
Data & Knowledge Engineering 11 (1993) 271-297 271

North-Holland

DATAK 180

Design and implementation of a

database inference controller

Bhavani Thuraisingham*, William Ford, Marie Collins and

J o n a t h a n O ' K e e f f e

The MITRE Corporation, Burlington Road, Bedford, MA 01730, USA

Abstract

The Inference Problem compromises database systems which are usually considered to be secure. Here, users

pose sets of queries and infer unauthorized information from the responses that they obtain. An Inference

Controller is a device that prevents and/or detects security violations via inference. We are particularly

interested in the inference problem which occurs in a multilevel operating environment. In such an

environment, the users are cleared at different security levels and they access a multilevel database where the

data is classified at different sensitivity levels. A multilevel secure database management system (MLS/

DBMS) manages a multilevel database where its users cannot access data to which they are not authorized.

However, providing a solution to the inference problem, where users issue multiple requests and conse-

quently infer unauthorized knowledge is beyond the capability of currently available MLS/DBMSs. This

paper describes the design and prototype development of an Inference Controller for a MLS/DBMS that

functions during query processing. To our knowledge this is the first such inference controller prototype to be

developed. We also describe some extensions to the inference controller so that an integrated solution can be

provided to the problem.

Keywords. Multilevel Secure Database Management System; inference problem; inference controller;

security constraints.

1. Introduction

The word inference is commonly used to mean 'forming a conclusion from premises, '

where the conclusion is usually formed without expressed or prior approval. That is, without

the knowledge or consent of anyone or any organization that controls or processes the

premises or information from which the conclusion is formed. The resulting information that

is formed can be innocuously or legitimately used or it can be used for clandestine purposes

with sinister overtones threatening the security of the system. The term information is

broadly defined to include raw data as well as data and collections of data which are

t ransformed into knowledge.

It is possible for users of any database management system to draw inferences from the

information that they obtain from the databases. The inferred knowledge could depend only

on the data obtained from the database system or it could depend on some prior knowledge

possessed by the user, in addition to the data obtained from the database system. The

inference process can be harmful if the inferred knowledge is something that the user is not

authorized to acquire. That is, a user acquiring information which he is not authorized to

know has come to be known as the inference problem in database security.

* Corresponding author. Fax: 1 617 271 2352.

0169-023X/93/$06.00 ~ 1993 - Elsevier Science Publishers B.V. All rights reserved

272 B. Thuraisingham et al.

We are particularly interested in the inference problem which occurs in a multilevel

operating environment. In such an environment, the users are cleared at different security

levels and they access a multilevel database where the data is classified at different security

levels. The security levels may be assigned to the data depending on content, context,

aggregation and time. It is generally assumed that the set of security levels form a partially

ordered lattice with Unclassified < Confidential < Secret < Top Secret. A multilevel secure

database management system (MLS/DBMS) manages a multilevel database. 1 An effective

security policy for a MLS/DBMS should ensure that users only acquire the information at or

below their level. However, providing a solution to the inference problem, where users issue

multiple requests and consequently infer unauthorized knowledge, is beyond the capability

of currently available MLS/DBMSs.

In an earlier article that we published in this journal [29], we described the high level

design of a query processor for a multilevel knowledge base management system. We defined

a multilevel knowledge base management system to be a multilevel database management

system augmented with an inference engine and a knowledge base. The inference engine

modified the query using the security constraints in the knowledge base in such a way that

when a modified query was posed, certain security violations via inference did not occur. In

this paper we describe the detailed design and implementation of a prototype query

processor for such a multilevel knowledge base management system. This query processor is

what we call the database inference controller. The prototype protects a commercially

available relational MLS/DBMS against certain security violations via inference. That is, our

approach is to augment a commercially available multilevel secure relational database

management system with an inference engine. The inference engine, which is the inference

controller, handles a variety of security constraints. It does query modification as well as

response sanitizationZ We describe the design of the inference controller in detail and discuss

the prototype implementation. To our knowledge, this is the first such inference controller

prototype to be developed.

The organization of this paper is as follows. In Section 2 we provide some background

information on the inference problem. In Section 3 we first review the various inference

strategies that users could utilize to draw inferences, and discuss the inference strategies that

can be handled by our prototype. In Section 4, we describe the philosophy upon which the

design of the implementation architecture is based. In particular, we describe (i) a security

policy whose implementation is our ultimate goal and (ii) an approach to its implementation.

In Section 5, we describe the implementation design. The alternative approaches, the choice

architecture, representing security constraints, and the major modules of the Inference

Controller are described. In Section 6, we describe our experiences with the implementation.

Some examples are given in Section 7. In Section 8, we describe some of the extensions to

the inference controller that we have developed. The paper is concluded in Section 9.

2. Background on the inference problem

Two distinct approaches to handling the inference problem have been proposed in the

past. They are:

(i) Handling of inferences during database design.

(ii) Handling of inferences during query processing.

1 Much of the work on MLS/DBMSs has focussed on the relational data model. For a discussion on MLS/DBMS
designs we refer to [8, 23]. A useful starting point for MLS/DBMSs is the Air Force Summer Study Report [1].

2 During sanitization, the sensitive portion of the response is removed.

Database inference controller 273

The work repor ted in [12, 19, 22] focuses on handling inferences during database design

where suggestions for database design tools are given. They expect that security constraints

during database design are handled in such a way that security violations via inference

cannot occur. The thesis for handling inferences during database design is also supported by

others (see e.g. [15]).

In contrast, the work repor ted in [13, 28, 29] focuses on handling inferences during query

processing. Our approach is to augment the query processor with a logic-based Inference
Engine. The Inference Engine, which acts as the inference controller, will a t tempt to prevent

users f rom deducing unauthorized information. We believe that inferences can be most

effectively handled and thus prevented during query processing. This is because most users

usually build their reservoir of knowledge from responses that they receive by querying the

database. It is f rom this reservoir of knowledge that they infer unauthorized information.

Moreover , no mat ter how securely the database has been designed, users could eventually

violate security by inference because they are continuously updating their reservoir of

knowledge as the world evolves. It is not feasible to have to redesign the database

simultaneously.

Other notable work on handling the inference problem can be found in [3, 16, 21]. In [16],

inferences are handled during transaction processing. In [2], a prolog program for handling

the inference problem is described. In [3], an expert system tool which could be used by the

System Security Officer off-line to detect and correct logical inferences is proposed. In [30]

complexi ty of the inference problem is analyzed based on concepts in recursive function

theory.

3. Inference strategies

In this section, we first provide a brief overview of the inference strategies that users could

possibly utilize to draw inferences. This set of strategies is more complete than the one

proposed in [7]. We also give examples of how such inference strategies can be applied to

violate the security of a database system. Then we discuss the inference strategies that are

handled by the inference controller prototype that we have developed. 3

3.1. Classification of inference strategies

(i) Inference by deductive reasoning
In this strategy, new information is inferred using well-formed rules. There are two types

of deductions: classical logic-based deduction and non-classical logic-based deduction. We

discuss each type of deduction here.

Classical logic-based deduction. Rules in classical logic enable new information to be

deduced. One such rule, called the modus ponens, is as follows. 4

3 Note that security violation by inference occurs in multilevel databases if a user acquires unauthorized
information from information that he has obtained by either (i) querying the database, (ii) updating the database,
(iii) examining the metadata (schema and constraints), or (iv) using some real world knowledge. This violation of
security is known as 'The Inference Problem' in Database Security. In a multilevel environment, unauthorized
information is any information which is classified at a level that is not dominated by the user's level. A user acquires
information by using any of the inference strategies discussed in Section 3.1.

4 Other rules include syllogism, conjunction introduction, and conjunction elimination. For a discussion, we refer
to [171 .

274 B. Thuraisingham et al.

A, A----> B ~- B

That is, from the assertions A and IF A T H E N B, deduce the assertion B.

Example. Let the security levels of the assertions A and A---~ B be Unclassified. Let the

security level of the assertion B be Secret. From the rule of Modus Ponens, an Unclassified

user deduces the assertion B which is Secret. Therefore, it should be the objective of the

inference controller to not release both assertions A and A---~ B to an Unclassified user.

Non-classical logic-based deduction. We name the deductions not made within classical logic

to be non-classical logic-based deductions. They include deductions based on probabilistic

reasoning, fuzzy reasoning, non-monotonic reasoning, default reasoning, temporal logic,

dynamic logic and modal logic-based reasoning. Inferences based on this strategy are also

according to well-formed rules.

An example of a rule based on fuzzy reasoning is:

A(0.5), A-->B (0.2) I-B (0.2)

That is, if A is true with a fuzzy value of 0.5 and A---~ B is true with a fuzzy value of 0.2,

then B is true with a fuzzy value of 0.2.

Example. Consider the fuzzy rule given earlier. Suppose B is Secret if its fuzzy value is

greater than 0.1. If the ruzzy rule, A(0 .5) and A---~B (0.2) is all Unclassified, then an

Unclassified user can deduce B (0.2) which is Secret.

(ii) Inference by inductive reasoning
In this strategy, well-formed rules are utilized to infer hypothesis from the examples

observed. One example is by defining a function f from the values f(0), f(1), f(2) observed.

Example. Suppose the security constraint 'All salaries which are more than 50 K are Secret '

is itself assigned a Secret security level. If an Unclassified user can obtain various salary

values, then based on the examples, he may hypothesize the sensitive constraint. That is, the

Unclassified user may inductively infer the sensitive rule. It should be the objective of the

inference controller to prevent this Unclassified user from inferring the sensitive constraint.

(iii) Inference by analogical reasoning
In reasoning by analogy, statements, such as 'X is like Y', are used to infer properties of X

when given the properties of Y. This type of reasoning is common to frame-based systems

[10].

Example. Suppose the properties of an entity X are Secret and the properties of an entity Y

are Unclassified. Assume further that the statement 'X is like Y' is Unclassified. Then an

Unclassified user can infer analogically the properties of the entity X. It should be the

objective of the inference controller to prevent the Unclassified user from inferring the

sensitive information.

(iv) Inference by heuristic reasoning
Heuristics are criteria, methods, or principles for deciding which among several alternative

courses of action promises to be the most effective in order to achieve some goal [20]. In

Database inference controller 275

general, a heuristic is not well defined and may be a rule of thumb that is used to guide one's

actions. Experts often use heuristics in order to solve a problem. Inference by heuristic

reasoning is the process of deducing new information using various heuristics.

Example. Given some information X, heuristic rules and past experience are used to infer

some sensitive information Y. An objective of the inference controller should be to prevent a

user from acquiring this sensitive information.

(v) Inference by semantic association
In this strategy, association between entities is inferred from the knowledge of the entities

themselves.

Example. Consider the semantic association between names and salaries. A security con-

straint could classify names and salaries taken together at the Secret level, but individually

they could be classified at the Unclassified level. An Unclassified user could obtain names

and salaries and infer the Secret association between them. It should be the objective of the

inference controller to prevent an Unclassified user forming such an association.

(vi) Inferred existence
Using the strategy of inferred existence, one can infer the existence of an entity Y from

certain information on Y. For example, from the information 'John lives in Boston, ' it is

reasonable to infer that 'There is some entity called John. '

Example. Consider the statement 'John lives in Boston' and 'There is a man called John. '

From the statement 'John lives in Boston' it can be inferred that 'There is a man called

John. ' If the statement 'John lives in Boston' is Unclassified and the statement 'There is a

man called John' is Secret, then an Unclassified user can infer Secret information. It should

be the objective of the inference controller to prevent this type of inference.

(vii) Statistical inference
From the various statistics computed on a set of entities, information about an individual

entity in the set is inferred.

Example. Users may infer sensitive information about individual data items from the various

statistics computed. This inference process is statistical inference. Much research has been

conducted on developing inference controllers for handling statistical inferences [6].

3.2. Strategy addressed by the inference controller

Our inference controller prototype handles classical logic-based deductive reasoning and

inference by semantic association. We illustrate these strategies with some simple examples.

Note that our prototype can handle more complicated examples.

Example. Suppose there is a security constraint which classifies all destination of ships at the

Secret level. Further, there is a rule 'ship names imply the destinations' classified at the

Unclassified level. Suppose an Unclassified user asks for the ship names. Our prototype will

generate all deductions that can be made from ship names. It will find that from names one

can infer destinations which are sensitive. Therefore, it will not release the ship names. Note

that by releasing the ship names, a user can infer the destination using the rule modus

ponens.

276 B. Thuraisingham et al.

Example. Suppose there is a security constraint which classified the ship names and

destinations at the Unclassified level, but together they are classified at the Secret level. The

inference controller would ensure that Unclassified users can never see ship names and

destinations together, either directly or indirectly.

Example. Suppose there is a security constraint which classifies information about all ships

going to Libya at the Secret level. Suppose an Unclassified user requests information about

all ships. The inference controller will ensure that only the information about ships which are

not going to Libya will be given. Note that if information about all the ships is given, then

the user can use the rule conjunction elimination and get information about the ships going

to Libya.

It has also been suggested that if an Unclassified user already knows all the information

about ships, then withholding information about ships going to Libya does not provide any

additional security measures. We believe that once an Unclassified user gets information

about all the ships, there is already a security violation in the real-world. Therefore , either

the information has to be downgraded or one has to live with the security violation. That is,

once a security violation has already occurred, our inference controller is not going to erase

it away from the memory of the Unclassified user.

4. Handling inferences during query processing

In this section, we describe our design philosophy in handling inferences during query

processing. Our implementation design is derived from such a philosophy. We first describe a

security policy for handling inferences during query processing and then discuss an approach

for implementing this policy. Much of the information in this section has been obtained from

our earlier article in this journal [29]. Note that the security policy has been influenced by

that of Lock Data Views [23].

4.1. Security pol icy

In this section, we state the security policy for query processing. Note that such a policy

was first proposed by the Lock Data Views Project [23].

(1) Given a security level L, E(L) is the knowledge base associated with L. That is, E(L)

will consist of all responses that have been released at security level L over a certain time

period and the real world information at security level L.

(2) Let a user U at security level L pose a query. Then the response R to the query will be

released to this user if the following condition is satisfied:

F o r all security levels L* where L* dominates L,

if (E (L *) U N I O N R) ~ X (for any X) then L* dominates Level(X),

where A ~ B means B can be inferred from A using any of the inference strategies and

Level(X) is the security level of X.

We assume that any response that is released into an environment at level L is also

released into the knowledge base at level L*>~ L.

What this means is that before any response R is released to a user at level L, the response

is first inserted into knowledge base E(L*) for all L* i> L. Then for each L*/> L, it is checked

whether the response R together with the information already in the knowledge base E(L*)

will lead to any information say, X, where X is not dominated by L*. If this is the case, then

the response cannot be released to the user at level L. Such a security policy is enforced

because we assume that

Database inference controller 277

(i) a user at level L can see all responses released to users at level L ' ~ < L, and

(ii) all users at level L have access to the same information.

Therefore , by releasing a response to a user at level L, if users at some level L* 1> L can infer

information above their level, there is a security violation.

For example, assuming that there are three levels, Unclassified < Secret < Top Secret, a

security violation could occur by releasing a response to an Unclassified user's query, if, by

reading the response, either

(i) Unclassified users deduce information which is either Secret or Top Secret, or

(ii) Secret users deduce information which is Top Secret.

The response to the Unclassified user's query can be safely released only if it can be

determined that both the Secret and Unclassified users cannot deduce information to which

they are not authorized by reading the response.

4.2. Implementation of the policy

In this section, we discuss the techniques that we have used to implement the security

policy. They are: query modification and response processing. Each technique is described
below .5

4.2.1 Query modification
Query modification technique has been used in the past to handle discretionary security

and views [24]. This technique has been extended to include mandatory security in [9]. In

our design of the query processor, this technique will be used by the inference engine to

modify the query depending on the security constraints, the previous responses released, and

real world information. When the modified query is posed, the response generated will not

violate security.

We illustrate the query modification technique with examples. Consider a database which

consists of the relation. The attributes of EMP are SS#, Ename, Salary and D e p t # with

SS# as the key. Let the following constraints be enforced:

(1) EMP(X,Y,Z,D) and Z > 60K---~ Level(Y, Secret)

(2) EMP(X,Y,Z,D) and D = 10--9 Level(Y, Top Secret).

The first rule is a content-based constraint which classifies a name whose salary is more

than 60K at the Secret level. Similarly, the second rule is also a content-based constraint

which classifies a name whose department is 10 at the Top Secret level. Suppose an

Unclassified user requests the names in EMP. This query is represented as follows:

EMP(X,Y_,Z,D) and Level(Y, Unclassified)

The inference engine will examine the level of the user, the query, the constraints, and

modify the query to retrieve names where the corresponding salary is less than or equal to

60K and the corresponding department number is not 10. The modified query is expressed as

follows:

EMP(X,Y__,Z,D) and Z~<60K and D () 1 0 .

Note that since query modification is performed on-line, it will have some impact on the

performance of the query processing algorithm. However , several techniques for semantic

query optimization have been proposed recently for intelligent query processing in a

5 As stated in Section 3.2, prototype handles only limited inference strategies.

278 B. Thuraisingham et al.

non-secure environment. These techniques could be adapted for query processing in a

multilevel environment in order to improve the performance.

4.2.2 Response processing

For many applications, in addition to query modification, some further processing of the

response such as response sanitization may need to be performed. We will illustrate this

point with an example.

Example. Consider the following release constraints:

(i) all names whose corresponding salaries are already released to Unclassified users are

Secret, and

(ii) all salaries whose corresponding names are already released to Unclassified users are

Secret.

Suppose an Unclassified user requests the names first. Depending on the other constraints

imposed, let us assume that only certain names are released to the user. Then the names

released have to be recorded into the knowledge base. Later, suppose an Unclassified user

(does not necessarily have to be the same one) asks for salaries. The salary values (some or

all) are then assembled in the response. Before the response is released, the names that are

already released to the Unclassified user need to be examined. Then the salary value which

corresponds to a name value that is already released is suppressed from the response. Note

that there has to be a way of correlating the names with the salaries. This means the primary

key values (which is the SS#) should also be retrieved with the salaries as well as be stored

with the names in the release database.

There are some problems associated with maintaining the release information. As more

and more relevant release information gets inserted, the knowledge base could grow at a

rapid rate. Therefore , efficient techniques for processing the knowledge base need to be

developed. This would also have an impact on the performance of the query processing

algorithms. Therefore , one solution would be to include only certain crucial release

information in the knowledge base. The rest of the information can be stored with the audit

data which can then be used by the Systems Security Officer for analysis.

5. Implementation design

5.1. Overview

In Section 4, we described the issues involved in handling inferences during query

processing. The security policy and its implementation that we described is one of our

ultimate goals for providing a solution to the inference problem. However , achieving such as

a goal is not feasible in the near-term. This is because the amount of constraints that need to

be handled in any realistic situation may be very large. These constraints could also be quite

complex with several conditions associated with them. Further, it is possible for the

knowledge base to grow rapidly as time progresses.

Because of these considerations, we propose an incremental approach to implementing the

Inference Controller. Our initial goal is to build tools that can be used to enhance the

security features of existing commercial multilevel relational systems during query process-

ing. At present there are no such inference controllers available. The prototype that we have

developed could be enhanced into a production system without much difficulty. This way an

Inference Controller that functions during query processing could be packaged together with

the multilevel relational database system. While our initial focus is on building a tool that

Database inference controller 279

could be of commercial use in the near-term, we are also carrying out research activities in

order to achieve our ultimate goal in providing solutions to the inference problem.

In Section 5.2, we describe the various architectures that we considered for the im-

plementation. In Section 5.3, we describe the representation of the constraints. In Section

5.4, we describe the modules of the inference controller, and in Section 5.5, we discuss some

major issues.

5.2. Architecture comparison

5.2.1 Alternate architectures

We examined three different architectures for the implementation. A description of each

architecture is given below.

(i) In the first architecture, the database, as well as the knowledge base, is considered to be

a set of Prolog clauses. Query processing would then amount to theorem proving. Many

expert systems have been developed using Prolog (see, e.g. [18]). These systems take

advantage of the backward chaining mechanisms provided by Prolog. In addition,

several other reasoning mechanisms have also been implemented using Prolog. Imple-
6 menting the inference controller in Prolog would produce a fairly powerful system.

(ii) The second alternative is to augment a relational database management system with a

theorem prover implemented in Prolog. The advantages of augmenting a relational

database system with an inference engine are discussed in [14]. Many commercial
relational systems already have a Prolog interface.

(iii) As the third alternative, we considered an architecture where a multilevel relational

database system was augmented with an inference engine. Such an architecture would

be useful as the multilevel relational database system would ensure the enforcement of

a basic mandatory security policy. The inference engine then needs to implement only

the policy extensions which are enforced in order to handle inferences.

After examining the three architectures, we decided to select the third one. This was

because we are interested in handling security violation via inference for database systems

which are already considered to be secure. Commercial multilevel relational systems are

already available. Therefore, we fell that in order to produce a useful prototype we need to

use such a system which will enforce the basic mandatory security policy.

5.2.2 Implementation architecture

Once we had settled on the architecture, the next task was to select a multilevel relational

database system for the implementation. After investigating the various systems that were

available, we selected the Secure SQL Server 7 [25] for the following reasons:

(i) the system was already available for our use,

(ii) we had prototyping experiences with the nonmultilevel version of Sybase's Relational
DBMS, and

(iii) the system provided the basic security features that we needed.

The Secure SQL Server runs on a Microvax with Ultrix Operating System. 8 The design of

the prototype assumes that the operating system is multilevel secure. 9 It allows for sixteen

6 The implementations described in [21, 27] use such an architecture. Both these implementations are rather
simple.

7 Secure SQL Server is a product of Sybase Inc. We will also refer to this system as the Server. We are using

Release 1.0 of the version targeted to be evaluated at the B1 level. For a discussion on the levels of assurance, we

refer to [26].

s Both Microvax and Ultrix are products of Digital Equipment Corporation. Ultrix is a version of Unix. Unix is a

trademark of AT&T Bell Laboratories.

9 The actual operating system used is not multilevel secure.

280 B. Thuraisingham et al.

Query in
SQL

Parsed Query

User Interface

Inference Engine

I Formatted Response

I
Sanitized Response

(Also the Inference Conta'oller)

Modified]Query ~ Response l

SYBASE's
Secure

SQL Server

I
Query/Update
Knowledge Base

Database and l
owledge Base)

Fig. 1. Implementation architecture.

security levels with up to 64 compartments for each level. The classification of data is applied
at the row (i.e. tuple) level. That is, each row is assigned a single security level. The security

policy enforced is the following. A subject can read a tuple if the subject's level dominates

that of the tuple. A subject can update a tuple if the subject's level is equal to that of the

tuple. The relations are classified at the level of the user who creates them. A relation

classified at level L can have tuples at levels ~>L. The data manipulation language is based on

the standard SQL [2].

A high level implementation architecture is shown in Fig. 1. In this architecture, the
Secure SQL Server is augmented with an Inference Engine. 1° We have stored the knowledge

in the database. This way, the knowledge in the knowledge base can also be protected by the
Secure Server. The Inference Engine does query modification as well as response processing.

We are implementing the Inference Engine in 'C' because of the C programming language
interface that already exists for the Secure SQL Server. In the long-term, we envisage

replacing such an Inference Engine with a more powerful logic-based system.

5.3. Definition and representation o f security constraints

5.3.1 Security constraints

Security constraints are rules which assign security levels to the data. We have defined

various types of security constraints. They include the following:

(i) Constraints that classify a database, relation or an attribute. These constraints are

called simple constraints.
(ii) Constraints that classify any part of the database depending on the value of some data.

These constraints are called content-based constraints.
(iii) Constraints that classify any part of the database depending on the occurrence of some

real-world event. These constraints are called event-based constraints.

(iv) Constraints that classify associations between data (such as tuples, attributes, elements,
etc.). These constraints are called association-based constraints.

lo The Inference Engine is also the Inference Controller.

Database inference controller 281

(v) Constraints that classify any part of the database depending on the information that has

been previously released. These constraints are called release-based constraints. We

have identified two types of release-based constraints. One is the general release

constraint which classifies an entire attribute depending on whether any value of

another attribute has been released. The other is the individual release constraint,

which classifies a value of an attribute depending on whether a value of another

attribute has been released.

(vi) Constraints that classify collections of data. These constraints are called aggregate

constraints.

(vii) Constraints which specify implications. These are called logical constraints.

We will give examples of constraints belonging to each category currently handled by our

prototype. In our examples we assume that there are two relations EMP and DEPT. EMP

has attributes SS#, NAME, SALARY and D# (with SS# as the key), and DEPT has

attributes DEPT#, DNAME and MGR (with DEPT# as the key). Note that D# and

DEPT# take values from the same domain. The constraints are expressed as some form of
logical rules.

Simple constraints

R(A1, A2 An)---* Level(Ail, Ai2 Ait) = Secret

{Each attribute Ail, Ai2 Ait of relation R is Secret}

Example: EMP(SS#, NAME, SALARY, D#)---~ Level(SALARY) = Secret.

Content-based constraints

R(A1, A 2 , . . . A n) AND COND(Value(B1, B 2 , . . . Bm)) ~ Level(Ail, A i 2 , . . . Ait) =

Secret

{Each attribute Ail, A i 2 , . . . Ait of relation R is Secret if some specific condition is enforced

on the values of some data specified by B1, B2 Bm}

Example: EMP(SS#, NAME, SALARY, D#) AND (Value(NAME) = John) ~ Level(SA-

LARY) = Secret.

Association-based constraints (also called context constraints)

R(A1, A2 An) ~ Level(Together(Ail, A i 2 , . . . Ait)) = Secret

{The attributes Ail , Ai2 Ait of relation R taken together are Secret}

Example: EMP(SS#, NAME, SALARY, D#) --~ Level(Together(NAME, SALARY))

Secret.

Event-based constraints

R(A1, A 2 , . . . An) AND Even t (E)~ Level(Ail, A i 2 , . . . Ait) = Secret

{Each attribute Ail , Ai2 Ait of relation R is Secret if event E has occurred}

Example: EMP(SS#, NAME, SALARY, D#) AND Event(Change of President)

Level(SALARY, D#) = Secret.

General release-based constraints

R(A1, A2 An) AND Release(Ai, Unclassified)---~ Level(Aj) = Secret

{The attribute Aj of relation R is Secret if the attribute Ai has been released at the

Unclassified level}

Example: EMP(SS#, NAME, SALARY, D#) AND Release(NAME, Unclassified)
Level(SALARY) = Secret.

282 B. Thuraisingham et al.

Individual release-based constraints

R(A1, A 2 , . . . A n) A N D Individual-Release(Ai, Unclass i f ied)~ Level(Aj) = Secret

The individual release-based constraints classify elements of an attribute at a particular level

after the corresponding elements of another attribute have been released. They are more

difficult to implement than the general release-based constraints. In our implementation, the

individual release-based constraints are handled after the response is generated by the

MLS/DBMS, but before it is released to the user.

Aggregate constraints

Aggregate constraints classify collections of tuples taken together at a level higher than the

individual levels of the tuples in the collection. There could be some semantic association

between the tuples. We specify these tuples in the following form:

R(A1, A2 An) AND Set(S, R) AND Satisfy(S, P) ~ Level(S) = Secret

This means that if R is a relation and S is a set containing tuples of R and S satisfied some

property P, then S is classified at the Secret level. Note that P could be any property such as

'number of elements is greater than 10.' The aggregate constraints are also handled after the

response is generated by the MLS/DBMS, but before it is released to the user.

Logical constraints

Logical constraints are rules which are used to derive new data from the data in the

database. The derived data could be classified using one of the other constraints. Logical

constraints are of the form:

Ai ~ Aj; where Ai, Aj are attributes of either a database relation or a real-world relation.

Other constraints

There are other constraints that are handled by the design and not by our prototype. These

include level constraints and fuzzy constraints. Level constraints classify an attribute at a

particular level depending on the level of another attribute. For example, the level of salary

is Top Secret if the level of name is Secret. Fuzzy constraints assign fuzzy values to the

constraints. For example, the level of name is assigned Top Secret with a fuzzy value of 0.8.

5.3.2 Representation issues

Our design handles the constraints in all of the above categories. The constraints entered

by the SSO are then processed by a module of the Inference Controller and stored in a

Event linked list

Consa'aint ~ Together linked list

Condition linked list

~Next consU'aint pointer

Fig. 2. Constraint structure.

Database inference controller 283

graphical structure. We found this an efficient way to represent the constraints. We have

developed algorithms to scan the graph structure in order to obtain the relevant constraints

during query processing. The algorithms also perform some optimization for efficiency. The

graph structure is illustrated in Fig. 2. The relations are combined to form a linked list. Each

relation has sixteen pointers emanating from it; one for each security level. Associated with

each level is a linked list of constraints. Each constraint has a set of attributes that it

classifies, constraint specific information such as events and conditions, and a pointer to the

next constraint. Our design allows for the specification of events and conditions which are

quite complex. Each constraint that is associated with a level classifies a set of attributes at

that level.

5.4. Modules of the query processor

An overview of the major modules is shown in Fig. 3. The query processor consists of five

modules P1 through P5. Each module is implemented as an Ultrix process. 11 The processes

communicate with each other via the socket mechanism. A brief overview of the functions of

each module is given below. We also identify the trust that must be placed on each process.

Process PI: The user interface manager

This process asks for password and security level from the user. Since we assume that the

operating system is secure, we rely on the identification and authentication mechanism

provided by the operating system. Due to this feature, P1 need not be a trusted process. It

operates at the user's level. P1 accepts a query from the user and performs syntax check. It

Request

Result
User

PI: User Interface Manager
P2: Central Inference Controller

P3: Constraint Gatherer
P4: Sanitizer

P5: Release Database Updater

~llcg

- - - SYBASE's Secure SQL Server

Fig. 3. Major modules.

H Al though the operat ing system used in the implementat ion is not secure, our design assumes the use of a

multi level secure operat ing system.

284 B. Thuraisingharn et al.

then sends the query to process P2 and returns the response received from P2 to the user. It

then waits in idle state for a request from the user.

Process P2: The central inference controller

This process first sets up communication with P1. It then waits in idle state for requests

f rom P1. When a request arrives from P1, it logs into the database server as the user 's level.

It then requests process P3 (via socket) to return applicable constraints. The query is then

modified based on the constraints (if any). The modified query is then sent to the

M L S / D B M S . The response is then sent to process P4 for further processing. When P4

returns the sanitized response, a request is sent to process P5 to update the release database

and the response is given to P1; P2 then returns to idle state. If constraints classified at a

higher level are not processed by P3 or if the response from the M L S / D B M S is first given to

P4 and P5 for sanitization and release database update, then P2 need not be a trusted

process. However , in our implementat ion, since P2 could have access to higher level

information, it must be trusted. It should also be noted that if P2 is not trusted, then the

correctness of its functions cannot be guaranteed.

Process P3: The constraint gatherer

This process first sets up sockets for communication with P2 and then logs into the

database server at system-high. This is because P3 examines not only the security constraints

classified at or below the user 's level, but also higher level constraints. These higher level

constraints are examined to ensure that by releasing a response at level L, it is not possible

for users cleared at a higher level to infer information to which they are not authorized. P3

builds and maintains the constraint table whenever the constraints are updated. It waits in

idle state for requests from P2. When a request arrives, it builds a list of applicable

constraints and sends the constraint structure to P2 and then returns to idle state. Since P3

maintains the security constraints, it is a trusted process.

Process P4: The sanitizer

This process sets up sockets for communication with P2 and logs into the database server

at system high. It waits in idle state for a request to arrive f rom P2. When a request arrives,

which consists of the response and the applicable release constraints, it sanitizes the response

based on the information that has previously been released. It reads the release database

maintained at various levels in order to carry out the sanitization process. It then returns the

sanitized response to P2 and returns to idle state. Since response sanitization is a security

critical function, P4 must be trusted.

Process P5: The release database updater

This process sets up communicat ion with P2. It waits in idle state for requests f rom P2.

When a request arrives, it logs into the database server at all levels from system-high to the

user 's level and updates the release database at each level depending on the release

constraints for that level. Note that this is necessary only if higher level constraints are

examined by P3. If not, P5 can log into the database server only at the user 's level. After

each update to the release database, it logs out of the database server at each level. It

returns a status message to P2 upon completion and returns to idle state.

5.5. General discussion on the design

In our design, we have assumed that the process P3 (the constraint gatherer) has access to

all of the security constraints. Also, in order to process a user 's query, even the constraints

Database inference controller 285

classified at a higher level may have to be examined if they are relevant. This means that the

actions of a higher level user have impacted those of a lower level one. This is a signalling

channel. 12 One way to prevent such a channel is to ensure that the process P3 only examines

the constraints at or below the user 's level. Some meaningful inferences may not be detected

if such a restriction is made.

The problem becomes worse if users are permit ted to update the constraints. Then, a

malicious subject acting on behalf of a user could manipulate the constraints in such a way

that information is covertly passed to a lower level subject. Such covert channels can be

p reven ted by ensuring that only some authorized individual such as the SSO has write access

to the constraints. Our design assumes that the constraints are protected in a special domain

and can be manipulated only by the SSO.

Our design assumes that the constraints are consistent and complete. To ensure con-

sistency, we assume that if two constraints classify the same piece of data at the same time at

different security levels, the data is classified at the higher of the two levels. To ensure

completeness we assume that if a piece of data is not explicitly assigned a security level, then

lowest security level supported by the system is assigned to it. What would be useful is a tool

which examines the constraints and determines whether the constraints are consistent and

complete . For consistency, the tool would check whether there are two constraints which

classify the same piece of data at different security levels at the same time. For complete-

ness, the tool would check whether there is a piece of data that is not assigned any security

level.

The details of managing the release database are yet to be determined. As the release

database grows larger, we need efficient techniques to manage this database. Another

question that remains to be answered is the length of t ime release data has to be kept in the

database. We feel that this decision is application dependent and is up to the SSO.

We have placed much of the processing as possible on the M L S / D B M S . The inference

controller mainly processes constraint related information. It does not manipulate the

information in the database. We have assumed that the underlying operat ing system is

multilevel secure. The operating system must at least support the following policy.

(i) Two processes at the same security level can communicate with each other.

(ii) A process can send a message to another process at a higher security level.

(iii) A higher level process can send a message to a lower level process only if the operat ion

is trusted.

6. Experience with implementation

We have completed the implementat ion of all the modules. Over 8500 lines of C code have

been implemented. In Section 6.1, we discuss the major issues of the implementat ion and, in

Section 6.2, we discuss the implementat ion of specific constraints.

6.1. Major issues

Our implementa t ion goal was to minimize the dependency on the Secure SQL Server as

much as possible. However , due to the limitations inherent in SQL and the restricted utility

of Secure SQL Server and its C interface, there was some dependency on the M L S / D B M S .

12 Signalling channels occur when the actions of higher level users signal information to lower level ones. They can
be regarded as a special form of covert channels. Covert channels occur when two subjects at different security
levels collude in such a way that information is passed from the higher level subject to the lower level subject by
means other than the normal communication channels [11].

286 B. Thuraisingham et al.

One feature of Secure SQL Server that was useful was the fact that a temporary table

created by a process could only be seen by that process and no other. We made use of this

feature as much as possible in order to protect the temporary relations created during the

execution of a query. That is, it would only return results at or below the user 's login level.

We first developed the infrastructure of the inference controller program. This involved

the creation of the five processes and establishing the necessary communicat ions between

them. Some of these processes also had to log into the Secure SQL Server at the appropr ia te

security levels. The program was set up in such a way as to leave hooks for the easy addition

of more features. Since this project is a preliminary prototype of a system which could

conceivably be extended in the future, we have tried to continue this approach of flexibility

and modulari ty to make further expansion of the program easier. We also provided the

capability to enter the constraints in a format that is a simplified version of the rules we

described in Section 5.3.1. Since the development occurred in a resource rich environment ,

the constraint structures were stored in main memory . However , if the number of constraints

are large, and /o r sufficient memory is not available, then it might be necessary to store the

structures in files. We then implemented the processes P1, P2, P3, P5, and P4 in order. Some

essential points of the implementat ion are described below.

As soon as a user types a query, P1 sends the original query to the Secure SQL Server

using a 'parse only' feature of the Server that allows syntax checking without generating a

result. The assumption is that any query that causes a parsing error at this stage should not

be allowed to proceed further. During the syntax check, the error handling routines treat any

Server error as fatal, and the query is aborted, with the user then being p rompted for a new

query. Using the 'parse only' option, the Server is able to detect structural and syntax errors

in the query, but not semantic errors, which are not caught until later. Once the syntax check

is passed, the error handlers treat any Server error as an indication that something is wrong

with the user query. A flag is set to indicate this fact, and processing continues. When the

t ime comes to submit the modified query to the Server, this flag is noticed and the modified

query is blocked, with no result being returned to the user. An unresolved question in this

area is how many of the Server error messages should the user be permit ted to see? The user

should at least get the error messages that he would have received in a system without an

inference controller, but it is conceivable that some error messages could reveal facts about

the structure or content of the database that the user is authorized to see. At the present

t ime, we follow a strategy of showing everything to the user for development purposes, but

this would need further study in a realistic production system.

In P2, the central inference controller, the main problem is the actual modification of the

query once the applicable constraints have been returned by P3. These constraints come

back in the form of conditions to be inserted in the where clause of the query to restrict what

data is to be released. The problem here is that while the user may make a simple query

concerning a single table, the constraints could deal with multiple tables. For example, if the

user were to issue the query 'select ename, salary from EMP' and if the constraint

' D E P T . d n a m e = 'Security'---~ Leve l (EMP.name)= 10' were enforced, then the condition

' D E P T . d n a m e ! = 'Securi ty" will be inserted into the where clause. That is, the modified

query would be

'select ename, salary f rom EMP where D E P T . d n a m e ! = 'Securi ty" .

This would cause an error since D E P T is not named in the from clause. Therefore , the

first step in the solution to this problem is to build the correct from clause. We start with the

user 's original from clause, assumed to be correct because it passed the syntax check. Then,

we build the where clause from constraints returned from P3 by looking for relation names

that are not already in our from clause. Since our constraints syntax specifies that all

at tr ibute specifications must be in the form REL.a t t r , relation names are indicated by the

Database inference controller 287

presence of a period (' . ') . The word to the left of a period is assumed to be a relation name,

and is added to the from clause if it is not already there. This approach could conceivably

cause problems if the where clause contained references to floating point numbers (e.g.

'6.01e23'), but for our prototype it was judged to be sufficient. A general solution would

necessarily involve complicated content-based parsing to determine where in a condition the

relation name is located. Once the correct from clause has been built, the query stands as:

'select ename, salary from EMP, D E P T where DEPT.dname ! = 'Securi ty".

While this is bet ter than before, it is still not correct due to a situation which we call the

' join problem. ' In Secure SQL Server (and probably some of the other Relational DBMSs),

joins of two relations are handled by taking the Cartesian product of the two tables and

applying the conditions in the where clause to select the correct rows from the product. The

tables being joined must have a common column or key for the result to make sense. This

condition is not imposed by Secure SQL DataServer but rather by logic. Secure SQL Server

will comply with the above query, returning each row of DEPT, with rows having

DEP T. dna m e = 'Security' removed. In an interactive system where the user's query is built,

the solution would be to insert the condition 'EMP .D # = D E P T . D # ' into the where clause

to ensure a reasonable result. This seems intuitively obvious, but it is hard to mechanize.

Our solution was to keep a table, known as the ' join_table, ' which lists groups of relations

and their corresponding conditions. A sample entry in the join_table might be:

relations condition

EMP, D E P T E M P . D # = D E P T . D #

Once the program builds the from clause, it checks each row of the join table. If all the

tables in the 'relations' field are present in the from clause, then the condition in the

'condition' field is inserted into the where clause to ensure a correct join. 13

6.2. Constraint processing

We have implemented all of the constraints discussed in Section 5.3.1. We have modified

the format of the constraints slightly so that the program can manipulate them more

efficiently. However , we have designed a tool which will ease the burden placed on the

System Security Officer when entering the constraints. Note that the individual release-based

and aggregate constraints are handled after the response from the MLS /D BMS is generated,

but before it is released to the user.

Implementing the simple and content-based constraints was fairly straightforward. As

discussed earlier, the process P3 builds the constraint structure in memory. For each

attribute A and level L, it does the following. If C1, C2 Cn are the conditions associated

with constraints which classify the attribute at L, then it builds a string NOT(C1 A C2 A

• • • A Cn) and inserts it as part of the structure. Later when P3 receives a query from P2, it

first examines the query, the level of the user who requested the query, and the constraint

structure. It then assembles the relevant strings that it built earlier and inserts the resultant

string into the wher clause of the query. The modified query is returned to P2 for processing.

13 Note that it is possible to have multiple entries in the join table for two relations. Therefore, there must be a

way to determine which of these entries should be considered for a particular query. At present, we assume that

there is at most one entry in the join table for each relation. Therefore, the condition associated with the relation

entry is taken to build the where clause. For a more general solution, it has been suggested to us that the join clause

could be attached to the constraint itself. Another solution will be to attach the relevant constraints to the entries in
the join table.

288 B. Thuraisingham et al.

Association-based constraints are triggered by the presence of specified attributes in the

select clause. The result is the removal of specified attributes from the select clause. Note

that one problem with the association-based constraints is that a user can request individual

queries to obtain one of the attributes and then be able to assemble the response himself. We

have designed an algorithm which would generate all of the association-based constraints

given an initial set of association-based constraints. That is, if a relation EMP has attributes

SS#, name, and salary, and if the association between names and salaries are classified at

the Secret level, then either the association between names and SS# or salaries and SS#

must be classified at the Secret level.

Event constraints are handled by maintaining an event table which is separate from the

constraints table. The event table specifies the events that have occurred. When P3 receives

a query, it examines the event table to determine the events that have occurred, checks the

event constraints in the constraint structure and modifies the query accordingly.

General release constraints are triggered by the fact that certain attributes have been

released to users at certain levels. They require the program to maintain a history table of

attributes it has released. For every user query, the program writes into its release-table the

fact that it is releasing each attribute at a given level. Then, when the release constraints are

processed, the program checks to see if the specified attributes have indeed been released at

the specified level. The release database is maintained by the process P5.

Individual release constraints are special instances of the general release constraints. They

operate on the individual tuples. That is, they examine the tuples that have been released

previously and determine whether all of the tuples in the current response can be released.

This tuple level dependency makes this constraint different to the other constraints discussed

earlier. Since individual release constraint applies to data released from each of the previous

queries, possibly, including the current one, the response is sanitized, in addition to the

query modification process.

The implementation of the individual release constraint involved no modification to P3,

since it conceptually involved sanitization as opposed to preprocessing. P3 therefore does its

own work, gathering the applicable constraints and returning control to P2, which modifies

the query to include the constraints returned from P3. When this is done, it passes the query

to P4, the Sanitizer. This process examines the record of past releases, called the individual

release table (or IRT), to see which of the individual release constraints apply to the current

query. Before it does this, however, it first runs a test version of the current query and adds

the results to the environment found in the IRT. This allows the responses from the current

query to trigger individual release constraints, as well as responses in the past.

Once P4 has decided which individual release constraints apply to the query, it generates a

phrase to be inserted into the where clause of the query, and sends it back to P2. This phrase

is actually a series of subqueries from the IRT that ensures that any data released from this

query will not violate the individual release constraints. Once this is done, the sanitization is

complete, and all that remains is the updating of the IRT to reflect the newly released

information. Conceptually, this is the job of P5, the knowledge base updater, but as an

implementation detail, the requirements of updating the IRT were not substantial enough to

warrant the overhead of a physically distinct process. As a result, the knowledge base is

updated from P2 after P4 completes his job.

To handle aggregate-based constraints, the program examines the response after the

individual release constraints are processed. It then classifies collections of tuples strictly

based on their size and not on their content. For example, if collections of more than 30

tuples are classified Secret, and if an Unclassified user poses a query, any response which

contains more than 30 tuples is suppressed. This is done by first noting the applicable

Database inference controller 289

constraints and remembering the one allowing for the lowest number of tuples. After the

query is run, the number of rows is counted, and the result is released only if it has fewer

tuples than the minimum number specified by the aggregate constraints. Note that we have

provided a simple solution to handling aggregate-based constraints. In reality, a user could

pose sets of queries and be able to bypass the aggregate-based constraints. More research

needs to be done in this area so that algorithms for handling aggregate constraints can be

developed.

Logical constraints are different from the others. They are in fact rules which can be used

to deduce new information from existing information. They are not triggered as the other

constraints are, and they do not cause the security levels of the attributes to be changed. An

example of a logical rule is:

Logical(EMP. S S # --~ EMP. ename) .

This means that a user with access to SS# is presumably able to figure out the name values,

by some unspecified means.

Thus, queries requesting SS# must assume that the user will also know ename if SS# is

released, and take this into account as it selects the constraints which apply to the user's

query. In this example, a query for SS# will result in the triggering of constraints that apply

to ename also, just as if the user had queried for both SS# and ename. In fact, the program

handles logical rules in just this way, using a graph structure to store the various implica-

tions, and traversing the graph structure to see what inferences could be drawn from SS#,

for example. In this case, it would see that ename could be inferred, so it physically inserts

ename into its copy of the query and proceeds from there, with ename triggering constraints

just as SS# would.

It appears that there is a noticeable degradation in performance when individual release

constraints are handled. Large amounts of data need to be recorded. There are possibilities

for optimization and this will be part of our future work. From the experiments that we have

carried out, the performance impact of handling all of the other constraints is marginal. That

is, there is hardly any visible difference between the execution times of the query processing

strategy with or without the inference controller.

7. Examples

In this section we illustrate the processing of the query processor with some examples. Let

the database consist of two relations EMP and DEPT. The attributes of EMP are SS#,

Name, Salary, Date (start date of employment) , and Dep t# . Its primary key is SS#. The

attributes of D E P T are D # , Dname, Mgr, and E m p # (number of employees). Its primary

key is D e p t # . We assume that E M P . D e p t # and D E P T . D e p t # take values from the same

domain. Also, E M P . D # is a foreign key. The database is populated as shown below. To

simplify the discussion we assume that both EMP and D E P T are assigned level 1.

Fur thermore , all of the tuples and constraints are also classified at level 1. Note that the

usual D O D classification levels do not exist as such in the secure DBMS that we have used.

We assume that the number 1 denotes the Unclassified level, the number 10 denotes the

Secret level, and the number 16 (which is system-high) denotes the Top Secret level. The

user is assumed to be logged in at level 1. The table #f i l te r_ tempi is a temporary work table

used to store the result.

290 B. Thuraisingham et al.

Relation EMP

SS# Name Salary Date D#

CVN 68 James 20 May 75

CV 67 John 30 Sep 68

BB 61 Peter 40 Feb 43

CG 47 Paul 50 Jan 83

DD 963 Mary 60 Sep 75

AGF 3 Jane 70 Feb 64

WHEC 715 David 80 Feb 67

FFG 7 Joe 90 Dec 77

FF1052 Phil 40 Apr 69

LSD 36 Anne 30 Mar 69

003

001

003

005

006

003

003

001

001

009

Relation DEPT

Dept# Dname Mgr Emp#

001 Security Smith 001

002 Math Cook 002

003 Physics Perry 006

004 Biology Hardy 005

005 Chemistry Ford 004

006 Engineering Keeffe 004

007 History Collins 003

008 Economics Palmer 003

009 French Jackson 001

Test scenario 1: No constraints

Constraints active: N O N E

Original query: select * f rom E M P

User's level: 1

Final modified query: Same as the original query (that is, query is not modified)

select E M P . S S # , EMP.Name, EMP.Salary, EMP.Date, E M P . D # into #f i l ter_tempi f rom

E M P

Note that the asterisk is a wildcard indicator which means the query is for all attributes (fields)

in a record. When the Inference Engine sees this character, it replaces it with all the field names

in any tables specified in the from clause.

Result: Al l o f the tuples in E M P

Test scenario 2: Content constraints

Constraints active:

EMP. Name = 'John'---~ Level(EMP. Salary) -- 16;

EMP. Name = 'Mary '---~ Level(EMP. Salary) = 16;

EMP. Name = Joe Level(EMP. Salary) = 16;

Original query: select * f rom E M P

User's level: 1

Final modified query:

select EMP. SS# , EMP. Name, EMP. Salary, EMP. Date, EMP. D # into #f i l ter_tempi from

E M P where

(not(EMP. Name = 'John')) and

(not(EMP.Name = 'Mary')) and

(not(EMP. Name = 'Joe'))

Database inference controller 291

Result:

SS# Name Salary Date D#

CVN 68 James 20 May 75 003

BB 61 Peter 40 Feb 43 003

CG 47 Paul 50 Jan 83 005

AGF 3 Jane 70 Feb 64 003

WHEC 715 David 80 Feb 67 003

FF1052 Phil 40 Apr 69 001

LSD 36 Anne 30 Mar 69 009

Original query: select EMP. SS#, EMP. Name, from EMP

User's level: 1

Final modified query is the same as the original query (since the names themselves are not

classified)

Result:

SS# Name

CVN 68 James

CV 67 John

BB 61 Peter

CG 47 Paul

DD 963 Mary

AGF 3 Jane

WHEC 715 David

FFG 7 Joe

FF1052 Phil

LSD 36 Anne

Test scenario 3: Logical and simple constraints

Constraints active:

Logical(DEPT. Dname--~ DEPT. Mgr);

Level(DEPT. Mgr) = 16

Original query: select EMP. Name, DEPT. Dname, DEPT. Emp#, from EMP, DEPT where

EMP. D# -- DEPT. Dept#

Final modified query:

select EMP. Name, DEPT. Emp# into #filter_tempi from EMP, DEPT where EMP. D# =

DEPT. Dept#

Result:

Name Emp#

James 006

John 001

Peter 006

Paul 004

Mary 004

Jane 006

David 006

Joe 001

Phil 001

Anne 001

292 B. Thuraisingham et al.

Test scenario 4: Association-based constraint

Constraints active:

Level(Together(DEPT. Mgr, DEPT. Dname)) = 10

Original query: select * from DEPT

User's level: 1

Final modified query:

select DEPT. Dept#, DEPT.Mgr, DEPT.Emp# into #filter_tempi from DEPT

Result:

Dept# Mgr Emp#

001 Smith 001

002 Cook 002

003 Perry 006

004 Hardy 005

005 Ford 004

006 Keeffe 004

007 Collins 003

008 Palmer 003

009 Jackson 001

Test scenario 5: Logical and content-based constraints

Constraints active:

Logical(DEPT. Mgr ~ DEPT. Dname)

DEPT. Dname = Security ~ Level(DEPT. Dname) = 16

Original query: select * DEPT

Final modified query:

select DEPT.Dept#, DEPT.Dname, DEPT.Mgr, DEPT.Emp# into #filter_tempi from

DEPT where (not(DEPT. Dname = 'Security'))

Result:

Dept# Dname Mgr Emp#

002 Math Cook 002

003 Physics Perry 006

004 Biology Hardy 005

005, Chemistry Ford 004

006 Engineering Keeffe 004

007 History Collins 003

008 Economics Palmer 003

009 French Jackson 001

Test scenario 6: Release constraint

Constraints active: Release(EMP. D#:I) ~ Level(EMP. Name) = 10;

(i.e. if EMP.D# is released at level 1, then EMP.Name is Classified at level 10)

Original query: select * from EMP

User's level: 1

Results released previously were cleared before executing this query.

Database inference controller 293

Release constraint triggered by the release of:

E M P . D # at level 1, EMP.Name cannot appear in query.

Final modified query:

select EMP.SS#, EMP.Salary, EMP.Date, EMP.D# into #filter_tempi from EMP

Result:

SS# Salary Date D#

CVN 68 20 May 75 003

CV 67 30 Sep 68 001

BB 61 40 Feb 43 003

CG 47 50 Jan 83 005

DD 963 60 Sep 75 006

AGF 3 70 Feb 64 003

WHEC 715 80 Feb 67 003

FFG 7 90 Dec 77 001

FF1052 40 Apr 69 001

LSD 36 30 Mar 69 009

Release Table contents:

Name Level

EMP.SS# 1

EMP.Salary 1

EMP.Date 1

EMP.D# 1

Test scenario 7: Aggregate constraint

Constraints active: Aggregate(5) ~ Level(EMP. Name) = 12;

Original query: select * from EMP

User's level: 1

Final query: Same as original query

select EMP.SS#, EMP.Name, EMP.Salary, EMP.Date, EMP.D# into #filter_tempi from
EMP

Result: No result returned for the query since more than 5 employee names would have been
returned.

Test scenario 8: Aggregate constraint

Constraints active: Aggregate(5) ~ Level(EMP. Name) = 12;

Original query: select * from EMP where S S# like '% CV%'

final query as modified:

select EMP.SS#, EMP.Name, EMP.Salary, EMP.Date, EMP.D# into #filter_tempi from
EMP where SS# like '% CV%'

Result:

SS# Name Salary Date D#

CVN 68 James 20 May 75 003

CV 67 John 30 Sep 68 001

294 B. Thuraisingham et al.

8. Extensions to the inference controller

As stated in Section 2, it is mainly as a result of the query operation that users make

unauthorized inferences. Therefore, there must be a way to handle the security constraints

during the query operation. However, handling all of the constraints during the query

operation would have an impact on the performance. Therefore, we believe that for a fairly

static environment, where the constraints and the database data are not updated continuous-

ly, the constraints could be processed during the update and database design operations.

In Section 8.1 we describe the update processor tool that we have developed and, in

Section 8.2, we discuss our database design tool. Although the three modules operate

independently, ultimately we envisage the inference controller to be used in conjunction with

the update processor and the database design tool so that an integrated solution to security

constraint processing can be provided.

8.1. Update processor

The Update Processor is a module that is responsible for handling database updates. It

ensures that data updated satisfies the simple and content-based security constraints. This

way, the inference controller need not process the simple and content-based constraints and,

as a result, some of the burden placed on the inference controller can be alleviated. It

should, however, be noted that it will be difficult to ensure that the database data is

consistent with the security constraints for a dynamic environment as it may not be feasible

to update the database continuously. Furthermore, updating the data could cause a ripple

effect. That is, security levels of the data could also be indirectly affected by the update of

some other data. Therefore, if the database data is inconsistent with the constraints, then the

inference controller should examine all of the constraints.

A high level architecture for the update processor is shown in Fig. 4. The Update

Processor module augments the MLS/DBMS. Using the simple and content-based con-

straints, it computes the security levels of the data to be updated. The data is then updated
at the correct level, provided this level dominates the user's level. Details of the update

processor are given in [4].

8.2. Database design tool

While some of the security constraints could be handled during query processing and some

Request in
SQL

[User Interface [

Parsed Query ~ l Response

L
Syntax Check

SYBASE's Secure
SQL Server

Update Processor

____< Multilevel
Database

Fig. 4. Architecture of the update processor.

Database inference controller 295

during update processing, some could also be handled during database design. In particular,

constraints which do not depend on any data values could be handled during the database

design operations. These constraints are the simple constraints, association-based con-

straints, and logical constraints. For example, if we classify the relationship between names

and destinations at the Secret level, and individually we classify the names and destinations

at the Unclassified level, then the database could be designed in such a way that only the

relationship (or the association) is stored at the Secret level while the individual values are

stored at the Unclassified level.

Note, however, that if the association between names and destinations is classified at the

Secret level, then it could still be possible for an Unclassified user to obtain names and IDs,

destinations and IDs, and be able to correlate the names with the destinations. In order to

prevent such security violations, either the association between names and IDs or destina-

tions and IDs must be classified at the Secret level. Now, if there are many attributes and

many constraints, then it will be difficult for the System Security Officer to be able to

generate all additional constraints that need to be enforced. Therefore, a tool which would

not only generate the additional constraints but also output the correct security levels that

should be assigned to the various attributes would be very useful.

We have designed a tool which will accept the set of attributes and security constraints as

input and output the security levels of all of the attributes. Simple, association, and logical

constraints are processed by this tool. Our algorithm guarantees that there are no security

violations. However, the algorithm does not guarantee that the minimum safe security levels

are assigned to the attributes. The algorithm is described in [31].

9. Conclusion and future considerations

In this paper, we have provided an overview of the inference problem, discussed the

inference strategies that users could utilize to draw inferences, and described the design and

implementation of a prototype inference controller that can handle certain inference

strategies of the users. To our knowledge, this is the first such inference controller prototype

to be developed. This prototype is a useful and powerful tool that can aid and improve the

security of an existing multilevel secure relational database management system. The

program can replace the usual user interface to a multilevel secure relational database

management system and allow the user to enter queries in the SQL language. Finally, we

discussed the extensions that we have designed and/or developed for the prototype.

In addition to the extensions discussed here, further work on enhancements to the

prototype could proceed in many directions. They include

(1) developing query optimization techniques that could improve the performance of the
query processor,

(2) providing the capability of handling more complex constraints,

(3) developing an inference engine based on concepts in theorem proving,

(4) developing a tool for checking the consistency and completeness of the security
constraints,

(5) developing an integrated tool for processing constraints during query, update, and
database design operations, and

(6) develop a knowledge-based inference controller which could handle a variety of
inference strategies.

We believe that due to the complexity of the inference problem, an incremental and

integrated approach to handling inference is appropriate. Our approach shows promise and

will enhance the security of existing multilevel secure database management systems.

296 B. Thuraisingham et al.

Acknowledgements

We gratefully acknowledge the Department of the Navy (SPAWAR) for sponsoring this
work under contract F19628-89-C-0001.

References

[1] Air Force Studies Board, Multilevel Data Man-
agement Security, National Academy Press,
1983.

[2] ANSI-SQL, American National Standards Insti-
tute, Draft, 1988.

[3] L.J. Buczkowski and E.L. Perry, Database Infer-
ence Controller, Interim Technical Report, Ford
Aerospace Corporation, Feb. 1989.

[4] M. Collins, Design and Implementation of a Se-
cure Update Processor, Technical Report, MTR
10977, The MITRE Corporation, October 1990
(a version presented at the 7th Computer Securi-
ty Applications Conference, St. Antonio, TX,
December 1991).

[5] B. Cohen, Merging expert systems and data-
bases, A I - E X P E R T 2 (1989) 22-31.

[6] D.E. Denning and J. Schlorer, Inference controls
for statistical databases, IEEE Comput. 16 (7)
(1983) 69-82.

[7] D.E. Denning and M. Morgenstern, Military
Database Technology Study: AI Techniques for
Security and Reliability, Final Report, SRI Inter-
national, Project 1644, Menlo Park, CA, 1986.

[8] D.E. Denning et al., A multilevel relational data
model, Proc. IEEE Symp. on Security and Priva-

cy, Oakland, CA (1987).
[9] P. Dwyer, G. Jelatis and B.M. Thuraisingham,

Multilevel security in database management sys-
tems, Computers and Security 6 (3) (June 1987)
252-260.

[10] R. Frost, Introduction to Knowledge-Based Sys-

tems (Collins, UK, 1986).
[11] M. Gasser, Building Secure Systems (Nostrand

Reinhold, New York, 1988).
[12] T. Hinke, Inference aggregation detection in

database management systems, Proc. IEEE

Symp. on Security and Privacy, Oakland, CA

(1988).
[13] T.F. Keefe, B.M. Thuraisingham and W.T. Tsai,

Secure query processing strategies, IEEE Com-

put. 22 (3) (Mar. 1989) 63-70.
[14] D. Li, A Prolog Database System (Research

Studies Press, Wiley, New York, 1984).
[15] T. Lunt, Inference and aggregation, facts and

fallacies, Proc. 1EEE Syrup. on Security and

Privacy, Oakland, CA (1989).
[16] S. Mazumdar et al., Resolving the tension be-

tween integrity and security using a theorem
prover, Proc. A C M SIGMOD Conf., Chicago,
IL (June 1988).

[17] E. Mendleson, Introduction to Mathematical

Logic (Van Nostrand, Reinhold, New York,
1979).

[18] D. Merritt, Building Expert Systems In Prolog

(Springer, New York, 1989).
[19] M. Morgenstern, Security and inference in multi-

level database and knowledge base systems,
Proc. A C M S1GMOD Conf. (San Francisco, CA,
1987).

[20] J. Pearl, Heuristics (Addison Wesley, Reading,
MA, 1984).

[21] N. Rowe, Inference security analysis using res-
olution theorem-proving, Proc. 5th Internat.

Conf. on Data Engineering, Los Angeles, CA
(1989).

[22] G. Smith, Identifying and representing the securi-
ty semantics of an application, Proc. 4th Aero-

space Computer Security Conf. (IEEE), Orlando,
FL (1988).

[23] P. Stachour and B.M. Thuraisingham, Design of
LDV - A multilevel secure database management
system, IEEE Trans. Knowledge Data Engrg. (2)

(June 1990).
[24] M. Stonebraker and E. Wong, Access control in

relational database management systems by
query modification, Proc. A C M National Conf.,

New York, NY (1974).
[25] SYBASE Secure SQL Server, Sybase Inc., 1989.
[26] Trusted Computer Systems Evaluation Criteria,

Department of Defense Document, 5200.28-
STD, 1985.

[27] D. Thomsen, W.T. Tsai and B.M. Thuraising-
ham, Prototyping as a research tool for an MLS/
DBMS, Proc. 2nd IFIP Database Security Work-

shop, Kingston, Ont. (1988).
[28] M.B. Thuraisingham, Security checking in rela-

tional database management systems augmented
with inference engines, Computers and Security 6

(6) (Dec. 1987).
[29] M.B. Thuraisingham, Towards the design of a

secure data/knowledge base management system,
Data Knowledge Engrg. 5 (1) (Mar. 1990).

[30] M.B. Thuraisingham, Recursion theoretic prop-
erties of the inference problem in database sec-
urity, Presented at the Third IEEE Computer
Security Foundations Workshop, Franconia, NH
(also available as MITRE Technical Paper MTP-
291) (1990).

[31] M.B. Thuraisingham, Handling association con-
straints in multilevel databases, Technical Re-

Database inference controller 297

port, WP-28904, The MITRE Corporation (July

1990) (a version presented at the 4th RADC

Database Security Workshop, Little Compton,

RI, April 1991).

Bhavani Thuraisingham is a
lead engineer at the MITRE
Corporation where she has
initiated R&D activities in
secure object-oriented /
multimedia DBMS, secure
distributed / heterogeneous
DBMS, and secure intelligent
DBMS/Inference problem.
Her current interests include
object-oriented database sys-
tems, heterogeneous database
systems, and secure database

systems. Previously she was at Honeywell Inc. where
she was involved with the design of the secure DBMS
Lock Data Views and also conducted R&D activities
in distributed DBMS and AI applications in process
control systems. She was also an adjunct professor of
computer science at the University of Minnesota. Dr.
Thuraisingham received the M.S. degree in Computer
Science from the University of Minnesota, the M.Sc.
degree in Mathematical Logic from the University of
Bristol, U.K. and the Ph.D. degree in Theory of
Computation from the University of Wales, Swansea,
U.K. She has published over thirty-five journal articles
in Database Security, Distributed Processing, Com-
putability Theory, and AI. She is a member of the
editorial board of the Journal of Computer Security
and Computer Standards & Interfaces J. and has co-
edited a book entitled Database Security: Status and
Prospects VI published by Elsevier Science. She is a
member of the IEEE Computer Society, the British
Computer Society, and the ACM.

Marie Collins is a Member of
the Technical Staff at the
MITRE Corporation where
she is conducting R&D ac-
tivities in security constraint
processing and the inference
problem. Previously she has
worked on secure multimedia/
object-oriented DBMS and se-
cure distributed DBMS. She
has also worked on examining
secure DBMS products and
building database applications.

Prior to her work at the MITRE Corporation, Ms.
Collins worked at IBM Corporation as a senior appli-
cations programmer. She received a B.A. degree in
Mathematics from Providence College and a M.A.
degree in Mathematics from Boston University.

Jonathan O'Keeffe is a field
engineer with Schlumberger
Well Services in Yemen and is
involved with computing ac-
tivities. He worked at the
MITRE Corporation during
the Summer of 1990 and the
Winter of 1991 where he con-
ducted development activities
in secure database manage-
ment systems and the infer-
ence problem. Mr. O'Keeffe
received a B.S. degree in

Computer Engineering from Carnegie Mellon Uni-
versity in 1991.

William Ford is an indepen-
dent consultant in computer
security and database systems
and has over seventeen years
of software development ex-
perience. Previously he was a
member of the technical staff
at the MITRE Corporation
where he conducted design
and implementation activities
in security constraint process-
ing, secure distributed data-
base systems, and the infer-

ence problem. He also worked on other computer
security projects including security guards and privacy
of electronic mail. Prior to joining MITRE, Mr. Ford
was at AOG Corporation where he was responsible
for the design and implementation of data dictionary
systems and realtime control software systems. He has
also designed and implemented software systems for
Decision Data Corporation and the University of
Delaware. Mr. Ford received the B.S. degree in Com-
puter Science at the University of Delaware in 1975
and the B.S. degree in Electrical Engineering at the
University of Delaware in 1976. He has published
papers in various IEEE and ACM Conferences. Mr.
Ford is a Senior Member of the IEEE.

