exiting, either by quitting or crash.

This information is important in any kind of system that needs constantly updated

information of all the available members inside a group, which means that an efficient

group membership protocol is needed.

Knowing accurate group membership is especially complex when the system is highly

dynamic and entities are constantly entering and leaving. Group membership for vehic-

ular networks is one of these cases, which gets even more complex due to another issue:

V2V communications will often fail, which means that in most cases, contacting other

vehicles is hard, except in very specific situations such as when all the relevant vehicles

are driving in the same direction at about the same speed, or are stopped. Given this, rely-

ing only on V2V communications to keep track of group membership is not reliable and

another solution should be considered. Contacting a cloud system and using it to save the

membership information should be a great solution here since cellular communications

are more reliable and should be available most of the time. A cloud system providing

vehicles the correct membership already accounting delays could also give them the op-

portunity to actually use V2V communications reliably by improving considerably the

amount of failed connections.
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There are several proposals and implementations of efficient group membership pro-

tocols such as SWIM [8] and JGroups [15] which are libraries used for reliable one-to-one

or one-to-many communication by providing tools that allow sending messages to groups

of processes and automatic detection of new, removed and crashed members.

2.3 Autonomous driving

Autonomous vehicles are a special category of vehicles that can drive with little or even no

human interaction or input. This kind of vehicles use a wide variety of sensors to collect

information and perceive the environment around them. This can range from computer

vision, radar, sonar, inertial measurement units to GPS and odometry systems. All the data

collected by these sensors is collected and processed together by computer algorithms to

identify road signalization, possible obstacles, other vehicles and navigation paths.

This category of vehicles raises a lot of questions, mostly ethical and in terms of

security. In case of a crash, who is responsible, the driver or the vehicle manufacturer?

Are autonomous vehicles safer than the ones controlled by humans? It can be said that

there is a disadvantage in terms of security, however autonomous vehicles will always end

up being more safe since there is little human interaction/input, which removes human

error. There are thousands of road accidents each year, and this can easily be reduced

considerably or even avoided with autonomous vehicles.

The Society of Automotive Engineers (SAE International) defines five levels of au-

tomation [18] as seen in table 2.2. As of 2018, we can say we are at level 2 [25], where

the most advanced commercial vehicles have an auto pilot mode that allows it to control

itself and take some decisions under certain circumstances while still needing a human

driver as a fallback to take most decisions and making sure everything works as expected.

As automation technology evolves, we are slowly approaching level 3 and we can see

technologies such as these starting to appear on new vehicles like the Tesla Model 3 [27].

2.4 Cooperative vehicles

According to SAE International [18], Cooperative Vehicles are a specific subset of Au-

tonomous Vehicles that are not self sufficient and depend on outside infrastructure and/or

communications with outside entities to perform their autonomous driving, even if they

fallback to their sensors in case of communication errors.

The main advantage Cooperative Vehicles offer in favor of Autonomous Vehicles is

that by sharing decisions and knowing what others will do, we can considerably reduce

waiting times and increase the overall speed of vehicles, which would drastically improve

the traffic flow as well as save fuel and reduce pollution.
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Level Name Narrative Definition Execution

of steering

and accel-

eration/

decelera-

tion

Monitoring

of driving

environ-

ment

Fallback

perfor-

mance of

dynamic

driving

task

System

capability

(driving

modes)

Human driver monitors the driving environment

0 No Au-

tomation

The full-time performance by the human driver of all as-

pects of the dynamic driving task, even when enhanced by

warning or intervention systems”

Human

driver

Human

driver

Human

driver

n/a

1 Driver As-

sistance

The driving mode-specific execution by a driver assistance

system of either steering or acceleration/deceleration” us-

ing information about the driving environment and with the

expectation that the human driver performs all remaining

aspects of the dynamic driving task

Human

driver and

system

Human

driver

Human

driver

Some driv-

ing Models

2 Partial Au-

tomation

The driving mode-specific execution by one or more driver

assistance systems of both steering and acceleration/decel-

eration using information about the driving environment

and with the expectation that the human driver performs all

remaining aspects of the dynamic driving task

System Human

driver

Human

driver

Some driv-

ing Models

Automated driving system (”system”) monitors the driving environment

3 Conditional

Automa-

tion

The driving mode-specific performance by an automated

driving system of all aspects of the dynamic driving task

with the expectation that the human driver will respond ap-

propriately to a request to intervene

System System Human

driver

Some driv-

ing Models

4 High Au-

tomation

The driving mode-specific performance by an automated

driving system of all aspects of the dynamic driving task

even if a human driver does not respond appropriately to a

request to intervene

System System System Some driv-

ing Models

5 Full Au-

tomation

The driving mode-specific performance by an automated

driving system of all aspects of the dynamic driving task

under all roadway and environmental conditions that can be

managed by a human driver

System System System All driving

modes

Table 2.2: SAE Automation Levels. Taken from [18]

Technically, if a cooperative vehicle is able to fallback to only sensory data and per-

form correctly in case of communication errors, there are no disadvantages other than

adding more complexity to the system.

Cooperative vehicles also raise a lot of security questions. Can we really trust informa-

tion given by other vehicles? What if a malicious user purposely sends wrong information

or compromises existing vehicles? These are big issues that need to be solved before we

can consider this model.

2.5 Technologies & maneuvers

Maneuvers are one of the biggest sources of road traffic [2]. Every time a vehicle needs

to perform a maneuver, the driver has to slow down and/or stop, pay attention to the road

and other elements around it, and finally perform the maneuver if all the conditions are

met. On top of that, due to all these necessary steps and the inevitability of human error,

maneuvers are also a big contributing factor for most road accidents [12].

One of the main goals of autonomous driving is exactly helping with maneuvers,

trying to make them more efficient while also making them faster and safer. We will now

briefly list some of these maneuvers:

Platooning Platooning [4] consists of having a platoon of vehicles that are following each

other in a straight line, with all of them going at the same speed, and with a given
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Figure 2.1: Example of a platoon

safety distance from each other. The front vehicle controls the platoon and defines

variables such as speed. The main idea is being able to avoid traffic congestion

since the platoon is a controlled environment where every vehicle that is part of

it can drive at high speed without having to worry about interactions with other

vehicles. This helps reaching higher speeds while spending less fuel due to less air

resistance. There are lots of other advantages and disadvantages of platooning, but

that is out of the scope of this work. Figure 2.1 shows an example of a platoon.

Lane Changing Lane changing can be subdivided into a lot of other different maneuvers

such as going in or out of a platoon, getting out of the main road by changing lanes,

or getting into the main road. In the case of platooning, vehicles who want to get

in notify already participating vehicles who will open a spot in the middle of the

platoon for them. It is also possible to join at the end. To leave the platoon, a vehicle

notifies the other members of the platoon, changes lane, and the vehicle right after

it closes the distance.

Intersection Crossing Intersections are one of the biggest source of accidents and traffic.

Therefore finding a good solution to help with these maneuvers is a big priority. By

having knowledge of nearby and unsafe vehicles and being able to communicate

with them, most of these accidents can be avoided. We can decide who crosses the

intersection and when they do it. With a system like this, theoretically there would

be no need to stop at intersections, that is, we could keep the traffic flowing and

avoid unnecessary congestion.

Roundabout The main idea of roundabouts is to facilitate intersection crossing, how-
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ever, they also come with their own set of issues. Crossing a roundabout involves

stopping at the entrance and waiting to get in, followed by multiple maneuvers of

lane changing. All of this slows down traffic a lot on top of creating multiple oppor-

tunities for accidents. Autonomous vehicles can make a huge improvement here,

by reducing waiting times and making lane changes more fluid, efficient and safer.

Figure 2.3 shows an example of a roundabout problem.

Virtual Traffic Lights Virtual traffic lights are not necessarily maneuvers, but are a tech-

nology that can considerably help most maneuvers previously mentioned. Systems

like the one proposed in [11] suggest the removal of physical traffic lights in favor

of virtual ones that use V2V communications to control the traffic flow. Systems

such as these offer a lot of advantages since they can be more dynamic than physical

traffic lights, adapting in real time to traffic, reducing waiting times, and increasing

the flow of traffic.

Virtual traffic lights offer a great opportunity for removing physical infrastructure

of our roads while also improving traffic flow considerably. This could also be

supported by the cloud, which could improve even further the efficiency of this

system. Figure 2.2 shows an example of an intersection problem and how a system

like virtual traffic lights could help with traffic flow.

Figure 2.2: Example of an intersection problem and how a system like Virtual Traffic

Lights could help
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Figure 2.3: Example of efficiency issues with roundabouts

2.6 Communication

For vehicular communication, the main available option is working with wireless tech-

nologies, since connecting wires to high speed moving vehicles is not a viable solution.

Wireless communication technologies are obviously not as reliable as wired ones, so

we have to choose well which one we are going to use. In terms of communication, we

need to think about two types of approaches: V2V and V2I.

The main option for V2V is using short-range communications considering the fact

that these provide high bandwidth with low latency, which is a requisite for communica-

tion between two moving vehicles.

For V2I, there are three main options: terrestrial communications, satellite communi-

cations or using road stations while communicating with them using short-range commu-

nications, the same technology used to communicate with other vehicles.

2.6.1 Short-range communications

There are multiple protocols and standards for short range communications, but the most

relevant one for this work is IEEE 802.11p [17], which was specifically made with vehi-

cles in mind. This protocol uses frequencies in the 5.9 GHz, with transmission speeds up

to 20 Mbps and a transmission range of up to 1 km while withstand vehicle speeds up to

260 km/h [19].

Mobile ad hoc networks (MANETs) [7] are an important concept in terms of short-

range communications. This is a type of network composed by mobile devices (nodes)

that are connected to each other wirelessly in short-range. Each node constantly connects

to all the other nodes in range and uses them as intermediates to deliver messages to other
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nodes that are part of the network. This type of network does not need infrastructure and

is constantly changing given that the nodes are always moving. Vehicular ad hoc networks

(VANETs) [30] are an extension of MANETs where nodes are vehicles.

2.6.2 Terrestrial communications

In terms of terrestrial cellular communications, we currently use fourth generation tech-

nologies such as LTE which enables theoretical peak speeds up to 1 Gb/s [13]. This is

good for our current usage, but starts being an issue as Internet of Things (IoT) devices

become more popular due to higher bandwidth demand to the public infrastructure. This

is also an issue on really dense populated areas or events where everyone has at least one

connected device. A good example of this are big sport events that often need to be sup-

ported with extra temporary antennas to support the influx of people while keeping the

network stable.

This is obviously a big issue, and it means that we still can not fully depend on LTE

for our vehicles, as adding it to every vehicle could easily break the network similarly to

how these big events do.

Currently, the first 5G enabled devices and infrastructure are starting to show up, and

will be a big improvement to the current 4G infrastructure due to much higher bandwidths

and latencies [3]. We can see this in specifications like IMT-2020, which promises peak

speeds up to 20 Gbit/s and latencies of 1 ms [22]. Vehicles cellular communication could

benefit tremendously from this as 5G will allow a lot more simultaneous connected de-

vices which means having every single vehicle connected to the internet will finally be

viable.

2.6.3 Satellite communications

Internet satellite communication options exist, but they are not the best since current so-

lutions suffer from big delays while being more expensive and still having some coverage

issues [26]. Most of these options are in geostationary orbit, which means that commu-

nicating with them really presents big delays due to the distances. This also means big

dishes are needed and that the communications are seriously affected by weather condi-

tions, i.e., they are not reliable for constant communication or to use on ”small” moving

objects such as vehicles.

Furthermore, there are proposals like SpaceX’s Starlink constellation system that pro-

poses a constellation of 12 000 low Earth orbit communication satellites that would offer

low latency global internet with high coverage and speeds at a lower cost than other satel-

lite options [14]. This system will use smaller phased array antennas for up and downlinks

and laser communication between satellites to provide global low-latency high bandwidth

coverage. A system like this is perfect for vehicles since it guarantees that they have
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global coverage with low latency, no matter the location. Starlink already started tests

and is currently scheduled to be operational somewhere around 2023 [9].

2.6.4 Cloud communications

Previous literature defines three big types of cloud networks for vehicular operation.

There are good sources [29] with brief descriptions of these approaches:

Vehicular Cloud is a local cloud established among a group of cooperative vehicles. An

inter-vehicle network (i.e., a VANET) is formed by V2V communications. The

vehicles in a group are viewed as mobile cloud sites and cooperatively create a

vehicular cloud.

Roadside Cloud is a local cloud established among a set of adjacent roadside units. In

a roadside cloud, there are dedicated local cloud servers attached to roadside units

(RSUs). A vehicle accesses a roadside cloud by Vehicle to Road (V2R) communi-

cations.

Central Cloud is a cloud established among a group of dedicated servers in the Internet.

A vehicle accesses a central cloud by V2R or cellular communications.

As seen in [28] and [23], most of the proposed solutions are usually based on either

VANETs or vehicular clouds, and there are not many that use a central cloud. This was

not an option up until now, as having an internet connection in vehicles was not an eco-

nomically viable option until the last few years. There are not many solutions that use

always connected vehicles that use a central cloud.

THe same article [23] goes even further and suggests a possible use for Vehicular

Clouds could be using the wasted computing resources of vehicles as a cloud. This con-

cept is interesting as it could allow the computing power of a real cloud infrastructure, but

physically closer to where it is needed, which means less communication delays.

However, there are a few problems with some of these current solutions based on

VANETs or vehicular clouds:

• Mainly, the issues and disadvantages that the Peer to Peer (P2P) model has against

the client-server model.

• Not having a central cloud, drastically limits how much each vehicle can see. With-

out it, there is no such thing as a global view of the traffic.

• If we use a vehicular cloud, the data we have depends a lot on our environment and

the amount of vehicles around us, which is something that is always changing or

can even be non existing. This is not reliable and it is never guaranteed that we will

have all the needed data, or that it is updated.
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• Any of these solutions will have more communication errors than the central cloud

approach due to the short range communications used while moving at high speeds.

• If we use a Roadside Cloud, we will not always be connected to the cloud, which

means that every time we pass by a checkpoint we need to transmit all the necessary

information to that vehicle. This will never be as accurate as a persistent connection,

and depending on the distance between checkpoints predicting possible interaction

between vehicles will be considerably harder.

On top of not having these issues, there are also some advantages of having a central

cloud:

• We know the full state of the network, which means we can easily predict conflicts

with other vehicles and other risks, even if these vehicles are not in range of each

other at the time of prediction.

• Since we have a persistent connection, this means we can query the central server

very frequently for all the information we need.

• Guarantees that the state given by the central server is accurate.

• More efficient data transfer, since we can just get all the information needed from

the server at once.

• A higher level of security since we mainly only need to trust on a single entity to

get a fully updated state (assuming the server is not compromised).

• Higher reliability since it is guaranteed that the state we get from the server is fully

updated (assuming the server is fault tolerant).

Another interesting idea mentioned in this article [23] is the concept of Network as

a Service where the main goal is to offer internet to other vehicles on the move. In the

use case mentioned, the shared network would be expected to just give internet access to

other vehicles in range, but in our use case, this concept is extremely useful and we can

take it a step further and use it to give system information to vehicles that for some reason

do not have an internet connection. This could help either in the case of an error, system

incompatibilities or legacy devices that are not part of this system in particular. This

could help with maneuvers, even if the vehicle does not belong to our network and/or

membership, which would help with the adoption of our system.
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Chapter 3

Membership service design

In this chapter we present the design of our proposed solution. We start by presenting

the problem definition, followed by the system assumptions. After that we describe the

membership protocol, followed by more specific details, such as the Membership concept

and how we achieve scalability.

3.1 Problem definition

The main idea of this dissertation is implementing a cloud-based membership system that

was previously proposed in [5]. This system consists of a vehicular cooperation system

aided by a cloud-based service that vehicles send information to. By having relevant

information about each vehicle such as their position, speed and intentions, this cloud-

based membership service must be able to provide useful data about nearby vehicles that

are relevant for their maneuvers. Ensuring that this information is always updated is the

problem we want to solve.

The next sections of this chapter will describe important concepts and information

of this proposed system [5] to examine what needs to be done and implemented on the

following chapter.

3.2 Assumptions

The following assumptions were considered:

• The clocks of every vehicle as well as the cloud system are synchronized via GPS.

• There are no malicious clients.

• The membership provided by the server is always accurate, as long as it is inside its

validity period.

• The road is divided into segments with fixed sizes.

17
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• Every vehicle inside a segment is in communication range of every other vehicle

inside the same segment. This assumption is explained on 4.2.

• Every vehicle inside a segment is important for a maneuver happening inside that

same segment.

3.3 The membership protocol

We call membership to the group of vehicles in communication range of a given vehicle

that are important for the performance of a given maneuver.

The cloud service aims at keeping track of all the vehicles on the road and their cur-

rent location. This information is sent periodically to the cloud by the vehicles, to make

sure it is updated, which also query the cloud for data whenever they want to perform

a maneuver. This data is called the Membership which is essentially a list of other ve-

hicles in communication range of a given vehicle wanting to execute a maneuver. This

list contains, for each vehicle, information about their current coordinates, velocity and

acceleration. Other than this list, this membership structure also contains a flag called the

maneuver opportunity, which the server sets as true if all the conditions are met for the

performance of a maneuver. If the maneuver opportunity is true, and having this infor-

mation, each vehicle can try to communicate directly with each of the other vehicles with

the goal of cooperating to execute safe and efficient manuevers.

This dissertation focus on the cloud service portion of this system as well as the client-

server communication, while the V2V communication part of the system is out of our

scope.

The technology used for vehicles to communicate with the cloud service is not set, but

will most likely be cellular based such as 4G or 5G. For more information about vehicular

communication, please see section 2.6.

The communication protocol between each vehicle and the cloud service is also not

defined and it needs to be designed before the implementation. We do this in section 4.2.

The membership server calculates the membership of an agent by using two functions:

getUnsafeAgents() For a given agent, returns a predictive analysis of possible conflicting

situations with any other known agents within a given time horizon, in case the

target agent wants to do a maneuvers.

getReachableAgents() For a given agent, returns a predictive analysis of all the agents

that will be in communication range of that agent within a given time horizon.

At any point in time, for any given agent, its membership is a list of all the vehicles

that besides being unsafe are also reachable.

In the current design, reachable agents are just all the agents inside the same segment,

while unsafe agents are all the reachable agents.
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Whenever the membership is calculated it is given the current timestamp, and a va-

lidity period is calculated using this initial timestamp and a know constant. Vehicles are

only able to use the information provided by the membership server within this validity

period. The membership server is supposed to keep a valid membership available all the

time, but in case the vehicle does not get it, either because of a crash or a communication

failure, and ends up without a valid membership it will fallback to normal autonomous

behavior.

The server calculates the membership periodically for every single agent to make sure

there is always a valid one available as soon as a client needs it.

3.4 Scalability

Segment 1

Segment 0 Segment 2

xsh xeh

xexs

Figure 3.1: Road segments partitions

One of the main goals of this work is scalability, and making sure we would be able

to spread the server application across multiple machines is a great way to achieve it.

To make this possible, we came up with the road segments concept that is illustrated

in Figure 3.1. The main idea behind it is dividing the road map into multiple independent

segments that cover the entire map. Each segment can have any number of adjacent seg-

ments, and there will always be an intersection zone with every single one of them where

they overlap. The size of each segment is not defined and depends on the implementation,

and the servers where membership service is deployed on.

Each server of the membership cluster is supposed to take care of a single segment,

but they should also be able to controls more than one whenever necessary.
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There is an important point in the middle of the intersection between two segments

called the handover point (xsh).

Each server only generates membership data for vehicles between the two handover

points of a given segment, that is, everything from xsh to xeh, but when calculating

the membership for a given vehicle inside a segment, it takes in consideration the full

segment, i.e., from xs to xe.

The main idea behind this is that each server should have full control over a precise

zone, but that other vehicles close to it but outside its control zone should also be consid-

ered for predictions. This way, changing segments should be as transparent as possible as

both servers should take the vehicle into consideration even though only one controls it.
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Chapter 4

Membership service implementation

In this chapter we will walk through the implementation of the solution design proposed

in the previous chapter. We start by presenting the implementation challenges, then we

present the middleware choices, followed by a detailed view of the software architecture,

concluding with details about the solution implementation.

4.1 Implementation challenges

There are multiple implementation challenges to take into consideration while building a

service like this.

The first challenge is processing the information. There are lots of vehicles on the

road, which means there is a lot of information to process. As the total number of vehicles

increases, the time needed to generate the membership of each vehicle also increases.

This is an exponential grow, which means performance is an important factor to take into

consideration and the information processing needs to be done as efficient as possible.

Another important challenge is the choice of a middleware to use for communication

between the vehicles and the membership service server.

The choice of programming language is also important as a language with good li-

braries and full compatibility with the chosen tools and middleware is desirable.

Another challenge has to do with the fact that the developed solution needs to be

integrated into the full system that includes the coordination software used by the vehicles.

After integrating it, a simulation needs to be built to evaluate the whole system. The

Robot Operating System (ROS) is planned to be used as the middleware between the full

application and the simulator.

These requirements have to be taken into consideration during all the implementation

period and will heavily influence the programming language used and the decision to

make the whole system as modular as possible.

23
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4.2 Middleware

For the communication between the server and the client application there are two main

possible approaches:

Direct communication from the clients to the server

Intermediate repository between the server and the clients that acts as a middleman and

stores data that can be accessed asynchronously in any point in time by any of the

parties.

Direct communication offers less delays, as there are is no middleman, reduces system

complexity and removes a possible bottleneck compared to the intermediate repository

approach. However, having an intermediate repository also offers its set of advantages

over direct communication, such as separating the data processing from data management,

which helps with availability as data operations are independent from how busy the server

is. Having all the data in a centralized location also creates the option to easily have

multiple servers, which is something needed to provide scalability.

Given these advantages and how important scalability is for this service, we ended up

going with the intermediate repository approach, and decided to use the Zookeeper [16] as

our middleman. The latter is a coordination service for distributed systems, and it provides

a set of primitives these systems can use to implement complex tasks like synchronization,

configuration, groups and naming. It also comes with built-in support for being deployed

on a cluster, which means it is qualified to deal with possible availability and scalability

issues.

It uses a hierarchial tree structure to organize data. Each tree note is a key/value pair

where the key is a string and the value is binary, which means it can store any kind of

information.

One of the most useful Zookeeper features is the concept of ephemeral nodes. These

nodes are tied to the session of a client and are automatically erased when the client that

created them closes the session or stops answering, being this due to a crash or some other

reason. This is great for our system because as it provides an intuitive way of keeping

track of all its active clients.

Given all of this, ZooKeeper is the perfect tool for our implementation, and Figure 4.1

shows how we organize the data using this structure.

The black node (/) is the root of the structure. The red and orange nodes are parent

nodes and do not store any data.

Whenever a client pushes its information to Zookeeper, it creates/updates a node un-

der agents where the key is its Universally Unique Identifier (UUID) and the value is a

serialized object containing all the relevant data. Since these nodes are Ephemeral, only
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Figure 4.1: Zookeeper structure

active clients will be present. It also creates a node under /segments/<id> for ev-

ery segment it is part of, where id is the id of the segment. These nodes are basically

only used as a pointer to the main ones under /agents/. The nodes created under

/segments/<id> are created with a Time to Live (TTL), which means they are auto-

matically deleted when the TTL time ends. This time is defined by the client application

and it depends on how frequently it pushes data to Zookeeper.

Whenever the server wants to fetch data, for every segment it controls, pulls the list

of child’s of /segments/<id>, where id is the segment id. With a list of agent id’s

available, the server starts pulling the data of each agent from /agents/.

With the data of every agent, the server can determine the membership of each one of

them. After completing this task, for each agent, it creates a node under /membership/

where the value is the agent id and the value is a serialized membership object. With this

data available, the client application can pull it from Zookeeper whenever it needs to

perform a maneuver.
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common

AgentState

- timestamp: Instant
- coordinates: Coordinates
- velocity: double
- acceleration: double

+ getTimestamp(): Instant
+ getCoordinates(): Coordinates
+ getVelocity(): double
+ getAcceleration(): double

<<Interface>>
AgentProperties

- id: UUID

~ getAgentId(): UUID
~ getCurrentTime(): Instant
~ getCurrentCoordinates(): Coordinates
~ getCurrentVelocity(): double
~ getCurrentAcceleration(): double

AgentPropertiesImpl

- state AgentState

+ getState(): AgentState
+ setState()

Coordinates

- latitude: double
- longitude: double

+ getLatitude(): double
+ getLongitude(): double

Membership

- timestamp: Instant
- agents: Set<Agent>
- mo: boolean

+ getTimestamp(): Instant
+ getAgents: Set<Agent>
+ getMO(): boolean
+ setTimestamp(Instant)

pushes

MembershipAgent

- segments: List<int>

+ getSegments(): List<int>
+ computeSegments(Coordinates): List<int>

<<Interface>>
ManeuverCallback

    ~ doManeuverCallback(Agent, 
             Set<Agent>, Instant)
    ~ grantGivenCallback(Agent self)
    ~ grantFinishedCallback(Agent self)

<<Interface>>
MembershipClientInterface

~ storeAgentRegistry(Agent): boolean
~ getMembershipRegistry(): Membership

membership-client

MembershipClient

- selfId: UUID
- zkClient: CuratorFramework

+ openConnection()
+ closeConnection(

membership-server

MembershipServer

- zkClient: CuratorFramework
- executerService: SchedulerExecuterService
- segmentMap: Map<Integer, Set<MembershipAgent>
- agents: Set<MembershipAgent>
- assignedSegments: LIst<int>

+ startExecutor()
+ stopExecutor()
- pullRemoteAgentsInfo()
- updateRemoteMembership()
- getUnsafeAgents(MembershipAgent): Set<Agent>
- getRecheableAgents(MembershipAgent): Set<Agent>
- getEqualAgent(Agent, Set<MembershipAgent>): Agent

<<Inner Class>>
MembershipServerWorker

+ run()

fetches

creates

pulls

Agent

- id: UUID
- address: String
- port: int- state AgentState

+ getId(): UUID
+ getAddress(): String
+ getPort(): int
+ getState(): AgentState
+ setState()

Figure 4.2: Class diagram of the membership client and server
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4.3 Software architecture

Figure 4.2 shows the joint class diagram of the client and server applications. The client

interface exposes two functions:

boolean storeAgentRegistry(Agent agent) Called whenever the client wants to update

its information on the membership service. Internally, the implementation of this

function pushes the Agent object to the Zookeeper server using the approach de-

scribed on section 4.2.

Membership getMembershipRegistry() Called whenever the client needs to pull its

membership information. Internally, the implementation of this function pulls the

Membership object from the Zookeeper server using the approach described on

section 4.2.

The MembershipClient object that implements this interface also provides two

more functions openConnection() and a closeConnection() that, respectively,

open and close the connection to the membership service, which provides extra control

over when the system is active.

The server application has a startExecutor() and a stopExecutor() func-

tion, which,respectively, start and stops the connection to the Zookeeper server and the

server executor. This executor executes at a fixed rate and periodically pulls segment and

agent data from Zookeeper, processes it, and pushes the generated membership data to

Zookeeper using the model explained on section 4.2. The timer used by the executor for

the interval between each execution can be defined when starting the server application.

4.4 Language selection

Given the several requirements of the projects, choosing a programming language was

not easy. In this section we start by presenting our possible options, followed by an

explanation of the decisions that lead us the the final implementation.

4.4.1 Requirements and options

We had a few requirements to choose a programming language language:

• Allow the use of ROS

• Allow the use of Zookeeper

• Use the same language used for the Coordination Protocol
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Given that ROS only has C++, Java and Python libraries, and that Zookeeper only

has C and Java Libraries, the only viable choices would be C++ and Java. However, the

Zookeeper C library does not have an official C++ version available, which means we

would need to build a Wrapper around the C library.

At the time, the ROS Java library only has official support for ROS Kinetic, which

officially only supports Ubuntu 16.04, which meant we would need to use an older version

of both Ubuntu and ROS.

4.4.2 Selection process

Given that we did not want to use an old version of ROS, nor downgrade the operating

system, initially we decided to use C++.

The first task of developing a C++ implementation was getting familiarized with the

ROS building environment, which ended up taking some time due to the unfamiliarity

with C++. This task ended up being completed successfully, and we ended with a func-

tional ROS publish/subscribe module.

The second task was creating a wrapper for the C Zookeeper library. This task turned

out to be a lot more difficult than expected. The C library is really low level and lacks

some of the most advanced features and use cases of Zookeeper, which meant that this

also had to be build on the wrapper. On top of this, this library has poor documentation

and lacks examples other than the official basic client, which also did not help while trying

to build the wrapper.

Meanwhile, on the coordination protocol part of the project there were also some

issues while developing it using C++, mostly due to their unfamiliarity with the language.

Due to both of this issues, we started considering a java implementation and ultimately

ended up making a joint decision to try to remake everything using Java. Given how both

groups were familiar with the latter, this was considerably faster and it took just a few

days to port all the C++ code we developed until then.

4.4.3 The Java implementation

Given how using the Java ROS library would require a system downgrade, we were a

bit apprehensive about using Java at first. The most recent version at the time only had

official support for ROS Kinetic, but later we ended up trying to run it on ROS Melodic

and it worked perfectly. This removed the need for a system downgrade and we were able

to end up running it on Ubuntu 18.04.

The Java implementation is built using Java 8 and uses the Curator Framework 4.2 for

the communication with the Zookeeper server. The Zookeeper server used is the version

3.5.3 and an instance of it needs to be running before the use of the service.

Given that the final goal is integrating it with other components, we tried to make
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the implementation as modular as possible. Another advantage of this approach is easily

being able to replace any component of the final system.





Chapter 5

Evaluation and demonstration

In this chapter we will evaluate the implementation by using two different approaches.

The first is the functional evaluation, which shows a visual representation of the imple-

mentation and the system being used. The second is the performance evaluation, where

we test the performance of the membership service by doing load tests as well as testing

how long operations take to be completed.

5.1 Functional evaluation

For the Functional evaluation, the simulation built to aid visualize the system is presented,

followed by another subsection that shows the details of the created scenario. Then the

solution for integration of the membership service with the coordination protocol is also

presented, followed by a subsection that shows the details of that solution. Finally, evalu-

ation results are shown.

5.1.1 Simulation scenario

A simple simulation scenario was developed to aid testing and help visualize the whole

project working.

There were several requirements to select the simulation software:

• Lightweight in terms of computing resources. This is important because it enables

running it on any kind of machine.

• Scalable, to allow big scenarios with support for a modest number of vehicles.

• Communication with ROS, so we can use it as the middleware with the application,

as previously explained on chapter 3.

• Support for an easy to use scripting language.

• Good documentation, preferably with multiple examples.

31
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• Adequate for vehicular simulations and/or the versatility to use it for multiple cases.

There are also other important factors that are not absolutely needed but that we took

in consideration while choosing, such as:

• Vehicles/road models and textures already available.

• Basic built in path planning capabilities.

Given all the latter requirements, the tool we decided to use is V-REP [24] as it fits

all the requirements and preferences. V-REP uses LUA as its scripting language and it

allows the addition of scripts to each object that respond to some events and can perform

actions on the simulation environment. These scripts can be threaded or non threaded.

Figure 5.1: Screenshot of the developed simulation scenario

5.1.2 Simulation architecture

We designed a simple scenario with a 8 shaped road with a 4-way intersection and 2

vehicles going in opposite directions towards the intersection. This scenario could be

used for multiple settings with any amount of vehicles, so we built it in a way that can

be easily modified if necessary, which means that actions like adding/removing vehicles

or changing the road should only take a couple of minutes. Figure 5.1 illustrates the final

scenario in the simulator.

The simulation uses one threaded script for each vehicle, which are the only scripts

used.
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Each vehicle is a simple dumb object that does not have sensors or any kind collision

logic. The only information we can get about them is their velocity, acceleration, position

and state (running/stopped). In terms of controls, we are able to set the velocity and

acceleration, as well as send commands to perform some basic actions: start, stop and

change color.

Their normal behavior is following a path object that is pre-defined in the simulation.

The default path is a simple loop around the whole road with a left-turn at the intersection.

This means that both vehicles follow the same path and will eventually start over at their

start positions.

Figure 5.2 shows the window used to control each vehicle during the simulation. It

has sliders to control the velocity and acceleration of the vehicle, and a label that shows

wether the vehicle is running or not.

Figure 5.2: Window used to control each vehicle

Right before each crosswalk there is a specific checkpoint. Upon reaching this check-

point, the vehicle calls a function in its personal script called tryGet(). This function

stops the vehicle, changes its color to yellow and publishes a TRYGET message in ROS,

which means this vehicle wants to perform a maneuver.

When this request is approved, the vehicle that made it starts following the path again

and turns green, while every other vehicle associated with the maneuver stops and turns

red. These vehicles will eventually receive another command to start following the path

again.

The communication between the simulator and the back end is done using ROS via

publish/subscribe and two topics are used. The first is /agentState in which vehi-

cles periodically publish their current state (position, velocity, acceleration, running flag)

and TRYGET requests. The second topic is /agentControl, in which an external en-

tity publishes commands to control each individual vehicle. The possible controls are

exactly the same ones available in the simulation: start, stop and change color. Every

vehicle is always subscribed to this topic so they can execute the actions as soon as they

are received. Every message is always identified with a vehicle specific UUID, so that

published information can be identified and targeted to the right vehicle.
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We built a java module to interact with this simulation via ROS using these topics, and

we will go thought this module on section 5.1.3.

5.1.3 Integration development

Given that this project is part of a larger system, integration was an important factor for

the evaluation as a whole. The first step was to build the simulation that we went through

on the previous section, and the second step was to build the back end for that simulator

that would fully integrate it with the coordination protocol and the membership client.

The full project was made to be as modular as possible. This way it was easy to add

new modules or work on features separately and then being able to connect them later.

Agent 2 Agent nAgent 1

Simulator Backend

ROS

ROS Bridge

Main
Coordination

Protocol

Membership Client

Membership ServerZooKeeper
Simulator

Coordination
Protocol

Membership Client

Coordination
Protocol

Membership Client

Figure 5.3: Integrated flow diagram with the simulator

Figure 5.3 shows a flow chart of what the integrated solution to use the service with

the simulator looks like. The modules in blue correspond to what was done on this dis-

sertation, while meanwhile the other ones are external.

We built a simulator backend, which is a component used to interact with the simulator

and create instances of agents considering the data received from the simulation. THe full

integrated system works as follows:

1. The simulator publishes the state of its agents frequently to the ROS server.

2. The ROS Bridge module inside the Simulator Backend component subscribes to

the topic where ROS published the agent state information. This data is periodically

picked up by Main.
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3. As Main gets this data, it creates instances of the Coordination Protocol

for each agent corresponding to the ones existing in the simulator.

4. These Coordination Protocol instances constantly update their state on the

Membership Service using the Membership Client. As we have previously

explained, the client pushes that data to the Zookeeper to be fetched later on by

the

Membership Server, which pushes the membership information back to

Zookeeper.

5. When it wants to perform a maneuver, the Coordination Protocol asks the

Membership Client for its Membership, which is pulled from Zookeeper.

6. With the membership information, each Coordination Protocol can con-

nect to the Coordination Protocols of other agents.

7. Whenever Main gets a TRYGET request, it redirects it to the right Agent, which

uses its Coordination Protocol to interact with other Agents to coordinate

a maneuver.

8. As the Coordination Protocol decides what to do, it sends commands to

the Main, that are redirected to ROS using the ROS Bridge.

9. The Simulator picks up these commands from ROS and executes them.

Agent 2 Agent nAgent 1

Agent 0

Coordination
Protocol

Coordination
Protocol

Membership Client

Membership ServerZooKeeperSensors/Actuators

Coordination
Protocol

Membership Client

Coordination
Protocol

Membership Client

Main

Membership Client

Figure 5.4: Integrated flow diagram in the real world
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Figure 5.4 shows exactly the same integration diagram, but using a real world scenario

instead of a simulator. As it can be seen in this diagram, the main difference is that the

agent back-end does not exist, and instead it is replaced by a simple agent with an entry

point to run the application. In this scenario, state information would be sent to the Main

by the vehicle sensors, and the Main would send commands using the vehicle actuators.

This Main only contains one single instance of the Coordination Protocol, which is used

exactly the same way as in the simulator scenario.

Since all the sensors and actuators are inside the vehicle itself, we do not use ROS in

this scenario, as we are able to transfer information between this components directly.

5.1.4 Integration architecture

Figure 5.5 shows the same diagram we have seen on Figure 4.2, but now with the new

modules added for integration purposes and how they interact with everything else.

The entrance of the program is a module called main. This module is used to execute

the program and it links every other module by performing the following steps in this

exact order:

1. Initialize an empty map agentInstances. This map will store all the agent

instances created by the simulator, mapped by their UUID.

2. Create an instance of TryManeuverCallback. This interface has a function

called tryManeuver() that takes an UUID. In this case, the implementation of

this interface is using the provided UUID to take the corresponding agent instance

from the map created in the previous step, and calling the function of that object

with the same name. The idea of this callback is to call it every time a TRYGET

request is received and redirecting that request to the coordination protocol.

3. Instantiate AgentManager giving it the TryManeuverCallback created on

the previous step. AgentManager will initialize the ROS connection, start lis-

tening to /AgentState and initiate a publisher on /AgentControl. This

publisher can be used to control the simulator using functions provided by the

AgentControl. An internal list of AgentProperties is kept updated as the

manager receives information from ROS .

4. Start an instance of RosManeuverCallback and giving it the AgentManager

created in the previous step. The idea of this callback is to give it to each agent

instance, so they can invoque the control functions of the AgentManager that

allows them to send commands to the simulator.

5. Periodically calling the function getAllAgentProperties() of the

AgentManager and creating one instance of the Coordination Protocol, adding
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main-backend

starts

defines
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+ main()
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- rosNode: RosNode
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- publisher: Publisher
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+ giveGrantAgent(UUID)
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- latitude: double
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- agents: Set<Agent>
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<<Interface>>
ManeuverCallback
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<<Interface>>
MembershipClientInterface

~ storeAgentRegistry(Agent): boolean
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- id: UUID
- address: String
- port: int- state AgentState

+ getId(): UUID
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+ getPort(): int
+ getState(): AgentState
+ setState()

Figure 5.5: Class Diagram with full integration
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it to the map created on the first step (if it does not previously exist) while giving

the RosManeuverCallback to each one of them. These AgentProperties

objects are mutable and are guaranteed to always be updated in the background as

new info is received and processed by the AgentManager .

5.1.5 Results and discussion

Only one single scenario was tested, the one we can see in Figure 5.1 that only contains

two vehicles.

We started by setting the velocity and acceleration to 1 using the vehicle control win-

dow that we can see on Figure 5.2 for both vehicles, with a slightly offset so one of them

gets to the stopping point first. Once the first one got to the stopping point, right before

the crosswalk, it turned yellow, and both of them stopped. Shortly after, the yellow one

turned green and started following the path again, while the other one turned red. After

around one second, both vehicles turned gray and kept following their path.

After this first maneuver, we decided to speed up the simulator to see if things kept

working. We changed velocity and acceleration to the maximum value, 10 and everytime

they reached the stopping point at the crosswalks the same behavior could be seen.

There was a little race condition where the vehicle making the maneuver request

would not change its color to green, but this was just a simple graphical bug and it did not

affect the performance of the system.

Given this results, we can say that everything worked as expected.

5.2 Performance evaluation

We decided to test the membership service by using three different approaches: process-

ing time, load tests and connection latency.

5.2.1 Processing time

For this test we decided to see how the server processing time is affected by the number

of clients using it. It was executed in a single machine with an AMD Ryzen 2700X 8-core

16-threads processor running at 3.8 Ghz.

We tried to take load issues out of the equation while performing this test by making

sure the membership server was the only machine connecting to the Zookeeper server.

To do this, we created a simple client generator that created a certain number of clients,

pushed their information to Zookeeper and slept for a certain amount of time, without

closing the Zookeeper connection.

We ran this test for an incrementing number of clients and Figure 5.6 shows the results

of this experiment. As we can see, initially there is a linear growth in processing time
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that eventually becomes exponential, which is explaining by that fact that to process the

membership of each client, the server needs to take in consideration every other vehicle

inside the segment.

Later, a similar test was performed with the client module by changing the client

generator to periodically make push and pull requests on all clients, and measuring how

much time that set of operation takes on average. In this case, we found out that ignoring

possible load issues, processing time is exactly the same no matter how many clients

are connected to the service and is always around 8 ms. This is explained by the way

the service is built, as the client simply writes and reads very specific node paths on

Zookeeper, without the need of extra queries.
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Figure 5.6: Server processing time by number of vehicles

5.2.2 Load tests

Load tests were performed on Amazon Web Services (AWS). We created 7 basic vir-

tual machines with 1 vCPU each, 1 used for the Zookeeper server, another used for the

Membership Server, and 5 used for the Clients generators used in the previous test.

These virtual machines are really weak compared to the machine used on the previous

test, so we decided to start by checking how many clients each client generator would be

able to manage without overloading itself. This simple test shows that each one of them

was able to handle up to 60 clients without any performance hit. After that the single

vCPU is unable to manage all the threads without slowdowns.

Knowing this, we decided to test it in increments of 10 from 10 up to 60 clients per

instance, for a total of 300 clients. We measured the time it takes for a full server cycle
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Figure 5.7: Client processing time when overloaded
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Figure 5.8: Server processing time when overloaded

(pulling agents, processing, pushing membership), as well as a full client cycle (pushing

data, pulling membership). The timer used between each client cycle was 100 ms.

Figures 5.7 and 5.8 show the results of this test for both the client and the server.

The server time grows exponentially as seen on the previous example, but we can

notice that this time the growth from 250 to 300 is a lot higher than what can bet expected

from the previous results.
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The client time stays linear at the start, similarly to the previous test, however, we

can see that it grows exponentially from 250 to 300, which means the system is being

bottlenecked. At this point we could also verify that the clients were starting to throw

connection errors, which means that the Zookeeper server was getting overloaded with

requests and was unable to answer more connections. While this was happening, we could

also verify that after getting the agent data from the Zookeeper server, the membership

server would process the membership in the expected time for the incrementing number

of clients that we have seen on the previous test, which shows that its performance is not

being affected by the increase in clients.

In summary, we can conclude that the Zookeeper server is being the bottleneck of

this system. These results can be explained by the fact that this server was not able to

handle more connections, and consequently answers were being delayed, as shown by the

graphs.

5.2.3 Connection latency

Since latency is an important factor to consider for this system, we decided to perform a

small latency test. For this test, a basic virtual machine with 1 vCPU was created on AWS

and it was used to run both the Zookeeper server and the Membership server. We ran one

simple client in our laboratory that connected to it and measured the time to access the

service.

Both server were running on the same machine to minimize the latency time between

them. This seems accurate as in a real deployment, both servers would preferably always

be running next to each other, even if on different machines.

This virtual machine was running in the East US region, and our Laboratory in Lisbon,

which means that the distance was around 6500 Km. For this distance, the client took an

average of 700 ms for each full cycle of pushing and pulling information from zookeeper,

which means there was around 450 ms of latency for each round-trip operation.

We concluded that distance is an important factor to be taken into consideration for

a system like this, and that servers should be deployed close to their clients, or possibly

using fog/edge computing as an alternative solution.





Chapter 6

Conclusions and future work

In this chapter some conclusions and future work are presented.

6.1 Conclusions

We implemented a cloud based membership service to aid cooperative vehicles that was

previously suggested in [5].

On chapter 2 we presented the state of the art in cloud computing, autonomous and

cooperative vehicles as well as existing communication options. This information gave

some context about important details that need to be taken into consideration while build-

ing a system like this, as well as some insight on what technologies might be used.

On chapter 3 the design of the membership system is presented, starting by introduc-

ing the problem it wants to solve, as well as the work it is based on [5]. A membership

protocol was designed to use it with, some important features of the system were ex-

plained, taking into consideration important issues like scalability.

On chapter 4 the implementation challenges are presented, followed by a detailed view

of the middleware solution used, as well as the full software architecture. Finally, the so-

lution implementation was described, and some of the possible approaches and decisions

taken along the way were mentioned, as well as details about the final implementation.

On chapter 5 two types of evaluation were performed. The first was the functional

evaluation, which consisted in constructing a visual representation of the service using a

simulator, as well as integrating it with a coordination protocol. At the end of this section,

results are described, which show that everything works as expected and there is a a

good graphical representation of the system being used. The second was the performance

evaluation, where the performance of the membership service was measured by analyzing

processing and latency times, as well as doing load tests to discover the bottleneck of the

system, which we ended up concluding that it is the Zookeeper server.

As it can be seen on this last chapter, it is possible to conclude that the final solution

works well but does not have the expected performance for a real world usage given how

43
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big the delays are when one single server takes care of multiple clients. However, there are

multiple solutions to this issue, and some of them will be mentioned in the next section.

6.2 Future work

The following aspects has been left as future work:

We aim at adding a predictive algorithm. The predictive functions currently return

every vehicle inside the segment, which is obviously not the expected behavior in the

final product. A good implementation could use machine learning techniques to make

proper predictions.

We aim at making the current implementation map aware. In the future the segment

mapping should be done using a real world map as a base to translate positions into

segments. Having map data can also help understanding exactly what needs to happen

while performing a maneuver, which also helps the predictive algorithm.

We aim at addressing security issues, hence relaxing one of our previous assumptions.

With the current implementation, a malicious user can disturb the system in any way

it wants since currently communication between the membership client/server and the

Zookeeper server is not secure, is are completely trust based.

Finally, the current performance is overall not adequate for a real world scenario since

the predictions take way too long when the membership server needs to handle a consid-

erable about of vehicles. Using a Zookeeper cluster, addressing the bottleneck problem

identified, should obviously help with performance, but it is still far from ideal. Zookeeper

is a great tool, but this is probably not one of the best uses for it, given that its best use

case is one with high reads and low writes, which is very different from our needs.

We aim at addressing the bottleneck problem. Two possible solutions exist, namely,

using multiple Zookeeper clusters or replacing Zookeeper with some other type of com-

munication. For this second approach we suggest using direct communication and cre-

ating an intermediate database server prepared for a high number of both read and write

requests. This application could also have function calls that return targeted data person-

alized for whoever made request, which should be able to make communication faster by

reducing the amount of requests needed. An approach like this should keep most of the

advantages of using Zookeeper while also providing better performance.
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Glossary

AWS Amazon Web Services. 39, 41

CC Cloud Computing. 5

IoT Internet of Things. 12

MANET Mobile ad hoc network. 11, 12

NIST National Institute of Standards and Technology. 5

P2P Peer to Peer. 13

ROS Robot Operating System. 23, 31, 33, 34, 36

SAE International Society of Automotive Engineers. 7

TTL Time to Live. 25

UUID Universally Unique Identifier. 24, 33, 36

V2I Vehicle to Infrastructure. 2, 11

V2R Vehicle to Road. 13

V2V Vehicle to Vehicle. 2, 6, 10, 11, 13, 18

VANET Vehicular ad hoc network. 12, 13

VM Virtual Machine. 5
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