NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

- TGRSR S 4

et T

e T TR o T
AR l!,“(. .

NNASA

Technical Memorandum 86111

DESIGN AND IMPLEMENTATION OF
A COMPLIANT ROBOT WITH FORCE
FEEDBACK AND STRATEGY
PLANNING SOFTWARE

Timothy Premack, Franklin M. Strempek,
Leonard A. Solis, Steven S. Brodd,

Edwin P. Cutler, and Lloyd R. Purves

(NASA-T¥-86111) LCESIGN AND IMELEMENTATION N86-13947
OF A COMPLIANT EOBCT WITH FORCE FEEDBACK AND
STRATEGY PLANNING SCFTWARE (NASA) 99 P

HC AOS/MF AO1 CSCL 09B

Unclas
G3/63 Q4762

MAY 1984

National Aeronautics and
Space Admir.stration

Goddard Space Flight Ce::'or
Greenbelt, Maryland 20771

o . T W T T TR ———— ———

T™ 86111

) DESIGN AND IMPLEMENTATION OF A COMPLIANT ROBOT WITH FORCE
FEEDBACK AND STRATEGY PLANNING SOFTWARE

Timothy Premack, Franklin M. Strempek, Leonard A. Solis,
Steven S. Brodd, Edwin P. Cutler, and Lloyd R. Purves

MAY 1984

National Aeronautics and Space Administration

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland 20771

ABSTRACT

Force-feedback robotics techniques are
being developed for automated precision
assembly and servicing of NASA space
flight equipment, Design and
implementation of a prototype robot
which bprovides compliance and monitors
forc »s is in progress, Computer
softJsare to specify assembly steps and
make force-feedback adjustments during
assembly are coded and tested for three
generically different precision mating
problems. A model program demonstrates
that a suitably autonomous robot can
plan its own strategy.

B o o SR LD S

ACKNOWLEDGEMENTS

The development of the Intelligent Fnd Effector system
has been a fairly major undertaking made possible by the
contributions of a number of people. Mr. Lloyd Purves of
the Goddard Space Flight Center developed the original
concept and a proach for this project, and he managed the
overall development of the work. Mr., Timothy Premack, also
of Goddard, made important contributions to the use of
compliance in the system. Mr., Premack also designed the
actuators and present compliant, force-feedback sensors.
Mr. Frank Strempek of Goddard did all of the other
mechanical design, including the original compliant force
sensors and the compliant gripper. Mr. John Lallande and
Mr. Woodrow Poland of the Goddard machine shop were very
helpful in getting the equipment fabricated.

Mr. Premack did all of the control, system, and user
software development work and used it to perform the first
successful force-feedback insertion of pegs. Mr. Leonard
Solis of Science Applications Research (SAR) then extended
this software to carry out the insertion of bolts and
electrical connectors. Mr. Steven Brodd of SAR developed
the artificial intelligence algorithms to generate the robot
command sequence for assembly from a definition of the
assembled equipment. Mr. Ramesh Bhimarao of the University
of Maryland wrote the softwarc to generate the IGES database
from a CAD database. Mr. Edwin Cutler of SAR managed the
SAR software development effort and contributed
significantly to the production of this repcrt.

o . rermmems

!
[
!
TABLE OF CONTENTS
1.0 INTRODUCTION ., . .+ « & S | |
2.0 RESEARCH IN AUTOMATED ASSFMBLY c o s s s s e e o o o+ 4 o
2.1 BACKGROUND ¢« « ¢ o o o o o o o o s o o o o o o o+ « @& ‘
2.2 TOLERATING THE REAL WORLD « &« + + o« ¢ s s o s o o 6
2.2.1 Force Feedback . « o« « o ¢ o o o o o o o o o o o o 1
2.2,2 Compliance . . o+ « o o« ¢ o o o o o o o s o o o o o+ 8
3.0 THE INTELLIGENT END EFFECTOR (IEE) + + « o o o o o 10
3.1 INTRODUCTION ¢ &« o o o o o o o o o o o o o o« o o 10
3.4 HARDWARE DESCRIPTION . ¢« ¢ o « o o o o o o o o o 11
3...1 1EE Support And Positioning Design « . 1l
3.2,2 Compliant, Force-Feedback Design . . . « 13
3.3 SOFTWARE DESCRIPTION « ¢ ¢ o ¢ o o o o o s o o » 15
3.3.1 Analog-to-Digital Facility . « ¢« « « ¢« ¢« ¢ « o« o 17
3.3.2 Active Platform Facility . « ¢« ¢« ¢« ¢ ¢« o o « « » 20 J
3.3.3 Computer Automated Measurement And Control ;
FACLLitY o o ¢ o ¢ ¢ o o o s o o o o s o s o o o 22 f
3.3.4 Compliant Platform Facility « ¢« + « o 23
3.3.5 Force Facility e e o s o e o s o o o 25
3.3.6 Intelligent End Effector (IEE) Facility 27 '
3.3.7 Gereral Library Facility . . ¢« « ¢« ¢« o« ¢« ¢« « o« » 28 g
3.3.8 Mathematics Library Facility 30 ;
3.3.9 Motion Control Facility . . . « +« &+ &« ¢« « « « » 31 ;
3.3.10 Compumotor Motor Control Facility 33
3.3.11 Object Facility . « « + o o o o o « o o« o o o o 35
3. 3.12 Sscrewing Control Facility . . . + ¢« ¢« ¢« o « & » 36
3.3.13 Six-Degree-of~Freedom Facility . . . « . « « o+ o 37 9
3.3.14 Spatial Transformation Facility 37 ,
3.3.15 Wrist Facility . « . ¢« « &« o« & e o« s o s e « o 38
4.0 THE INTELLIGENT END EFFECTOR IN USE e+ e« + « o« o 40 ‘
4.1 PEG INSERTION . & o o ¢ 2 o o o o« s o o o« s +» o« 40 i
4.2 MATING A 25 PIN D-TYPE CONNECTOR . . « + « « « o 45 §
4.2.1 ASSUMPLIONS + &4 « & « o 4 o o o o o o o s o s o 16 r
4.2.2 DAtabaS@ « + o« o ¢ o o s o o 6 o s s e e o o o o 46 :
4,2.3 Algorithm To Perform Mating . . . + « « « . . o+ 47
4.2.4 Results B & Ty
4.3 SCREWING A BOLT INTO A THREADED HOLL ¢« ¢« « « « . 49 i
4.3.1 Problem Description . .« « + &+ o o o« o o « o« » o« 50 f
4.3.2 ASSUMPLIONS & « « o o o o o o o o o o s o o &« o S0
4.3.3 Database o« v e e - 3 | |
4.3.4 Program To Perform Bolt Insertion . . . » . . . 51 ﬁ
4.3.5 Compliance o« . e o o o o & o o & o o o o & 53
. 5.0 A MODEL FOR ASSEMBLY AND REPAIR STRATEGY 54 !
5.1 INTRODUCTION . ¢ o ¢ o o ¢ o s o s o o o o o o » 54
5.2 DESCRIPTION « ¢ o o o o s o s o o o s o o o s o 55 :
5.2.1 Input And OUZPUL & & « & & o o o ¢ s o o o o o o 55 ‘
5.2.2 Demonstration Limitations « + « « « 56
5.2.3 CAD Database . .« « ¢ o« « ¢ o o o s o o o o o o o 37
5.2.4 The Strategy Planner . . . « « ¢« o s o« s o o« o o« 99
5.2.5 Internal Databases . . .+ « ¢ o o s+ o o o ¢ o+ o o« 63

W — e o e —

* L]
L] L]
L] L]
L] L]
. []
L]
S TR———

]
e o o o o X
(o
e o o -
0
e o o L o] i
0 x {
e o s LD i
& 3k !
. e QD [
- !
o Z M E
O veo |
” ot o B M2 A
| e go<
' L o
m e = 0
] ZV C A2
mwmoo O
‘ HEQ- O
ar -l & e
: DI QD
y: MawEE
, RME~IJIOoU
W‘ -l Z
o
K (&)

e I PR e » . 35 % ,Eh#

LIST OF FIGURES

1. Block Diagram of IEE System ., . . « « « o « « o 81
2. photographs of IEE L . L] L] [] . L] [] . L] [] L] . . 82
3., Six-Degree-of-Freedom Po3i%ioning Mechanism ., . 83

4, Compliant, Force-~-Feedback Mechanism 84

5., Motion Flow CONtrci « o« « o « o o o ¢ o o« o o« o 8%
6. Control Flow of Force Acquisition 86

7. 8°1t Holdinq D.Vic. L * o L L . [] L] (] [] . . L] * 87

8. Mechanical Drawing of Blocks Model 88

T e A e R T

s ot s et < . ——

fz& s

h A
P RPN LT . o

L. TS e A o o - T S

Pae -~ e

\‘s;é S

1.0 INTRODUCTION

The research and development work described in this
document has been undertaken as part of an effort to advance
robotic techniques so as to be able to automatically and
efficiently assemble or service NASA hardware either on

ground or in orbit.

The basic impetus for this work 1is to achieve the
efficiencies that robotic manipulators can offer over manual
approaches, Given the added expenses, operational
constraints, and safety veéquirements that affect the work
man can do in space, the greatest potential for efficiently
utilizing robots 1is in space. However, there 1is also
significant labor required to prepare and refurbish launch
system and payloads, and therefore there are also
significant benefits to be gained from using robots on the

ground to support such activities,

The particular activities pursued in the work reported
on here are due to the special characteristics JOf NASA
hardware, with respect to the goal of providing automatic
robotic assembly and servicing. Sume of the pertinent

considerations of much NASA hardware are:
1. There are precision components with small clearances,

2, The hardware is highly complex.

1 T Ve R Lhiak, fhads

‘ ki 1" TN

3. The hardware is either a unique custom iteam, or has been

TEERTEITELEEE. T

produced 1n very small quantities,

TR

The significance of point 1 is that small clearances
essentially require the robot to have an advanced form of
force feedback, This 1is because it is essentially
impossible to use dead reckoning to position components
having clearances on the order of .00l inches. Even if tha
robot can be guaranteed to have the required accuracy, the

assembly into which compornents are being placed can be

expected to be out of position by .001 inches due to thermal
and load induced structural deformations or to the buildup

of manufacturing tolerances. As is the case when a person

performs assembly or servicing of precision hardware, the
sensing and interpretation of interference forces is often
more critical than vision feedback for compensating for the
fine positioning errors. It seems that vision feedback is
generally useful for positioning items to somewhere within
about 0.1 to 0.5 inches and force feedback is used to

correct for the remaining positional errors.

The other two considerations, namely the complexity and
limited production volume of most NASA hardware mcans that
there needs to be an efficienc means of automatically

generating the very large set of robot motions needed to

assemble or service a piece of NASA hardware, such as a

satellite. Pased on past data of components per pound, a

_ AL T SNy T Tt B - T T T T T TR T A Y A TR O, T A N —e Laiae 3 o—
e o T z i ,
PR A v W, T % - '
E

satellite which represents an entire Shuttle payload, would
nave on the order of 1 million components, Recent changes
in the ways hardware is designed, namely with the use of
Computer Aided Design (CAD) equipment, offers a solution to
this problem. PRy using CAD in the design of new space
hardware, it is possible for a by product of the CAD design
process to be a data base describing the geometric and other
properties of the final product. with appropriate
algorithms, many of which are being developed in artificial
intelligence research programs, it will be possible for a
computer program to analyze this data base and automatically
generate from it the robot sequences needed to assemble or

service the hardware represented by that CAD data base,

Therefore, the two activities pursued in this work have

been the development of advanced robotic force feedback
techniques and the automated generation of robot motions |
from geometric data bases, 1t should be noted that in
certain instances these two activities merge, for the
software which interprets the force feedback data can often
require a very detailed knowledge of the interfering

geometries and use artificial intelligence techniques to

e e e .

deduce what kind of positioning error, or other possible

error source is causing the detected interference forces.

2.0 RESEARCH IN AUTOMATED ASSEMBLY

2.1 BACKGROUND

Research in automated assembly 1i.cludes work in robot
mechanisms and the software to control them, Work is now in
progress on mechanisms from articulated hands (Salisbury and
Craig 1982) to multi-legged robots (Klein and Briggs 1980;
Orin 1976) and systems in which several robots work together
{Ishida 1977). In support of robotics there is active
research in end effectors (uany of various devices located at
the end of a robot arm or movable platform) (Frohlich 1979),
vision systems (Brouks 1981), and tactile sensors (Harmon

1982; Hillis 1982).

In addition to work on robot mechanisms, research is in
progress on the softwzre to control them., Robot control
software exists in a hierarchy of functional levels that
ranges from the mechanism control level (Whitney 1976) to
the level in which artificial intelligence can be used. At
the 1lowest level (excluding the operating system that
supports the robotics software) 1is the software that
directly controls the mechanism itself: procedures that
issue commands to the stepping motors (motors that translate
rotational motion into very precisely controlled linear
motion by "stepping”" through many positions per rotation)
and monitor analog-to-digital (A/D) converters. At the next

level are procedures that compute forces, moments, and motor

e e i ol

‘ N

'
|
[
1

speeds. Next is the software tha~ effects primitive robot
motion:. such as rotations and point-to-point motions, with
numerous variations, Then comes the software that |is
responsible for executing robot tasks and, finally, the
planning and strategy software that delineates the robot

tasks (Fahlman 1973; Rrooks 1983; Taylor 1976).

Research in automated assembly is important because of
the potentially enormous benefits of its practical
applications. For example, automated assembly could provide

improvements in quality control, productivity, product cost,

st 2. =
PR .

and employee health and safety. In addition to their
applications in well-known areas such as the automobile
industry and manufacturing facilities, the techniques
developed in automated assembly research will find
application in many other areas (Schratt 1980), especially
those in environments 1in which it is either dangerous or
é: economically infeasible for humans to work, Examples of
such applications include nuclear power plant operation,

toxic waste disposal, and space engineering.

B There has also been research into the design of
completely automated assembly systems (Ambler 1973,
- Lozano-Perez 1976) and software for describing and

impiementing assembly procedures (Popplestone, Ambler, and

3 Bello 1980; Taylor 1976).

4 X ” Y Ny ey .

I

2.2 TOLERATING THE REAL WORLD

Assembly and repair in the real world have two motion
domains: gross motion and precision motion, Gross motion
moves a tool or part from a bin tn the proximity of its
final positinn, Gross motion, in this context, permits
tolerances that are well within the accuracies of structured
environments, that 1is, numerically specified engineering
environments., The main problem to be solved during gross
motion 1is to find an unobstructed path, Vision systems can
assist in the determination of such paths, but in 'a
structured environment, with 1its detailed knowledge of

position and geometry, they are not necessary,

Precision motion to mate or match parts (such as couver
plates and electrical connectors) or fasteners (such as
bolts or screws) to a partially assembled mechanism requires
the solution of a different problem., 1In practice there are
always machining tolerances and tool and gripper sag due to
gravity (or centrifugal forces in space). These effects
combine to produce minor misalignment: bolts do not go into
holes, electrical connectors resist mating, and cover plates

do not seat properly.

Vision systems with limited resolution cannot reveal
precision misalignments., 1In fact, the part, tool, or robot
arm usually obscures the view, Desp .e this, work is being

done to wvisually 1locate and identify partially hidden

objects (Bolles and Cain 1982; Tsuji and Nakamura 1975),

The solution to the problem of achieving precision »
motion is suggested by the machinist or mechanic who pushes,

wiggles and lcosens his grip until the part appears to mate

- -

itself; the mechanic uses force feedback and compliance as

T AT gy - e T T e TR
- .

an adjunct to precision motion. '

2.2,1 Force Feedback -

+

To assist in the development of technology useful to

e X

practical automated assemrhly systems, one focus of the

research has been to develop a system that allows

58 COP S e

uncertainties in part placement and compensates for those

uncertainties through the use of force feedback, To

-y

investigate the use of interpreted force feedback in

assembly procedures, the system has been used 1in several
E insertion tasks which are described in detail in Section
' 4,0, These tasks provide an excellent vehicie for studying
force feedback and 1its use in compensating for positional
uncertainties since the tolerances involved in an insertion
can be very small (.0005 inches 1is typical) and the
misalignment that can be tolerated is correspondingly small.
As an example of an insertion task, the problem of inserting
a peg in a hole has been addressed by several investigators

(Goto, Takeyasu, Inoyama 1980; Inoue 1974; Nevins, et al

1977).

2.2.2 Compliance -

Compliance is the capacity of a device to yield to
forces, or be displaced, without suffering structural
damage. For example, the sheet metal of the fender of a car
has a relatively low compliance compared to a five
mile-per-hour bumper that is designed to be displaced

without being damaged.

when performing assembly tasks, humans often make use
of varying levels of compliance. For example, when
inserting a peg into a hole, a person can use gravity ¢to
help 1insert the peg. By relaxing the grip pressure, and
thereby increasing ccmpliance, the gravitation:l force
exerted on the peg will center it in the hole., At first it
may seem that to simulate such behavior it would be
necessary only to have a device with high compliance since
it is the ability to yield to the force of gravity that

permits the centering motion to take place.

A compliant device may itself, however, be displaced by
the same gravivational forces; the greater the compliance
the greater the displacement. When the position of a
compliant device has been changed, adjustments for
gravitationally induced displacements can be made from a
knowledge of the mass and stiffness of the device. When
operating near zero gravity, such displacements are not a

problem.

SEPRIRY s T

Compliance is not ~» common feature of present robot

systems, but
Shimano 1976;

Briggs 1980)

research has been done in this area (Paul and

Nevins, et al 1977; Drake 1977, Klein and

SR T & ki S o N s T N N RS . i i -y
. .
o

3.7 THE INTELLIGENT END EFFECTOR (IFE)
3.1 INTRODUCTION -

The Intelligent £€nd Effector (IEE) consists of the
robot hardware and software to control the tools necessary

to perform assembly and servicing of NASA hardware.

Precision motion is an important element of these tasks %
and arisea when the robot attempts to mate two parts, such

as screwing in a bolt, inserting a peg, or fastening

connectors, with clearances on the order of 0.0005 inches,

Critical to the performance of precision motion is a

recognition that the robot must compensate for positional
uncertainties of the parts and of the robot itself, These
uncertainties are on the order of half an inch in position
F and ten degrees in orientation. They are an accumulation of
F manufacturing tolerances, thermal expansion, part
distortion, servo error, and general misalignment of

fixtures,

P emmmsmer

To develop and test a system that would accomplish the

goals chosen, a robot, a precision positioning system, a

H

3 :

;ﬁ computer system, and several sets of associated software

4

£ were deemed necessary.
!
|

10 '

#
5“
L]
s

e LAl B
N TAMCT T Ml A e om

3.2 HARDWARE DESCRIPTION

The hardware of the IEE consists of a robot, a VAX
11/780 computer, and a Computer Automated Measurement and

Control (CAMAC) crate,

The robot itself is a three-force, three-moment
compliant, force-feedback platform mechanism attached to a
six-degree-of-frecedom movable platform. Compliance in the
platform mechanism relaxes the servo loops in the system,

and prevents damage to the robot.

The mechanisms were designed and built at Goddard Space
Flight Center, with the result that they easily interface to
the VAX computer and have complete access to the control

systems used.

The same VAX that controls the TEE is also being used
to develop the CAD system that is an inteyral part of the
project. It was chosen for both economic advantage and for
the fact that its operating system 1is well-suited for
software development. See Figure 1 for a block diagram of

the system and Figure 2 for a photograph of the IEE.

3.2.1 1IEE Support And Positioning Design -

11

3

:3
]
E
;
b
;
'

The support and positioning device for itne Intelligent
End Effector is based on the design of an aircraft simulator
mechanism (see Figure 3). A movable platform 1is supported
above a stationary base by six axially extensible rods.

Recirculating ballscrews provide the extensibility.

Oone of the goals in choosing components for this
mechanism was to eliminate all! possible backlash, for this
reason, a solid preload Saginaw ballnut SSP-5700391 mounted
on a Saginaw ball screw 1000-0200 was used., Each ballnut
has 14 inches of travel along the screw. The ballscrew has

a five-threads-per-inch pitch,

Stepper motors were chosen to drive the Dballscrews,
Using stepper motors eliminated the complexities introduced
by servo loops. A new type of stepper and controller made
by Compumotor, 1Incorporated was selected. Each of the six
units required is comprised of an M83-135 stepper motor
coupled with a 2100 series indexer. The motor is capable of
400 ounce-inches of static torque, 25,000
steps-per-revolution, 20 revolutions-per-second in angular
velocity and 1000 revolutions-per-second squared in angular
acceleration. Together with the ballscrew each actuator cah
exert 785 pounds of thrust. One step of the motor moves the
ballnut eight micro-inches. These motors can execute
various preset commands; the distance, velocity and

acceleration are set in the controller before a move is

12

O}
J

P
#

R " S

.
;
k
E

-~ e

RallF = AL

Eat S
s

B i i S R

executed.

This positioning device is capable of moving the upper
platform, and hence the IEE, within a one-cubic-foot
envelope. Since the maximum translation is dependent on
orientation and vica-versa, only nominal values from the
equilibrium position can be given. The device can move at
about 3.5 inches-per-second and has a load carrying capacity

of approximately 2000 pounds.

The interface of the positioning platform to the
computer was simplified by the design of the stepper motor
controllers, Each controller has an RS-232C compatible 1/0
port. To control more than one motor, the controllers are
serial)v daisy-chained, where each controller has a unique
identification number. AsS an example, the ASCII string to
set motor three to have an acceleration of 8 rpss, a
velocity of 3.45 rps, and to move a distance of 3000 steps
is: " 3A8 3v3.,45 3p3000 ", As a result of this design,
only one terminal port is required to control all six

motors,

3.2.2 Compliant, Force-Feedback Design -

Compliance in the IEE is achieved through the use of a
platform suspended from the active platform. The suspension
mechanism consists of six spring-loaded pistons arranged in

a geometry similar to the positioning actuators of the

13

*
F = ol S »*«»mu«mm—é!

e n oo e

T . e -

movable platform. When resistive or gravitational forces
are exerted on the IEE, the pistons are compressed or
extended, providing compliance (Figure 4). This compliance
is obtained by permitting strain on two opposing springs
acting in the piston, A linear wvoltage differential
transformer (LVDT) is used to measure the deflection of each
spring. The force along each piston is obtained from the
spring constant and the deflection measured by the LVDT.
The forces and moments acting on the compliant platform are
computed from the geometry and the forces along each piston,
and force feedback is achieved, Forces measured when
pressure displaces the spring-loaded compliant platform are
relieved by adjusting the position of the movable platform

to which the compliant platform is attached.

Each piston was designed to have about one inch of
compliance and to be able to accept springs of various
stiffness values. The current mechanism can support about
40 pounds dead weight and 25 foot-pounds of torque. In this

configuration an accuracy of about 0.5 pounds is achieved.

A set of TRANS-TEK DC-DC gaging LVDTs was used, Since
they work with a variable supply voltage, interfacing to the
analog-to~digital converters was simplified. The supply
voltage is provided by a KEPCO ATE 15-3M power supply, a
very stable variable voltage power supply which is

especially suited for this type of application.

14

P A Y

s

iy,

The 1intecface %o the computer consists of an
analog-to-digital converter driven by a CAMAC crate. The
LVDT voltages are read hy the A/D converter and this
information i3, in turn, read by the computer via the CAMAC
crate. A Kinetic Systems 3514-AlA 16 channel A/D converter,

capable of various input ranges, provides 12 bits of data,

3.3 SOFTWARE DESCRIPT(ON

The robotic scftware consists of a group of layered
facilities for controlling the robot and accessing data
about the robot and the forces it is sensing. The software
has been developed as a set of self-contained modules, each
one controlling some specific hardware task. There also
exists a group of facilities which contain general library
functions; some of these are robot independent, others are

robot dependent.

The software is naturally partitioned 1into the main
control software, which the user's program calls, and the
force monitoring program which measures robot performance.
The force monitoring program is run as a subprocess of the
main program. This enables asynchronous monitoring of the

force-feedback mechanism in real time.

15

O

Two typical functions of the software are to move the
robot and to access the force-~feedback data., These two
functions are described to give an example of the flow

through the software,

To move the robot, six data items which satisfy six '
degrees of freedom must be specified to target the new
location and orientation of the movable platform in global
space. In practice, motion is prescribed by providing the
offset from the origin of the Cartesian ccordinate system of

the movable platform to the base platform and the three

Eulerian angles which define the coordinate transformation
tensor between the two systems, The six data items are
passed to routine MTN_POSITION_TO. This routine performs an
absolute translation and rotation of the movable platform to

the given position, Figure 5 details the flow through the

software to produce the motion.

Force-feedback data is accessed by
) FRC_GET_CONTACT_FORCES. This routine returns the three
forces and three moments acting on the force-feedback
mechanism, The units are in pounds and inch-pounds
respectively. This routine must access the data passed to

it by the subprocess, The flow is detailed in Figure 6.

e

16

The following is a list of the various user facilities,.
The routines are mainly written in FORTRAN, with a few
hardware specific routines written in Macro. The code and
inline documentation amounts to approximately 17000 l.nes of

FORTRAN and 2000 lines of Macro.

1. AD Analog-to-Digital Facility

2. AP Active Platform Facility

3. CMC CAMAC Facility

4, CP Compliant Platform Facility

5. FRC Force Pacility

6. 1IEE Intelligent End Effector Facility
7. LIB General Library Facility

8. MTH Mathematics Library Facility

9. MTN Motion Control Facility

10, MTR Compumotor Motor Jontrol Facility
11. oBJ Object Facility

12, SCRW Screwing Control Facility

13. SDF Six-Degree-of-Freedom Facility
14, SPC Spatial Transformation Facility
15, WRST Wrist Facility

3.3.1 Analog-to-Digital Facility -

The analog-to-digital library contains routines which
interface the analog-to-digital converter on the CAMAC crate
with routines which need the data. The A/D converter is
strobed by a subprocess running at a real-time priority
which averages the data and passes it back to the main
process via an installed section file. The subprocess is
used to ensure that the readings are within a given band.
Values outside this band indicate that the compliant,

force-feedback mechanism has been displaced beyond a preset

17

e ep— - g ———— . a——— - - _

g L

T Y. T

T T e TR e B T - o N e A e -
\
L]
1

limit. when this occurs the subprocess issues a halt to the

stepper motors and thus prevents damage to the mechanism.

The facility consists of two basic modules, one which
is called by the main process and the other which is called
by the subprocess. The main process routine is an
initialization routine which creates the subprocess. The
subprocess is created with a termination mailbox. To ensure
that the robot can't be run if the process is abnormally
terminated a write attention asynchronous system trap (AST)
is queued to this mailbox. The AST service routine executes
when the subprocess terminates, writing the termination

message to the screen and then =topping the main process.

The subprocess 1is in charge of scanning the A/D
converter, averaging the data and if necessary stopping both
the motors and itself if the readings are out of range. It
runs at a real-time priority. Since the A/D converters

can't update the readings as fast as the VAX can scan them,

a .imer 1is set after each scan, This also prevents the
process from becoming compute-bound and degrading the
E system, The current scan time is 10 milliseconds, at which

t rate the subprocess uses only 3 to 5 percent of the CPU.

; The mechanism used to pass the data from the subprocess

to the main process is called a section file or shareable

data file. It consists of a FORTRAN routine which is

compiled, linked as shared and ins*alled into the system as

18

writable using the VAX INSTALL wutility. Both the main ‘
process and the subprocess are linked with this file. It
maps the pages of this data area to the same physical pages
in memory, which allows the data to be passed in a common
memory area, This is the fastest way to pass data between
two or more processes, There is no synchronization between
the two processes, that is, no mutex to control the wait for
read during a write, Even though the VAX provides this

service with the lock manager, the service is not required

since the A/D voltages will never change too much before the

: next scan. Furthermore, when the subprocess is writing out

l the data it is doing so at a priority of sixteen. Hence,

F there is little chance that it will be interrupted during
k its update.

ANALOG-TO-DIGITAL FACILITY

: Routine Function
? ADMSG .MSG Message file
AD ASCEFC Associates common event flag
cluster,
| AD_MAIN_INITIALIZE Initialize the A/D facility.
AD_MAIN_RUNDOWN_AST Executes when subprocess
terminates,

| AD_MAIN_STOP_SCANNER Forces an exit of the subprocess
: (used in a termination handler.)

AD_READ_VOLTAGE Routine to place data in common
memory area.

AD_SHARE Global section file executable
(Passes data from sub to main

19

— A . T -

process).
AD_SUB_INITIALIZE Initializes the subprocess.
AC_SUB_SCAN_PREADINGS Scans the A/D readings.

Error codes

AD__OUTOFRANGE This fatal error is signaled when
one of the A/D values is out cf
range,

AD__SCANTERWM This fatal error is signaled when

the scanning process is terniinated
by the main process.

3.3.2 Active Platform Facility -

The active platform facility controls the active
platform at 1its lowest conceptual level, Routines are
provided to start, stop, and position it in absolute
coordinates., The active platforn facility consists of the
3ix ball screw stepper motor actuators and the two

triangular aluminum weldments.

This software f2~ility relies primari.y on the SDF
(six-Degree-of-Freedom) and MTR (Motor) facilities to do the
work, It keeps track of the position of the active platform

and of the commands sent to the motors.

To execute a movement, a target positiun
(x,y,z,roll,yitch,yaw) for the active platform is sent to
the routine AP_SET_POSITION. This routine computes the
length that each actuator will be when the new position is

achieved., It then computes the necessary changes in the

20

&)

I -

e SRR

e 2

lengths of the actuators and sends these changes of length
to the associated motor controllers. The velocities of the
motors are such that they terminate their moves at the same

time.

The routine AP___ FIND_VELOCITY is used to compute the
velocity of each actuator. It uses the total travel time
computed by AP__ TRAVEL_TIME. The total travel time is
computed by taking the distance the actuators are to be
extended and the peak velocity of the actuators and then
integrating over the velocity profile. The profile can 1ave
two shapes: an inverted "V" shape or a trapezoidal shape.
The trapezoidal shape occurs when the distance is long
enough for the stepper motor to reach its peak velocity.
Given the travel time, AP__ FIND_VELOCITY computes the
actual veloci- ' and sets each actuator so that it will
travel the distance assigned to it in the time computed by

AP___TRAVEL_TIMZ. (For equations, see Dicudonne, 1972).

ACTIVE PLATFORM FACILITY

Routine Function

AP___ MSG Message file.

AP__ FIND_VELOCITY Computss the velocity of each
actuator.

AP_GET_POSITION Returns the position of the active

platform (and places the data in
the common memory area).

AP_INITIALIZE Initializes the active platform.
AP RESET Resets the active platform data
21

o DY N

i
]
.
]
:

I bl

base when the motors are stopped
before completing their preset
commands,

AP___ SET_ACTUATORS Sets the motors for a move,

AP_SET_PEAK_VELOCITY Defines the peak velocity at which
an actuator can move.

AP_SET_POSITION Set the movement of the platform.

AP_START_MOTION Fxecute the set motion.

AP_STOP_MOTION Stops the motion of the active
platform,

AP____TRAVEL_TIME Computes the time for a movement.

Error codes

AP__OUTOF RANGE Movement requested out of range of
the active platform. Warning.

AP__ ZEROMOVEMENT No movement requested. Warning.

3.3.3 Computer Automated Measurement And Control Facility -~

The Computer Automated Measur ment and Control Facility
(CAMAC} provides the basic routines for accessing a CAMAC
crate connected to a VAX, To access a foreign device on a
VAX one can either write a full device driver or, if the
device does not perform direct memory access, map the device
into a virtual address space to reference the device
registers. Since the crate controller used here does not

perform direct memory access, the latter method was used.

22

e L 'H@t;gv‘%&vﬁ -

v s ol

by . LT,V

The CAMAC crate controller is plugged into the UNIBUS.
The rphysical address of the device is mapped into virtual
address space using a system service call to SCRMPSC (Create
and Map Section). It is called by CMC_MAP_CONTROLLER. This
routine stores the virtual address of the crate for use by

other routines which access the device registers.

CMC_INITIALIZE maps the device and then verifies that
it is on line, To speed up the scanning of the A/D
converter a special routine was written, CMC_READ_3514,
This routine uses the auto index capability of the crate,
thereby removing the need to set up special codes to access

each channel.

Computer Automated Measurement and Control Facility

Routine Function

CMC_READ_3514 Reads the channels of a Kinetic
Systems 3514 analog-to-digital
converter.

CMC_INITIALIZE Initialize the CAMAC crate.

CMC_MAP_CONTROLLER Map the CAMAC controller into our

virtual address space.

CMC_WRITE_DATA Write data to the CAMAC crate.,

3.3.4 Compliant Platform Facility -

23

i s bt e e - - —— o e gl - .- R S R
o] ';’ w S T s

AR e - S

:
4
K
v
F
'
i
L
3
;

The compliant platform is the name used for the
three-force, three-moment compliant, force-feedback
mechanism. It consists of six passive pistons mounted
Setween two plates, From the known spring co..tants and the
measured tension or compression displacements associated
with the pistons, the force on each piston and thus the

forces and moments on the moving platform are computed,

CP___GET_LNGFRC 1is responsible for converting the
output voltage of each linear voltage differential
transformer (LVDT) to the actual length for each piston and
the resistive force generated by it. The values are
averaged if the robot is stationary; otherwise the readings
are taken instantaneously. This routine accesses the
voltage of each LVDT with the routine AD_READ_VOLTAGE.
CP__UPDATE _POSITION uses the lengths of each piston to
compute the position (x,y,z,roll,pitch,yaw) of the compliant
platform relative to the compliant base., It uses the SDF
library routines to do this. CP_GET_FORCES 1is wused to
compute the forces on the compliant base. This routine
performs an equilibrium analysis on each piston. After
finding the reaction forces at the pins where the pistons
are attached to the compliant plate, it sums the forces and

moments about the origin of the plate.

24

TR

&

WS s TEeN

!-n.-uymauuuaauua;adnu;~y;txfm e LTI e s e
* v W eeolIBR

CP_INITIALIZE is used to initialize the constant data

concerning the compliant platform.

COMPLIANT PLATFORM FACILITY
Routine Function

CP_GET_FORCES Computes forces and moments acting

on the platform.

cp GET_LNGFRC Computes force and length of each
piston.

CP_INITIALIZE Initializes the compliant platform.

CP___UPDATE_POSITION Updates the position of the

platform,

3.3.5 Force Facility -

The force facility contains the basic routines for
monitoring the forces on the compliant platform. They
perform the tasks of obtaining the contact forces on the
compliant platform and monitoring these forces while the
robot is moving. The robot is stopped 1if any force has
exceeded a prescribed limit. This 1is the logic for the

move-until routines.

FRC_GET_CONTACT_FORCES computes the contact forces on
the compliant platform., The reaction force supporting the
plattorm is computed by CP_GET_FORCES. The gravity forces
acting on the platform are then subtracted, yielding the
contact forces. The gravity forces consist of the weight of

the platform along with the weight of the object that is

25

X R PN

SRR 1A A

(3]

(¢}’

attached to it,

FRC_MCVITORING_WHILE _MOVING is the routine used to '
check the forces while the robot is moving. Wwhen the robot
starts a move a timer is set, When the timer runs out an
event flag is set to stop the move. This routine monitors
the forces while the move is in progress; if the force is
out of range it calls two routines: AP_STOP_MOTION and
MTN____CLEANUP_POSITION. While the forces are within range
it continues this loop until the event flag CEF_MTN_TIMER

has been set by the timer. Once the event flag has been

set, the robot has stopped moving and the routine exits.

FRC_MONITORING_WHILE_MOVING_1 is basically the same
routine except that the routine which monitors the forces
(FRC_CHFCK_FORCES) is passed to the routine as an argument.
LIBSCALLG is used to call FRC_CHECK_FORCES with its argument

list. This routine provides the basic facility for

monitoring while moving. It eliminates proliferation of

monitoring routines.

FORCE FACILITY

T

Routine Function
1 FRC_CHECK_FORCES Checks if forces are within a band.

FRC_GET_CONTACT_FORCES Computes the contact forces on the
compliant platform (subtracts
forces due to gravity).

FRC_GET_FORCES_AB Contact forces on the compliant
platform in the active base space.

26 !

P e et

g
bt
’

FRC_MONITOR_WHILE_MOVING Move until forces exceeded.

FRC_MONITOR_WHILE_MOVING_l Move until user-supplied
routine returns false.

Error codes

MAXEXCEEDED Force exceeded the maximum range.
MINEXCEEDED Force exceeded the minimum range.
INBAND Force is within range.,

USERTRUE User routine returned a true,
USERFALSE User routine returned a false,

3.3.6 Intelligent End Effector (IEE) Facility -

The IEE facility performs all initialization necessary
to bring the robot on-line. IEE_INITIALIZE must be called
before any of the robotic software can be used. It, in
turn, calls all other initialization routines. If any
facility needs to be initialized before use, it 1is called

here.

Since many of the routines read data files,
IEE_INITIALIZE_DATA provides a FORTRAN logical unit number
through which to perform the 1/0. To speed the
initialization process and since many files need to be read,
one common file 1is created by all the initialization
routines. It is an unformatted file which if present is
referenced by the logical name IEE_DATA. If not present, it

is created with data from the original ASCII data files.

27

Fa i

All exit handlers are established through IEE_HANDLER.
Since their execution is last-in, first-out the sequence of

establishment is critical.

IEE_INITIALIZE_MOTORS initializes the stepper motors,
It assigns a channel to the motor controllers through the

terminal port device IEE_PORTO.

IEE PACILITY

Routine Function

IEE_INITIALIZE_DATA Calls the initialization routines
of all facilities,.

IEE_HANDLER Declares all exit handlers.

IEE_INITIALIZE Initializes the 1Intelligent End
Effector.

IEE_INITIALIZE_MOTORS Initializes the motor I/0 channel.

3.3.7 General Library Facility -

This library facility 1is a collection of general
utility routines which are robot-independent. They can be
used without the robot software. A brief description of

each routine follows,

LIB_ARGNUM, when called, returns the number of
arguments with which the subroutine which called it was
called. This is useful if the subroutine function depends
on the number of arguments, and is useful in some FORTRAN

routines since FORTRAN cannot access the call stack.

28

[l
@

LIB_FILL_VECTOR fills a vector (PEAL*4) of length N

with a scalar.

LIB_MAKE_ARGLIST creates an argument data structure,.
This is used to establish the argument list for the routines

which require it, such as FRC_MONITORING_WHILE_MOVING_l.

LIB_PACx_VECTOR packs a vector (REAL*4) of length N

with scalars sl1,s2,...SN,

LIB_TRACE enables or disables the function of

LIB_SIGNAL.

LIB_SIGNAL signals a condition if enabled. It 1is the
same as LIBSSIGNAL except that the condition is passed by
reference and LIB_TRACE turns off the signalling mechanism,.

This is useful in debugging programs.

LIB_WAIT waits N (where N is a real number) seconds and
then returns. This routine reduces the proliferation of

event flags throughout the program.

GENERAL LIBRARY FACILITY

Routine Function

LIB_ARGNUM Number of arguments with which
routine was called.

LIB_FILL_VECTOR vi = scalar; i =1,2,...,N.

LIB_MAKE_ARGLIST Creates an argument list.

LIB_PACK_VECTOR (vl = [scalarl , scalar2 ,...,

scalarN] .

29

LIB_TRACE Enables or disables the function of
LIB_SIGNAL.
LIB_SIGNAL Signals the condition if enabled.
3
LIB_WAIT Waits N seconds.

3.3.8 Mathematics Library Facility -

The mathematics facility contains utility routines for
performing mundane mathematical functions, A brief

statement is given which describes each routine,

MATHEMATICS FACILITY

Routine Function
MTH_ADD_VECTOR Add two vectors.
MTH_CROSS Calculate cross product.
MTH_DOT Calculate dot product.
MTH_LNG Magnitude of a vector.
MTH_MOVE_VECTOR Move a vector.

: MTH_MUL_MATRIX Multiply two matrices.

i MTH_MUL_VECTOR Vector times a scalar.

\ MTH_NEG_VECTOR Negate a vector.

g MTH_PLANE_NRM Calculate the normal to a plane.

E MTH_ROTATE_VECTOR Rotate a vector,
MTH_SUB_VECTOR Subtract a vector.

MTE_TRANSPOSE_MATRIX Transpose a matrix.

% MTH_TRANS_MATRIX Calculate a rotation matrix from
b three angles.
‘,
i MTH_TRANS_TO_EULERS Inverse of MTH_TRANSPOSE_MATRIX.
30

,’f'.l"" T

MTH_UNIT_VECTOR Normalize a vector.
MTH_ZERO_VECTOR Zero a vector.

Error codes

2EROLNGVECTOR Vector has no magnitude.
COLLINEAR Three points are collinear,
SINGULARMAT Matrix is singular. '

3.3.9 Motion Control Facility - 1

The motion library consists of the top-level movement
routines, These are the routines which a user calls from
his progiram. The basic motions are translation, rotation,
and curvilinear motion. Rotations can be performed about
any point. Motions can be specified in absociute or relative

coordinates. A position has three coordinates (x,y,z) and

three orientation angles (roll,pitch,yaw). A motion is
specified by three position displacements, in inches, and a

rotation of three angles, in radians,

The UNTIL routines provide for motion while monitoring
forces, A force in a given direction is monitored while the
robot is moving. If the force is 1increased beyond a

prescribed envelope the robot 1is stopped. To provide a

general move-until logic the routine MTN_MOVE_REL_UNTIL_l is

used. Here the user specifies his own check routine.

31

IEE{» oo A g o 7 G

Since other routines may need to determine if the robot
is moving or not, a state routine is provided. MTN_STATE

returns the state of the motion,

The SET _STOP and SET_WAIT routines toggle flags which
control the flow of the lower-level positioning routines,
During a motion, after the motors have been sent the go
command, the prcgram waits for the motion to be completed by
setting a timer. The timer in turn sets the event flag
CEF_MTN_TIMER. If the wait mode is clear the routine
MTN__SET_POSITION doesn't wait for this event flag but

returns,

The SET_STOP routine controls the scanning process., If
the flag is set and any of the A/D converter readings are
out of a specified range, the robot will be brought to a
controlled stop. The flag AD_STATE_STOPPED is then set to
acknowledge this fact. This function was included because
it is the fastest way to perform a move-until-touching. It
provides a recoverable method for stopping the robot, as
opposed to a failure caused by the scanning process with an

AD_OUTOFRANGE error.

MOTION FACILITY

Routine Function
MTN_MOVE_REL Move the active platform (AP) a
relative distance.
MTN_MOVE_REL_POLAR_AND_SCREW Move the AP a relative
32

distance {n a direction and turn
the bolt spinner.

MTN_MOVE_REL_POLAR_UNTIL Similar to MTN_MOVE_REL_UNTIL
except with polar move.

MTN_MOVE_REL_UNTIL Move the AP a relative distance
until a force 1is out of range or
motion is completed,

MTN_MOVE_REL_UNTIL_1 Like MOVE_REL_UNIT except with user
check routine.

MTN_MOVE_TO Move the AP an absolute distance.
MTN_POSITION_REL Position the AP a relative distance
ard rotate,

MTN_POSITION_TO Position the AP an absolute
distance and rotate,

MTN_ROTATE_REL Rotate the AP a relative amount,

MTN_ROTATE_REL_ABOUT_CP_INAB Rotates the AP a relative

amcunt about a point in the
compliant platform,

L]

MTN_ROTATE_REL_ABOUT_INAB Rotates the AP a relative !

amount about a point in active base 3

space. !
MTN_POTATE_TO Rotate the AP an absolute amount.
MTN_SET_STOP Enable or disable the stopping ﬁ

logic., {
MTN_SET_WAIT Enable or disal le the wait logic. W
MTN_STATE Returns the state of the machine

(move or nomove).
3.3.10 Compumotar Motor Controul Facility -

The motor control facility is wused to control the

Compumotor Series 2100 stepper motor controllers and motors.

The motor controllers are microprocessors which control the

33

o W ce a ST s e g s o

stepper motor power supplies. The processors accept ASCII
command strings from a host computer over RS-232C terminal
ports. There are numerous command strings; the ones used
here control the distance to travel, the peak velocity
during the motion, and the acceleration, To facilitatcu
multiple contrcllers, they may be serially daisy-chained
together: the echo of the command from one controller is
fed into the input of the next controller., A device number
precedes the command string {f it is to be applied to only
one controller. For example, to set the distance, velocity
and acceleration of all of the motors in the same string the
command would look like : " D25000 v3,23 A8.12 " where
D25000 is a distance of 25000 steps, V3.23 is a velocity of
3,23 revolutions-per-second, and A8,12 is an acceleration of
8.12 revolutions-per-second squared, If one wanted only
controller number wnree to have these characteristics the

string would be: " 3D25000 3v3.23 3A8.12 ",

This library contains the necessary rou*tines to send
and receive the command strings. Also included is a routine
which computes the time of motion given the distance,

velocity and acceleration,

COMPUMOTOR MOTOR CONTROL FACILITY

Routine Function

MTR_INITIALIZE Initialize the motors.

MTR_MOTION_TIME Computes the time and velocity for
34

AT

e Y WTIY <

B P S R A

-

e —

a move.
MTR_READ_COMMAND Send and read command.

MTR_READ_POSITION Read position of a motor.
MTR_REVS_TO_STEPS Convert revolutions to steps.
MTR_SEND_COMMAND Send commands.

MTR_SET_ACCELERATION Set acceleration,
MTR_SET_DISTANCE Set distance (steps).
MTR_SET_VELOCITY Set peak velocity.
MTR_SEND_GO ftart motor(s).

MTR STEPS_TO_REVS Convert steps to revolutions,

Error codes

DATACAFCK String echoed from controller not
the same as the one sent.

INTERNALWRITE Internal write error.

IDOUTOFRANGE Controller ID number out of range.

ACCOUTOFRANGE Acceleration out of range.

VELOUTOFRANGE Velocity out c¢f range.

DISOUTOFRANGE Distance out of range.

3.3.11 oObject Facility -

This facility 1is used to define data for objects
carried by the IEE. The object, such as a gripper, a bolt
spinner, or a peg, is attached to the compliant platform. A
data file for the object is pointed to by the logical name
IEE_OBJECT, and specifies the weight, center of gravity, and

position of the object relative to the rompliant platform.

35

e AT

SO

[

B>, 2 2R e A I o o ST T T TR e T e R R R AR A SRR A e e T e e
. < . " ST
ER g

This facility will be removed when the planned gripper
is integrated into the system. At that time there will be a

routine to reinitialize the data depending on the gripper's

task.
OBJECT FACILITY
Routine Function
OBJ_INITIALIZE Initializes the object data.

3.3.12 sScrewing Control Facility -

This facility controls a separate stepper motor which
is used as a bolt spinner. SCRW_ROTATE rotates the motor a
given number of revolutions. The SET_MOVE command is used
to set up a movement; the motor is activated by the general

motion commands.

Tnis library is wunder development. Since the bolt
spinner motor torque is inadequate to perform the desired

tasks, other methods are being studied.

SCREWING CONTROL FACILITY
Routine Function
SCRW_ROTATE Turns the bolt spinner.

SCRW_SET_MOVE Sets up a movement for the spinner.

36

LR T W R

E 255 IRt o dpinefio Divenyt: b4
Y T L T e v v

I R T

Ao Teviunh, M
el

T TR R I

3.3.13 Six-Degree-of-Freedom Facility -

The Intelligent End Effector contains two
six-degree-of-freedom mechanisms: the positioning platform

and the force-feedback mechanism,

The routines for the mechanisms compute the position of
the movable platform from the lengths of the six rods, and
the inverse. They are called SDF_GET_LENGTHS and
SDF_GET_POSITION. The algorithm uses six vector loop
equations and Newton's method of solving simultaneous
equations to solve for the location and orientation of the

specific platform. (Dieudonne, et al, 1972),

SIX-DEGREE-OF-FREEDOM FACILITY

Routine Function
SDF_INITIALIZE Initializes the fixed data for the

mechanism, and fills the position
and transformation matrices,

SDF_GET_LENGTHS Gets length vectors given position
of movable platform,

SDF_GET_POSITION Gets position of movable platform
given lengths of extensible
members.,

3.3.14 spatial Transformation Facility -

The robot contains five reference frames: active base
(AB), active platform (AP) , compliant base (CB) , compliant

platform (CP), and object (0BJ). The world or global space

37

is equivalent to AB space. To convert vectors from one
space to another the set of routines called SPC_RF_nn_mm is
used, where "nn" and "mm" are each one of the above
reference frames., These routines multiply a gjiven vector
with a second order tensor to produce the desired
conversion. SPC_TRN_nn_mm is used to compute the

coordinates, in "nn" space, of a point in "mm" space.

SPATIAL TRANSFORMATION FACILITY

Routine Function
SPC_RF_nn_mn Converts a vector from reference

frame "nn" to "mm",

SPC_TRN_nn_mm Converts a point in space from
Euclidean space "nn" to "mm",

nn, mm = AB , AP , CB , CP , ORJ

3.3.15 Wrist Facility -

At present there is no real wrist mechanism on the
robot. If there were, it would be located at the active
platform and compliant base interface. This facility was
created to provide the structure if such a mechanism is
installed. Presently there is a tensor which converts the
space from AP to CB space with constant data initialized at
startup time. If a mechanism is put at this interface in

the future then it will dynamically alter this data.

WRIST FACILITY

38

R o A

.- agre-

R e e—— L

R > 4 Rt SEEEE S S T e T e R ey - T
-) > A o
R Y T \ S o T . . .]
sadow e MR & Srter s om . -

Routine Function ‘

WRST_INITIALIZE Initializes the wrist data. o

39

P e IR T TR e e e

4.0 THE INTELLIGENT END EFFECTOR IN USE

Precision assembly was demonstrated for three different
assembly configurations, For each test problem the
compliant, force-feedback characteristics of the IEE were
used as an adjunct to precision motion. A round peg was
inserted into a round hole, a 25 pin D-type connector was

mated, and a bolt was screwed into a threaded hole,.

The three cases are described in the following
sections, The use of compliance and force feedback and the

achieved precision are explained in detail.

4.1 PEG INSERTION

The insertion of a round pegq 1into a round hole was
chosen as the first test case. The problem required that
the robot insert a standard 0.375 inch dowel pin into an

0.3755 inch hole drilled normal to the surface of a plane,.

The engineering data, which provided a structured
environment, consisted of the diameter of the peg, the
location of the peg in the robot's space, the depth of
insertion, the location of the hole in global space, and the
orientation of the hole in global space. The 1location and
orientation of the hole were accurate to 0.5 inches and five

degrees respectively.

40

S

Wl s

!
i
!
)

The algorithm to insert the peg into the hole consists

of six parts:

i
t

1. Find the plane of the hole by tilting the peg and

> -y

touching three points around the hole with the edge of

the peg.

P =

. 2, Find the hole by dragging the edge of the peg along the
E . plane until it protrudes slightly into the hole.
i 3. Center the peg in the hole by moving it back and forth

3 perpendicular to the previous direction of motion until

the sides of the hole are encountered.

4. Continue in the original direction of motion, but now

L e AR

along the centerline of the hole, until the far edge is
contacted.

5. Reorient the pey wuntil it is normal to the plane,
keeping the end cf the peg in the hole during the

j; reorientation process.

6. Insert the peg into the hole while nulling out forces

and moments.

A detailed description of how the software performs

T TRTRRR AT T A e

each of these six actions follows:

DR A

1. The plane-finding algorithm requires three points on the :

g o plane to determine its equation. The robot uses the peg
to probe the surface of the plane, tilted at an angle

such that point contact is made between the surface of

41

Lt

TR T

the plane and the peg. The coordinates of the touch
point can be determined because the position and
orientation of the circle which is the end of the peg

are known,

The algorithm begins by tilting the peg to obtain
the best touch geometry. The given data for the plane
is used in this case. This is done by orienting the peg
so that the axial vector of the peg is parallel to the
gradient of the plane. This ensures (within a known
error} that the lowest point on the end of peg will be

the touch point.

The algorithm then determines three eligible touch
points on the plane. For this case the three points
chosen lie on a circle concentric with the hole with a
radius of the given hole radius plus 1.5 times the
assumed positional error of the hole. This ensures that
the peg will not fall into the hole prematurely. The
points are equally spaced around the circle. The robot
then moves the touch point on the peg above each chosep
point on the plane and then moves down toward the plane,
monitoring the forces as it moves. When it encounters a
change in the force it stops and computes the position

of the peg, and hence the position of the plane.

42

ST

SN N

M, B AT

e e

E BT

AT T G ¢l

TR e 3

O SPPL X N

YR ot

In the next step, the robot must find the hole. Keeping
the peqg tilted as in step 1, the robot touches the peg
to the plane below the hole and then drags the peg up
the plane. The idea is that since the motion is
parallel to the plane the force on the peg normal to the
plane will remain relatively constant until the end of
the peg protrudes into the hole. When this happens the

robot has found the hole.

To center the peg in the hole the robot moves
perpendicular to the previous direction, still parallel
to the plane, until it encounters one edge of the hole.
It then moves in the opposite direction to find the
other edge. This line segment is a chord of the circle
defined by the top of the hole. The perpendicular
bisector of this chord is a line along the diameter of

the top of the hole.

The robot moves the peg along this 1line in the same
direction as the drag move in step 2 until the far side
of the hole is encountered., Wwhen this happens the robot
stops and checks the side forces to center the peg in

the hole again.

Next, the robot orients the peg until its axis |is
parallel to the axis of the hole. The orientation of
the hole is known from step 1. The robot performs this

step iteratively, one degree at a time. After each step

43

A R

'Y e . AmBae e

it checks to determine that the end of the peg is still
below the surface of the plane. It also checks the
contact force of the peg against the hole. The robot
always maintains pressure between them. After each
iteration, the robot compares the angle between the peg
and the hole, when this is within a satisfactory

tolerance the robot moves to step 6.

Finally, the robot begins to insert the peg into the
hole. As the peg is inserted two forces and one moment
are monitored. The force normal to the axis of the hole
is checked. This force 1is gererated if the peg is
pushing against one side of the hole. The force
paralle]l to the axis of the hole 1s also checked. This
force indicates that the peg is jammed. If the peg is
cocked in the hole a moment will be generated. Since
the peg is round, the robot does not monitor moments
about the normal of the hole. When any of the forces or
moments are out of range the robot stops and takes
corrective action. For the force in the plane the robot
moves in the direction of the fcrce until it disappears.
If the peg 1is cocked, the robot rotates until it
eliminates the moment. If the peg is jammed, the robot
withdraws the peg until the force disappears and
performs a wiggle motion and then tries again, This
force~-feedback insertion continues until the peg has

been inserted the required distance.

44

bk

-y TS . D o Ty T T T TR T T e R SRS L e e T e 6
e . T . Calica
o oas]

. S

The peg routine takes approximately three minutes to
run. Although the process is not fast enough for industrial
applications, the basic steps have been worked out. This
solution to the peg-in-a-hole problem demonstrates that a
force-feedback robot is capable c¢f mating two precision

parts.

4.2 MATING A 25 PIN D-TYPE CONNECTOR

The D-type connector is an excellent example of a
multisided component that has few symmetry properties. A 25
pin connector was used in this experiment. It consists of a
male half that contains 25 pins and a female half with 25

corresponding sockets, To mate the connector components,

the two halves must be properly aligned with the male half
partially inserted into the female half. Such a partial
insertion is possible since there is a gap of approximately
0.05 inches from the ends of the pins in the male half to
the edge of the surrounding lips in the female half. The
pins in the male can therefore be inserted into the sockets
or the female slightly more than this distance before a

resistant force must be overcome. Wwhen the halves are

; ' properly aligned and the direction of insertion is correct,

the force that is required to fully mate the male and female

| halves is approximately 4.5 pounds.

45

S— il ——— . —lan — e

4.2.1 Assumptions -

It is assumed that the male half is held in a fixture

and that the female half is held by the IFE. 1In addition,
the following were the maximum allowable errors in assumed

position and orientation of the female:
o eight degrees about any axis of rotation
o one-half inch in X, Y, or 7 axes

It is assumed that the free space voluwe in which the
IEE is able to move the female half of the connector is a
hemiaphere of radius three inches, centered at the fixed

male half of the connector.

4,2.2 Database -

Implicit within the program is an understanding of the
geometry of the connector components. Therefore, the
supporting database contains only the values of those
parameters which quantify the geometry (length, width,
height, short-side length, distance between pins, etc.). 1In
addition, the program is given the assumed position of é
single point on the object that 1is considered to be the
origin, and the orientation of the object about that point
in terms of the three Euler angles, specifying a rotational

displacement about the X, Y, and Z axes.

46

Pl S

. e . EmANe - e

o S

e e i - ™ T T T e
3 . R A

N

‘"’9_ :
R S

Pl
¥ W

4.2, Algorithm To Perform Mating -

The connector mating program uses the following
strategy. First, it assumes that the given location of the
connector is correct and attempts to perform the insertion
immediately. It does this in two steps., In the first step,
the IEE attempts to position the female partway into the
male by moving down until it touches the object. 1If the
male is located precisely at its assumed position, this will
place the female just inside the lip of the male, with the
pins not yet inserted. To determine whether or not the male
is actually where it is supposed to be and whether or not

the female is inside the lip of the male the IEE moves from

side to side and determines the displacement of the female
that occurs at the extreme ranges of this motion. If the
resulting displacement of the female half ic significantly
| less than the displacement of the movable platform to which
the compliant platform is attached, it is assumed that the
movement of the female half was constrained because it was

partially seated 1inside the male half, 1If, indeed, the

female half is partially seated, the insertion proceeds to

completion. If not, the end effector proceeds with the

following different mating strategy.

If{ the immediate insertion attempt fails, the end
effector attempts to determine the orientation of the fixed

male half of the connector by touching it at various points.

47

~y

RN R - A

.
3
:
2
d

After (t does so, the IEE then aligns the female with the
male and touches the object again to accurately locate the
side, (This must be done because, due to the rounded edges

" the connector, the exact point that is being touched
carnot be determined. This is not a problem in determining
orientatiun, since only relative positions are of concern,
The position of the connector must, however, be accurately
known to perform the next step.) The IEE then positions the
female directly above the center nf the male and tilts the
female so tiat one end can be used to probe into the male
connector. It then moves down into the connector, and
slides in the direction of the tilt until it finds the end
of the male connector. In doing 8o, the 1EE makes
allowances for the possibility that it may get stuck on a
pin in the male, mistakenly believing it has reached the end
of the connector. Once it believes that it has found the
end of the connector, the IEE then removes the tilt by
pushing against the touched end of the connector and
rotating about that point, This allows the female half to
remain inside the connector at all times and improves the
reliabilty of the operation. Once the halves are aligned
the insertion operation is continued. As the insertion is
being performed, the IEE monitors forces and torques and
attempts to i 2p all forces except for the insertion force
as low as possible. This helps to eliminate any remaining

error in the alignment of the two connector halves.

48

el M B i b S S

ey

-~ e

4.2,4 Results -

The robot has demonstrated that it can mate the
connector f'om initial starting positions that vary from
barkward tu upside down. The solution to this problem
demonstrates rhat force feedback with compliance can be used
tc mate nonsynmetrical connectors which require precision

motion to avoid damaging functional parts,

4.3 SCREWING A BOLT INTO A THREADED HKOLE

The operation of screwing a bolt into a threaded hole
introduces several new problems for *he IEE. Although it is
similar to the task of putting a peg in a hole, there are
important differences. Some of these are:

1. the bolt screwing task makes use of a tool to spin the
bolt (the bolt spinner);

2, both the bolt and the hole have threads;

3. the bolt is not rigidly held by the bolt spinner; and

4, the bolt cannot simply be inserted into the hole but
must be screwed in, meaning that the operation consists
of two concurrent parts: turning the bolt in the
correct direction and inserting the bolt into the hole

at the correct speed,

49

e s s e e vy an

4.3.1 Problem Description -

This experiment usad a 0,375 UNC x 1.500 inches long
socket head cap screw and a corresponding hcle 1in an
aluminum block with a steel 3/8" helicoil insert, The
device used to spin the screw was a stepping motor (of the
same type used to drive the IEE extensible rods) attached to
the compliant platform of the IEE. Attached to the shaft of
the motor was a device used to hold the screw. This device
is shown in Figure 7. The cap bolt was held in place by
three ball-detents. The bolt was seated in the holder by
pressing 1lightly against the bolt head and rotating the
holder until the hex-head driver in the holder was aligned
with the hex head of the bolt. When that condition was met,
the IEE then pressed the holder against the bolt head until

the head was firmly seated into the holder.

4.3.2 Assumptions -

It was assumed that the block containing the hole was
held rigidly in place and that the follcwing were the
maximum allowable errors in the assumed position and

orientation of the hole:

o 3/4 of one bolt radius in any direction

50

o e+ -

e

0 8 degrees about any axis of rotation

It was also assumed that there were no obstacles (other
than the block itself) to impede the motion of the end

effector.

4.,3.3 Database -

As with the 25 pin connector mating program, implicit
within the bolt screwing program is an understanding of the
geometries of the compcnents involved in the assembly task.
Information in the database which 1is available to the
program includes measurements that completely describe the
bolt (pitch, size, length, drive type and size, and hLolt

type), and the assumed position and orientation of the hole.

4,3.4 Program To PAarform Bolt Insertion -

As with the peg-in-hole program, it is assumed that the
IEE must verify or refine the position and orientation
information given about the location of the hole.
Therefore, the IEE first attempts tc determine the
orientation of the block that contains the bolt hole. It
does so by touching the surface of the block at three points
and determining the equation that describes the plane that
contains those three points. With this information, a point
is found on the block that is two bolt-hole radii from the

coenter of the assumed hole position and that provides a path

51

NS 3

‘,
N e Sk

of steepest ascent to the hole, The bolt is then tilted in
the direction of travel (towards the hole). This is done
for two reasons., First, it provides a smaller surface area
with which to touch the block, Second, it allows gravity
and the compliance of the 1EE to help center the bolt in the
hole once it has been found. The IEE then gently presses
the end of the bolt against the block and slides the bolt in
the direction of the hole until the force exerted against y
the block diminishes, indicating that the IEE has found the '
hole. Once it has found the hole, a series of wiggling

maneuvers are performed to center the bolt in the hole,

When the end of the bolt is in the top of the hole, it .
must be aligned with the hole's axis so that it can be
screwed in place. The procedure to do this is very similar
to the method used to orient the peg and the 25 pin

connector in previous tasks. The bolt is pushed down and

{' against one side of the hole and is reoriented toward the
assumed alignment position while keeping the end of the bolt
in the hole. This reorientation is performed in small

angular increments to allow for adjustments, ensuring that

—— S

the bolt remains in the hole while the alignment takes

place. At the end of each incremental orientation motion

the bolt is wiggled to help it seat itself and then is again

pushed down into the hole and against one side.

52 .

Once the bolt's axis is aligned with the hole's axis,
the screwing procedure is begun, First the bolt is pressed
into the hole. Then while moving downward the bolt is
slowly turned to allow it to thread itself partway into the
hole. As screwing proceeds, the IEE nulls out any forces
acting on it due to any remaining misalignment between the
bolt and the hole. That is, if the block were removed the
bolt would remain in the same position. The IEE continues
screwing until the torque required to spin the bolt reaches
the desired value, indicating that the bolt has been fully

inserted and tightened to the desired torque.

4,3,5 Compliance -

The compliance of the IEE was used to advantage in this
task by allowing gravity and forces generated due to
misalignment to center the bolt in 1its hole. Without
compliance, these forces would not affect the position of

the bolt unless they caused some deformation in the

mechanism or they exceeded the forces produced by the

stepping motors that keep the IEE in a given position.

53

‘ “:';1“&:;;’3*/' =

't

€ g
i

’ ‘“ L & R

5.0 A MODEL FOR ASSEMBLY AND REPAIR STRATEGY
5.1 INTRODUCTION

The section most closely associated with the techniques
of knowledge engineering has been given the acronym ASP for
Automated Sequence Planner, This part of the project |is
responsible for determining a sequence of robot moves to
effect construction from information available in a CAD

database.

The basic strategy used 1is that of the reverse
heuristic search (a search through a tree of possibilities
that treats what would ordinarily be the goal as the
starting node and what would ordinarily be the start as the
goal, and that uses heuristics to limit the search). The
ASP first synthesizes a disassembly of the indicated object,
and then reverses that sequence to derive an assembly
sequence, For those applications involving repair, both
disassembly and assembly sequences, partial or complete,

would be utilized.

The ASP is general in nature. Specific information
about the format of the CAD database and particular robot or
other assembly devices used 1is imparted in the form of

databases.

54

A L. | {gwﬂéggh?&,-a

4 To demonstrate the most important features of the ASP,
and to determine the most difficult aspects of its 4
implementation, a model program has been written in the LISP

language. It has been successfully used to provide a

T g gL o T TR &

construction sequence for a number of simple objects

consisting of blocks held together with bolts.

5.2 DESCRIPTION 4J
€

The following sections describe particular details of ;

s il e
s LR

the model, as well as describing the generalized goals,
where determined, for each part of the problem in the ASP

program.,

5.2.1 Input And Output -

Input to the ASP will occur via program generated calls

to FORTRAN subroutines that will access and manipulate a CAD

IGES (Initial Graphics Exchange Specification) format
database, (a specification for geometric databases that has
achieved considerable attention as a uniform, transportable

system) and in some cases do considerable computation on

TR T e

acquired data. The goal will be input at a fairly abstract

and database-~independent level. In the model, the database

queries are simulated by English requests for database

information from an interactive user.

55

Output from the ASP will consist of a file of robot
commands, giving all information necessary for construction,
or in the case of repair, disassembly, part replacement, and
reassembly. This file will in essence be a robot command
language, to be interpreted by software associated with the
robot. The model program writes such a file, with the
production of certain information, such as tool placement,
not yet implemented. This model file is interpretable by

human or robot.

5.2.2 Demonstration Limitations -

The ASP will be made as general as it is feasible to
do, so that it will be able to operate on complex parts and
assemblies, including multi-path part trajectories, curved
parts, different screw pitches, and so on. Particular
limitations imposed by the CAD database or by the robot will
be realized from their database descriptions. For example,
in the case of the IEE, only those objects that can be

assenoled with one hand are viable candidates.

The model program has been necessarily limited 1in the
scope of objects on which it can operate. Specifically, any
object under consideration by the program is assumed to
~onsist of a base to which other parts are attached. The
base is held in & vise table that can rotate about three

axes, Each part 1is attached either to the base or to

56

i

B2

o 1 bl 2k g
BT T e e e e rliN o < ¥

D e i

i inil

another part with one or more threaded bolts. It is assumed
that each part may be eventually removed from the assembly
in a trajectory that is a straight line along one of the six
directions defined by the three coordinate axes: that is,
no curved or multi-path trajectories are permitted. The
fastening bolts are removed in the same way. Finally, each
part must be specified by straight edyes, flat planes, and

right angles.

A number of assumptions are also made about the
capabilities of the robot in the model program. Only
assemblies that can be constructed with one hand plus the
moving vise table are allowed, and only one face of the
object can be approached at a time. The movement envelope
of the IEE is respected. No calculations are made as to
tool placement or the complications that tool positioning
makes to the trajectory determination., In addition, all
parts in the model are removable by a simple gripper or by a

bolt spinner with one size of bolt head.

5.2.3 CAD Database -

The CAD database (in this case, in the IGES format);
stores a description of the object in its assembled form, as
well as information about each of the constituent parts in
the object. This information, as well as information about

the particular robot and tools that are available, 1is used

57

e - -

ST SETIAREEEE T e

-
4

G an ko, Taoat

ERE i e L

by the ASP in determination of the construction sequence.
The model program assumes a particular database format, as
follows: the assembly as a whole and each separate part are
located in three-space coordinate systems witn associated
dimension and bolt attachment information; two triplets of
numbers describe a part's location in the assembly; the
first triplet gives the location of the origin in the part's
reference frame in assembly coordinates; the second gives
the angular rotation around the three coordinate axes (the
Eulerian angles) to transform the part's original
orientation to 1its orientation in the assembly. Thus when
the model asks fo.r a part's location and orientation, it
expects the information in this form, When fully developed,
the ASP will make these queries directly to the database

interpretation subroutines,

The model program also demonstrates some necessary
coordinate system transformations. The object as described
in the CAD database exi~*s in one system, but for efficiency
during construction, the assembly 1is turned on the vise
table and thus assumes a robot-oriented coordinate system
that changes with each move of the table. For simplicity in
its database queries, the program translates between these
two systems, changing dimensions and orientations as
appropriate through a filter that keeps track of prior moves

of the vise table.

58

idnl’

T o -

— - .
r——-—-———zu Siam ot e

5S.2.4 The Strategy Planner -

As has already been noted, the basic strategy of the
ASP 1is to first determine a disassembly sequence for the
given object, and then to reverse it tc¢ find an assembly
sequence, For those applications involving the repair of an
object, both sequences would be involved, ei'har wholly or

partially.

This strategy is implemented as a reverse heuristic
search, The assembled object, which is really the goal, is
taken to be the starting point, and the goal is any state in
which the object is completely disassembled. Traversing the
search path amounts to removing parts from the object one at
a time, and the reversal of the search path is one of
possibly many solutions to the opposite search, that |is,
from parts to assembly. It is assumed that the domain of

objects is restricted to those which can be disassembled.

The CAD database contains an implicit tree that
represents the totality of all possible search paths,
successful or unsuccessful. The root node of the tree |is
the assembled object; at subsequent levels are lists of all
the parts, possible removal trajectories, tool selections,
tool placements, and so forth, The ASP is designecd to
intelligently make enough of this tree explicit so as to
elicit a successful disassembly path. "Intelligently" in

this context means that at each decision point in the tree,

59

SN T U N ' Y B 3
+

as much heuristic information as can be queried or inferred
from existing information as possible is used to make the
best choice. For example, the best removal trajectory for a
cylindrical part will probably be along the principal axis

of the cylinder,.

The major branches of the tree are those that represent
the remmoval of individual parts. Amongst these branches, a
heuristic ranking is given, {f possible, to the various
choices, The first ranking occurs among the parts. Once a
part has been chosen, the remainder of the search |is
depth-first in the tree: all possibilities for removing the
part will be exhaustively tried. Each choice, however, is

still guided by heuristic information.

Once the successful removal sequence for a part has

been determined, the removed part 1is taken from active
consideration and another is chosen. It may be noted that

once a point 1in the tree has been reached at which a part

has been removed, the preceding tree structure 1is assumed .
correct. Because of the restrictions placed on the domain
of objects, backtracking above this point need not occur to

determine a correct disassembly seguence., Thus, this is a

o w

recursive problem, since the ASP is always presented with
the situation of an object and a part to be f und and
removed, and since the same tree structure, in successively

smaller manifestations, is always apparent. It differs from

60

a purely recursive problem in that information obtained
during the removal of previous parts is accumulated and

available to guide the removal of subsequent parts.

The model program incorporates most of the above
features in the design of the ASP, including the use of
heuristics and the tree search. As the first step, the
program requests a list of the parts in the assembly and the
dimension of the smallest enclosing cube. The latter |is
used to determine removal points for the parts. (When a
part has been moved to a position at which it is entirely
outside of the enclosing cube, it is considered to have been

removed).

Beginning from the top of the assembled object, the
program asks which of the parts are visible, and thus
potentially accessible to the IEE J(ripper tool. (Recall
that the model program restricts itself to IEE limitations,
including operating on one face of the object at a time),.
It is then determined along which of the six trajectories
these parts may be removed, and thus which are candidates
for immediate removal. This 1is done by requesting the
orientation of the principal axis of the attaching bolts in
each part. These parts are removed by first removing the
bolts and then the part to a point outside of the enclosing
cube. (The problem of setting the parts down in a parts

rack is not addressed; removal to a point cutside the

61

o g
—— -

sy ¥

SRR AR T e ma e e e

Rtk £2 . 4 ¥ SHEEE, GERNESCE AN T e T

enclosing cube or envelope is considered su’ficient),
Another query is made to see if parts formerly hidden from
view are now viusible. If so, disassembly from the ton

continues,

Once all possible parts have peen removed from the top,
previously obtained or inferred information is used to
choose another face of the assembly on which to work. If no
such information is available, a face 1c chosen randomly,

The procedure continues until all parts have been removed.

As each part is removed, the information necessary to
reproduce its removal 1is concatenated and placed in a

disassembly list,

The final task of the ASP is to take the disassembly
list that it has generated and either reverse it for
assembly or reverse a part of it tc accomplish repair.
Unfortunately, the procees of reversal is not as
straightforward as might be hoped, A number of processes
are by themselves irreversible, as for example the expansion
of a spring; spring~-loadad devices require either more
tools or more moves to assemble than to disassemble.
Gravity is 2lso a factor, at least in earth-based
applications: a4 part held by a bolt to another part may
fall off if the bolt is removed, and thus must be held in
place during assembly. Acd-,tional intelligence must be

incorporated about such factor at this stage in the ASP

62

e

T R et weww revtpte. k.

development, and limitations must be imposed on the types of

acsembly that can be done.

The model circumvents these problems through its
restricted domecin of constructible objects. The major
problem solved in the model is the reversal of orie:itation
changes as the vise table rotates, wnich are cumulative but ,
not directly reversible. (This is a result of the fact that ;

orientation trancformations are not in general commutative).

$.2.5 1Internal Databases =~

In addition to the CAD database and the database
storing information about the robot capabilities, the ASP
will use and maintain ‘nternal databases, Here will be

stored the informatioan obtained from queries to these

supplied databases. In addition, and very importantly, the

heuristics and other rules about the process that can be

coded in the ASP will be used by an inference engine to

-m..@_.d

perform deductive reasoning on the database information, and

to infer and store new information. in this way, all

information will be used as fully as possible., Because an

; internal database is used, expensive outside queries,
especially those involving extensive calculations in the CAD
database, need only be done once. The internal database
also makes it easy to remove a part from consideration. All

gf references to it at the top level of the database are

4 63

removed, This renders the part invisible, but makes other

information accessible to the remaining removal processes.

The ASP learns in the sense that all of this
information is accumulated, so that as the disassembly
proceeds, decisions can be made faster and more

intelligently.

The model prngram uses the LISP property 1list feature
to store and manipulate information 1in its internal
database. Global variables and part names have attached
values which store both the information directly requested
from the CAD database and infermation deduced from those
gueries. As an example, each part has associated with it a
bolt trajectory orientation, bolt hole positions, a position
within the assembly, and an orientation change from its
original coordinate system to the assembly coordinate
system. As parts are removed, infcrmation about them in the
database is either removed or made invisible to function

calls,

5.3 RESULTS

The model program has been successfully used on sample
objects in its restricted domain, producing correct and
efficient assembly 3sequences. The program has also
demonstrated the feasibility and significance of many of the

knowledge engineering techniques that will be incorporated

64

.y
T S

TR R

Al i

- et e - D

T

into the ASP. First, the utilization of the flexible LISP
property list database allows the program to augment its
store of knowledge about the i."lem -- no piece of
information is ever requested twice; second, through
varionus rules of inference written into the LISP code, the
information content from queries to the CAD database is
maximized, in an attempt to minimize the number of queries
necessary; third, the use of heuristics has been shown
gsignificant in increasing the speed of the search; fourth,
the recursive nature c¢f the problem has been naturally
modeled 1in LISP; finally, the translation from implicit to
explicit disassembly tree has been made, so that as the
program translates from CAD database to rohbot command
language, logical information inherent in the database is
made explicit in the commands, and dynamic quantities like
trajectories and changing orientations are added to the

static geometric description.

5.4 IMPLEMENTATION

The model LISP program, descriptions of its functions,
and a sample progrcam run on the blocks model of Figure 8 are

here provided.

65

3

i

1

i

J'

.

- q

. R e e "

L e e e ol

SRR S

5.4.1 LISP Code -

The LISP code which comprises the model program is

listed.

(defun assemble ()
(prog (port)
(print '(welcome to the Automatic Assembler))
(terpri)
(get-parts)
(get=-boundary)
(putprop ‘'direction 'top 'why)
(putprop ‘orientation '(0 0 0) 'why)
(putprop 'bolt-number 0 ‘why)
(disassemble)
(terpri)
(print '{The assembly list may be found in file
assemlist))
(terpri)
(setq port (outfile '"assemlist.dat"))
(print '(base gripper (0 0 0) (0 O C) (0 0 0)
(0 0 0)) port)
(terpri port)
(printout (chain-orientations (reverse-dis-list
(get 'dis~list 'why))) port]
(defun disassemble ()
(cond ((null (get ‘'parts ‘why)))
(t (remove-a-part) (disassemble]
(defun reverse-dis-list (dis-~list)
(cond ((null dis-list) nil)
(t (cons (rdll (car dis-list)) (reverse-dis-list
(cdr dis-list]
(defun get-parts ()
(print '(what are the parts?))
(terpri)
(putprop 'parts (remove 'base (read)) 'why]
(defun get-boundary ()
(print
‘(what is the dimension of the smallest enclosing
cube?))
(terpri)
(putprop ‘boundary (read) 'why]
(defun printout (1lst port)
(cond ((null 1lst) nil)
(t (print (car lst) por:) (terpri port:?
(printout (cdr 1lst) port]
(defun chain-orientations (1lst)
(col 1st '(0 0 0]
{defun col (1lst orient)
(cond ((null 1lst) nil)

66

-
f<
¥ S i N i o

!

g

s

((eq (cadar 1lst) ‘'wrench)
(cons (car ist) (col (cdr 1lst) orient)))

(t (cons (co2 (reverse-~orient orient) (car 1lst))

(col (cdr 1lst) (caddar 1lst]
(defun remove-a-part ()
(prog (p-list i-list)
(setq p-list (get 'possible-parts 'why))
(setq i~list (get 'impossible-pa:-s 'why))
(con. ((null p=~list)
(setq p-list (putprop 'possible-parts

{get-visible-parcs i-list) 'why))))

(cond ((null p-list) (turn-part i-list)
(return)))
(putprop 'possible-parts (cdr p-list) 'why)
(rapl (car p-listj
(defun rdll (dis-elt)
(list (car dis-elt) (cadr dis-elt) (caddr dis-elt)
(cadddr dis-elt) (cadddddr dis-elt)
(caddddr dis-elt]
(defun remove {(atm lst)
(cond ((null 1lst) nil)
((equal atm (car lst)) (cdr 1lst))
(t (cons (car lst) (remove atm (cdr 1lst]
(defun rapl (part)
(prog (b-1lis:)
(setq b-list (get part 'bolts))

(cond ((null b-list) (putprop part (setq b-list

(get-bolt-orientation part)) 'bolts)))

(cond ((correspond b-list (get 'direction 'why))

(rap2 part))

(t (putprop 'impcssible-pa+“s (cons part
(get 'impossible-parts 'why)) ‘'why]

(defun turn-part (i-list)
(prog (b-list dir)
(cond ((null i-list) (putprop
'‘direction (setq dir

(next-direction (get 'direction 'why)))

'Why \)

(t (setg b-li:t {get (car i-1list) 'bolts))

(putprop 'direction (setq dir
\jet-direction b~list)) ‘'why
(remprop 'impossible-parts 'why)
(putprop 'possible-parts (list
(car i-list)) 'why)))
(putprop 'orientation (compute-orientation dir)
‘why]
(defun get-visible-parts (i-list)
(gvpl (remove~list i-list (get 'parts ‘'why]
(defun rap2 (part)
(prog (point dir removal-point answer)
(setq point (get part 'position))
(cond ((null peint) (putprop part (setq point

67

R A D R . e S

v §

_— g S

o e

(get-position part)) 'position)))
(setq dir (get ‘'direction 'why))
(setq removal-point (compute-removal-point
point dir (get 'boundary ‘why)))
(print (list 'Ignoring 'bolts 'can part
'‘be 'moved 'towards 'the dir))
(terpri)
{print (list 'from point 'to removal-point '?))
(terpri)
(setq answer (read))
(cond ((eq answer 'yes) (rap3 part point
removal-point))
(t (putprop ‘possible-parts (snoc part
(get ‘possible-parts 'why)) ‘'why]
(defun correspond (b-list dir)
(cond ((eq (get-direction b-list) dir]
(defun get-bolt-orientation (par*)
(prog ()
(print (list 'what 'is 'the 'orientation 'of
'the
'bolts 'in part '?)) (terpri)
(return (read]
(defun remove-list (a-~list b-list)
(cond ((null a-lis*) b-list)
(t (remove-list (cdr a-list) (remove (car
a-list) b-list]
(defun gvpl (parts-list)
(prog (answer)
(cond ((null parts-list) (return nil))
(t (print (list 'Of 'the 'following
'‘parts: parts-list))
(terpri) (print (list 'which 'are
‘visible 'from 'the
(get 'direction 'why) '?)) (terpri)
(setq answer (read))))
(cond ((eq answer 'all) (return parts-list))
((eq answer 'none) (return nil))
(t (return answer)
(defun get-direction (b-list)
(cond ((equal (caddr b-list) -90) 'top)
((equal (cadr b-list) 90) 'front)
((equal (cadr b-list) -90) ‘'back)
((equal (cadr b-list) 0) 'ieft)
((equal (cadr b-list) 180) ‘right]
(defun next-direction (dir;
(cond ((eq dir 'top) ‘'front)
({(eq dir 'front) ‘'back)
((eq dir 'back) 'left)
((eq dir 'left) 'right)
((eq dir 'right) 'top]
(defun compute-orientation (dir)
(cond ((eq dir 'top) '(0 0 0))

68

Rol et U
L - s an BB VAR aa e - o~ = = = - - s e

"“'J ’

P Y

e v v A

s e imtinnatrs WO

-
P S

(defun rap3
(remove-bolts (get-bolt-info part) part)
(rapd4 part point rem-point]

(defun compute-removal-point (point dir bound)

(cond

point)))

R o o I { et ol e A A

((eq dir 'front) '(=90 0 0))
((eq dir 'back) '(90 0 0))
((eq dir 'left) '(0 0 -90))
((eq dir 'right) *'(0 0 90)
(part point rem-point)

((eq dir 'top)

(list (car point) (add (cadr point) bound)
(caddr point)))

((eq dir 'front)
(list (car point) (cadr point)

(add (caddr point) bound)))

((eq dir ‘'back)
(list (car point) (cadr point)
(diff (caddr point) bound)))
((eg dir 'left)
(list (diff (car point) bound)
(cadr point) (caddr

((eq dir ‘'right)
(list (add (car point) bound)
(cadr point) (caddr pointl]

(defun get-position (part)

(prog

(terpri)

(defun snoc
(cond

{defun rapd
(prog

orient

()
(print (list
'what 'is 'the 'position 'of part '?))

(return (read]

(atm 1lst)

((null 1lst) (list atm))

(t (cons (car 1lst) (snoc atm (cdr lst]

(part point rem-point)

(dir orient)

(setq dir (get 'direction 'why))

(setq orient (get 'orientation 'why))
(putprop 'dis-list (cons (list part 'gripper

(add-orientation (get-orientation part)
(compute-orientation dir))
(transform=point point dir)
(transform-point rem-point dir))
(get 'dis-list 'why)) 'why)
(putprop ‘'parts (remove part (get 'parts 'why))
'why)
(putprop ‘orientation '(0 0 0) ‘why)
(terpri) (terpri)
(print (append '(The part named)
(cons part '(has been removed))))
(terpri)(terpri]

(defun remove-bolts (bolist part)

69

2 Tt i, o

T - —— = — ~ e e ——— e

e ol

[

(cond ((null bolist) nil) 1
(t (rbl (car bolist) part) (remove-bolts
(cdr polist) part) |
(defun get-bolt-info (part) -
(prog (bonum)
(print (list 'How 'many 'bolts 'hold part
'to 'the 'assembly '?)) (terpri)
(setq bonum (read))
(return (gbil bonum 0 part]
(defun add-orientation (orientl orient2) ‘ .
(list (aol (car orientl) (car orient2))
(a0l (cadr orientl) (cadr orient2))
(aol (caddr orientl) (caddr orient2)
(defun transform-point (point dir)
(cond ((eq dir 'top) point)
((eq dir 'front)
(list (car point) (caddr point)
(minus (cadr point))))

it

y
{
}
)

J
{
!
!

((eg dir 'back)
(list (car point)
(minus (caddr point)) (cadr
point)))
((eq dir 'left)
(list (cadr point) (minus (car point))
(caddr point)))

((eq dir 'right)
(list (minus (cadr point)) (car point)
(caddr point]
(defun get-orientation (part)
(prog ()
(print (list 'what 'is 'the
‘orientation 'of part '?))
(terpri)
(return (read]
(defun rbl (bolt part)
(prog (dir point)
(setq dir (get ‘'direction ‘'why))
(setq point (get bolt ‘position))
(putprop 'dis-list (cons {(list bolt ‘'wrench
*(0 0 0)
(add-orientation (get part ‘bolts)
(compute-orientation dir))
(transform~-point
point dir) (transform-point
(compute-removal-point point dir
(get bolt ‘'length)) dir))
(get 'dis-list ‘'why))

'why]
(defun gbil (bonum num part)
(cond ((zerop bonum) nil)
(t (cons (gbi2 (addl num) part)
(gbil (subl bonum) (audl num) part]

70

e s es e - m = - &

(defun aol (num! num2)
(prog (newnum)
(setq newnum (add numl num2))
(cond ((greaterp newnum 180)
(return (diff newnum 360)))
((lessp newnum -170)
(return (add newnum 360)))
(t (return newnum)
(defun reverse-orient (orient)
(Yist (minus (car orient)) (minus (cadr orient))
(minus (caddr orient]
(defun gbi2 (bonum part)
(prog (bonamne pos len glonum)
(setq glonum (addl (get 'bolt-number ‘why)))
(putprop 'bolt-number glonum 'why)
(print (list 'What 'is 'the 'position '~f 'bolt
'number
bonum 'in part '?)) (terpri)
(setq pos (read))
(setqg len (bolt_length glonum))
(setg boname (concat 'bolt glonum))
(putprop boname pos ‘'position)
(putprop boname len 'length)
(return boname]
(defun co2 (orient dis-elt)
(cons (car dis-elt) (cons (cadr dis-elt) (cons
(add-orientation
(caddr dis-elt) orient) (cdddr dis-elt]

71

- LA v, -
B

T - - o oor Y TmeEeeE e o s R o o R S W""W
=
. L

— TR e -

5.4.2 Function Descriptions -

This section gives a brief description of each function
in the preceding model LISP implementation. Included for
each function is a list of the support functions that it
calls.
assemble -- sets up the database, gets part names and

oundary, starts disassembly process, prints messages,

calls disassembly list reversing functions

calls -- disassemble, reverse-dis-list, get-parts,
printout, chain-orientations, get-boundary

disassemble -~ calls the part removal function until the
parts list is empty

calls -- remove-a-part

reverse-digs~-list -- recursively applies rdll to each element
of the disassembly list

calls -~ rdll

et-parts -- queries the user for the 1list of parts and
reads it in, removing the part "base" if necessary, and
stores it in the database

calls -- remove

get-boundary -- asks for the dimension of the smallest
enclosing cube and stores it in the database

printout -- writes the assembly list to the file of robot
commands

chain-orientations -- calls col with the initial orientation
(0 0 0)

calls ~- col

col -- performs the process of reversing the orientation
information as the disassembly list is made into the
assembly list

calls -- co2, reverse-orient

72

—

_— o .

remove-a-part -- attempts to remove the first pact in a list
of possible parts; ({f it cannot, it turns the assembly
to a new face

©

calls -- rapl, turn-part, get-visible-parts

rdll -- resequences a disassembly list element so that |t
can go on to the assembly list

remove -- removes an atom from a list at its first occurence

rapl -~ gets the removal trajectory direction for a part |
from the orientation of its bolts, and either continues
to attempt to remove the part or puts {t on the
impossible (from the current direction) list

calls -- rap2, correspond, get-bolt-orientation

curn-part -- if there 1is any impossible 1list, turn the
assembly so that the first part on that list can be
removed; otherwise, turn the assembly to a new
direction

calls - get-direction, next-direction,
compute~-orientation

get-visible-parts -- removes the impossible parts from the
: current parte list and calls gvpl on the remainder ’

calls -- remove-list, gvpl

rap2 -- gets the position of a part and computes its removal

point; then asks whether the required removal can be
t made - if so, the removal process continues, if not, ¥
P - the part is put on the back of the possible list -

calls -- rap3, compute-removal-point, get-pnsition,
snoc

correspond -- gets the direction from a bolt 1list and
compares it to a given direction

calls -- get-direction

. e mETEETRE ST

: get-bolt-orientation -- queries the user for the orientation
: of the bolts in a particular part and reads the answer

remove-list ~- removes all the elements of one list from a
second list

; cails -- remove

e Tt S

73

v‘{-z:-ustgnmzrm
4
3
¥
|
I
|
““?

Qvpl -- asks which of a list of parts are visible from a
particular direction; accepts "all” and “none”

get-direction ~-- determines a direction from the orientation
of a bolt

next-direction -~ given a direction, this returns the next
in the sequence

compute-orientation -- given a direction, returns the
orientation triplet which, if applied to the object,
would realign the top to that direction

rap3 -- finds out about and removes the bolts from a part;
then removes the part

calls -- rap4, remove=-bolts, get-bolt-info
compute-removal-point -- given a point, direction, and

boundary, finds a new point at which a part will have
been removed

get-position -- queries for the position of a part

snoCc -- puts an element on the enu of a list

rap4 -- does the actual removal of a part by making up a
disassembly 1list element, removing the part from the
database, and informing the user

calls - add-orientation, transform-point,
get-orientation, remove, compute-orientation

remove-bolts -~ recursively calls rbl on a list of bolts

calls -- rbl

get-bolt-info ~- asks for the number of bolts holding a part

calls -- gbil

add-orientation -- given two orientation triplets, calls aol
on each member of the triplet

calls -- aol

transform-point -- translates the numbers in a location
triplet to reflect a change in orientation of the
object

get-orientation -- queries for the orientation triplet of a
part

74

B -

rbl -~ removes a bolt by adding an element to the |
disassembly list |

calls - add-orientation, transform=-point,
compute-removal-point, compute-orientation

gbil -- calls gbi2 for the number of bolts in a part
calls -~ gbi2

aol -- adds two orientation angles together; reduces if
greater than 180 or less than -170

reverse-orient -- reverses an orientation by simply negating
each of the three anglas in the triplet

bi2 -- asks for the position of a bolt in a part and calls
the FORTRAN program "bolt_length" to get the length of
the bolt from a datebase

co2 -- makes a new disassembly list element out of an old
element and an orisr*ation

e e e S

75 .

$S.4.3 Sample Program Run -

This section gives a sample cutput from the model LISP
implementation, An object composed of five blocks and held
together with seven bolts of varying lengths 1is verbally
described to the prugram., The object is depicted in Figure
8. The following is output:

(base gripper (0 0 0) (0 0 0) (0 O
(inblock gripper (0 0 90) (90 90 9
(bolt?7 wrench (0 0 0) (0 180 90) (¢
(sideblock gripper (0 O 180) (90 0
(bolté6 wrench (0 0 0) (90 0 -90) (
(bolt5 wrench (0 0 0) (90 0 -90) (
(topblock gripper (0 0 90) (0 90 O
(bolt4 wrench (0 0 0) (0 O -90) (4
(bolt3 wrench (0 0 0) (0 0 -90) (4
(ovaorhang gripper (0 0 0) (90 90 0

1

1

(bolt2 wrench (0 0 0 (0 0 -90) (
(bolt]l wrench (0 0 0) (0 O -90) (

Each line in this output contains the information
ne: 3sary for a hypothetical robot to add the described part
to the assembly. Words describe the parts and tools
employed, and numerical triplets describe orientations and
positions. The numbers in the orientation triplets define
angular rotations .n degrees about the X, Y, and Z axes
respectively. Numbers in the position tripiets define
poi ‘'3 in three-space. A three-axis coordinate syscem is
det_ . 2d for the assembly as a whole and for each part as it
is located in the parts rack. One point in the assembly and
one in each part is set to be the origin of the associated

coordinate system, There are six elements in each output

76

g S a o o Co T e ey & ST ——

~ -

L W -

line, which have the following significance:

1. Name of the part.
2, Name of the tool to be used.
3. oOrientation change of the assembly
for addition of the part.
4. Orientation change of the part,
5. Starting position of the part for addition.,

6. Ending (assembl.:d) position of the part.

As an example, consider the following output line:

{block gripper (0 0 90) (90 0 90) (3 4 6) (3 4 1))

This would cause the robot to perform the following
functions: rotate the entire assembly ninety degrees about
the z axis; take the part callad 'block' with the tool
called ‘gripper' from the parts rack; rotate the part
ninetv degrees about both the X and 2z axes; move the origin
point of the part to the point (3 4 6) in the assembly
coordinate system; move the origin point of the part to the
point (3 4 1) in the assembly coordinace system, thus adding

the part to the assembly.

77

A ERAS b Bt R3S TR L c e — ——— e p—pr—;
v » e AT s :'

4
{
|
V

P 20

o RTUETAS VIS

IVIHH‘*“!E!!TE!K?%TW“W”F‘

6.0 CONCLUSIONS AND FUTURE WORK

The development of robotic hardware and sequence
planning software is an effort at Goddard Space Flight
Center to provide robotic assistance in the design, assembly
and servicing of NASA hardware for both space and
ground-based applications. To this enc the Intelligent End
Effector (IEE), a robot equipped with compliance and force
feedback for precision assembly, and knowledge engineering
and robot control software techniques have been combined
with an existing Computer-Aided Design (CAD) facility in ¢

synergism of expertise, with promising results.

The IEE, with 1its compliance, force feedback, and
six-degree-of-freedom capabilities, has been built and
proved capable of functioning in the engineering environment
for which it was designed. A significant body of software
exists for controlliry the IEE, for positioning the movable
platforms, and for reading and interpreting its
force-feedback sensors. In addition, software has been
provided for future enhancements to the robot, including

controlling programs for a gripper and a wrist mechanism.

Three problems were chosen for the demonstration of the
IEE and for the develcpment of higher-level robot control
software: inserting a peg in a hole, mating a 25 pin D-type
connector, and screwing a bolt ianto a threaded hole.

Success was achieved in each case, even though ccnsiderable

78

LN
+
¥&

L

aye W D R ET

SR

1

uncertainty in position and orientation of parts was
allowed, requiring the robot's acquisition of knowledge
about the operating environment. The importance of
compliance and force feedback 1in precision assembly was
proved, and the design and use of a bolt spinner as one of

several proposed tools was accomplished.

An important part of this project is the use of
knowledge engineering techniques to address the problem of
translating the implicit construction sequence inbedded in
the information available about an object, the robot, and
the process into an explicit sequence of robot commands. A
system 1is under development to do this, using the technique
of reverse heuristic search and the CAD geometric database
description of the hardware under consideration. A model
program was written to demonstrate and test significant
features of the system, including knowledge acquisition, use
of heuristics like part visibility and bolt hole position,

dynamic databases, and recursive search.

Future work on automated assembly system will focus »on
two principal areas: the completion of the Automated
Sequence Planner (ASP) program, and an expansion of the
robot control software, with the inclusion of artificial

intelligence techniques.

79

O P, - g

AR e ARASS B aa - e e e

T e -

TR T T YT T)’

The ASP program will be implemented in the language
Prolog, which allows a natural modeling of many of the
aspects of the problem. The IGES format CAD database of a "
piece of hardware will be input to the prcgram, which will
automatically generate a sequence of robot move s to
construct the object. Additional information about the
characteristics of the robot and tools avai‘able will also

be input to the program. Completion of the program will be

the result of significant work in three-dimensicnal space

o e v, e

planning and logical inference on the available data.

o A
Mh AN

Once the robot move sequence has been generated, it

will be provided to a second Prolog program, which will

s s I

represent an expansion of current robot control software
such as the connector mating program. This new program will

be able to receive and intelligently interpret the

force-feedback information produced as assembly occurs.
Eventually, this program will be combined with the ASP in a

system that will incorporate cooperative error analysis and

contingency handling, with the possibility of designing

dynamic r-bot move sequences based on operational

information.

S
'y
S " S ey

80

' ®
W e L. ?W‘M‘%”, - - ‘ ; j

Y

Linear Vol tage
Differential
Transforsers

Active Platfora

Compliant Base

Compliant Platfora

Stepper Motors

[Active Base I
Motor
Controllers
15V Power Supply [: E_-l
— —
Compumotor 2100 Series :3 [:
J Stepper Moutor
1]
lMAloq-to-mqiul Controller :] l_:__-j
[Comverter O
CAMAC Crate Motor Power
Supplies
VAX 11/780
'—————1 RS-232C Link
b—-—__’
Onidbus
1
Figure 1

BLOCK DIAGRAM OF IEE SYSTEM

81

Ce i_ ?ﬂ!w 2 ,‘__- K

v

Fig. 2A - PHOTOGRAPH OF FE

ORiGi..4 12 18
82 OF POOR QUALITY

Fig, 2B - PHOTOGRAVH OF 11

ORIGINAL ©';mm 18
OF POOR QUALITY

T TR T .

Active Platforn

SIX-DEGREE-OF-FREEDOM POSITIONING MECHANISM

83

/
/
/
\ / Ball Nut ~
\ /
Tua-Dggtee-of-Freedon Gimbal
\)
\ /
\ /
\\ // Ball Screw
{Stepper Motor \\”
v
I
Active Base
Stepper Motor
1ii___fif
Figure 3

Springs

N

_ Du'fqrcnt:ul
Piston Bore Transformer
Piston Rod A
>’
Base Plate ?
Three- e-of -Freedox
| - — ee-Degre

Swivel Joint

o— Axially Extensible Compliant Piston

e R
L]

oo g

— Gimbal Joint
Compliant Plate

8ide View

= T, T TR UT MR T
S '%msmm!ﬂ g

Figure 4
COMPLIANT, FORCE-FEEDBACK MECHANISM

A S i ST 4 S e R — - g .
Sy KT >z

—d e . ammas e

ORIGINAL [T 18 '

‘ OF POOR QUALITY ‘
MTN_POSITION_TO ‘

(soves the IEE to a specific point and orientation in space) !

|

au___SET_POSITION
(sain positioning routine)

AP_SET_POSITION
coaputes the new position of the active platfora (AP))

SOF_CET_LENGTHS
- (colputo the nev lengths of each actuator)

(compute the steps to send to each sotor)

AP___SET_ACTUATORS
Toets the distence for each motor and calculates the
tine for the aove)

MIR_SET_DISTANCE
(sends the distance command to each sotor)

(convert the distance in steps to an
ABCII command string)

MIR_SEND_COMMAND
(sends the command to the motors)

AP___TRAVEL_TIME
(computes the time it will take for the
AP to complete the move)

AP__FIND_VELOCITY

(computes the velocity with vhich each
motor will move)

MIR_SET_VELOCITY
(sends the velocity command to each motor)

{convert the distance in steps to an
ASCII command string)

MTR_SEND_COIMAND
(sends the command to the motors)

. MIW___START_MOTION
L (starts the AP moving)

AP_START _MOTION
{starta the motors moving)

MIR_SEND_GO
(sends the go command to the act.rs,

AR _SEND_COIHANT
(sends the cuswand to the motors)

Fiid I

MNIN___CLEANUP_POSITION
{cleans up after position the AP)

CP_GET_POSITION

Cresets the positonal data concorntnq the cospliant
platforu)

T puawr T

Figure S
MOTION FLOW CONTROL

TR R T T

e s

—-—

SCANNER SURPROCESS
Cscanas the LVDT's)

AD_SUB_INITIALIZE
- Cinitialises the CAMAC crate)

AD_SUB_SCAN_READINGS
Tscans and averages the LVDT output)

CMC_READ_3%14
. (reads the LVDT voltages)

(average the data and put it into the section flle)--+
|

poovcen w m cTocoeacceevescvescencecscond

(section file)

USER MAIN PROCESS
(request contact forces)

{
|
!
|
:
| FRC_GET_CONTACT_FORCES

| (computes the contact forces on the cospliant platform (CP))
|

|

|

|

|

|

|

CP_GET_POSITION
(computes the position of the CP)

CP___GET_LRGFRC
(computes the length and force on each compliant piston)

$omcmnan eneccceeaAD _VOLTAGES
reads the voltage output from the section file)

SOF _GET_POSITION
(comprites the position of the CP)

SDF _GET_LENGTHS
(computes the vectors defining ¢ach piston’'s reference frame)

(perfors an equilidrium analysis of the CP using the forces
generated by the pistons as the external forces)

(subtract the gravity force (the weight of the CP and anything attached
to it) on the CP to yield the contact forces)

Figure 6
CONTROL FLOW OF FORCE ACQUISITION

TN U #s - O Qo - VL R e —

Slot for AMjustment

- Steel Ball
Compressed Bprtnqj

C o

Knurled Edce to Retain Ball

Ball Detent Section

Section View

Typical Bolt Head

Bottom View

Figure 7
BOLT HOLDING DEVICE

87

R Dy

— e —

= — =9

- — -J

EE N

-
1

N
ARS

5\‘\

&

P —

-

—— —

-— - o

o ——

e
4
4
4
.

s — -

SR
—_—

T 77
—_—

——-—q — ame -
jre o oo fon wn wvo o

Figure 8
(1]

MECHANICAL DRAWING OF BLOCKS MODEL

REFERENCES

Ambler, A.¢. et al. 1973 (August). "A Versatile Computer
Controlled Assembly System". Proceedings of the Third
International Joint Conference on Artificial

Intelligence. Menlo Park, California: Stanford
Research Institute. pp. 298-307,

Bolles, R.C. and Cain, R.A. 1982, "Recognizing and
Locating Partially Visible Objects: The
Local-feature-focus Method". International Journal of
Robotics Research. Vol. 1, No. 3. pp. 57-82.

Brooks, R.A. 1983, *symbolic Error Analysis and Robot
Planning”. Robotics Research, Vol. 1, No. 2. pp.
29-68,

Dieudonne, James E., Parrish, R.V., and Bardusch, Richard E.
1972 (November). "An Actuator Extension Transfocrmation
for a Motion Simulator and an Inverse Transformation
Applying Newton-Raphson's Method". Technical Note
D-7067. Washington, D.C.: National Aeronautics and
Space Administration.

Drake, S. 1977 (September). "Using Compliance in Lieu of
Sensory Feadback for Automatic Assembly". Report

T-657. Cambridge, Massachusetts: Charles Stark Draper
Laboratory.

Fahlman, S.E. 1973 (mMay). "A Planning System for Robot
Construction Tasks"., Technical Report 283, Cambridge,
Massachusetts: Massachusetts Institute of Technology
Artificial Intelligence Laboratory.

Goto, Takeyasu, and Inoyama. 1980. "Control Algorithm for
Precision Insert Operation Robots", IEEE Transactions
?g gxatomgi Man, and C(Cybernetics, vol. 10, Pp.

-40

Harmon, L.D. 1982, "Automated Tactile Sensing';
International Journal of Robotics Research. Vol. 1,
No. 2—0 PP. 3-320

Hillis, Ww.D. 1982, "A High Resolution 1Imaging Touch
Sensor"”. International Journal of Robotics Research.
VO].. 1' No. 2. pp. 33‘(4.

Incue, H. 1974 (August). "Force Feedback 1i.. Precise
Assembly Tasks". Massachusetts Institute of Technology
Artificial Intelligence Laboratory Memo 308,

89

Phil il o T ., T e s S R A . ™ IR
Wﬁ.' hiodd o T T T
T LT . [- N
- - N] - o, *
!

Ishida, T. 1977. “Force Control in Coordination of Two
Arms®. Proceedings of the Pifth International Joint
Conferencc on Artificial Intelligence. Cambridge,
Massachusetts: Massachusetts Institute of Technology -
Press. pp. 717=722,

Klein, C.A. and Briggs, R.L. 1980, *Use of Active
Compliance in the Control of Legged Vehicles". IEEE
Transactions on 8xstems5 Man, and C(Cybernetics. Vol.
Iup No. ’o pp. - 0. (‘

' Lozano-Perez, T. 1976 (December). "The Design of a !
Mechanical Assembly System", Technical Report 937. 0
Cambridge, Massachusetts: Massachusetts Institute of
Technology Artificial Intelligence Laboratory.

Nevins, J., et al, 1977, "Exploratory Research in
Industrial Modular Assembly”. Report R=-1111.
Cambridge, Massachusetts: Charles Stark Draper
Laboratory.

orin, D.E. 1976. *“sSupervisory Control of a Multi-legged
Robot. International Journal of Rolidtics Research.
VOl. 1' No. 1. PP. 79-910

Paul, R. and Shimano, B. 1976. "Compliance and Control".
Proceedings of the 1976 Joint Automatic Control
Conference. New Yurk, New York: ASME. pp. 687-693.

Popplestone, R.J., Ambler, A.P., and Bellos, 1I.M. 1980,
"An Interpreter for a Language for Describing

\gsgsemblies". Artificial Intelligence. Vol. 14. PP .
79-107 .

salisbury, J.K. and Craig, J.J. 1982, "Articulated Hands:
Force Control and Kinematic Issues®™. International
Journal of Robotics Research.

schratt, R.D., et al, 1980, "pPossibilities and Limits for
the Application of Industrial Robots in New Fields".
Proceedings of the Tenth International Symposium on
Lgaustrfai Robots ~— and ~“the Fifth TInternational
Conference on Industrial Robot Technology. PpP.

> ™ . -

TR g v T

RN S

R

Taylor, R.H. 1976 (July). "A Synthesis of Manipulator »
Control Programs from Task-level Descriptions”., AIM !
282. St anford, California: Stanford University
Artificiai Intelligence Laboratory.

g
E S AR

R S s -

§
i
]
Tsuji, S. and Nakamura, A. 1975 (August). "Recognition of E

an Object in a Stack of Industrial Parts". Proceedings ‘

90

e A g < e e < I B - B
e iy <A . ’ : —
— _— P o . . N '_x‘l

of the Fourth International Joint Conference on
Artificial Intelllgence. Cambridge, "Massachusetts:
Massachusetts Institute of Technology Artificial
Intesiligence Laboratcry. pp. 811-818,

Whitney, D.E. 1976, “"Force-Feedback Control of Manipulator
Fine Motions", Transactions of the ASME Journal of

gxnamiﬁ S;stems Measurement and Control. Vol, 99, No.
. Pp. - .

91

e e e

SRS > . . T A e St b R
w B o .]

BIBLIOGRAPHIC DATA SHEET

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
M 8611]
4. Titis and Subtitle 5. Report Date
Design and Implementation of a Compliant Robot May 29, 1984
with Feedback and Strategy Planning Software 8. Performing Organization Code

7. Author(s) 1. Premack, F. M, Strempek, L. A, S0T1S|8. Performing Organization Report No.
S. S. Brodd, E, P. Cutler, L. R, Purves

9. Performing Organization Name and Address 10. Work Unit No.

Code 753
Engineering Design Branch

11. Contract or Grant No.

|_NAS5-28200
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Code 753

NASA/GSFC

Greenbelt, MD 20771 14. Sponsoring Agency Code

16. Suppiementary Notes

16. Abstract
Force-feedback robotics techniques are being developed for automated precisiog
assembly and servicing of NASA space flight equipment. Design and implemen-
tation of a prototype robot which provides compliance and monitors forces is
in progress. Computer software to specify assembly steps and makes force-
feedvack adjustments during assembly are coded and tested for three
generically different precision mating problems. A model program demonstrate
that a suitably autonomous robot can plan its own strategy.

17. Key Words (Selected by Authoris)) 18. Distribution Statement

Robotics, Force Feedback, Compliance,
Knowledge Engineering, Artificial
Intelligence, Strategy Planning,
Automated Autonomous Activity

19. Security Classif. (of this report) | 20. Sacurity Classif. (of this page) 21. No. of Pages | 22. Price®

97

*For sale by the Nationsi Technical Information Service, Springfield, Virginia 22161 GSFC 25-44 (10/77)

	1986004478.pdf
	0022A02.tif
	0022A03.tif
	0022A04.tif
	0022A05.tif
	0022A06.tif
	0022A07.tif
	0022A08.tif
	0022A09.tif
	0022A10.tif
	0022A11.tif
	0022A12.tif
	0022A13.tif
	0022A14.tif
	0022B01.tif
	0022B02.tif
	0022B03.tif
	0022B04.tif
	0022B05.tif
	0022B06.tif
	0022B07.tif
	0022B08.tif
	0022B09.tif
	0022B10.tif
	0022B11.tif
	0022B12.tif
	0022B13.tif
	0022B14.tif
	0022C01.tif
	0022C02.tif
	0022C03.tif
	0022C04.tif
	0022C05.tif
	0022C06.tif
	0022C07.tif
	0022C08.tif
	0022C09.tif
	0022C10.tif
	0022C11.tif
	0022C12.tif
	0022C13.tif
	0022C14.tif
	0022D01.tif
	0022D02.tif
	0022D03.tif
	0022D04.tif
	0022D05.tif
	0022D06.tif
	0022D07.tif
	0022D08.tif
	0022D09.tif
	0022D10.tif
	0022D11.tif
	0022D12.tif
	0022D13.tif
	0022D14.tif
	0022E01.tif
	0022E02.tif
	0022E03.tif
	0022E04.tif
	0022E05.tif
	0022E06.tif
	0022E07.tif
	0022E08.tif
	0022E09.tif
	0022E10.tif
	0022E11.tif
	0022E12.tif
	0022E13.tif
	0022E14.tif
	0022F01.tif
	0022F02.tif
	0022F03.tif
	0022F04.tif
	0022F05.tif
	0022F06.tif
	0022F07.tif
	0022F08.tif
	0022F09.tif
	0022F10.tif
	0022F11.tif
	0022F12.tif
	0022F13.tif
	0022F14.tif
	0022G01.tif
	0022G02.tif
	0022G03.tif
	0022G04.tif
	0022G05.tif
	0022G06.jpg
	0022G07.jpg
	0022G08.tif
	0022G09.tif
	0022G10.tif
	0022G11.tif
	0022G12.tif
	0022G13.tif
	0022G14.tif
	0023A01.tif
	0023A02.tif
	0023A03.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

