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Design and Implementation of a Cloud Enabled

Random Neural Network based Decentralized Smart

Controller with intelligent sensor nodes for HVAC
Abbas Javed, Hadi Larijani, Ali Ahmadinia, Rohinton Emmanuel, Mike Mannion, and Des Gibson,

Abstract—Building Energy Management Systems (BEMS)
monitor and control the Heating Ventilation and Air Condition-
ing (HVAC) of buildings in addition to many other building
systems and utilities. Wireless Sensor Networks (WSN) have
become the integral part of BEMS at the initial implementation
phase or latter when retro fitting is required to upgrade older
buildings. WSN enabled BEMS however have several challenges
which are managing data, controllers, actuators, intelligence, and
power usage of wireless components (which might be battery
powered). The wireless sensor nodes have limited processing
power and memory for embedding intelligence in the sensor
nodes. In this work, we present a random neural network (RNN)
based smart controller on a Internet of Things (IoT) platform
integrated with cloud processing for training the RNN which has
been implemented and tested in an environment chamber. The
IoT platform is modular and not limited to but has several sensors
for measuring temperature, humidity, inlet air coming from
the HVAC duct and PIR. The smart RNN controller has three
main components:base station, sensor nodes, and the cloud with
embedded intelligence on each component for different tasks.
This IoT platform is integrated with cloud processing for training
the RNN. The RNN based occupancy estimator is embedded in
sensor node which estimates the number of occupants inside the
room and sends this information to the base station. The base
station is embedded with RNN models to control the HVAC on
the basis of setpoints for heating and cooling. The HVAC of the
environment chamber consumes 27.12% less energy with smart
controller as compared to simple rule based controllers. The
occupancy estimation time is reduced by our proposed hybrid
algorithm for occupancy estimation that combines RNN based
occupancy estimator with door sensor node (equipped with PIR
and magnetic reed switch). The results show that accuracy of
hybrid RNN occupancy estimator is 88%.

I. INTRODUCTION

According to CISCO [1], 50 billion devices will be con-

nected to internet by 2020. Different types of devices can be

connected to internet from small devices (RFIDs, Sensors) to

large devices like TVs, Cameras etc and mobile devices like

vehicles. In [2], the authors highlighted three characteristics
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of internet of things i.e. 1) Comprehensive sensing capabilities

with the help of sensors, RFID, cameras, GPS and all kinds

of devices to collect the information from the objects, 2) a

reliable communication network that can collect information

in a timely manner, 3) Intelligent processing by using cloud

processing to process the large data and implement intelli-

gent control technique. In Internet of Things, sensors energy

consumption, the ability to communicate with heterogeneous

systems, scalability, network connectivity, naming and identi-

fication are the challenging problems [3].

The generic architecture of WSN enabled BEMS is described

in [4]. The WSN is an essential part of the IoT and it requires

a gateway to connect to the internet. Often the nodes in

the WSN have limited processing power and memory, hence

limited intelligence can be embedded. This shortcoming can be

covered by interfacing the WSN with the cloud processing. In

[5], a cloud computing based solution is proposed for BEMS

with ZigBee sensor networks. Other applications of cloud

computing are for demand-side management [6], [7], [8] and

load shifting [9]. A cloud computing based BEMS can also

be used for implementing the complex control algorithms for

HVAC control.

The HVAC control is an integral part of BEMS. There are two

common technical approaches to HVAC control 1) Physical

Model based techniques (such as Model Predictive Control),

2) black box techniques (such as Random Neural Networks

(RNN) Artificial Neural Networks (ANN), and Support Vector

Machines (SVM)). The physical model based techniques are

used for HVAC control in [10], [11], [12], [13], [14], which

require detailed physical model of the building. Therefore, it

is difficult to implement on low cost WSN. The black box

techniques are used for different types of HVAC control in

[15], [16], [17], [18], [19], [20]. In [21], we compared a MPC

and an ANN with an RNN and it was shown that the ANN

was reliable only for the patterns included in the training

dataset whereas the RNN exhibited accuracy for the patterns

not included in the training dataset.

In [22], we proposed a centralised architecture for a smart

controller in which intelligence is embedded in the base

station. The smart HVAC controller was implemented on the

base station by integrating three RNN based models i.e. RNN

Occupancy Estimator model for estimating the number of

occupants, RNN PMV based Setpoint Estimator model for

estimating the predicted mean vote (PMV) based setpoints

for heating and cooling the building and RNN HVAC control

model for controlling the heating, cooling and ventilation of
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the building through HVAC. The base station of the smart con-

troller was developed on an Arduino Mega-2560 board (8KB

RAM) and its battery consumption was high. In this work,

we proposed a decentralised architecture for the smart con-

troller in which intelligence is embedded in base station and

indoor environment monitoring sensor node. The occupancy

estimation algorithm of our previous work is improved by

our proposed hybrid RNN occupancy estimation. The hybrid

RNN occupancy estimation algorithm is implemented on an

environment monitoring sensor node whereas the RNN based

PMV setpoint estimator, and the RNN HVAC controller are

implemented on the base station. Due to this decentralized ar-

chitecture, it is now possible to implement the base station and

sensor nodes with a low power ATmel 328P microcontroller

based Moteino [23] board (2KB RAM). The environment

sensor node estimates the number of occupants and sends this

information to the base station which controls the HVAC for

maintaining a comfortable indoor environment in the room.

The base station is integrated with a gateway to upload the

data on a web portal (http://sensors.traceallglobal.com/) and

to download the trained RNN models for base station and

environment monitoring sensor nodes. The main contributions

of this work are:

• Implementation of novel IoT based decentralized architec-

ture of RNN based smart controller for BEMS.

• Development and implementation of hybrid algorithm for

estimating the number of occupants in the room using RNN

model which integrates the RNN based occupancy estimator

( using CO2 sensor) and magnetic reed switches/PIR sensor

based occupancy estimation. This was implemented on a low

power embedded sensor node.

• Integration of cloud computing with low power atmel

ATmega328P micro controller for data storage and to train

the RNN models, in a RNN base station.

A. Related Work

The BEMS aims to reduce the energy consumption in

a building by controlling the HVAC with minimum user

interaction. The primary objective of a BEMS is to save

energy by switching off the HVAC when it is not required

and to maintain comfortable environment for the occupants.

This requires BEMS to estimate the occupancy so that it can

turn off the HVAC/Lights when the building is unoccupied and

ensure a comfortable indoor environment when it is occupied.

1) Learning from Occupants Preferences: NEST [24] is a

commercial self programming thermostat that learns occupant

preferences for an indoor environment. A NEST turns off the

heating/cooling when a home is unoccupied. It learns from

occupant preferences and preheats/ precools a building by

anticipating the demand for HVAC. The intelligent Dormitory

(iSpace) [25] is a student study bedroom that is fitted with sen-

sors. It learns the behaviour of the occupants under different

environmental conditions e.g. closing the blinds, dimming the

lights etc and then makes decisions according to the habits

learnt. In [26], the authors presented a rule based BEMS

that reduces energy consumption and maintains a comfortable

indoor environment. The rule sets were created to ensure

comfortable temperature and humidity, luminance, air quality

and track movement of occupants in order to control HVAC

for reducing energy consumption.

2) Occupancy Estimation: Many authors have used either

PIR sensors or a combination of PIR and door sensors to detect

occupancy patterns. In [27], a self programming thermostat is

developed which creates a setback schedule for the HVAC

by using occupancy information. The system used a PIR

sensor for sensing the occupancy. In [28], occupancy and

sleep patterns were used to turn off the HVAC in order to

save energy. The occupancy and sleep patterns were sensed

by using a door sensor and a PIR sensor. Similarly in [29],

the PIR and door sensor are used to detect whether the room

is occupied or not. The system can conserves 10% to 15%

energy by using the developed algorithm. In [30], a markov

chain occupancy model is used for occupancy prediction with

real time monitoring of occupancy achieved using a camera

sensor network.

CO2 sensors can also be used for occupancy detection,

counting, and location of occupants. In [31], the presence

and location of the occupants are detected. The number of

occupants is also estimated in [32],[33]. In [34], the authors

exploit the correlation between the CO2 concentration and the

occupancy levels.

A PIR sensor gives a binary output and is usually used to de-

tect the occupancy and location of the occupant. The systems

with PIR and door sensors can estimate the wrong number

of occupants inside the building when more than one person

is entering or leaving the building at the same time. CO2

concentration based methods are usually slow to estimate the

occupancy and can often take 20 minutes to correctly estimate

the number of occupants, and the performance of the system

can be effected by disturbances (opening of windows/doors,

change in CO2 concentration of inlet air supplied by HVAC).

3) Cloud Computing enabled WSN: In [35], [36], a sensor

cloud architecture is presented in which a WSN and cloud

processing are combined. In [37], the concept of virtualizing

the physical sensor on the cloud is demonstrated to show that

user can access it without knowing the location of the physical

sensor. In [38], sensor-cloud integrations are used to run Ener-

gyPlus simulations for optimization of different energy related

objectives. Similarly in this work, sensor cloud integration is

used to implement the smart controller. The training of RNN

model and data storage/representation is performed on cloud

platform. The trained RNN models are implemented on sensor

nodes in order to reduce the computational load on the base

station. The WSN is interfaced with cloud through gateway

connected with the base station.

The rest of this paper is organized as follows. A brief in-

troduction to RNNs and how training algorithms are used to

train RNN models is provided in Section II. The architecture

of a smart controller is described in Section III followed

by an implementation of the smart controller in Section IV.

The experimental results of the smart controller are given in

Section V followed by conclusions in Section VI.
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II. RANDOM NEURAL NETWORKS

Gelenbe [39][40] proposed a Random Neural Network

(RNN) in which signals are either +1 or -1. An RNN can give

a more detailed system state description because the potential

of a neuron is represented by an integer rather than a binary

value [41]. An RNN is easy to implement on hardware as

its neurons can be represented by simple counters [42][43].

Abdelbaki in [44], compared the performance of an RNN with

an ANN for unseen patterns not covered in the training data

and found that an RNN accurately measured the output while

an ANN failed to predict accurate output. Similarly in [45],

the training time for an RNN was greater than an ANN but the

RNN outperformed the ANN during the run-time phase in total

calculation time. The RNN also had a strong generalization

capability for the patterns not covered in the training phase.

The ANNs were sensitive to the number of hidden neurons

and if over-trained, the ANN memorizes the input patterns

but gives poor generalization for new inputs. The applications

of RNN are reported for optimization [46], [47], [48], function

approximation [49], [50], and image processing [51], [52],

[53]. To the best of our knowledge, there is no such application

of RNN for implementing the smart controllers for buildings.

The details about RNN architecture and exchange of signals

between the neurons are presented in [22].

A. Hybrid Particle Swarm Optimization with Sequential

Quadratic Programming

Many researchers have used a Gradient Descent (GD)

algorithm for learning the weights of an RNN model. The

GD algorithm is relatively easy to implement but zigzag

behaviour may cause it to be stuck near a local minimum for

the problems with multiple local minima. The evolutionary

algorithms are used for solving optimization problem. These

techniques are better than gradient base techniques as as

they do not get stuck in local minima. The Particle Swarm

Optimization (PSO) algorithm performs well in finding the

global minimum but it might be slow to converge to the

global minimum while in the presence of multiple local min-

ima, Sequential Quadratic Programming (SQP) optimization

method [54] usually converges to local minima. The problem

of slow convergence of PSO and local minima problem of

SQP optimization is addressed by the hybridization of PSO

and SQP optimization algorithm [55].

In this paper, we used a hybrid PSO-SQP algorithm for RNN

training first proposed in [22]. First, RNN is trained with PSO

algorithm to find the global minima, and then based on feasible

start point from Adaptive Inertia Weight-Particle Swarm Op-

timization Algorithm(AIW-PSO) [56], SQP [54] optimization

algorithm converges to global minima. The flow chart of the

training algorithm is shown in Figure 1. The position vector

for PSO is formulated as Xsd = [w+L1

ih
w

+L2

ho
w

−L1

ih
w

−L2

ho
].

w
+L1

ih
is is positive interconnection weights between node i

of layer 0 and node h of layer 1. Similarly, w−L1

ih
is negative

interconnection weights between node i of layer 0 and node

h of layer 1. The details of hybrid PSO-SQP algorithm are

given in [22].

Initialize the random neural network 

with random interconnected weights 

Xsd =[wij
+L1

wij
+L2 

wij
-L1 

wij
-L2

]

Train the network with PSO 

algorithm

If PSO training 

finished

NO

Store the weights

YES

Train the network with SQP 

optimization algorithm

If training finished

NO

Store the weights

YES

Fig. 1. Flow chart of Hybrid PSO-SQP

III. ARCHITECTURE OF DECENTRALIZED SMART

CONTROLLER

The architecture of smart controller is shown in Figure 2.

We assume that each zone/room has one indoor environment

sensor node that communicates with a HVAC duct sensor node

for monitoring the air supply and a door sensor node for

estimating the number of occupants in each zone. The indoor

environment sensor node estimates the number of occupants

and sends this information to base station alongwith indoor air

parameters (i.e., temperature, humidity, CO2, light intensity).

If the room is occupied, base station controls the HVAC

to maintain PMV based setpoints (estimated by RNN PMV

setpoint estimator) or maintains user defined setpoints for

heating and cooling. The data from sensor nodes is uploaded

on a webportal through gateways connected to the base station.

A. Indoor Environment Sensor Node

The environment monitoring sensor node is developed on

Moteino R4 board [23]. The board has program memory of

32 KB, 2KB of RAM, and 1KB for EEPROM .The indoor

environment sensor node is responsible for monitoring the

indoor environment of the room. It monitors the temperature,

humidity, dewpoint temperature,CO2 concentration of the in-

door air and light intensity of a particular room and sends this

information to the base station. The DHT22 sensor is used

for monitoring temperature and humidity, COZIR ambient
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RNN BASE 

STATION

HVAC Duct Sensor 

Node

(CO2 , Temperature, 

Humidity)Indoor Environment 

Sensor Node (Light, CO2 , 

Temperature, Humidity)

RNN Occupancy Estimator

Door Sensor Node

(PIR , Magnetic Reed 

Switch)

Zone 1

Zone n

HVAC 

Control 

Panel

Gateway

Webportal

Indoor Environment 

Sensor Node (Light, CO2 , 

Temperature, Humidity)

RNN Occupancy Estimator
Door Sensor Node

(PIR , Magnetic Reed 

Switch)

HVAC Duct Sensor 

Node

(CO2 , Temperature, 

Humidity)

Fig. 2. Control Structure of Smart Controller

Fig. 3. Environment Monitoring Sensor Node. Algorithm for Occupancy
Estimation using Door Sensor Node, RNN Occupancy Estimator and Hybrid
RNN Occupancy Estimator are embedded in Environment Monitoring Sensor
Node

sensor [57] is used to measure the CO2 concentrations while

photoresistor is used to measure the light intensity. The indoor

environment monitoring sensor node has three algorithms for

occupancy estimation i.e., RNN occupancy estimator model,

occupancy estimation with door sensor node and a hybrid

RNN Occupancy estimator. The occupancy estimation algo-

rithm is implemented on the environment sensor node in order

to reduce the computational load from the base station. The

environment sensor node estimates the number of occupants

and sends this information to the base station which will

control the HVAC accordingly. The environment monitoring

sensor node is shown in Fig. 3.

B. HVAC Duct Sensor Node

The environment of the room is controlled by the inlet

air supplied from the HVAC. The HVAC duct sensor node

calculates the temperature, humidity and CO2 concentration of

the inlet air and sends this information to indoor environment

sensor node. The HVAC duct sensor node is also developed

on Moteino R4 board and shown in Fig. 4.

Fig. 4. HVAC duct Sensor Node

Fig. 5. Door Sensor Node, PIR sensor Node for detecting the movement and
magnetic reed switch to detect the door opening/closing

C. Door Sensor Node

This sensor node is responsible for monitoring the occupant

movement and opening/closing of the door. The PIR sensor

node detects the movement of the occupants and magnetic

reed switch detects the door opening/closing. The magnetic

reed switch is attached to the door and PIR sensor is placed

inside the room to detect movements. The door sensor node

is shown in Fig. 5. The door sensor node is also developed on

Moteino R4 board.

D. Base Station

The base station are developed with Moteino R4 boards

[23]. The base station has three responsibilities:

1) to implement the control algorithm for the HVAC

2) to upload the data on the webportal by sending the sensor

node’s information to the gateway

3) to download the trained RNN from cloud platform and

install it on the environment sensor node and the base station.

E. Gateway

The Global System for Mobile Communications (GSM)

module is integrated in the gateway for communication be-

tween WSN and cloud platform. For this study, the gateway
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Fig. 6. Gateway connected with base station and controlling the HVAC
through relay circuit. The RNN HVAC control model and RNN PMV based
Setpoint Estimator model are embedded in base station.

stores the data from all sensor nodes in memory and transmits

this information to Web portal after every 15 minutes. The

control panel of HVAC controls the heater and chiller with

0-24 DC Voltage (VDC) relays. The base station operates at

3.3 V so the relay circuit is connected with the base station.

The base station is also connected with the GSM gateway as

shown in Fig. 6.

F. Webportal

The control algorithm is implemented on the base station

and the environment sensor node therefore the data is uploaded

on Web Portal after every 15 minutes. For each sensor node,

the webportal displays Node ID, upload time in milli sec-

onds(the time sensor node is powered), light intensity, CO2

concentrations, temperature, humidity, dewpoint temperature,

data receiving time, motion sensor, heating setpoint, cooling

setpoint, heating output for HVAC, cooling output for HVAC,

ventilation output for HVAC, and number of occupants in the

room.

IV. IMPLEMENTATION OF SMART CONTROLLER

We have implemented the smart controller to test its per-

formance in a single zone environment chamber.

A. Description of Testbed

The smart controller was tested in single zone environ-

ment chamber located at Glasgow Caledonian University. The

environment chamber has dedicated HVAC that can humid-

ify/dehumidify it, and can heat or cool it. The HVAC can

vary the temperature of the environment chamber between

5 oC and 40oC. The size of the environment chamber is

3.65 × 2.43 × 2.43m. The indoor view of the environment

chamber is shown in Fig. 7.

B. Implementation of RNN Occupancy Estimator in Environ-

ment Sensor Node

The RNN Occupancy Estimator is trained on a cloud plat-

form and the trained RNN model is implemented on an indoor

environment sensor node. The inputs for the model are : HVAC

Sensor Node 

for HVAC Duct

Sensor Node 

for Indoor 

Environment

Fig. 7. Indoor View of Environment Chamber

Day 01 Day 02 Day 03 Day 04 Day 05

Fig. 8. Training results of RNN Occupancy Estimator, MSE = 1.40 e-2. Y-axis
represents number of occupants while x-axis represents number of Days.

inlet air temperature, HVAC inlet air CO2 concentrations, inlet

air temperature of the environment chamber, CO2 concentra-

tion inside the environment chamber. The output of the model

is the number of occupants inside the environment chamber.

The training data set for the RNN model is downloaded from

the webportal. The ground truth value is recorded manually for

training purpose of RNN. In [22], the occupancy estimation

algorithm used inlet air actuation signal as fifth input. In

this work, the inlet air actuation signal is removed from the

input of the RNN model due to which accuracy of occupancy

estimation is more challenging. The RNN occupancy estimator

model has four inputs in the input layer, five neurons in the

hidden layer and one neuron in the output layer. The RNN

model was trained with a dataset collected over a period of 5

days. The Hybrid PSO-SQP training algorithm was used for

training the RNN and the mean squared error for the training

data set is 1.40 e-2. The training results of the RNN model

are shown in Fig 8. The ground truth values for occupancy

and the number of occupants estimated by the RNN model

are shown in Fig. 8.

C. Occupancy Counting with Door Sensor Node

The door sensor node has a PIR sensor for detecting

the movement of the occupant and magnetic reed switch to
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detect the door opening/closing. The door sensor transmits

the data to environment monitoring sensor node whenever

an event occurs for PIR sensor/door sensor. The environment

monitoring sensor node is programmed to detect two states

1) occupant enters the room : if the door sensor node detects

the door opening first and the PIR sensor detects the movement

afterwards, the environment monitoring sensor counts one

person entering in the room. The false detection is avoided by

putting the condition that the time difference between sensing

the door opening and the PIR sensor should be less than 5

seconds.

2) occupant leaves the room : if the PIR sensor detects

the movement first and the door sensor node detects the

door opening afterwards, the environment monitoring sensor

counts one person leaving the room. The false detection is

avoided by putting in the condition that the time difference

between sensing the door opening and the PIR sensor detecting

movement should be less than 5 seconds.

D. Hybrid RNN Occupancy Estimation Algorithm

The hybrid RNN occupancy estimation algorithm is pro-

posed by integrating the output of RNN occupancy estimator

model and occupancy counting using a door sensor node.

Some drawbacks of the occupancy estimation using a door

sensor node are :

1) If more than one person comes inside the room through the

door at the same time, it detects only one person.

2) If, at the same time, one person leaves and one person

enters, this method will not work.

The RNN occupancy estimation algorithm takes time to

estimate the number of occupants as CO2 concentrations

take some time to accumulate in the room in presence of

ventilation. The shortcomings of both techniques are reduced

by proposing the RNN based hybrid algorithm for occupancy

estimation in which occupancy estimation with door sensor

node is combined with RNN occupancy estimator. The RNN

based hybrid occupancy algorithm is trained with the dataset

collected from testing of both techniques in environment

chamber. The hybrid RNN occupancy estimator has three

inputs i.e. 1) occupancy estimation with RNN based occu-

pancy estimator 2) the CO2 concentration of the environment

chamber 3) the occupancy estimation from PIR and magnetic

reed switch based occupancy estimation algorithm. The hybrid

RNN occupancy algorithm has four neurons in the hidden

layer and one neuron in the output layer. The output of the

hybrid RNN is the number of occupants in the environment

chamber. The flow chart of the algorithm is shown in Fig. 9.

E. Implementation of RNN HVAC and RNN PMV estimator

on base station

Predicted Mean Vote (PMV) is a commonly used indoor

thermal comfort index in buildings [58]. Fanger [58], devel-

oped a thermal sensation scale of 7 values to determine thermal

comfort. PMV is developed as a function of six variables:

air temperature, mean radiant temperature, air velocity, air

humidity, clothing resistance, and activity level. The base

station is responsible for controlling the HVAC on the basis of

HVAC air 

T, CO2

-+

Door Sensor Node

Magnetic Reed Switch 

for door opening/

closing

YES
YES

YES

YES

YES

Indoor room air 

T, CO2

Fig. 9. Hybrid RNN Occupancy Estimation Algorithm

the information sent from the environment monitoring sensor

node. If the environment monitoring sensor node detects the

occupancy in a particular room, the base station will control

the environment of the HVAC accordingly. The base station

controls the HVAC according to two modes i.e.

1) thermal mode: if user selects the thermal mode, the user will

enter the required PMV value and RNN PMV based setpoint

estimator will determine the setpoints for heating and cooling.

2) user will enter its own setpoints for heating and cooling if

the setpoints estimated by PMV based setpoint estimator are

not satisfactory.

1) RNN PMV based setpoint estimator: Fanger developed

seven point index of comfort/discomfort which is dependent

on six variables as shown in Figure10. In this work, training

data set is generated by using Fanger equation for PMV. To

reduce the human interference, we assumed the typical office

environment. Therefore, clothing insulation of 0.8, metabolic

rate of 1.1, and air velocity of 0.15 m/s are assumed to be

constant. After generating training dataset, RNN is trained

with PMV and humidity as an input and temperature as an

output. A 2-4-1 RNN is trained with hybrid PSO-SQP training

algorithm. In this work, PMV of -0.1,-0.3,-0.5 is tested for

heating setpoint and PMV of 0.3, 0.5 and 0.7 is tested for

cooling set point. The RNN PMV based setpoint estimator is

implemented on the base station. The estimated setpoints from

the RNN model will be used by RNN HVAC control model for

controlling the HVAC. In this work, when PMV value of -0.5

is selected the estimated setpoints for temperature are varied

between 22.34oC and 22.47 oC.

2) RNN HVAC Controller: The RNN HVAC controller

controls the HVAC on the basis of the setpoints estimated

by the RNN PMV based setpoint estimator or user defined

setpoints for heating and cooling. The inputs for the RNN

model are 1) heating setpoint 2) cooling setpoint 3) heating

error i.e. the difference between heating setpoint and current
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Fig. 10. PMV and thermal sensation

room temperature 4) cooling error i.e. the difference between

cooling setpoint and air temperature of the zone and 5) CO2

concentrations. The outputs of the RNN model are 1) Heating

output for turning on the HVAC heating 2) cooling output for

turning on the HVAC cooling and 3) ventilation for the zone.

The RNN HVAC controller model is trained by the dataset

collected from the environment chamber.

V. RESULTS

To investigate the impact of occupancy estimation by a

hybrid RNN occupancy estimation algorithm, we evaluated

occupancy estimation with RNN occupancy estimation al-

gorithm, occupancy estimation with door sensor node and

occupancy estimation with hybrid RNN occupancy estimation

algorithm. In Subsection V-D , the energy consumption of

smart controller is compared with simple thermostat.

A. Experiments Results of Occupancy Estimation With RNN

The RNN model for occupancy estimation is tested in an

environment chamber for estimating the number of occupants.

The ground truth values for occupancy are recorded manually

for generating the training dataset. Multiple tests have been

carried with different conditions to check the robustness of the

method. The performance of the RNN algorithm is evaluated

for occupancy estimation of upto 3 persons.

1) Test 1: During the test, the initial air temperature of the

chamber was 25.6 oC and CO2 concentrations were 610 PPM.

The occupancy estimation with RNN occupancy estimator and

ground truth values during the test are shown in Fig. 11. The

estimation time for occupancy estimation with RNN is shown

in Table I. The first column shows the change in number

of occupants, the second column shows the minimum and

maximum estimation time for correct occupancy estimation

during the test and the third column shows the average time

for estimating the occupancy. The accuracy of the method is

72.49% and when we examined the results when there were 2

occupants inside the environment chamber and RNN estimates

1 occupant, the accuracy of the method is 79.59%.

2) Test 2: We carried out another test where the indoor

environment conditions were changed as compared to Test

1. The initial condition for the air temperature was 20.9 oC

and CO2 concentration was 587 PPM. The accuracy of the

RNN estimation is 81.34% but if we compared an error of

+/- 1 person when occupancy is greater than 1 i.e. 2 or 3,

Fig. 11. Occupancy Estimation by RNN Occupancy Estimator for Test 1,
y-axis represents the number of occupants while x-axis represent the time in
minutes.

TABLE I
OCCUPANCY ESTIMATION TIME FOR TEST 1

Occupancy Estimation Time
(min - max)

Average Time

0 to 1 Occupant 6 - 9 minutes 7.5 minutes

1 to 2 Occupants 4 - 21 minutes 12.4 minutes

1 to 0 Occupant 4 - 16 minutes 10 minutes

2 to 1 Occupant 7 - 22 minutes 14.5 minutes

2 to 0 Occupant 25 minutes 25 minutes

the accuracy of the system is 87.45%. The results are shown

in Fig. 12 and estimation time for occupancy estimation is

provided in Table II.

B. Experiment results of Occupancy Estimation with Door

Sensor Node

The occupancy estimation with door sensor node is tested in

an office of PhD students at Glasgow Caledonian University.

The office is occupied with 10 PhD students and during test

the maximum number of occupants goes upto 8 occupants.

The experiment was conducted during 4 days. The average

Fig. 12. Occupancy Estimation by RNN Occupancy Estimator for Test 2,
y-axis represents the number of occupants while x-axis represent the time in
minutes.

TABLE II
OCCUPANCY ESTIMATION TIME FOR TEST 2

Occupancy Estimation Time
(min - max)

Average Time

0 to 1 Occupant 0-1 minute 1 minute

1 to 2 Occupants 5-8 minutes 6.5 minutes

1 to 3 Occupant 10 minutes 10 minutes

2 to 1 Occupant 11-15 minutes 13 minutes

3 to 1 Occupant 16 minutes 16 minutes
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Fig. 13. Occupancy Estimation with Door Sensor Node, y-axis represents
number of occupants while x-axis represents number of Days.

accuracy of occupancy estimation with PIR and magnetic

reed switches was 71% and maximum error of 6 person was

produced due to which occupancy estimation with door sensor

node is not suitable. The results are shown in Fig. 13.

C. Experiment results of RNN Hybrid Occupancy Estimation

The RNN hybrid occupancy estimation algorithm is tested

in GCU environment chamber. The occupancy estimation with

RNN occupancy estimator is slow whereas the occupancy esti-

mation with PIR and magnetic reed switch is not accurate. The

hybrid algorithm reduced the drawbacks of both techniques.

The experiment result shows that the occupancy estimation

time is reduced as compared to RNN occupancy estimator

and accuracy of occupancy estimation is also increased. The

ground truth values, RNN occupancy estimator, occupancy

estimation with hybrid RNN algorithm and occupancy esti-

mation with door sensor are shown in Fig. 14. The occupancy

estimation with RNN occupancy estimator is slow and due

to frequent changes in occupancy, the accuracy of RNN

occupancy estimator is 63% whereas accuracy of door sensor

node is 72.9%. The hybrid algorithm takes advantage of both

techniques and as a result the accuracy is 87.3%. As shown

in Fig. 14, the estimation time for occupancy estimation is the

same as door sensor node. During the test, when two persons

entered in the environment chamber at the same time, the

door sensor node detects only one person. This error has been

corrected by hybrid occupancy algorithm after 13 minutes.

We carried out another test for checking the performance of

hybrid RNN occupancy estimation. The comparison of RNN

occupancy estimator, and hybrid occupancy estimator is shown

in Fig. 15. During this test, the occupacny estimation with door

sensor node is 100% accurate whereas the accuracy of hybrid

occupancy algorithm is 88%.

D. Energy Consumption of the HVAC

The energy consumption of the RNN controller is compared

with simple rule based controller. The RNN smart controller

maintains the setpoints for heating, cooling and ventilation if

the room is occupied. The setpoint for heating was 23 oC,

and the setpoint for cooling was 26 oC. During the test, the

temperature of environment chamber is brought to 17.3 oC for

energy consumption comparison. The air temperature of the

Occupancy E

with Door

Accuracy –

Hybrid RNN O

Estimat

Accuracy –

RNN Occ

Estimat

Accuracy

Actual Nu

Occup

Fig. 14. Comparison of Occupancy Estimation with Hybrid Occupancy
Algorithm, RNN Occupancy Estimator,Door Sensor Node and Ground Truth
Values for Occupancy for Test 1, y-axis represents number of occupants, x-
axis shows time in minutes

Hybrid RNN Occupancy 

Estimation 

Accuracy -88%

RNN Occupany 

Estimation

Accuracy- 46%

Actual Number of 

Occupants

Fig. 15. Comparison of Occupancy Estimation with Hybrid Occupancy
Algorithm, RNN Occupancy Estimator,Door Sensor Node and Ground Truth
Values for Occupancy for Test 2, y-axis represents number of occupants, x-
axis shows time in minutes

environment chamber during the test with RNN occupancy

estimation is shown in Fig. 16 and occupancy estimation is

shown in Fig. 17 whereas the energy consumption comparison

is shown in Fig. 18. The energy consumption with occupancy

estimation with RNN is 38.7 KWh and without occupancy

estimation is 49.2 KWh. The total energy saving with RNN

controller is 27.12 %.

E. Data uploading on Webportal

The information from sensor nodes is uploaded on the

webportal. The Node ID of the environment monitoring node

is 2 and Node ID of the HVAC duct sensor node is 1.

The uploaded results are shown in Fig. 19 and the control
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Fig. 17. Occupancy Estimation during the test for comparison of Energy
Consumption

parameters for HVAC alongwith the occupancy estimated by

the algorithm is shown in Fig. 20.

VI. CONCLUSION

In this work, we implemented the smart controller by

integrating the internet of things with cloud computing. The

building indoor environment parameters, HVAC inlet air pa-

rameters and control parameters for the HVAC are uploaded

on the web portal. The WSN has been implemented with

low power Moteino Board which has limited memory and

processing power. The decentralized architecture of smart

controller is proposed in which control algorithms are partially

implemented on base station and environment monitoring sen-

sor node placed in each zone. The sensor node for monitoring

Fig. 18. Energy Consumption Comparison with RNN Smart Controller and
without RNN Smart Controller

Fig. 19. View of Webportal- Information from Sensor Nodes are displayed
on http://sensors.traceallglobal.com/sensordata.asp

Fig. 20. View of Webportal- Control Parameters of HVAC from Smart
Controller and Occupancy Estimation are displayed by clicking on More
Button of Main Page.

the indoor environment of the room is made intelligent by

embedding the hybrid RNN based occupancy estimator. The

RNN models for smart controller are trained with hybrid PSO-

SQP training algorithm on cloud platform and trained RNN

models are embedded in the base station and environment

monitoring sensor node.

The occupancy estimation with PIR and magnetic reed

switches, and RNN based occupancy estimator are tested in

the environment chamber. The experiment results showed that

occupancy estimation algorithm based on PIR and magnet

switch may not be accurate due to its inability to count more

than one person entering/leaving the room at the same time.

On the other hand, the RNN based occupancy estimator can

accurately estimate the number of occupants but estimation

time is slow as CO2 concentrations take time to accumulate

in the room. These shortcomings of both techniques are

addressed by proposing the hybrid RNN based occupancy

estimation algorithm which takes output of both techniques

to estimate the occupancy estimation. The results show that

accuracy of occupancy estimation of hybrid algorithm is

88% and estimation time for single person is the same as

PIR/magnetic reed switch based occupancy algorithm. The

energy consumption of smart controller is compared with a

simple thermostats and results show the energy consumption

of smart controller is 27.12% less than the simple thermostat.

For future work, control level of HVAC will be optimized

according to the number of occupants estimated by the hybrid

RNN occupancy estimation algorithm.
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