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Abstract 

The Inference Problem compromises database systems which are usually considered to be secure. Here, users 

pose sets of queries and infer unauthorized information from the responses that they obtain. An Inference 

Controller is a device that prevents and/or detects security violations via inference. We are particularly 

interested in the inference problem which occurs in a multilevel operating environment. In such an 

environment, the users are cleared at different security levels and they access a multilevel database where the 

data is classified at different sensitivity levels. A multilevel secure database management system (MLS/ 

DBMS) manages a multilevel database where its users cannot access data to which they are not authorized. 

However, providing a solution to the inference problem, where users issue multiple requests and conse- 

quently infer unauthorized knowledge is beyond the capability of currently available MLS/DBMSs. This 

paper describes the design and prototype development of an Inference Controller for a MLS/DBMS that 

functions during query processing. To our knowledge this is the first such inference controller prototype to be 

developed. We also describe some extensions to the inference controller so that an integrated solution can be 

provided to the problem. 

Keywords. Multilevel Secure Database Management System; inference problem; inference controller; 

security constraints. 

1. Introduction 

The word inference is commonly used to mean 'forming a conclusion from premises, '  

where the conclusion is usually formed without expressed or prior approval. That  is, without 

the knowledge or consent of anyone or any organization that controls or processes the 

premises or information from which the conclusion is formed. The resulting information that 

is formed can be innocuously or legitimately used or it can be used for clandestine purposes 

with sinister overtones threatening the security of the system. The term information is 

broadly defined to include raw data as well as data and collections of data which are 

t ransformed into knowledge. 

It is possible for users of any database management system to draw inferences from the 

information that they obtain from the databases. The inferred knowledge could depend only 

on the data obtained from the database system or it could depend on some prior knowledge 

possessed by the user, in addition to the data obtained from the database system. The 

inference process can be harmful if the inferred knowledge is something that the user is not 

authorized to acquire. That  is, a user acquiring information which he is not authorized to 

know has come to be known as the inference problem in database security. 
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We are particularly interested in the inference problem which occurs in a multilevel 

operating environment.  In such an environment,  the users are cleared at different security 

levels and they access a multilevel database where the data is classified at different security 

levels. The security levels may be assigned to the data depending on content,  context,  

aggregation and time. It is generally assumed that the set of security levels form a partially 

ordered lattice with Unclassified < Confidential < Secret < Top Secret. A multilevel secure 

database management  system (MLS/DBMS)  manages a multilevel database. 1 An effective 

security policy for a MLS/DBMS should ensure that users only acquire the information at or 

below their level. However,  providing a solution to the inference problem, where users issue 

multiple requests and consequently infer unauthorized knowledge, is beyond the capability 

of currently available MLS/DBMSs.  

In an earlier article that we published in this journal [29], we described the high level 

design of a query processor for a multilevel knowledge base management system. We defined 

a multilevel knowledge base management system to be a multilevel database management  

system augmented with an inference engine and a knowledge base. The inference engine 

modified the query using the security constraints in the knowledge base in such a way that 

when a modified query was posed, certain security violations via inference did not occur. In 

this paper we describe the detailed design and implementation of a prototype query 

processor for such a multilevel knowledge base management system. This query processor is 

what we call the database inference controller. The prototype protects a commercially 

available relational MLS/DBMS against certain security violations via inference. That  is, our 

approach is to augment a commercially available multilevel secure relational database 

management  system with an inference engine. The inference engine, which is the inference 

controller,  handles a variety of security constraints. It does query modification as well as 

response sanitizationZ We describe the design of the inference controller in detail and discuss 

the prototype implementation. To our knowledge, this is the first such inference controller 

prototype to be developed. 

The organization of this paper is as follows. In Section 2 we provide some background 

information on the inference problem. In Section 3 we first review the various inference 

strategies that users could utilize to draw inferences, and discuss the inference strategies that 

can be handled by our prototype.  In Section 4, we describe the philosophy upon which the 

design of the implementation architecture is based. In particular, we describe (i) a security 

policy whose implementation is our ultimate goal and (ii) an approach to its implementation. 

In Section 5, we describe the implementation design. The alternative approaches, the choice 

architecture, representing security constraints, and the major modules of the Inference 

Controller are described. In Section 6, we describe our experiences with the implementation. 

Some examples are given in Section 7. In Section 8, we describe some of the extensions to 

the inference controller that we have developed. The paper is concluded in Section 9. 

2. Background on the inference problem 

Two distinct approaches to handling the inference problem have been proposed in the 

past. They are: 

(i) Handling of inferences during database design. 

(ii) Handling of inferences during query processing. 

1 Much of the work on MLS/DBMSs has focussed on the relational data model. For a discussion on MLS/DBMS 
designs we refer to [8, 23]. A useful starting point for MLS/DBMSs is the Air Force Summer Study Report [1]. 

2 During sanitization, the sensitive portion of the response is removed. 
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The  work repor ted  in [12, 19, 22] focuses on handling inferences during database design 

where  suggestions for database design tools are given. They expect that security constraints 

during database design are handled in such a way that security violations via inference 

cannot  occur. The thesis for handling inferences during database design is also supported by 

others (see e.g. [15]). 

In contrast,  the work repor ted in [13, 28, 29] focuses on handling inferences during query 

processing. Our  approach is to augment  the query processor with a logic-based Inference 
Engine. The Inference Engine, which acts as the inference controller, will a t tempt  to prevent  

users f rom deducing unauthorized information. We believe that inferences can be most  

effectively handled and thus prevented during query processing. This is because most  users 

usually build their reservoir of knowledge from responses that they receive by querying the 

database.  It  is f rom this reservoir of knowledge that they infer unauthorized information.  

Moreover ,  no mat ter  how securely the database has been designed, users could eventually 

violate security by inference because they are continuously updating their reservoir  of 

knowledge as the world evolves. It is not feasible to have to redesign the database 

simultaneously. 

Other  notable work on handling the inference problem can be found in [3, 16, 21]. In [16], 

inferences are handled during transaction processing. In [2], a prolog program for handling 

the inference problem is described. In [3], an expert  system tool which could be used by the 

System Security Officer off-line to detect and correct logical inferences is proposed.  In [30] 

complexi ty of  the inference problem is analyzed based on concepts in recursive function 

theory.  

3. Inference strategies 

In this section, we first provide a brief overview of the inference strategies that users could 

possibly utilize to draw inferences. This set of strategies is more complete than the one 

proposed  in [7]. We also give examples of how such inference strategies can be applied to 

violate the security of a database system. Then we discuss the inference strategies that are 

handled by the inference controller prototype that we have developed. 3 

3.1. Classification of inference strategies 

(i) Inference by deductive reasoning 
In this strategy, new information is inferred using well-formed rules. There  are two types 

of deductions: classical logic-based deduction and non-classical logic-based deduction. We 

discuss each type of deduction here. 

Classical logic-based deduction. Rules in classical logic enable new information to be 

deduced.  One such rule, called the modus ponens,  is as follows. 4 

3 Note that security violation by inference occurs in multilevel databases if a user acquires unauthorized 
information from information that he has obtained by either (i) querying the database, (ii) updating the database, 
(iii) examining the metadata (schema and constraints), or (iv) using some real world knowledge. This violation of 
security is known as 'The Inference Problem' in Database Security. In a multilevel environment, unauthorized 
information is any information which is classified at a level that is not dominated by the user's level. A user acquires 
information by using any of the inference strategies discussed in Section 3.1. 

4 Other rules include syllogism, conjunction introduction, and conjunction elimination. For a discussion, we refer 
to [171 . 
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A, A----> B ~- B 

That  is, from the assertions A and IF A T H E N  B, deduce the assertion B. 

Example. Let the security levels of the assertions A and A---~ B be Unclassified. Let  the 

security level of the assertion B be Secret. From the rule of Modus Ponens, an Unclassified 

user deduces the assertion B which is Secret. Therefore,  it should be the objective of the 

inference controller to not release both assertions A and A---~ B to an Unclassified user. 

Non-classical logic-based deduction. We name the deductions not made within classical logic 

to be non-classical logic-based deductions. They include deductions based on probabilistic 

reasoning, fuzzy reasoning, non-monotonic reasoning, default reasoning, temporal logic, 

dynamic logic and modal logic-based reasoning. Inferences based on this strategy are also 

according to well-formed rules. 

An example of a rule based on fuzzy reasoning is: 

A(0.5),  A-->B (0.2) I-B (0.2) 

That  is, if A is true with a fuzzy value of 0.5 and A---~ B is true with a fuzzy value of 0.2, 

then B is true with a fuzzy value of 0.2. 

Example. Consider the fuzzy rule given earlier. Suppose B is Secret if its fuzzy value is 

greater than 0.1. If the ruzzy rule, A(0 .5 )  and A---~B (0.2) is all Unclassified, then an 

Unclassified user can deduce B (0.2) which is Secret. 

(ii) Inference by inductive reasoning 
In this strategy, well-formed rules are utilized to infer hypothesis from the examples 

observed. One example is by defining a function f from the values f(0), f(1), f(2) observed. 

Example. Suppose the security constraint 'All salaries which are more than 50 K are Secret '  

is itself assigned a Secret security level. If an Unclassified user can obtain various salary 

values, then based on the examples, he may hypothesize the sensitive constraint. That is, the 

Unclassified user may inductively infer the sensitive rule. It should be the objective of the 

inference controller to prevent this Unclassified user from inferring the sensitive constraint. 

(iii) Inference by analogical reasoning 
In reasoning by analogy, statements, such as 'X is like Y', are used to infer properties of X 

when given the properties of Y. This type of reasoning is common to frame-based systems 

[10]. 

Example. Suppose the properties of an entity X are Secret and the properties of an entity Y 

are Unclassified. Assume further that the statement 'X is like Y' is Unclassified. Then an 

Unclassified user can infer analogically the properties of the entity X. It should be the 

objective of the inference controller to prevent the Unclassified user from inferring the 

sensitive information. 

(iv) Inference by heuristic reasoning 
Heuristics are criteria, methods, or principles for deciding which among several alternative 

courses of action promises to be the most effective in order to achieve some goal [20]. In 
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general,  a heuristic is not well defined and may be a rule of thumb that is used to guide one's 

actions. Experts often use heuristics in order  to solve a problem. Inference by heuristic 

reasoning is the process of deducing new information using various heuristics. 

Example. Given some information X, heuristic rules and past experience are used to infer 

some sensitive information Y. An objective of the inference controller should be to prevent a 

user from acquiring this sensitive information. 

(v) Inference by semantic association 
In this strategy, association between entities is inferred from the knowledge of the entities 

themselves. 

Example. Consider the semantic association between names and salaries. A security con- 

straint could classify names and salaries taken together at the Secret level, but individually 

they could be classified at the Unclassified level. An Unclassified user could obtain names 

and salaries and infer the Secret association between them. It should be the objective of the 

inference controller to prevent an Unclassified user forming such an association. 

(vi) Inferred existence 
Using the strategy of inferred existence, one can infer the existence of an entity Y from 

certain information on Y. For  example, from the information 'John lives in Boston, '  it is 

reasonable to infer that 'There is some entity called John. '  

Example. Consider the statement 'John lives in Boston'  and 'There is a man called John. '  

From the statement 'John lives in Boston'  it can be inferred that 'There is a man called 

John. '  If the statement 'John lives in Boston'  is Unclassified and the statement 'There is a 

man called John'  is Secret, then an Unclassified user can infer Secret information. It should 

be the objective of the inference controller to prevent this type of inference. 

(vii) Statistical inference 
From the various statistics computed on a set of entities, information about an individual 

entity in the set is inferred. 

Example. Users may infer sensitive information about individual data items from the various 

statistics computed.  This inference process is statistical inference. Much research has been 

conducted on developing inference controllers for handling statistical inferences [6]. 

3.2. Strategy addressed by the inference controller 

Our inference controller prototype handles classical logic-based deductive reasoning and 

inference by semantic association. We illustrate these strategies with some simple examples. 

Note that our  prototype can handle more complicated examples. 

Example. Suppose there is a security constraint which classifies all destination of ships at the 

Secret level. Further,  there is a rule 'ship names imply the destinations' classified at the 

Unclassified level. Suppose an Unclassified user asks for the ship names. Our prototype will 

generate all deductions that can be made from ship names. It will find that from names one 

can infer destinations which are sensitive. Therefore,  it will not release the ship names. Note 

that by releasing the ship names, a user can infer the destination using the rule modus 

ponens. 
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Example. Suppose there is a security constraint which classified the ship names and 

destinations at the Unclassified level, but together they are classified at the Secret level. The 

inference controller would ensure that Unclassified users can never see ship names and 

destinations together,  either directly or indirectly. 

Example. Suppose there is a security constraint which classifies information about all ships 

going to Libya at the Secret level. Suppose an Unclassified user requests information about 

all ships. The inference controller will ensure that only the information about ships which are 

not going to Libya will be given. Note that if information about all the ships is given, then 

the user can use the rule conjunction elimination and get information about the ships going 

to Libya. 

It has also been suggested that if an Unclassified user already knows all the information 

about ships, then withholding information about ships going to Libya does not provide any 

additional security measures. We believe that once an Unclassified user gets information 

about  all the ships, there is already a security violation in the real-world. Therefore ,  either 

the information has to be downgraded or one has to live with the security violation. That  is, 

once a security violation has already occurred, our inference controller is not going to erase 

it away from the memory of the Unclassified user. 

4. Handling inferences during query processing 

In this section, we describe our design philosophy in handling inferences during query 

processing. Our implementation design is derived from such a philosophy. We first describe a 

security policy for handling inferences during query processing and then discuss an approach 

for implementing this policy. Much of the information in this section has been obtained from 

our  earlier article in this journal [29]. Note that the security policy has been influenced by 

that of Lock Data Views [23]. 

4.1. Security pol icy 

In this section, we state the security policy for query processing. Note that such a policy 

was first proposed by the Lock Data Views Project [23]. 

(1) Given a security level L, E(L) is the knowledge base associated with L. That  is, E(L)  

will consist of all responses that have been released at security level L over a certain time 

period and the real world information at security level L. 

(2) Let  a user U at security level L pose a query. Then the response R to the query will be 

released to this user if the following condition is satisfied: 

F o r  all security levels L* where L* dominates L, 

if ( E ( L * ) U N I O N  R ) ~  X (for any X) then L* dominates Level(X),  

where A ~ B means B can be inferred from A using any of the inference strategies and 

Level(X) is the security level of X. 

We assume that any response that is released into an environment at level L is also 

released into the knowledge base at level L*>~ L. 

What this means is that before any response R is released to a user at level L, the response 

is first inserted into knowledge base E(L*)  for all L* i> L. Then for each L*/> L, it is checked 

whether  the response R together with the information already in the knowledge base E(L*)  

will lead to any information say, X, where X is not dominated by L*. If this is the case, then 

the response cannot be released to the user at level L. Such a security policy is enforced 

because we assume that 
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(i) a user at level L can see all responses released to users at level L ' ~  < L, and 

(ii) all users at level L have access to the same information. 

Therefore ,  by releasing a response to a user at level L, if users at some level L* 1> L can infer 

information above their level, there is a security violation. 

For  example,  assuming that there are three levels, Unclassified < Secret < Top Secret, a 

security violation could occur by releasing a response to an Unclassified user's query, if, by 

reading the response, either 

(i) Unclassified users deduce information which is either Secret or Top Secret, or 

(ii) Secret users deduce information which is Top Secret. 

The  response to the Unclassified user's query can be safely released only if it can be 

determined that both the Secret and Unclassified users cannot deduce information to which 

they are not authorized by reading the response. 

4.2. Implementation of  the policy 

In this section, we discuss the techniques that we have used to implement the security 

policy. They  are: query modification and response processing. Each technique is described 
below .5 

4.2.1 Query modification 
Query modification technique has been used in the past to handle discretionary security 

and views [24]. This technique has been extended to include mandatory security in [9]. In 

our  design of the query processor, this technique will be used by the inference engine to 

modify the query depending on the security constraints, the previous responses released, and 

real world information. When the modified query is posed, the response generated will not 

violate security. 

We illustrate the query modification technique with examples. Consider a database which 

consists of the relation. The attributes of EMP are SS#,  Ename,  Salary and D e p t #  with 

SS# as the key. Let  the following constraints be enforced: 

(1) EMP(X,Y,Z,D)  and Z > 60K---~ Level(Y, Secret) 

(2) EMP(X,Y,Z,D)  and D = 10--9 Level(Y, Top Secret). 

The  first rule is a content-based constraint which classifies a name whose salary is more 

than 60K at the Secret level. Similarly, the second rule is also a content-based constraint 

which classifies a name whose department is 10 at the Top Secret level. Suppose an 

Unclassified user requests the names in EMP. This query is represented as follows: 

EMP(X,Y_,Z,D) and Level(Y, Unclassified) 

The inference engine will examine the level of the user, the query, the constraints, and 

modify the query to retrieve names where the corresponding salary is less than or equal to 

60K and the corresponding department number is not 10. The modified query is expressed as 

follows: 

EMP(X,Y__,Z,D) and Z~<60K and D ( ) 1 0 .  

Note that since query modification is performed on-line, it will have some impact on the 

performance of the query processing algorithm. However ,  several techniques for semantic 

query optimization have been proposed recently for intelligent query processing in a 

5 As stated in Section 3.2, prototype handles only limited inference strategies. 
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non-secure environment.  These techniques could be adapted for query processing in a 

multilevel environment in order to improve the performance. 

4.2.2 Response processing 

For many applications, in addition to query modification, some further processing of the 

response such as response sanitization may need to be performed. We will illustrate this 

point with an example. 

Example. Consider the following release constraints: 

(i) all names whose corresponding salaries are already released to Unclassified users are 

Secret, and 

(ii) all salaries whose corresponding names are already released to Unclassified users are 

Secret. 

Suppose an Unclassified user requests the names first. Depending on the other constraints 

imposed, let us assume that only certain names are released to the user. Then the names 

released have to be recorded into the knowledge base. Later,  suppose an Unclassified user 

(does not necessarily have to be the same one) asks for salaries. The salary values (some or 

all) are then assembled in the response. Before the response is released, the names that are 

already released to the Unclassified user need to be examined. Then the salary value which 

corresponds to a name value that is already released is suppressed from the response. Note 

that there has to be a way of correlating the names with the salaries. This means the primary 

key values (which is the SS#) should also be retrieved with the salaries as well as be stored 

with the names in the release database. 

There  are some problems associated with maintaining the release information. As more 

and more relevant release information gets inserted, the knowledge base could grow at a 

rapid rate. Therefore ,  efficient techniques for processing the knowledge base need to be 

developed. This would also have an impact on the performance of the query processing 

algorithms. Therefore ,  one solution would be to include only certain crucial release 

information in the knowledge base. The rest of the information can be stored with the audit 

data which can then be used by the Systems Security Officer for analysis. 

5. Implementation design 

5.1. Overview 

In Section 4, we described the issues involved in handling inferences during query 

processing. The security policy and its implementation that we described is one of our 

ultimate goals for providing a solution to the inference problem. However ,  achieving such as 

a goal is not feasible in the near-term. This is because the amount of constraints that need to 

be handled in any realistic situation may be very large. These constraints could also be quite 

complex with several conditions associated with them. Further,  it is possible for the 

knowledge base to grow rapidly as time progresses. 

Because of these considerations, we propose an incremental approach to implementing the 

Inference Controller. Our  initial goal is to build tools that can be used to enhance the 

security features of existing commercial multilevel relational systems during query process- 

ing. At  present there are no such inference controllers available. The prototype that we have 

developed could be enhanced into a production system without much difficulty. This way an 

Inference Controller that functions during query processing could be packaged together with 

the multilevel relational database system. While our initial focus is on building a tool that 
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could be of commercial use in the near-term, we are also carrying out research activities in 

order to achieve our ultimate goal in providing solutions to the inference problem. 

In Section 5.2, we describe the various architectures that we considered for the im- 

plementation. In Section 5.3, we describe the representation of the constraints. In Section 

5.4, we describe the modules of the inference controller, and in Section 5.5, we discuss some 

major issues. 

5.2. Architecture comparison 

5.2.1 Alternate architectures 

We examined three different architectures for the implementation. A description of each 

architecture is given below. 

(i) In the first architecture, the database, as well as the knowledge base, is considered to be 

a set of Prolog clauses. Query processing would then amount to theorem proving. Many 

expert systems have been developed using Prolog (see, e.g. [18]). These systems take 

advantage of the backward chaining mechanisms provided by Prolog. In addition, 

several other reasoning mechanisms have also been implemented using Prolog. Imple- 
6 menting the inference controller in Prolog would produce a fairly powerful system. 

(ii) The second alternative is to augment a relational database management system with a 

theorem prover implemented in Prolog. The advantages of augmenting a relational 

database system with an inference engine are discussed in [14]. Many commercial 
relational systems already have a Prolog interface. 

(iii) As the third alternative, we considered an architecture where a multilevel relational 

database system was augmented with an inference engine. Such an architecture would 

be useful as the multilevel relational database system would ensure the enforcement of 

a basic mandatory security policy. The inference engine then needs to implement only 

the policy extensions which are enforced in order to handle inferences. 

After examining the three architectures, we decided to select the third one. This was 

because we are interested in handling security violation via inference for database systems 

which are already considered to be secure. Commercial multilevel relational systems are 

already available. Therefore, we fell that in order to produce a useful prototype we need to 

use such a system which will enforce the basic mandatory security policy. 

5.2.2 Implementation architecture 

Once we had settled on the architecture, the next task was to select a multilevel relational 

database system for the implementation. After investigating the various systems that were 

available, we selected the Secure SQL Server 7 [25] for the following reasons: 

(i) the system was already available for our use, 

(ii) we had prototyping experiences with the nonmultilevel version of Sybase's Relational 
DBMS, and 

(iii) the system provided the basic security features that we needed. 

The Secure SQL Server runs on a Microvax with Ultrix Operating System. 8 The design of 

the prototype assumes that the operating system is multilevel secure. 9 It allows for sixteen 

6 The implementations described in [21, 27] use such an architecture. Both these implementations are rather 
simple. 

7 Secure SQL Server is a product of Sybase Inc. We will also refer to this system as the Server. We are using 

Release 1.0 of the version targeted to be evaluated at the B1 level. For a discussion on the levels of assurance, we 

refer to [26]. 

s Both Microvax and Ultrix are products of Digital Equipment Corporation. Ultrix is a version of Unix. Unix is a 

trademark of AT&T Bell Laboratories. 

9 The actual operating system used is not multilevel secure. 
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security levels with up to 64 compartments for each level. The classification of data is applied 
at the row (i.e. tuple) level. That is, each row is assigned a single security level. The security 

policy enforced is the following. A subject can read a tuple if the subject's level dominates 

that of the tuple. A subject can update a tuple if the subject's level is equal to that of the 

tuple. The relations are classified at the level of the user who creates them. A relation 

classified at level L can have tuples at levels ~>L. The data manipulation language is based on 

the standard SQL [2]. 

A high level implementation architecture is shown in Fig. 1. In this architecture, the 
Secure SQL Server is augmented with an Inference Engine. 1° We have stored the knowledge 

in the database. This way, the knowledge in the knowledge base can also be protected by the 
Secure Server. The Inference Engine does query modification as well as response processing. 

We are implementing the Inference Engine in 'C' because of the C programming language 
interface that already exists for the Secure SQL Server. In the long-term, we envisage 

replacing such an Inference Engine with a more powerful logic-based system. 

5.3. Definition and representation o f  security constraints 

5.3.1 Security constraints 

Security constraints are rules which assign security levels to the data. We have defined 

various types of security constraints. They include the following: 

(i) Constraints that classify a database, relation or an attribute. These constraints are 

called simple constraints. 
(ii) Constraints that classify any part of the database depending on the value of some data. 

These constraints are called content-based constraints. 
(iii) Constraints that classify any part of the database depending on the occurrence of some 

real-world event. These constraints are called event-based constraints. 

(iv) Constraints that classify associations between data (such as tuples, attributes, elements, 
etc.). These constraints are called association-based constraints. 

lo The Inference Engine is also the Inference Controller. 
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(v) Constraints that classify any part of the database depending on the information that has 

been previously released. These constraints are called release-based constraints. We 

have identified two types of release-based constraints. One is the general release 

constraint which classifies an entire attribute depending on whether any value of 

another attribute has been released. The other is the individual release constraint, 

which classifies a value of an attribute depending on whether a value of another 

attribute has been released. 

(vi) Constraints that classify collections of data. These constraints are called aggregate 

constraints. 

(vii) Constraints which specify implications. These are called logical constraints. 

We will give examples of constraints belonging to each category currently handled by our 

prototype. In our examples we assume that there are two relations EMP and DEPT. EMP 

has attributes SS#, NAME, SALARY and D# (with SS# as the key), and DEPT has 

attributes DEPT#,  DNAME and MGR (with DEPT# as the key). Note that D#  and 

DEPT# take values from the same domain. The constraints are expressed as some form of 
logical rules. 

Simple constraints 

R(A1, A2 . . . .  An)---* Level(Ail, Ai2 . . . .  Ait) = Secret 

{Each attribute Ail,  Ai2 . . . .  Ait of relation R is Secret} 

Example: EMP(SS#, NAME, SALARY, D#)---~ Level(SALARY) = Secret. 

Content-based constraints 

R(A1, A 2 , . . . A n )  AND COND(Value(B1, B 2 , . . .  Bm)) ~ Level(Ail, A i 2 , . . .  Ait) = 

Secret 

{Each attribute Ail,  A i 2 , . . .  Ait of relation R is Secret if some specific condition is enforced 

on the values of some data specified by B1, B2 . . . .  Bm} 

Example: EMP(SS#, NAME, SALARY, D#) AND (Value(NAME) = John) ~ Level(SA- 

LARY) = Secret. 

Association-based constraints (also called context constraints) 

R(A1, A2 . . . .  An) ~ Level(Together(Ail, A i 2 , . . .  Ait)) = Secret 

{The attributes Ail ,  Ai2 . . . .  Ait of relation R taken together are Secret} 

Example: EMP(SS#, NAME, SALARY, D#) --~ Level(Together(NAME, SALARY)) 

Secret. 

Event-based constraints 

R(A1, A 2 , . . .  An) AND Even t (E )~  Level(Ail, A i 2 , . . .  Ait) = Secret 

{Each attribute Ail ,  Ai2 . . . .  Ait of relation R is Secret if event E has occurred} 

Example: EMP(SS#, NAME, SALARY, D#) AND Event(Change of President) 

Level(SALARY, D#) = Secret. 

General release-based constraints 

R(A1, A2 . . . .  An) AND Release(Ai, Unclassified)---~ Level(Aj) = Secret 

{The attribute Aj of relation R is Secret if the attribute Ai has been released at the 

Unclassified level} 

Example: EMP(SS#, NAME, SALARY, D#) AND Release(NAME, Unclassified) 
Level(SALARY) = Secret. 
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Individual release-based constraints 

R(A1, A 2 , . . .  A n ) A N D  Individual-Release(Ai, Unclass i f ied)~ Level(Aj) = Secret 

The individual release-based constraints classify elements of an attribute at a particular level 

after the corresponding elements of another attribute have been released. They are more 

difficult to implement than the general release-based constraints. In our implementation, the 

individual release-based constraints are handled after the response is generated by the 

MLS/DBMS,  but before it is released to the user. 

Aggregate constraints 

Aggregate constraints classify collections of tuples taken together at a level higher than the 

individual levels of the tuples in the collection. There could be some semantic association 

between the tuples. We specify these tuples in the following form: 

R(A1, A2 . . . .  An) AND Set(S, R) AND Satisfy(S, P ) ~  Level(S) = Secret 

This means that if R is a relation and S is a set containing tuples of R and S satisfied some 

property P, then S is classified at the Secret level. Note that P could be any property such as 

'number  of elements is greater than 10.' The aggregate constraints are also handled after the 

response is generated by the MLS/DBMS,  but before it is released to the user. 

Logical constraints 

Logical constraints are rules which are used to derive new data from the data in the 

database. The derived data could be classified using one of the other constraints. Logical 

constraints are of the form: 

Ai ~ Aj; where Ai, Aj are attributes of either a database relation or a real-world relation. 

Other constraints 

There  are other  constraints that are handled by the design and not by our prototype.  These 

include level constraints and fuzzy constraints. Level constraints classify an attribute at a 

particular level depending on the level of another attribute. For example, the level of salary 

is Top Secret if the level of name is Secret. Fuzzy constraints assign fuzzy values to the 

constraints. For example, the level of name is assigned Top Secret with a fuzzy value of 0.8. 

5.3.2 Representation issues 

Our design handles the constraints in all of the above categories. The constraints entered 

by the SSO are then processed by a module of the Inference Controller and stored in a 

Event linked list 

Consa'aint ~ Together linked list 

Condition linked list 

~Next consU'aint pointer 

Fig. 2. Constraint structure. 
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graphical structure. We found this an efficient way to represent the constraints. We have 

developed algorithms to scan the graph structure in order  to obtain the relevant constraints 

during query processing. The algorithms also perform some optimization for efficiency. The 

graph structure is illustrated in Fig. 2. The relations are combined to form a linked list. Each 

relation has sixteen pointers emanating from it; one for each security level. Associated with 

each level is a linked list of constraints. Each constraint has a set of attributes that it 

classifies, constraint specific information such as events and conditions, and a pointer to the 

next constraint. Our  design allows for the specification of events and conditions which are 

quite complex. Each constraint that is associated with a level classifies a set of attributes at 

that level. 

5.4. Modules of the query processor 

An overview of the major  modules is shown in Fig. 3. The query processor consists of five 

modules P1 through P5. Each module is implemented as an Ultrix process. 11 The processes 

communicate with each other  via the socket mechanism. A brief overview of the functions of 

each module is given below. We also identify the trust that must be placed on each process. 

Process PI: The user interface manager 

This process asks for password and security level from the user. Since we assume that the 

operating system is secure, we rely on the identification and authentication mechanism 

provided by the operating system. Due to this feature, P1 need not be a trusted process. It 

operates at the user's level. P1 accepts a query from the user and performs syntax check. It 

Request 

Result 
User 

PI:  User Interface Manager 
P2: Central Inference Controller 

P3: Constraint Gatherer 
P4: Sanitizer 

P5: Release Database Updater 

~llcg 

- - -  SYBASE's Secure SQL Server 

Fig. 3. Major  modules.  

H Al though  the operat ing system used in the implementat ion is not  secure,  our  design assumes  the use of a 

multi level secure operat ing system. 
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then sends the query to process P2 and returns the response received from P2 to the user. It  

then waits in idle state for a request from the user. 

Process P2: The central inference controller 

This process first sets up communication with P1. It then waits in idle state for requests 

f rom P1. When a request arrives from P1, it logs into the database server as the user 's level. 

It  then requests process P3 (via socket) to return applicable constraints. The query is then 

modified based on the constraints (if any). The modified query is then sent to the 

M L S / D B M S .  The response is then sent to process P4 for further processing. When P4 

returns the sanitized response, a request is sent to process P5 to update  the release database 

and the response is given to P1; P2 then returns to idle state. If constraints classified at a 

higher level are not processed by P3 or if the response from the M L S / D B M S  is first given to 

P4 and P5 for sanitization and release database update,  then P2 need not be a trusted 

process. However ,  in our implementat ion,  since P2 could have access to higher level 

information,  it must be trusted. It should also be noted that if P2 is not trusted, then the 

correctness of its functions cannot be guaranteed. 

Process P3: The constraint gatherer 

This process first sets up sockets for communication with P2 and then logs into the 

database server at system-high. This is because P3 examines not only the security constraints 

classified at or below the user 's level, but also higher level constraints. These higher level 

constraints are examined to ensure that by releasing a response at level L, it is not possible 

for users cleared at a higher level to infer information to which they are not authorized. P3 

builds and maintains the constraint table whenever  the constraints are updated.  It waits in 

idle state for requests from P2. When a request arrives, it builds a list of applicable 

constraints and sends the constraint structure to P2 and then returns to idle state. Since P3 

maintains the security constraints, it is a trusted process. 

Process P4: The sanitizer 

This process sets up sockets for communication with P2 and logs into the database server 

at system high. It waits in idle state for a request to arrive f rom P2. When a request arrives, 

which consists of the response and the applicable release constraints, it sanitizes the response 

based on the information that has previously been released. It reads the release database 

maintained at various levels in order to carry out the sanitization process. It then returns the 

sanitized response to P2 and returns to idle state. Since response sanitization is a security 

critical function, P4 must be trusted. 

Process P5: The release database updater 

This process sets up communicat ion with P2. It waits in idle state for requests f rom P2. 

When a request arrives, it logs into the database server at all levels from system-high to the 

user 's  level and updates the release database at each level depending on the release 

constraints for that level. Note that this is necessary only if higher level constraints are 

examined by P3. If not, P5 can log into the database server only at the user 's  level. After  

each update  to the release database,  it logs out of the database server at each level. It 

returns a status message to P2 upon completion and returns to idle state. 

5.5. General discussion on the design 

In our design, we have assumed that the process P3 (the constraint gatherer) has access to 

all of the security constraints. Also, in order to process a user 's  query, even the constraints 
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classified at a higher level may have to be examined if they are relevant.  This means that the 

actions of a higher level user have impacted those of a lower level one. This is a signalling 

channel.  12 One way to prevent  such a channel is to ensure that the process P3 only examines 

the constraints at or below the user 's  level. Some meaningful inferences may not be detected 

if such a restriction is made.  

The  problem becomes worse if users are permit ted to update  the constraints. Then,  a 

malicious subject acting on behalf  of a user could manipulate the constraints in such a way 

that  information is covertly passed to a lower level subject. Such covert  channels can be 

p reven ted  by ensuring that only some authorized individual such as the SSO has write access 

to the constraints. Our  design assumes that the constraints are protected in a special domain 

and can be manipulated only by the SSO. 

Our  design assumes that the constraints are consistent and complete.  To ensure con- 

sistency, we assume that if two constraints classify the same piece of data at the same time at 

different security levels, the data is classified at the higher of the two levels. To ensure 

completeness  we assume that if a piece of  data is not explicitly assigned a security level, then 

lowest security level supported by the system is assigned to it. What  would be useful is a tool 

which examines the constraints and determines whether  the constraints are consistent and 

complete .  For  consistency, the tool would check whether  there are two constraints which 

classify the same piece of data at different security levels at the same time. For complete-  

ness, the tool would check whether  there is a piece of data that is not assigned any security 

level. 

The  details of managing the release database are yet to be determined.  As the release 

database  grows larger, we need efficient techniques to manage this database.  Another  

question that remains to be answered is the length of t ime release data has to be kept  in the 

database.  We feel that this decision is application dependent  and is up to the SSO. 

We have placed much of the processing as possible on the M L S / D B M S .  The inference 

controller  mainly processes constraint related information. It  does not manipulate  the 

information in the database.  We have assumed that the underlying operat ing system is 

multilevel secure. The operating system must at least support  the following policy. 

(i) Two processes at the same security level can communicate  with each other.  

(ii) A process can send a message to another  process at a higher security level. 

(iii) A higher level process can send a message to a lower level process only if the operat ion 

is trusted. 

6. Experience with implementation 

We have completed the implementat ion of all the modules. Over  8500 lines of C code have 

been implemented.  In Section 6.1, we discuss the major  issues of the implementat ion and, in 

Section 6.2, we discuss the implementat ion of specific constraints. 

6.1. Major issues 

Our  implementa t ion goal was to minimize the dependency on the Secure SQL Server as 

much as possible. However ,  due to the limitations inherent in SQL and the restricted utility 

of  Secure SQL Server and its C interface, there was some dependency on the M L S / D B M S .  

12 Signalling channels occur when the actions of higher level users signal information to lower level ones. They can 
be regarded as a special form of covert channels. Covert channels occur when two subjects at different security 
levels collude in such a way that information is passed from the higher level subject to the lower level subject by 
means other than the normal communication channels [11]. 
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One feature of Secure SQL Server that was useful was the fact that a temporary  table 

created by a process could only be seen by that process and no other. We made use of  this 

feature as much as possible in order to protect  the temporary  relations created during the 

execution of a query. That  is, it would only return results at or below the user 's login level. 

We first developed the infrastructure of the inference controller program. This involved 

the creation of the five processes and establishing the necessary communicat ions between 

them. Some of these processes also had to log into the Secure SQL Server at the appropr ia te  

security levels. The program was set up in such a way as to leave hooks for the easy addition 

of more  features. Since this project  is a preliminary prototype of a system which could 

conceivably be extended in the future, we have tried to continue this approach of flexibility 

and modulari ty to make further expansion of the program easier. We also provided the 

capability to enter the constraints in a format  that is a simplified version of the rules we 

described in Section 5.3.1. Since the development  occurred in a resource rich environment ,  

the constraint structures were stored in main memory .  However ,  if the number  of constraints 

are large, and /o r  sufficient memory  is not available, then it might be necessary to store the 

structures in files. We then implemented the processes P1, P2, P3, P5, and P4 in order.  Some 

essential points of the implementat ion are described below. 

As soon as a user types a query, P1 sends the original query to the Secure SQL Server 

using a 'parse only'  feature of the Server that allows syntax checking without generating a 

result. The assumption is that any query that causes a parsing error at this stage should not 

be allowed to proceed further. During the syntax check, the error  handling routines treat  any 

Server error  as fatal, and the query is aborted,  with the user then being p rompted  for a new 

query. Using the 'parse only'  option, the Server is able to detect structural and syntax errors 

in the query, but not semantic errors, which are not caught until later. Once the syntax check 

is passed, the error handlers treat any Server error as an indication that something is wrong 

with the user query. A flag is set to indicate this fact, and processing continues. When the 

t ime comes to submit the modified query to the Server, this flag is noticed and the modified 

query is blocked, with no result being returned to the user. An unresolved question in this 

area is how many of the Server error messages should the user be permit ted to see? The user 

should at least get the error messages that he would have received in a system without an 

inference controller, but it is conceivable that some error messages could reveal facts about  

the structure or content of the database that the user is authorized to see. At  the present  

t ime, we follow a strategy of showing everything to the user for development  purposes,  but 

this would need further study in a realistic production system. 

In P2, the central inference controller, the main problem is the actual modification of the 

query once the applicable constraints have been returned by P3. These constraints come 

back in the form of conditions to be inserted in the where clause of the query to restrict what 

data is to be released. The problem here is that while the user may make a simple query 

concerning a single table, the constraints could deal with multiple tables. For example,  if the 

user were to issue the query 'select ename,  salary from EMP'  and if the constraint 

' D E P T . d n a m e  = 'Security'---~ Leve l (EMP.name)=  10' were enforced, then the condition 

' D E P T . d n a m e  ! = 'Securi ty"  will be inserted into the where clause. That  is, the modified 

query would be 

'select ename,  salary f rom EMP where D E P T . d n a m e  ! =  'Securi ty" .  

This would cause an error since D E P T  is not named in the from clause. Therefore ,  the 

first step in the solution to this problem is to build the correct from clause. We start with the 

user 's  original from clause, assumed to be correct because it passed the syntax check. Then,  

we build the where clause from constraints returned from P3 by looking for relation names 

that  are not already in our from clause. Since our constraints syntax specifies that all 

at tr ibute specifications must be in the form REL.a t t r ,  relation names are indicated by the 
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presence of a period ( ' . ' ) .  The word to the left of a period is assumed to be a relation name, 

and is added to the from clause if it is not already there. This approach could conceivably 

cause problems if the where clause contained references to floating point numbers (e.g. 

'6.01e23'),  but for our  prototype it was judged to be sufficient. A general solution would 

necessarily involve complicated content-based parsing to determine where in a condition the 

relation name is located. Once the correct from clause has been built, the query stands as: 

'select ename,  salary from EMP, D E P T  where DEPT.dname  ! = 'Securi ty".  

While this is bet ter  than before,  it is still not correct due to a situation which we call the 

' join problem. '  In Secure SQL Server (and probably some of the other  Relational DBMSs), 

joins of two relations are handled by taking the Cartesian product of the two tables and 

applying the conditions in the where clause to select the correct rows from the product. The 

tables being joined must have a common column or key for the result to make sense. This 

condition is not imposed by Secure SQL DataServer but rather by logic. Secure SQL Server 

will comply with the above query, returning each row of DEPT,  with rows having 

DEP T. dna m e  = 'Security' removed. In an interactive system where the user's query is built, 

the solution would be to insert the condition 'EMP .D #  = D E P T . D # '  into the where clause 

to ensure a reasonable result. This seems intuitively obvious, but it is hard to mechanize. 

Our solution was to keep a table, known as the ' join_table, '  which lists groups of relations 

and their corresponding conditions. A sample entry in the join_table might be: 

relations condition 

EMP, D E P T  E M P . D #  = D E P T . D #  

Once the program builds the from clause, it checks each row of the join table. If all the 

tables in the 'relations' field are present in the from clause, then the condition in the 

'condition'  field is inserted into the where clause to ensure a correct join. 13 

6.2. Constraint processing 

We have implemented all of the constraints discussed in Section 5.3.1. We have modified 

the format  of the constraints slightly so that the program can manipulate them more 

efficiently. However ,  we have designed a tool which will ease the burden placed on the 

System Security Officer when entering the constraints. Note that the individual release-based 

and aggregate constraints are handled after the response from the MLS /D BMS  is generated,  

but  before it is released to the user. 

Implementing the simple and content-based constraints was fairly straightforward. As 

discussed earlier, the process P3 builds the constraint structure in memory.  For each 

attribute A and level L, it does the following. If C1, C2 . . . .  Cn are the conditions associated 

with constraints which classify the attribute at L, then it builds a string NOT(C1 A C2 A 

• • • A Cn) and inserts it as part of the structure. Later when P3 receives a query from P2, it 

first examines the query, the level of the user who requested the query, and the constraint 

structure. It then assembles the relevant strings that it built earlier and inserts the resultant 

string into the wher clause of the query. The modified query is returned to P2 for processing. 

13 Note that it is possible to have multiple entries in the join table for two relations. Therefore, there must be a 

way to determine which of these entries should be considered for a particular query. At present, we assume that 

there is at most one entry in the join table for each relation. Therefore, the condition associated with the relation 

entry is taken to build the where clause. For a more general solution, it has been suggested to us that the join clause 

could be attached to the constraint itself. Another  solution will be to attach the relevant constraints to the entries in 
the join table. 
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Association-based constraints are triggered by the presence of specified attributes in the 

select clause. The result is the removal of specified attributes from the select clause. Note 

that one problem with the association-based constraints is that a user can request individual 

queries to obtain one of the attributes and then be able to assemble the response himself. We 

have designed an algorithm which would generate all of the association-based constraints 

given an initial set of association-based constraints. That is, if a relation EMP has attributes 

SS#,  name, and salary, and if the association between names and salaries are classified at 

the Secret level, then either the association between names and SS# or salaries and SS# 

must be classified at the Secret level. 

Event  constraints are handled by maintaining an event table which is separate from the 

constraints table. The event table specifies the events that have occurred. When P3 receives 

a query, it examines the event table to determine the events that have occurred, checks the 

event  constraints in the constraint structure and modifies the query accordingly. 

General  release constraints are triggered by the fact that certain attributes have been 

released to users at certain levels. They require the program to maintain a history table of 

attributes it has released. For every user query, the program writes into its release-table the 

fact that it is releasing each attribute at a given level. Then, when the release constraints are 

processed, the program checks to see if the specified attributes have indeed been released at 

the specified level. The release database is maintained by the process P5. 

Individual release constraints are special instances of the general release constraints. They 

operate on the individual tuples. That is, they examine the tuples that have been released 

previously and determine whether all of the tuples in the current response can be released. 

This tuple level dependency makes this constraint different to the other constraints discussed 

earlier. Since individual release constraint applies to data released from each of the previous 

queries, possibly, including the current one, the response is sanitized, in addition to the 

query modification process. 

The implementation of the individual release constraint involved no modification to P3, 

since it conceptually involved sanitization as opposed to preprocessing. P3 therefore does its 

own work, gathering the applicable constraints and returning control to P2, which modifies 

the query to include the constraints returned from P3. When this is done, it passes the query 

to P4, the Sanitizer. This process examines the record of past releases, called the individual 

release table (or IRT),  to see which of the individual release constraints apply to the current 

query. Before it does this, however, it first runs a test version of the current query and adds 

the results to the environment found in the IRT. This allows the responses from the current 

query to trigger individual release constraints, as well as responses in the past. 

Once P4 has decided which individual release constraints apply to the query, it generates a 

phrase to be inserted into the where clause of the query, and sends it back to P2. This phrase 

is actually a series of subqueries from the IRT that ensures that any data released from this 

query will not violate the individual release constraints. Once this is done, the sanitization is 

complete,  and all that remains is the updating of the IRT to reflect the newly released 

information. Conceptually, this is the job of P5, the knowledge base updater,  but as an 

implementation detail, the requirements of updating the IRT were not substantial enough to 

warrant the overhead of a physically distinct process. As a result, the knowledge base is 

updated from P2 after P4 completes his job. 

To handle aggregate-based constraints, the program examines the response after the 

individual release constraints are processed. It then classifies collections of tuples strictly 

based on their size and not on their content. For example, if collections of more than 30 

tuples are classified Secret, and if an Unclassified user poses a query, any response which 

contains more than 30 tuples is suppressed. This is done by first noting the applicable 
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constraints and remembering the one allowing for the lowest number  of tuples. After  the 

query is run, the number  of rows is counted, and the result is released only if it has fewer 

tuples than the minimum number specified by the aggregate constraints. Note that we have 

provided a simple solution to handling aggregate-based constraints. In reality, a user could 

pose sets of queries and be able to bypass the aggregate-based constraints. More research 

needs to be done in this area so that algorithms for handling aggregate constraints can be 

developed.  

Logical constraints are different from the others. They are in fact rules which can be used 

to deduce new information from existing information. They are not triggered as the other  

constraints are, and they do not cause the security levels of the attributes to be changed. An 

example of a logical rule is: 

Logical(EMP. S S # --~ EMP. ename) .  

This means that a user with access to SS# is presumably able to figure out the name values, 

by some unspecified means. 

Thus,  queries requesting SS# must assume that the user will also know ename if SS# is 

released, and take this into account as it selects the constraints which apply to the user's 

query. In this example, a query for SS# will result in the triggering of constraints that apply 

to ename also, just as if the user had queried for both SS# and ename. In fact, the program 

handles logical rules in just this way, using a graph structure to store the various implica- 

tions, and traversing the graph structure to see what inferences could be drawn from SS#,  

for example. In this case, it would see that ename could be inferred, so it physically inserts 

ename into its copy of the query and proceeds from there, with ename triggering constraints 

just as SS# would. 

It appears that there is a noticeable degradation in performance when individual release 

constraints are handled. Large amounts of data need to be recorded. There  are possibilities 

for  optimization and this will be part of our future work. From the experiments that we have 

carried out,  the performance impact of handling all of the other  constraints is marginal. That  

is, there is hardly any visible difference between the execution times of the query processing 

strategy with or without the inference controller. 

7. Examples 

In this section we illustrate the processing of the query processor with some examples. Let  

the database consist of two relations EMP and DEPT.  The attributes of EMP are SS#,  

Name,  Salary, Date  (start date of employment) ,  and Dep t# .  Its primary key is SS#.  The 

attributes of D E P T  are D # ,  Dname,  Mgr, and E m p #  (number of employees). Its primary 

key is D e p t # .  We assume that E M P . D e p t #  and D E P T . D e p t #  take values from the same 

domain. Also, E M P . D #  is a foreign key. The database is populated as shown below. To 

simplify the discussion we assume that both EMP and D E P T  are assigned level 1. 

Fur thermore ,  all of  the tuples and constraints are also classified at level 1. Note that the 

usual D O D  classification levels do not exist as such in the secure DBMS that we have used. 

We assume that the number 1 denotes the Unclassified level, the number  10 denotes the 

Secret level, and the number 16 (which is system-high) denotes the Top Secret level. The 

user is assumed to be logged in at level 1. The table #f i l te r_ tempi  is a temporary work table 

used to store the result. 



290 B. Thuraisingham et al. 

Relation EMP 

SS# Name Salary Date D# 

CVN 68 James 20 May 75 

CV 67 John 30 Sep 68 

BB 61 Peter 40 Feb 43 

CG 47 Paul 50 Jan 83 

DD 963 Mary 60 Sep 75 

AGF 3 Jane 70 Feb 64 

WHEC 715 David 80 Feb 67 

FFG 7 Joe 90 Dec 77 

FF1052 Phil 40 Apr 69 

LSD 36 Anne 30 Mar 69 

003 

001 

003 

005 

006 

003 

003 

001 

001 

009 

Relation DEPT 

Dept# Dname Mgr Emp# 

001 Security Smith 001 

002 Math Cook 002 

003 Physics Perry 006 

004 Biology Hardy 005 

005 Chemistry Ford 004 

006 Engineering Keeffe 004 

007 History Collins 003 

008 Economics Palmer 003 

009 French Jackson 001 

Test scenario 1: No constraints 

Constraints active: N O N E  

Original query: select * f rom E M P  

User's level: 1 

Final modified query: Same as the original query (that is, query is not modified) 

select E M P . S S # ,  EMP.Name,  EMP.Salary, EMP.Date,  E M P . D #  into #f i l ter_tempi f rom 

E M P  

Note that the asterisk is a wildcard indicator which means the query is for all attributes (fields) 

in a record. When the Inference Engine sees this character, it replaces it with all the field names 

in any tables specified in the from clause. 

Result: Al l  o f  the tuples in E M P  

Test scenario 2: Content constraints 

Constraints active: 

EMP. Name = 'John'---~ Level(EMP. Salary) -- 16; 

EMP. Name = 'Mary '---~ Level( EMP. Salary) = 16; 

EMP. Name = Joe Level(EMP. Salary) = 16; 

Original query: select * f rom E M P  

User's level: 1 

Final modified query: 

select EMP. SS# ,  EMP. Name, EMP. Salary, EMP. Date, EMP. D #  into #f i l ter_tempi from 

E M P  where 

(not(  EMP. Name = 'John')) and 

(not(  EMP.Name  = 'Mary')) and 

(not(  EMP. Name = 'Joe')) 
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Result: 

SS# Name Salary Date D# 

CVN 68 James 20 May 75 003 

BB 61 Peter 40 Feb 43 003 

CG 47 Paul 50 Jan 83 005 

AGF 3 Jane 70 Feb 64 003 

WHEC 715 David 80 Feb 67 003 

FF1052 Phil 40 Apr 69 001 

LSD 36 Anne 30 Mar 69 009 

Original query: select EMP. SS#, EMP. Name, from EMP 

User's level: 1 

Final modified query is the same as the original query (since the names themselves are not 

classified) 

Result: 

SS# Name 

CVN 68 James 

CV 67 John 

BB 61 Peter 

CG 47 Paul 

DD 963 Mary 

AGF 3 Jane 

WHEC 715 David 

FFG 7 Joe 

FF1052 Phil 

LSD 36 Anne 

Test scenario 3: Logical and simple constraints 

Constraints active: 

Logical(DEPT. Dname--~ DEPT. Mgr); 

Level(DEPT. Mgr) = 16 

Original query: select EMP. Name, DEPT. Dname, DEPT. Emp#,  from EMP, DEPT where 

EMP. D#  -- DEPT. Dept# 

Final modified query: 

select EMP. Name, DEPT. Emp#  into #filter_tempi from EMP, DEPT where EMP. D#  = 

DEPT. Dept# 

Result: 

Name Emp# 

James 006 

John 001 

Peter 006 

Paul 004 

Mary 004 

Jane 006 

David 006 

Joe 001 

Phil 001 

Anne 001 
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Test scenario 4: Association-based constraint 

Constraints active: 

Level(Together(DEPT. Mgr, DEPT. Dname)) = 10 

Original query: select * from DEPT 

User's level: 1 

Final modified query: 

select DEPT. Dept#, DEPT.Mgr, DEPT.Emp# into #filter_tempi from DEPT 

Result: 

Dept# Mgr Emp# 

001 Smith 001 

002 Cook 002 

003 Perry 006 

004 Hardy 005 

005 Ford 004 

006 Keeffe 004 

007 Collins 003 

008 Palmer 003 

009 Jackson 001 

Test scenario 5: Logical and content-based constraints 

Constraints active: 

Logical(DEPT. Mgr ~ DEPT. Dname) 

DEPT. Dname = Security ~ Level(DEPT. Dname) = 16 

Original query: select * DEPT 

Final modified query: 

select DEPT.Dept#, DEPT.Dname, DEPT.Mgr, DEPT.Emp# into #filter_tempi from 

DEPT where (not(DEPT. Dname = 'Security')) 

Result: 

Dept# Dname Mgr Emp# 

002 Math Cook 002 

003 Physics Perry 006 

004 Biology Hardy 005 

005, Chemistry Ford 004 

006 Engineering Keeffe 004 

007 History Collins 003 

008 Economics Palmer 003 

009 French Jackson 001 

Test scenario 6: Release constraint 

Constraints active: Release(EMP. D#:I)  ~ Level(EMP. Name) = 10; 

(i.e. if EMP.D# is released at level 1, then EMP.Name is Classified at level 10) 

Original query: select * from EMP 

User's level: 1 

Results released previously were cleared before executing this query. 
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Release constraint triggered by the release of: 

E M P . D #  at level 1, EMP.Name cannot appear in query. 

Final modified query: 

select EMP.SS#,  EMP.Salary, EMP.Date, EMP.D#  into #filter_tempi from EMP 

Result: 

SS# Salary Date D# 

CVN 68 20 May 75 003 

CV 67 30 Sep 68 001 

BB 61 40 Feb 43 003 

CG 47 50 Jan 83 005 

DD 963 60 Sep 75 006 

AGF 3 70 Feb 64 003 

WHEC 715 80 Feb 67 003 

FFG 7 90 Dec 77 001 

FF1052 40 Apr 69 001 

LSD 36 30 Mar 69 009 

Release Table contents: 

Name Level 

EMP.SS# 1 

EMP.Salary 1 

EMP.Date 1 

EMP.D# 1 

Test scenario 7: Aggregate constraint 

Constraints active: Aggregate(5) ~ Level(EMP. Name) = 12; 

Original query: select * from EMP 

User's level: 1 

Final query: Same as original query 

select EMP.SS#,  EMP.Name, EMP.Salary, EMP.Date, EMP.D#  into #filter_tempi from 
EMP 

Result: No result returned for the query since more than 5 employee names would have been 
returned. 

Test scenario 8: Aggregate constraint 

Constraints active: Aggregate(5) ~ Level(EMP. Name) = 12; 

Original query: select * from EMP where S S#  like '% CV%'  

final query as modified: 

select EMP.SS#,  EMP.Name, EMP.Salary, EMP.Date, EMP.D#  into #filter_tempi from 
EMP where SS#  like '% CV%'  

Result: 

SS# Name Salary Date D# 

CVN 68 James 20 May 75 003 

CV 67 John 30 Sep 68 001 
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8. Extensions to the inference controller 

As stated in Section 2, it is mainly as a result of the query operation that users make 

unauthorized inferences. Therefore, there must be a way to handle the security constraints 

during the query operation. However, handling all of the constraints during the query 

operation would have an impact on the performance. Therefore, we believe that for a fairly 

static environment, where the constraints and the database data are not updated continuous- 

ly, the constraints could be processed during the update and database design operations. 

In Section 8.1 we describe the update processor tool that we have developed and, in 

Section 8.2, we discuss our database design tool. Although the three modules operate 

independently, ultimately we envisage the inference controller to be used in conjunction with 

the update processor and the database design tool so that an integrated solution to security 

constraint processing can be provided. 

8.1. Update processor 

The Update Processor is a module that is responsible for handling database updates. It 

ensures that data updated satisfies the simple and content-based security constraints. This 

way, the inference controller need not process the simple and content-based constraints and, 

as a result, some of the burden placed on the inference controller can be alleviated. It 

should, however, be noted that it will be difficult to ensure that the database data is 

consistent with the security constraints for a dynamic environment as it may not be feasible 

to update the database continuously. Furthermore, updating the data could cause a ripple 

effect. That is, security levels of the data could also be indirectly affected by the update of 

some other data. Therefore, if the database data is inconsistent with the constraints, then the 

inference controller should examine all of the constraints. 

A high level architecture for the update processor is shown in Fig. 4. The Update 

Processor module augments the MLS/DBMS. Using the simple and content-based con- 

straints, it computes the security levels of the data to be updated. The data is then updated 
at the correct level, provided this level dominates the user's level. Details of the update 

processor are given in [4]. 

8.2. Database design tool 

While some of the security constraints could be handled during query processing and some 

Request in 
SQL 

[ User Interface [ 

Parsed Query ~ l Response 

L 
Syntax Check 

SYBASE's Secure 
SQL Server 

Update Processor 

____< Multilevel 
Database 

Fig. 4. Architecture of the update processor. 
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during update processing, some could also be handled during database design. In particular, 

constraints which do not depend on any data values could be handled during the database 

design operations. These constraints are the simple constraints, association-based con- 

straints, and logical constraints. For example, if we classify the relationship between names 

and destinations at the Secret level, and individually we classify the names and destinations 

at the Unclassified level, then the database could be designed in such a way that only the 

relationship (or the association) is stored at the Secret level while the individual values are 

stored at the Unclassified level. 

Note, however, that if the association between names and destinations is classified at the 

Secret level, then it could still be possible for an Unclassified user to obtain names and IDs, 

destinations and IDs, and be able to correlate the names with the destinations. In order to 

prevent such security violations, either the association between names and IDs or destina- 

tions and IDs must be classified at the Secret level. Now, if there are many attributes and 

many constraints, then it will be difficult for the System Security Officer to be able to 

generate all additional constraints that need to be enforced. Therefore, a tool which would 

not only generate the additional constraints but also output the correct security levels that 

should be assigned to the various attributes would be very useful. 

We have designed a tool which will accept the set of attributes and security constraints as 

input and output the security levels of all of the attributes. Simple, association, and logical 

constraints are processed by this tool. Our algorithm guarantees that there are no security 

violations. However, the algorithm does not guarantee that the minimum safe security levels 

are assigned to the attributes. The algorithm is described in [31]. 

9. Conclusion and future considerations 

In this paper, we have provided an overview of the inference problem, discussed the 

inference strategies that users could utilize to draw inferences, and described the design and 

implementation of a prototype inference controller that can handle certain inference 

strategies of the users. To our knowledge, this is the first such inference controller prototype 

to be developed. This prototype is a useful and powerful tool that can aid and improve the 

security of an existing multilevel secure relational database management system. The 

program can replace the usual user interface to a multilevel secure relational database 

management system and allow the user to enter queries in the SQL language. Finally, we 

discussed the extensions that we have designed and/or developed for the prototype. 

In addition to the extensions discussed here, further work on enhancements to the 

prototype could proceed in many directions. They include 

(1) developing query optimization techniques that could improve the performance of the 
query processor, 

(2) providing the capability of handling more complex constraints, 

(3) developing an inference engine based on concepts in theorem proving, 

(4) developing a tool for checking the consistency and completeness of the security 
constraints, 

(5) developing an integrated tool for processing constraints during query, update, and 
database design operations, and 

(6) develop a knowledge-based inference controller which could handle a variety of 
inference strategies. 

We believe that due to the complexity of the inference problem, an incremental and 

integrated approach to handling inference is appropriate. Our approach shows promise and 

will enhance the security of existing multilevel secure database management systems. 
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