I]D “/\ 7 ‘_UNIVER_SITY
LIBRARIES

UNLV Retrospective Theses & Dissertations

1-1-2005

Design and implementation of a fast Fourier transform
architecture using twiddle factor based decomposition algorithm

Bhaarath Kumar
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation

Kumar, Bhaarath, "Design and implementation of a fast Fourier transform architecture using twiddle factor
based decomposition algorithm" (2005). UNLV Retrospective Theses & Dissertations. 1837.
http://dx.doi.org/10.25669/uqf7-sxec

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/uqf7-sxec
mailto:digitalscholarship@unlv.edu

DESIGN AND IMPLEMENTATION OF A FAST FOURIER TRANSFORM
ARCHITECTURE USING TWIDDLE FACTOR BASED

DECOMPOSITION ALGORITHM

by

Bhaarath Kumar

Bachelor of Engineering
University of Madras, India
2002

A thesis submitted in partial fulfillment
of the requirement for the

Master of Science Degree in Electrical Engineering
Department of Electrical and Computer Engineering
Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas
August 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1429711

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1429711

Copyright 2006 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

; Thesis Approval
UNIVERSITY OF NE\A/ADAV LAS VEGAS The Graduate COllege

University of Nevada, Las Vegas

July 12 2005

The Thesis prepared by

Bhaarath Kumar

Entitled

"Design and Implementation of a Fast Fourier Transform Architecture

Using Twiddle Factor Based Decomposition Algorithm"

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

Exami%tion C@%ttee Chair

Z;é’l/ g W Dean of the Graduate College

Examq/atzon Committee Member
yd

4 rd
,,:i‘f/{'f'/ P O s

Exammatzon Committee Member

(/wés i

Gmduﬁ%e College Faculty Representative

1017-53 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Design and Implementation of a Fast Fourier Transform Architecture using
Twiddle Factor Based decomposition Algorithm

by
Bhaarath Kumar
Dr. Yingtao Jiang, Examination Committee Chair
Assistant Professor
Department of Electrical & Computer Engineering
University of Nevada, Las Vegas
With the advent of signal processing and wireless communication mobile platform
devices, the necessity for data transformation from one form to another becomes an
unavoidable aspect. One such mathematical tool that is widely used for transforming time
and frequency domain signals is Fourier Transform. Fast Fourier Transform (FFT) is
perhaps the fastest way to achieve transformation. Many algorithms and architectures
have been designed over the years in an attempt to make FFT algorithms more efficient
and to target many applications.

The main objective of our work is to design, simulate and implement an architecture
based on the Twiddle-Factor-Based decomposition FFT algorithm. The significant
feature of the algorithm is its effective memory access reduction that accounts to be as
much as 30% lesser than in any other conventional FFT algorithms. As a result of this

memory reduction, this algorithm is said to be more power efficient and is said to

compute in much lesser number of clock cycles than other algorithms developed.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1

Figure 3.2
Figure 3.3

Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8
Figure 3.9

Figure 3.10a
Figure 3.10b

Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18

LIST OF FIGURES

Data Flow graph of an 8-point DFT calculated by splitting the N point
input into two N/2 parts containing even and odd components and

using N twiddle factors. ..ot 9
Data Flow graph of an 8-point DFT calculated by splitting the N point
input into two N/2 parts containing even and odd components and

using only N/2 twiddle factors.........coooviiiiiiiiiiiiiii e 10
Data Flow graph of an 8-point FFT, showing the entire decomposition

until 2-point DFT stage is reached. The stage with W9 is the last

stage of decomposition with all butterflies being 2-point DFTs................ 11
A radix-2 Decimation-In-Time (DIT) butterfly structure.cccuvene..e. 18
Flow graph of an 8-point DIT FFT structure using butterflies.................. 18
A radix-2 Decimation-In-Frequency (DIF) butterfly structure.................. 20
Flow graph of an 8-point DIF FFT structure using butterflies. 20
Flow graph of a 16-point FFT structure based on Twiddle-Factor-

Based algorithimcceeeiiieiiiiieieee e 23
Flow graph of a 16-point FFT structure based on Twiddle-Factor-

Based algorithmccooceeeiieiiieee et e 27
Pseudo code for the (logoN-1) stages decomposition.ccceeveneenueennnn 34
Block design representation of (log.N-1) stages based on Twiddle

Factor decomposition algorithmcccccccieiviiniiiinniininiii s 36
(logoN)™ stage decomposition structure for N=16........ccocccevevenniennnnnn 39
Pseudo code for the (logaN-1) stages decompositioncceveevvviieiinnrinneans 40
VHDL Block implementation of (log.N fik stage based on Twiddle

factor decomposition algorithm ... 42
Block implementation of (log,N-1) stages and (log,N) th stage based

on Twiddle factor decomposition algorithm.......c...cccoeioiiiiniiinninnnne 43
Block level representation of 1-word RAM cell for storing 32-bit data ... 45
Block representation of a RAM decoder. ..., 46
Basic group formation of RAM cells using decoders.......cccocervurriueenenen. 47
Hierarchical group formation of RAM cells using decoders..................... 47
Block representation of Read Only Memory (ROM) and its controller.... 50
Complex multiplication implementation using method 1 53
Complex multiplication implementation using method 2.c.ccceeene. 54
Real multiplication implementation Stages.cceeceeereeerveeerreerneerecrennsenns 55
Complex multiplication implementation using method 2..................... 55

Block level Data-path for groupl for twiddle factor based architecture. .. 57
Block level Data-path for group2 for twiddle factor based architecture. .. 58
Block level Data-path for group3 for twiddle factor based architecture....59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The real focus of the design is to build architecture to map this efficient algorithm on
to hardware retaining the maximum efficiency of the algorithm. The complete design,
simulation and testing is done using Active-HDL tool which is a VHDL package
designed. The architecture designed is found to retain the memory savings capability of

the algorithm thus enabling power efficiency.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1
Figure 4.2

Figure 4.3

Figure A-11

Figure A-12

Figure A-I3

Figure A-14
Figure A-I5

Figure A-16

Figure A-17

Figure A-I8

Figure A-19

Graphical comparison for ROM access between twiddle factor based

architecture and conventional DIT or DIF based architectures 69
Graphical comparison for RAM access between twiddle factor based
architecture and conventional DIT or DIF based architectures 71

Graphical comparison for multiplier operation usage between twiddle
Factor based architecture and conventional DIT or DIF based

) (0§11 118 (L S SN 72
VHDL block representation of (log-N-1) stages RAM Address

block based on Twiddle factor decomposition algorithm generating

10-bit RAM address sequences qaand qb.............ocooiiiiiiiii. 80
VHDL block representation of (log:N I stage RAM Address

Generation block based on Twiddle factor decomposition

algorithm generating 10-bit RAM address sequences qa_logn2

and gb_logn and 6-bit Temporary register bank address qaddr............... 81
VHDL design of a /-word RAM cell for storing imaginary part

Of data. ..o, 82
VHDL design of a I-word RAM cell for storing real part of data............ 82

VHDL design of a 2x4 Decoder block choosing one among four
outputs based on a 2-bit input. The input port is given as
de_inp_2x4_real(1:0) and output ports are represented by

C_0UL_2X4_1eal(3:0)..cccccnnnriiiiiiii e 83
VHDL design of a 64-words ROM and a decoder along with
interconnects outputting 32-bits real and imaginary twiddle factors...........83

VHDL design of a 64-words RAM using four /6-words RAM cells

And a decoder along with interconnects outputting 32-bits real

and IMAgINary data..........oooiiiiiitiirie e e e e, 84
VHDL design block showing the data-paths for groupl, group2 and

group3. The output signals for each group are represented by
b_real_out_groupX and b_imaginary_out_groupX with X

representing individual group numbers................ooe 85
VHDL design block showing the resolution function designed

for the data-path to choose between the three data-path groups and

also for determining the Read and Write operations of the RAM

block and other resolution blocks........c.ooiiiiiiiiiii i 86

Figure A-I10 VHDL design block showing RAM Address generation block

with resolution functions that aid in enabling and disabling
various signals at different instances of time.....................cociiiiiiennt. 87

Figure A-I11 VHDL design block showing RAM Address generation block, the

RAM blocks, the ROM memory controller block, the ROM blocks

and all the other INterCONNECES. .. e vt e eveenas 88
Figure A-I112 VHDL design block partially showing interconnection between
all the blocks of the Twiddle factor based FFT architecture....................89
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS
I take this opportunity to thank my advisor Dr. Yingtao Jiang, for his guidance and
support.
I am grateful to professors in my thesis committee for all their valuable suggestions. I
would like to thank Mr. Stan Hanel for providing access to Active-HDL whenever I
needed it most.

I wish to thank all my friends and family members.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ...ttt et sttt see st st e st e ese e st e s sbessees e nesnnesbaesbens iii
LIST OF FIGURES ..ottt ettt s sbe s e enea v
ACKNOWLEDGEMENTS ..ottt ettt ettt st st vii
CHAPTER 1 INTRODUCTIONoiiiiiiiiiieiiiieetee ettt sttt s I
1.1 ThesisS ODJECHIVE.eciiiiiiiiiii ittt ettt et 1
1.2 FOUTET ANALYSIS.ccctiiiitiiiiiiiieeeeiee ettt sttt e eee e saneene 2
1.2.1 The Fourier Series......ccccccvvvmceeeeeenenne.. e —————————————————————— 2
1.2.2 Fourier Transform ..ot 4
1.2.3 Discrete Fourier Transform.......coccooveiiiiininiiiniiccenicce e 5
1.2.4 Fast Fourier Transformc.ccooerieiiiininiennececeeeic e 7
1.2.4.1 Mathematical Calculation for FFT Computational Complexity........ 8
1.2.5 Power Aware DESIZNcoviiruiriiieiieiiereeiecterceit ettt 12
1.3 Organization of the Thesis WIte-UP.......cccocvvveiiiiiiiiiiiiiiccececeeee e 13
CHAPTER 2 FAST FOURIER ALGORITHMS AND ARCHITECTURE 15
2.1 INEEOAUCTION ...ttt e e e st e s e s e e s svnneae 15
2.2 Decimation-In-Time (DIT) FEFT Algorithm........ccccooiiiiiiiiiiiieecceeecee 17
2.3 Decimation-In-Frequency (DIF) FFT Algorithmc.cccooociiiiiiiiniiniiienee 18
2.4 Decimation Based on Twiddle Factors...........ccccovveiiinenincicninneneieceee e 20
2.4.1 Decimation Procedure..........ooiuiiuiiienieiiirccteseeec et 22
CHAPTER 3 ARCHITECTURAL DESIGN AND IMPLEMENTATION................. 25
3.1 OVEIVIEW .ttt s sttt st ab e e e s aa e 25
3.2 De81ZN TATZEL ..ottt e e 26
3.3 AlgOTItRIM SEIUPoiieiiireeei ettt e 26
3.4 Random Access Memory (RAM) Address Generation Block Design 28

3.4.1 Formulae of Computational Complexity for the Loop Structures for
(logoN-1) Stages of DECOMPOSIIONcc.covverieieriincriiecrerteeeeteeeeeeeeee e 30
3.4.2 Pseudo Code Implementationccooieeeerrineenicniieeiceececie e 33
3.4.3 Architectural Block Design and Implementationc..ccccceveveiencnncnnnnen. 34

3.5 Formulae of Computational Complexity for the Loop Structures for
(logzN)" Stage of DECOMPOSIHONov.vvreeeeeeeeeee oo eeees e see oo 37
3.5.1 Memory Reduction TeChnIiquecccoceeiiiiiiiiieiiie e 38
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2 Pseudo Code Implementationcccccciiiiiiiiiiinniiiiiniiiicn e 40

3.5.3 Architectural Block Design and Implementationccccevvvniiieiicinennnne. 40
3.6 Random Access Memory Design.........ccoocveeiiiiiiiiiiirieeciecreeceeeee e 44
3.6.1 Read Only Memory (ROM) desSigncccceevurerceirreeiiniiiennence e seeeeeeas 48
3.7 Data-Path DEeSIZN ...c..coiiiiiiiieniieeeeeee e e e 50
3.7.1 Complex Multiplier Implementationccocoveveeiiniecinnecicceceee 52
3.7.2 Group1 Design and Implementation.............ccococioviriiricnciccicecceeeeienes 56
3.7.3 Group2 Design and Implementation...........ccooociiviiiiniiiiiiiiiciniccceiecenee 56
3.7.4 Group3 Design and Implementation.........c..ccociiiiniiiiiiiniiiiiceeec e 58
3.8 SUMIMATY ...ttt ettt e e e et e e et e e s emer e e s e enreeesares 59

CHAPTER 4 ARCHITECTURAL SIMULATION RESULTS AND DISCUSSION 61

4.1 Output Simulation Resultscccooiiiiiiiiiiiii s 61
4.2 RAM Address Generation Block Parametersc.cccooiiiiiiiiiinninee. 61
4.3 ROM Address Generation Block Parameterscoooviiiiiiiiiiinicciieneeeee 63
4.4 Random Access Memory Parameterscoooeveiieiinieenieeie e 63
4.5 Read Only Memory Block Parametersccccceveviiiiiiiiiiiiiiiieiiiccee e 64
4.6 Data-Path Block Parametersccccociiiiiieniiiniiineciece e e 64
4.7 Clock Generation and Frequency Calculations..........ocococveviiiiiiiiiiiceciensinenne. 65
4.8 Memory ACCESS FEATUTEcoccieiiiiiiiiiieeetertee et s 67
4.9 Multiplier Operational Savings Using Twiddle Factor Based Architecture......... 71
4.10 Design Issues and Challenges.........ccvcveereeniiecrieniceniiiecire e 73
4.11 Architectural Salient Features and Drawbacks ... 76
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK....... 77
5.1 Summary of WOTK.......cooiiiiiiiiiiee e 77
5.2 Suggestions for the FULUreccccivviiniviiiiniiiniiiececn 77
APPENDIX VHDL Design of Various Architectural Blockscccecoeeiiiennnnncen. 80
BIBLIOGRAPHY ..ottt et 90
VITA ettt et h ettt sttt m e e oo s b e e e e e e r e e e b e e enaens 93
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 Thesis Objective
With increasing demand for mobile computing devices, conversion of data between the
time and frequency domain has become vital. The Fast Fourier Transform (FFT) is one of
the widely used digital signal processing algorithms for this purpose. Numerous Fast
Fourier Transform algorithms have been developed over the years. Architectures, which
help realize these algorithms, have found applications in diverse areas as:
communications, signal processing, instrumentation, biomedical engineering, Sonics and
acoustics to name a few. The goal of our work is the architectural design and
implementation of a Fast Fourier Transform (FFT) processor, mapping an algorithm
whose decomposition is uniquely based on Twiddle factors unlike the conventional
Decimation-In-Time (DIT) or Decimation-In-Frequency (DIF). With numerous
architectures already in existence, one main aspect that differentiates this work from
other architectures is the algorithm that is used for the mapping purpose. The Twiddle
Factor based decomposition algorithm ensures a reduction in memory access by as much
as 30% [1] [10]. Hence, an architecture utilizing this algorithm is expected to have lower
power consumption than any other conventional algorithm based architecture. The

memory reduction comes in the form of twiddle factor access from the Read Only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Memory (ROM), where it is generally stored and retrieved. The architecture is designed,
simulated and tested in Very large-scale integrated circuits Hardware Description

Language (VHDL) environment.

1.2 The Fourier Analysis

1.2.1 The Fourier Series

Consider a sequence ;c(n) that is periodic with a period N so that ;c(n) = ;c(n+kN) for
any integer value of k. Such a sequence cannot be represented by its z-transform, since
there is no value of z for which the z-transform will converge. In such situations, this
sequence can be expressed using the Fourier Series (FS) tool [4] [13] [14] [15] [16]. Any
periodic signal can be expressed as a sum of sinusoidal and co-sinusoidal oscillations.
This decomposition is termed as Fourier Series (FS). By reversiﬁg this procedure, a
periodic signal can be generated by superimposing sinusoidal and co-sinusoidal waves.
Fourier series make use of the orthogonal relationships of the sine and cosine functions.
The Fourier series is extremely useful in breaking down an arbitrary periodic function
into a set of simple terms that can be plugged in, solved individually and then recombined

to obtain the solution of the original problem. The general function is as follows:
fX)=a,+> (a, cosi117—’ci+b,l sinf—?) (1.2.1.1)
n=1

where ay_a,, b, are the Fourier magnitude coefficients of the corresponding sinusoidal
and co-sinusoidal waves and 2L represents the fundamental frequency given by 27 /T

rad/sec. The Fourier Coefficients can be determined from the following integrals:

1 L
ap = z_ij(x)alx (1.2.1.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1§ nix
an = —jf(x)cosde n=12,... (1.2.1.3)
-L

L
1% n7x

b,=— sin —dx n=12,... 1.2.14
L_ij<x> ; (1.2.1.4)

For non-periodic functions, one can argue that they are periodic with an infinite period,

which is L— oo . The Fourier series then becomes Fourier Integral given as follows:

fix)= T[a(w)cosapci-b(a)) sin ax]dw (1.2.1.5)
where,
a(w) = 1]:f(x)cos axdx (1.2.1.6)
7[—00
b(w)= 1 Tf(x) sin axdx (1.2.1.7)
7[—00

Thus, Fourier series are made up of sinusoids, all of which have frequencies that are
integer multiples of some fundamental frequency. A great thing about using Fourier
seriecs on periodic function is that the first few terms often are a pretty good
approximation to the whole function, not just the region around a special point. Fourier
series are used extensively in many major engineering applications, especially for image
processing and signal processing applications. They are also used in solving ordinary and
partial differential equations (heat conduction, wave theory) and also for various kinds of
spectroscopy. Finding the coefficients of a Fourier series is similar to performing the

spectral analysis of that function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.2 Fourier Transform
The Fourier Transform (FT) is basically generalization of the Fourier series. The Fourier
Transform provides the means of transforming a continuous time signal into its
corresponding frequency domain. Instead of sinusoidal and co-sinusoidal terms used in
Fourier series, Fourier Transform uses exponentials and complex numbers. The Fourier

transform X(f) of a continuous time function x(z) can be expressed as follows:

o

X(f)= j x(t)e 7 gy (1.2.2.1)

—oo

In general, X(f) and x(t) are complex valued functions, j being imaginary unity number,
defined as the square root of -1 and 27z f being the angular frequency range associated
with the signal. From the definition of the Fourier integral, not every function x(z) has a
transform X(f) [2] [20] [21]. While the exact conditions for convergence of functions are
not known, two conditions that are widely considered sufficient for convergence
(Bracewell, 1986) are:

Condition 1:

The integral of I f (x)] from — oo to ocexists [2] [20]. That is,

J1f ol < (12.2.2)

Condition 2:

Any discontinuities in f{x) are bounded [2].
Some of the properties associated with Fourier Transform are Linearity, Scaling, Time
shifting, Frequency shifting, Symmetry, Modulation, Differentiation in time and

Convolution. The inverse Fourier Transform that converts frequency domain signal into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time domain performs the exact opposite functionality of Fourier Transform and has the

same complexity as the earlier. The Inverse Fourier Transform is defined as
f(t)=—1— jX(f)eﬂ”ﬁdw (1.2.2.3)
27 -,

The Fourier Transform is used widely for image analysis, image filtering, and image
reconstruction and image compression.
1.2.3 Discrete Fourier Transform

The Fourier Transform described in the previous section can be compared to an analog
tool as it mainly deals with continuous signals and this is evident from the integral used
in equation (1.2.2.2). For the special case in which the sequence to be represented is of
finite duration, it is possible to develop an alternative Fourier representation, referred to
as Discrete Fourier Transform (DFT). DFT is thus the Fourier representation of finite-
length sequence which is itself a sequence rather than a continuous function, and it
corresponds to samples equally spaced in frequency of the Fourier Transform of the
signal [4]. Thus the Discrete Fourier Transform is used in the case where both the time
and frequency variables are discrete. In short, Discrete Fourier Transform (DFT) also
known as Finite Fourier Transform is widely used to analyze the frequencies contained in
a sampled signal, solve partial differential equations, and to perform other operations
such as convolutions [6] [17] [18] [19]. The two important feasons for using Discrete
Fourier Transform over Fourier Transform are:

e The input and the output of the DFT are both discrete values making it

convenient for computer manipulations.
e There is an algorithm called Fast Fourier Transform, which is a speedy way of

computing the Discrete Fourier Transform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Discrete Fourier Transform is defined as:

S ikn/ N
X (k)= x(m)e? ™M o<k<N-1 (1.2.3.1)

n=0

equation (1.2.3.1) can be rewritten as

N=1
X(k)=Y x(mWy" ,0Sk<N-1 (1.2.3.2)
n=0
where
Wy=¢ " (1.2.3.3)

with N being the number of time samples or number of frequency samples, x(n) being
input signal amplitude at time n and W%’ termed as Twiddle Factor. Thus, calculus is not

needed to define the DFT or its inverse, and with finite summation limits, we do not
encounter difficulties with infinities. Moreover, in the field of Digital Signal Processing,
signals and spectra are processed only in sampled form, so that the DFT is what we really
need for computational purpose [7]. In simple terms, DFT is computationally less
intensive to compute than the Fourier Transform as can be seen below in this section. At
the same time, the basic concepts are the same [7]. From equation (1.2.3.1) that for each
value of k, direct computation of X(k) involves N complex multiplications (4N real
multiplications) and N-1 complex additions (4N-2 real additions) [8]. Consequently, it
takes N complex multiplications and N>-N complex additions to compute all N values of
the DFT [8]. Therefore, roughly 2N? or O(N?) are required to calculate the DFT of length-
N sequence [2]. The Inverse Discrete Fourier Transform (IDFT) performs the opposite
functionality that of the DFT and involves the same complexity and the same number of

computations as the later. The Inverse Discrete Fourier Transform is defined as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N-1 -
x(n)=%ZX(k)W,;”", 0<k<N-1 (1.23.4)

n=0
Thus the Discrete Fourier Transform replaced the Fourier Transform resulting in
computationally capable algorithm, which has found itself applicable in wide range of
digital signal processing and image processing fields. Another aspect is the size of the
memory required for an N-point DFT calculation. Since, each input term in equation
(1.2.3.2) needs to be preserved until the last output term has been computed, the
minimum memory locations required is 2N [2].
1.2.4 Fast Fourier Transform

Direct computation of DFT as seen from the previous section, consumes O(N2)
computations for an N-point operation. Though this method of computation results in the
correct output, the efficiency of this method when compared to the one to be discussed in
this section 1s very less. The main reason for the inefficiency of the DFT algorithm is

because it does not explore the Symmetry and Periodicity properties of the Twiddle
factor W . The two properties are defined as:

Symmetry property: WiV'? = -w (1.2.4.1)

Periodicity property: W' =W (1.2.4.2)
The Fast Fourier Transform algorithms, utilizes the above two properties thereby
reducing the total number of computations from O(N*) to O(N log, N) for an N-point
DFT. Due to huge difference in the computational complexity between direct DFT and
that of FFT algorithm calculations, FFT has rapidly replaced DFT as the pragmatic tool

currently being used in every area of science and engineering that requires

transformation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.4.1 Mathematical Calculation for FFT Computational Complexity
This section introduces Fast Fourier Transform algorithm’s computational advantage
over direct Discrete Fourier Transform calculation. The equations (1.2.3.2) and (1.2.3.3)

are reintroduced for derivation purpose.

N-1

X(k)=Y x(mWs ,0sk<N-1 (1.2.4.1.1)
n=0

Wy=¢ " (1.2.4.1.2)

For derivation purpose, the value of N is chosen to be even. Hence N can be represented
in the form N=2“ where ‘a’ is a positive integer. Since N is chosen to be even, the entire
sequence of x(n) can be split into two sequences each of length N/2 with one of the
sequence containing even components of x while the second sequence containing the odd
components. Thus equation (1.2.4.1.1) can be split into two summations each of length

N/2 and can be rewritten as follows:

N-2 N-1
X(ky= Y x(mWy* + D x(nW, (1.2.4.1.3)

From [2], if 2a represents the even components and (2a+1) the odd components with

a=0, 1, 2... N/2-1 then equation (1.2.4.1.3) can be written as

N/2-1 N/2-1
X (k)= D xQa)Wy* + > x(2a+ W (12.4.14)
a=0 a=0
N/2-1 N/2-1
X(k)= Y xQa)W)™+ > x(2a+ W)™ Wy) (1.2.4.1.5)
a= a=0

But W2 can be proved to be equal to W ,,, . Hence, equation (1.2.4.1.5) becomes

N/2-1 N/2-1
Xy = D Xpypy @Wih,) + W) D xopp (@WS, (1.2.4.1.6)
a=0 a=0
8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with k=0, 1, 2..., N-1. We have stated that the DFT of a sequence is periodic in its length,

which means that the (N/2)-point DFTs of x,,,, (a) and x,,,(a) need to be calculated

for only N/2 of the N values of k. For each value of &, the number of addition operations
taking place in each of the two summations is N/2. Hence total number of addition

operations is 2(N/2) =N. In addition to the N addition operations, there are N operations
of multiplications by (W,). Hence for N values of k, the total number of operations is N

additions and N° multiplications for a total of 2N” operations or can be just represented as
O(N?) as the index value 2 has comparatively lesser value. This represents the
computational complexity when direct DFT method is employed. For large values of N,
direct DFT computation becomes tedious and not practical to be implemented by digital
systems. For N = 8, equation (1.2.4.1.6) can be diagrammatically represented using
butterfly structures which depict the computation of X(k) at the output from N values of

x(n) at the input.

x(0) ¥ \ o . ® X(0)
x(2) & N/2-point VAl ® X(1)
w4 ~—— DFT ANPZ *%2)
x(6) & X(3)
x(1) &——— X(4)
x(3) — N/2-point X(5)

x(5) & DFT / 5 -X(S)
x(7) o—— ‘o

7 ® x(7)

Figurel.1l: Data Flow graph of an 8-point DFT calculated by splitting the N point input
into two N/2 parts containing even and odd components. The dots represent points
wherein addition operations take place. The integers next to the large arrow-marks

represent multiplications that take place due to (W) [2]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the property of periodicity, the FFT algorithms calculate DFT of an N-point input
by splitting it into even and odd components just as direct DFT is computed, just that
instead of calculating & value from O till N-1, they only calculate k£ value from O until
N/2-1 and the calculated values are re-used for k=N/2, N/2+1,, N-1. Hence, the total
number of operations get reduced from O(N?) for direct DFT computation to O(N*/2)

resulting in 50% lesser computation. Additional computational reduction can be brought

using the Twiddle factor (W,). Using the property of Symmetry, Wi*¥/? = —-W . Hence,

instead of calculating (W) for k values from 0 until N-1, it is enough if we calculate for

values of k from O till N/2-1 and the remaining values of k will be symmetric to the
previous values. As a result, for an N-point input, only N/2 values of twiddle factors have

to be calculated. Thus figurel.1 can be redrawn as

x2) 7 N/2-point X(1)
x(6) ®— X(3)
x(1) o—— X(4)
X@) *—7 N/2-point X(5)
x(5) & DFT X(6)
x(7) o—— X(7)

Figurel.2: Data Flow graph of an 8-point DFT calculated by splitting the N point input
into two N/2 parts containing even and odd components and using only N/2 twiddle
factors. The dots represent points wherein addition operations take place. When
compared to the figurel.1l, only four, that is only N/2 number of twiddle factors are
calculated while the remaining N/2 are just represented as ‘-° sign due to symmetry

property.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The initial process was to divide N-point DFT into two N/2 point DFTs of even and odd
components. The same process can be repeated thereby breaking down N/2 points further
down to two N/4 points of even and odd DFTs and the process of division can be
repeated until, it results in 2-point DFTs, which signals the end of the splitting process as
calculating a 2-point DFT is very simple. The number of stages of such decomposition

for an N-point input islog, N . The FFT decomposition is shown diagrammatically as:

x(4) @ - ° ‘: X(2)
16) o i _L»W
®
X(5)
Figurel.3: Data Flow graph of an 8-point FFT, showing the entire decomposition until 2-

x(0) & ® —e —o X(0)
X(3)
x(3) —pe
—e X(6)
point DFT stage is reached. The stage with W) is the last stage of decomposition with all

x(2) o ® X(1)

X(4)

NI T Oz T A o
butterflies being 2-point DFTs.

Each of the N/2 2-point FFT’s requires one addition, one subtraction and there are N/2
twiddle factor multiplications per stage. One the whole, every stage requires O(N)
operations per stage. Since there are log, N stages on the whole, the total number of
operations for an N-point FFT becomes O(Nlog, N). Thus, when compared to direct

DFT computation that has a operational complexity of O(N’), FFT algorithms only have
O(Nlog,N) which results in 50% and higher savings in computation making FFT one of

the fastest and computationally most efficient form of transformation algorithms

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developed with the significance clearly felt in applications requiring large values of N
computation. FFT algorithms have virtually overthrown computation through direct DFT
method and have found usage in a wide spectrum of fields ranging from sonar/radar
detection, cellular communication, digital signal processing applications, image
processing, designing High Definition Television (HDTV), medical imaging to name a
few. Thus FFT algorithms have become an integral part of many scientific and
engineering applications and hence there is an ever-increasing necessity to design more
efficient FFT algorithms as well as architectures that map these efficient algorithms onto
realizable hardware components.
1.2.5 Power Aware Design

With the semiconductor industry well into the deep sub-micron era, limitations on
physical dimensions have led to unprecedented challenges in terms of behavioral aspects
of devices. Greater challenges in terms of power dissipation, which posed trivial
challenges in the earlier stages, are now posing immense constraints on devices being
designed. Heat dissipation from such devices has become a field of research by itself,
with the problem seeming to worsen as the device sizes shrink. The advent of mobile
computing and communication devices has taken system design to a new high. In
addition to designing and improving circuits for increased computational ability with an
increased processing capability, higher operational clock frequency, higher throughput
and increased packaging density, hardware circuits in deep sub-micron era need to be
designed for lower power consumption to improve the life of battery on which these
mobile devices solely depend, thereby reducing constraints on heat dissipation causing

circuit breakdowns. Power reduction techniques are implemented at every level of design

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

abstraction starting from device modeling all the way until circuit design at the gate and
transistor level and layout. Special techniques have also been developed at the fabrication
level. With so much importance for design and implementation of power aware
architectures and circuits, we take up the task of designing and simulating architecture
that maps a unique FFT algorithm mainly aimed at memory access reduction, which

could ultimately lead to lesser power consumption at the architectural level.

1.3 Organization of the Thesis Write-up

The entire report is organized into five chapters with the first chapter giving a basic in-
depth into the necessity for this work and few of the technical startups needed to
understand the underlying concepts behind our work.

Chapter 2 gives a comprehensive description about various Fourier algorithms and
architectures based on these algorithms with specific focus on Fast Fourier Transform
algorithms. Detailed explanation along with supporting mathematical equations has been
provided for clarity purpose. Chapter 2 also gives a comprehensive coverage of the
Twiddle Factor Based FFT algorithm, which forms the background of our architectural
design. A clear insight on how the decimation is performed is also given.

Chapter 3 explains in detail the architectural technicalities involved in our design. The
various logic blocks designed and simulated are shown pictorially and a good insight on
the computational complexities of various blocks along with equations has been
demonstrated. Memory reduction techniques have also been sighted to enhance the

effectiveness of our work.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 deals with simulation output waveforms of various important blocks that
have been designed and explained in chapter 3. In addition, various plots that depict the
advantage our architecture and the algorithm it is based on possess over other
architectures are plotted. The chapter also summarizes in mathematical units the effective
power savings and memory access reduction achieved.

Chapter 5 concludes our work with a brief summary of our results and some
suggestions for future designers depicting the scope for improvements that can be

extended to our work to enhance its effectiveness.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

FAST FOURIER TRANSFORM ALGORITHMS AND ARCHITECTURES
2.1 Introduction
As seen in chapter 1, the Fast Fourier Transform is computationally the most efficient
way of computing the Fourier transformation. From Section 1.2.3, the calculation of
direct form of DFT requires 0(N2) and from Section 1.2.4.1, the calculation of DFT
through FFT algorithm requires only O(Nlog,N) computations for an N-point input. For
small values of N, this difference is not significant. But for large values of N, the FFT is
orders of magnitude more efficient than direct DFT calculation. Table 2.1 below gives a
comparative analysis of the computational advantage of FFT over direct DFT calculation
for various values of N. A number of FFT algorithm variants have been designed over the
years each having inherent computational advantages and disadvantages. FFT algorithms
on the broader spectrum are divided into two main types namely Decimation-In-Time
(DIT) and Decimation-In-Frequency (DIF). Either of the types involves splitting the input
data points into odd and even components, perform DFT operations and then recombine
the calculated values to form the output transformed data points. The DIT form of FFT
algorithm is formed by splitting x(n) which represents the time domain, into even and odd

components of N/r data sequence and then continuing the decomposition or splitting

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operation till r-point DFT sequence is reached, where r is specified in terms of N as

N =r"*, with k being a positive integer.

Table2.1: Comparative tabulation of DFT and FFT computational efficiency

.

Transform length | DFT operations FFT operations DFT operations
(N) +FFT operations
16 256 64 4
128 16,400 896 18
1024 1.05 x 10° 10,240 102
1,048,576 1.1x 10" 2.1x 10 52,429

The total number of decomposition stages is given by log,N, with the log,N th

stage
having all its computation as r-point DFT operations. Hence if r=2, then decomposition
of x(n) would proceed until the stage wherein all DFTs operations or so called butterfly
structure have just 2-points each for computation forming a radix-r (with r=2 in this
case) DIT-FFT algorithm. On the other hand, the DIF form of FFT algorithms are formed
by splitting X(k) which represents the frequency domain, into even and odd components
of N/r data sequence as in case of DIT explained above. Hence, this type of algorithm is

termed as radix-r DIF FFT algorithm. On a comparative basis, DIT and DIF are

computationally same, thus enabling using either of the two forms of algorithms.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Decimation-In-Time (DIT) FFT Algorithm
As we saw in the previous section, Decimation-In-Time FFT algorithm for N =/ , 18
derived by splitting N-point input sequence into N/r equal sequences of even and odd
components of the input data. For exémple, if r=2, then N-point input data sequence
given by x(n) is divided into two N/2 sequences one containing even and the other
containing odd components of x(n). The equation for output X(k) is given by equation

(1.2.4.1.6) which is restated below for convenience.

N/2-1 N/2-1

X()= 2 e (@QW52) +OVy) D xon (W, (22.1)
Equation (2.2.1) can be generalized as
X(k) = Fi(k) + W% Fy(k) (2.2.2)
Splitting X(k) into two N/2 components results in the following equations
X(k) = Fi(k) + W}, Fy(k), k=0, 1, 2..., N/2-1 (2.2.3)
X(k+N/2) = Fi(k) - WX Fy(k), k =0, 1, 2... , N/2-1 (2.2.4)
Equation (2.2.4) has a negative sign as compared to (2.2.3) because of the fact
thatWy*"'? = —-W, . A butterfly is a structure that diagrammatically represents equations

(2.2.3) and (2.2.4). Using butterflies to draw flow graphs simplifies the diagrams and

makes them easier to read.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ae + —e X=A+BW

B Y=A-BW

Figure2.1: A radix-2 Decimation-In-Time (DIT) butterfly structure

x(0) X(0)
x(4) X(1)
x(2) X(2)
x(6) X(3)
x(1) X(4)
x(5) X(5)
x(3) X(6)
x(7) X(7)

Figure2.2: Flow graph of an 8-point DIT FFT structure using butterflies

2.3 Decimation-In-Frequency (DIF) FFT Algorithm
As in the case of DIT, Decimation-In-Frequency is obtained by splitting the input
sequence into N/r sequences. If r=2 (say), then the N-point input x(n) is split into two
sequence each of N/2 points. Unlike in DIT wherein input data is split into even and odd
terms, the DIF just involves splitting the input sequence into N/r sequence. To derive the
algorithm, we begin by splitting the DFT formula into two summations (since r=2), one
of which involves the sum over the first N/2 data points and the second sum involves the

last N/2 data points [8]. Thus from [4] [5] [11] [12] we can write

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(N12-1) (N-1)

X (k)= Zx(n)W"k + Y x(mWyt (2.3.1)
n=N/2
or
(N/2-1) (N/2-1)
X(k)y= > xmWF + WP S x(n+—)W"" (2.3.2)
n=0 n=0

Combining the two summations in equation (2.3.2) and using the fact that W{*/?*

= (-1)*, we obtain
(N/2-1)

X(k) = Z[x(n)+(¥ x(n+—-—)]W"k (2.3.3)

Considering the even and odd components of k and representing them with X(2a) and

X(2a+1) respectively, so that

X (2a) = (fo)x(n) +x(n+ ——)]W ;o (23.4)

n=0

XQRa+1)= (N/ZZ: E)x(n) x(n+ ———)]W W,

n=0
a=0,1...,(N/2-1) (2.3.5)
Thus DIF equations can be generalized for r=2 as

X(k) = Fy(k) + Fa(k) (2.3.6)
N k
X(k+ ?) =(Fi(k) = Fo(k)W

k=0 1,2...(N2-1) (2.3.7)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ae + o X=A+B

Be _ o Y=(A-B)W

Figure2.3: A radix-2 Decimation-In-Frequency (DIF) butterfly structure

x(0) . X(0)

x(1) << X(4)
N\ XX w ¥

x(2

W KX TN

x(4) "Q%A s - e xa

«5) XX N, < w X3)

AN Y- O RN
AN

x(7) . Y o X(7)

Figure2.4: Flow graph of an 8-point DIF FFT structure using butterflies

2.4 Decimation Based on Twiddle Factors
In microprocessor-based system, memory access is expensive mainly due to larger
latency and higher power consumption [1] [10]. From figure 2.4, it can be seen that the
various twiddle factors used for the DFT operations depicted by the butterfly structure are

repeated at different stages and even within each stage. For example, the twiddle

factorW, gets used in stagel as well as stage2. Even within stage2, W is used twice.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence in this 8-point DIF FFT, W} is seen to be used for a total of three times. In terms

of computation, it involves accessing memory thrice to bring in the same twiddle factor
to perform DFT computation. Thus, the redundancy in twiddle factor memory access is
obvious. For larger values of N, the redundant memory access becomes substantial
leading to higher power consumption. A unique Twiddle-Factor-Based FFT algorithm
[1], is designed to reduce the frequency of memory access as well as multiplication
operations. The algorithm is mainly divided into two sections based on the Twiddle

factors that are present. The first section named as Super Stage (SS), computes the

butterflies involving twiddle factors W) (j# 0) through a computation scheme similar to

Hoffman coding [1]. In this section, all butterflies that use the same twiddle factor are
clustered together and computed, thereby having to load that twiddle factor only once to
compute all the butterflies that use it, instead of accessing the same twiddle factor each

time a butterfly that uses it needs to be computed, resulting in substantial memory access

reduction. In the second section, (N-1) butterflies involving the twiddle factor W,f,’ are

computed using a top-down tree structure. Simulations proved a 20% reduction in clock
cycles and an average of 30% reduction in memory access for a 32-point FFT using
Twiddle-Factor-Based FFT algorithm when compared with the conventional DIF FFT
algorithm [1] [10].

Hence, using the Twiddle-factor-Based FFT algorithm, if a twiddle factor gets loaded
from the memory, it gets utilized until there is no further need for it in any further
computations. This in terms of number of memory access is only (N/2-1) for an N-point
input for Twiddle Factor Based FFT as compared to (N-1) for conventional FFT

algorithms. The power saving can be significant using the Twiddle-Factor-Based FFT

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm especially for large values of N. One main advantage this algorithm has apart

from having lesser memory access is that the second stage dealing with W, does not

involve any multiplication as Wy =1. Hence we also have extra power savings through

non-usage of multipliers that are power hungry and computationally intensive.
2.4.1 Decimation Procedure

In case of Twiddle-Factor-Based FFT algorithm described in [1] [10], the butterflies that
are computed at each stage are spread across log, N stages of a conventional
decimation. The Twiddle-factor-Based FFT decomposition is shown in figure 2.5. As can
be seen from figure 2.5, butterflies with the same twiddle factor (represented by W/xJ,
with x varying from O till (N/2-1) and this representation is analogous toW,;), that were
computed at different stages in a conventional algorithm, now gets computed within a
single stage thereby avoiding the necessity to load the same twiddle factor numerous
times as compared to just once in [1] [10]. The decomposition of the algorithm proceeds
in the following fashion. For an N-point FFT, the binary index of a data sample resembles
(AkAt.1.... Ag), with k=log,N-1.

(1) At the first stage of decomposition, all data samples of the form (Ax Ak.;.... 1) are

computed and any two data samples of the form (A Ax.;.... 1) and (.;& g 1)

can pair together to form a butterfly [1].

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oL N/ N 0\ / X Z N X

O X Sy \ /[=<)
x(4) V WIOL X(2)
x(5) \/ me(xo)
X(6) 4] / \ /\wun X(6)
x(7) 4] / 14)
x(8) / LT X(1)
x(9) \ / \/ XM(@)
x(10 WL X(5)
x(11 4] 13)
x(12) v \W[4] / \wm1 Xw’i(i)
x(1 11)

WG] 7\)(WI4] / \Mm X(7)
x(m_/ Awm / \Wl /\ 4] ><w.X(15)

SUB-STAGE! SUB-STAGE2 SUB-STAGE3 SUB-STAGE4

STAGE 1 STAGE 2 STAGE 3 STAGE 4

Figure 2.5: Flow graph of a 16-point FFT structure based on Twiddle-Factor-Based
algorithm

The twiddle factor that corresponds to this butterfly is given as W,/ where j corresponds

to the decimal value of the binary sequence given by
(0Ag;....A2A; 1).
(2) At the second stage of decomposition, all the data samples with binary sequence

(AxAkg.... A2 10) and (A Ag.j.... A2A;1) are computed. Any two data samples with
binary sequence (Ax Ag.;.... A210) and (AkAk.]....AZ]O), or (AgAg.g....A2A;1) and

(AkAk-] AzA;l) can pair together to form a butterfly. The twiddle factor
corresponding to this butterfly is W, where j corresponds to the decimal value of

the binary sequence given by (0 Ag.;....A; 10).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3) Within log,N-1 stages of decomposition, all data samples with twiddle factor
other than W, are calculated.

(4) The log,N™ stage involves butterflies whose corresponding twiddle factor value is
(000...1).

The obvious advantage that can be seen from the above form of FFT decomposition is the

number of memory access that is made with regards to accessing the various twiddle

factors. Thus we only need (N/2-1) memory access as against (N-I) required by

conventional algorithms [1] [10]. Another interesting aspect in addition to reducing the

memory access is that the log,N™ stage of decomposition involves Wy as its twiddle

factor and W, =1. Thus there is no multiplication involved with butterflies using this

twiddle factor and hence the final stage decomposition involving (N-1) butterflies does
not involve any multiplication thereby helping us save valuable multiplication operations.
Thus, the Twiddle factor based FFT algorithm seems to be a more appropriate

algorithm that caters to the need for power aware FFT systems.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

ARCHITECTURAL DESIGN AND IMPLEMENTATION
3.1 Overview
In chapter 2, we had a comprehensive explanation about the Twiddle-Factor-Based FFT
algorithm and also the computational advantages it had over other conventional FFT
algorithms was explicitly shown. Designing architecture to map this computationally
challenging but intensely less memory access-involving algorithm is the main aspect of
our work.

Until the early to mid-90s, low power electronics were for the major part considered
only for a very few applications largely comprising of small personal battery-powered
devices. But the mid 90s saw the remarkable development of CMOS sub-micron
technology, which subsequently led to the advent of deep sub-micron CMOS era.
Another radical change that revolutionized the electronics market was the unprecedented
demand and subsequent development of portable communication and computational
devices that mainly depended on battery power for their operation. Unfortunately, the
battery industry could not keep pace with the developments in the semiconductor
industry. As a result, high-end electronic portable devices needed constant battery
recharging, which made them less user friendly. This resulted in extensive research done

towards design and implementation of newer VLSI algorithms, architectures and circuit

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

techniques that would utilize the minimum possible power without sacrificing any of the
other parameters such as bandwidth, clock speed, area and throughput.
Our architectural design, based on a power reduced FFT algorithm is a small step in

this direction.

3.2 Design Target
The FFT algorithms have a wide range of signal processing and communication
transmission applications. In recent times, one important area where FFT has found
extensive application is High Definition Television (HDTV). According to the standard
of European Digital Broadcasting, FFT/IFFT must execute 8192 points in 896
microseconds. In addition, we also target our architecture towards Orthogonal Frequency
Division Multiplexing (OFDM) transceiver whose IEEE §02.11g standard requires it to

execute 1024-point FFT in 51 microseconds.

3.3 Algorithm Setup
We recall the Twiddle Factor Based FFT decomposition structure shown in figure 2.5.
From the structure, the algorithm can be broadly classified into three distinct divisions

namely Input, Processing and Output stages.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x(0) X(0)

TN N <.
o T N 7 N~ 7 X <<a "
7\ o 7 ==

(12)
/ \wrm X2

N\ =< X0
A < ;‘;’)
// \\ (14
T~ S
WI0] X(5)
i 7\, 7 N e
=<uxan

WA X(T)

\ , 2\
x(1 of win/Z N\wg /\wm me(m

SUB-STAGE1 SUB-STAGE2 SUB-STAGE3 SUB-STAGE4

STAGE 1 STAGE2 STAGE 3 STAGE 4

Figure 3.1: Flow graph of a 16-point FFT structure based on Twiddle-Factor-Based
algorithm

At the Input stage, complex form data values corresponding to the N unprocessed, in
other words time domain signals x(n) where n=0,1,2,... ,(N-1) are input into the memory
device from external source (generally other blocks whose output need FFT processing).
The address location where the input data values would get stored depends on values of
n. That is, if data value corresponding to x(rn) needs to be stored, it gets stored at a
location whose address is given by binary equivalent of (n+I) , that is if data
correspénding to x(0) needs to be stored, it gets stored in a memory location whose
address is binary equivalent of (n+1) or (0+1=1). Similarly for x(4), the address is binary
equivalent of (44+1=5). The number of binary bits to represent memory address depends
on the size of the memory device as shall be seen in the coming sections. Thus, data is

fed into memory starting from x(0) all the way up to x(N-1), in subsequent locations.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The processing division is where the DFT butterfly operation takes place. This division is
equivalent to the Central Processing Unit of any computer system. This block transforms
input time domain signals x(n) into its corresponding frequency domain signal X(k).

The transformed X(k) output values are written back to the same locations in the
memory device from where they were initially accessed. Thus after all operations, the
same memory locations which contained time domain signals would now contain
frequency domain signal output. The output division accomplishes this process. For any

given N, the total number of decomposition stages is given aslog, N, where N=F, k
being any positive integer. Hence the above stated process is repeated log, N times

resulting in the final values of frequency domain X(k) signals.

3.4 Random Access Memory (RAM) Address Generation Block Design
The functionality of the RAM address generator is to determine
(1) Total number of stages of decomposition
(2) Total number of DFT butterfly operational groups within each stage based on
twiddle factors
(3) Determine the memory address locations of the data needed for each of the DFT
butterfly operation.
The RAM address generator is one of the few complex operational blocks designed in our
architecture. Based on our observation of the Twiddle-Factor-Based decimation FFT
algorithm, we can make the following conclusions assuming N=2* k is any positive
integer.

(1) Total number of stages of decomposition for an N-point input = logoN

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) Only the butterflies in decomposition stages I till (log2N-2) involve complex
multiplications.

i i i 1,3,5,..., (N /2 LoGn -1
(3) Butterflies with twiddle factors W '3 ¢)

2 (LOGN -2

form the (logaN-1)" stage

and involves only multiplication with imaginary term j which can be effectively
implemented by switching or swapping real and imaginary terms of the output
and inverting the sign term between them, thus avoiding use of complex
multiplier.
For the purpose of RAM address generation, we came up with a pseudo code in C++
which could generate addresses of all butterfly DFTs based on Twiddle-Factor-Based
FFT algorithm decomposition described in [1] [10]. The Pseudo code consists of two
parts with the first describing the decomposition for the first (log,N-1) stages and the
second describing the (log,N) ™ stage. The first Pseudo code depicting address generation
of the first (log,N-1) stages consists of four nested loops.
(1) Loop 1: corresponds to the current stage number (between 1 and (log;N-1))
(2) Loop 2: corresponds to the total number of different twiddle factors that are used
within a given stage
(3) Loop 3: for a given twiddle factor, we have butterfly DFT structures that vary in size.
Loop3 computes total number of different sizes of butterflies that utilize a given
twiddle factor.

(4) Loop 4: Computer total number of butterflies for a given size and a twiddle factor

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.1 Formulae of Computational Complexity for the Loop Structures
for (log,N-1) Stages of Decomposition
Loop 1 Computation — The loop 1 as seen from section 3.4, computes the total number of
stages of decomposition excluding the last stage, which is generally computed separately
as this stage does not involve any twiddle factor multiplication. Excluding the last stage
of decomposition, the total number of stages is (log,N-1) and hence loopl index varies

from 1 to (logaN-1).

Loop 2 Computation — The generalized formula for the calculation of Twiddle factors
that are used in each of the (log,N-1) stages, where N=r", k being any positive integer is
given as

w*, ,wherex=1, 3,5, 7... [(N/r©)-1] (34.1.1)

D
where cs represents the current stage number
The current stage value (cs) varies from I to (log,N-1). For our architectural design we

assumed r=2. Hence, (3.4.1.1) becomes

W*, ,wherex=1, 3,5, 7... [(N2%)-1] (3.4.1.2)
pea
=W, where x=1, 3, 5, 7... [(N2%)-1] (3.4.1.3)

The total number of butterflies in each stage is given as

Q2 -DN

A (CS+1) (3.4.1.4)

Equation (3.4.1.4) gives the total number of butterfly operations per stage. Thus, for

(log2N-1) stages, the total number of butterflies is given as

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loggN-1 7

P e)2 -1 (3.4.1.5)

CS=1

Using equation (3.4.1.3) and the values N=16 and r=2, we can work out an example to
calculate the twiddle factors used at various stages of decomposition using the Twiddle-
Factor-based FFT algorithm. Number of stages with twiddle factor multiplications is
given as (logaN-1) = (log216-1) =3. Thus the stage index value or CS varies from 1 to 3.
Stage#1:

Twiddle factors accessed when CS=1 is given as
Wi where x=1, 3, 5, 7... [(N/2)-1]
____ng2““> ,wherex=1, 3, 5and 7

Therefore the twiddle factors that are used when CS=1 areW,, W,) W,; and W,]

Stage#2:

Twiddle factors accessed when CS=2 is given as

x2(CS~l)

w; ,where x=1, 3,5, 7... [(N/2°)-1]
=WI§2(H) , Where x=1and 3

Therefore the twiddle factors that are used when CS=2 are W, and W,;

Twiddle factors accessed when CS=3 is given as

2(C.Y—l)

Wy , where x=1, 3, 5, 7... [(N2°)-1]
=W, 2", where x=1

Therefore the twiddle factors that are used when CS=1 isW,,

Loop 3 Computation — For a given twiddle factor within any given stage, there can be

DFT butterfly structures of varying sizes, where size of a butterfly with reference to

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conventional FFT algorithm can be said to be (N/2%) where CS corresponds to current
index value of stage number which varies from I to log,N for a given value of N. In case
of conventional FFT algorithms, all butterflies that were computed within a single stage
were of the same size. On the other hand, Twiddle-factor-Based FFT algorithm,
computes butterflies based on their twiddle values. Hence, butterflies that are computed
within a single stage need not necessarily contain butterflies of the same size. The total
numbers of different sized butterfly structures that utilize a single twiddle factor at any
given stage of decomposition equals the value of the stage of decomposition where the

butterfly is currently present. For example, W,; twiddle factor that is present in stage 1,

would have butterflies of only one size using that twiddle factor as it lies in the first stage.
Similarly, W,; which lies in stage 3, would have butterflies of three different sizes. The

different sizes might also be specified in terms of levels, with each level being occupied
by butterflies of one particular size. Hence three different sizes for a single twiddle factor
means there are three levels for that twiddle factor. The size of butterflies varies starting

from N/2 for the first level and successive steps having half the size of the butterflies in
the previous level. For example, we saw that ng had three different sizes of butterflies.

Hence,
Size of butterflies present in level 1 = N/2
Size of butterflies present in level 2 = /5(N/2) = N/4

Size of butterflies present in level 1 = /2(N/4) = N/8

Loop 4 Computation — Having formulated the number of stages of decomposition, total

numbers of twiddle factors per stage and the total number of levels of butterflies per

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

twiddle factor. We are left with calculating the total number of butterflies to be computed

in each of the levels. The formula for calculating the total number of butterflies present
per level is given as 2“'). For example, again considering twiddle factorW,;, we can

thus calculate the number of butterflies in each of the three levels. Thus

Total number of butterflies present in level 1 = 20! = 1

Total number of butterflies present in level 2 = 247 = 2

Total number of butterflies present in level 3 = 27 = 4
An important aspect of the butterfly decimation is that within a given level, the butterflies
can be computed in any order. Similarly for a given twiddle factor within a stage, the
various levels can be computed in any order and so can be done with different twiddle
factors within a given stage. Thus the parallelism can be exploited at various levels of
decomposition. This feature makes the Fast Fourier Transform the most sought after
transformation algorithm in numerous signal processing and communication applications.

3.4.2 Pseudo Code Implementation

Based on the four loop structure calculated for the first (log,N-1) decomposition stages
based on Twiddle-Factor-Based FFT algorithm, a C-like pseudo code to implement the

DFT butterfly operations over (log,N-1) stages is shown below in figure (3.2).

bf size = N/2

LOOP 1:

i =1to(logsN-1), i++
al = (2" (i-1))

LOOP 2:
j=110(NR2™), j++
bf _size = N/2

a=al
a=a+2(-1)*al

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOOP 3:
K=(i-1)to0, k- -

LOOP 4:

m = 1 to (N/(bf_size*2))

b =a + bf size

c[m]=a

a=a+ (2*bf size)

DFT Butterfly operation to be performed
LOOP 4 ENDS

a=c[l]2

bf size = (bf _size/2)

LOOP 3 ENDS

LOOP 2 ENDS
LOOP 1 ENDS

Figure 3.2: Pseudo code for the (log,N-1) stages decomposition

3.4.3 Architectural Blocks Design and Implementation
For the pseudo code designed in figure (3.2), a logic design at the behavioral level is done
using Very large-scale integrated circuits Hardware Description Language (VHDL) tool.
Aldec Inc., license version of Active HDL version 6.3 was used entirely to design and
simulate the various architectural blocks. The architectural implementation of the (log:N-
1) stages of decomposition based on Twiddle factors is shown in figure (3.3). On
comparing the pseudo code with the architectural blocks, we can find that the block
i_block corresponds to loopl, while j_block and k_block correspond to loop2 and loop3
respectively. Due to logical implementation complexity, loop4 is implemented using
three blocks namely m_block, mil_block and m2_block. The main functionality of the

RAM address generator as stated earlier is to generate address of data elements present in

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the memory unit that are needed for all the DFT butterfly operations over the entire
decomposition stages. For every butterfly operation, two data elements are required,
which implies that two addresses are required to be generated by the RAM address
generator for every butterfly operations that gets computed. From the architectural
design, g, and g, represent the two binary address values that get generated. Each of the
two outputs is a binary sequence of width determined by the size of the memory unit it
accesses as can be seen in the upcoming sections. All the blocks are of non-pipelined
nature wherein only one block remains operational at any instant. The blocks gets
initiated one after the other in the order required automatically by triggering signals
which present within one block trigger the next after the completion of execution by
current block. There are six blocks in total implementing the four nested for loops. The
value of g, is generated at multiple locations along the six blocks. The correct value of g,
that corresponds to any particular butterfly operation is chosen among the different g,
values based on a resolution function block. The alphabet V represents a signal that
toggles for every value of loopl index and in turn triggers j _block which then gets
executed loop2 index times and V’ represents the situation wherein j_block completes
executing loop2 index times and hence control is transferred back to i_block for further
processing. Similarly, W and W’ represent the computational triggering signal between
J_block and k_block. On the same ground, we can explain the functionality of X, X', ¥, Z
and Z’. The complete VHDL implementation of the architecture described in figure (3.3)
is shown in APPENDIX. The other important signals that form a part of our design are
the clear, enable and clock. The clock is basically a synchronizing signal whose complete

functionality is explained in section 4.7. The clear signal is used as an erasing signal

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which when active high or 1 erases all the values at the output ports and assigns them to

high impedance.

clock clock elock
e dear™ g
clear vy w cleary,
enable ; ' —— e T 3 g
e | iblock [To—o®j block | eblock L
— '
.
To enable (logN) qaj
stage blocks) \a | 4 w |
- y X
loopi loop2 loop3 >
clock clock, ok —1 IR B G
clear clear clear gak
s z i y g — qa
enable | M2_block [t mi_block [Lo | m.plock
enable
—™ — g G8M pesolution
black
| Pa 4[]
loopd ab

Figure 3.3: Block design representation of (log,N-1) stages based on Twiddle factor
decomposition algorithm

The enable signal is basically to determine if a block needs to be operational at any given
instant. Any block proceeds with its execution only if enable signal remains active low or
0, failing which, the previous output of that block is retained irrespective of changes in its

input.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Formulae of Computational Complexity for the Loop Structures
for log,N™ Stage of Decomposition
In section 3.4, we saw the RAM Address generation block design for the first (logaN-1)
stages of decomposition based on twiddle factors. The final stage or logzN’h stage of
decomposition is probably unique when compared to the other stages mainly in terms of

usage of multipliers. The log,N™ stage is classified in such a way that all the butterflies in

this stage irrespective of their levels or sizes use only the twiddle factor W, . The value of
W, is always equal to I, irrespective of the value of N. DFT butterfly calculations based

on equations (2.3.6) and (2.3.7) reveal that using W, is equivalent to multiplying

equation (2.3.7) by 1. The twiddle factors used for multiplication in the first (logsN-1)
stages are complex in nature (containing real and imaginary terms). Hence when these
complex twiddles get into equation (2.3.7), they result in complex multiplications, which
are computationally complex and intensive to design and implement. Hence the absence
of complex multiplications in the (log:N™) stage makes this stage computationally less
intensive and results in large savings in terms of clock cycles for computation and also in
terms of power dissipation. The total number of butterflies that are computed in this stage
is given as (N-1). Since there is no multiplication by twiddle factor involved in this stage,

we can disable all the multipliers that are designed to handle multiplications. This
procedure is more complex in other conventional FFT algorithms. Though W, factor is
present even in other FFT algorithms, they get utilized at different stages of
decomposition, unlike in Twiddle factor based algorithm [1] wherein W, gets utilized

only in one stage. Hence in conventional algorithms, disabling the multipliers at different

time intervals is more difficult. This is one obvious advantage Twiddle-factor-based FFT

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm has over other FFT algorithms. As a result, we can disable the multipliers for
clock cycles equivalent to implementing (N-1) complex multiplications. This results in
power savings as digital circuits like memory units and multipliers are power hungry.
Though power efficient multipliers are being designed, it is more suitable to reduce the
usage of multipliers.
3.5.1 Memory Reduction Technique

The Twiddle-Factor-Based FFT algorithm [1] [10], describes a methodology by which
memory access can be reduced even at the (log,N) th stage. From figure 3.1, butterflies
within the (log,N) ™ stage is decomposed into (log,N) further sub-stages as depicted in
figure 3.4. From figure 3.4 it can be seen that in sub-stagel (S1), the two outputs of
butterfly are represented as A and B. The output value A serves as input for C and that of
B used as input for D present in sub-stage2 (S2), while input values for points E and F do
not depend on their previous stages. Hence input to these points has to be accessed
directly from memory units. It becomes redundant if A and B get stored in the relatively
slow memory units and then C and D accessing those values back from the same memory
unit. Instead, A and B can be stored in temporary registers from where C and D can

access them.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SUB-STAGE S1 SUB-STAGE S§2 SUB-STAGE3 SUB-STAGE4

STAGE 4

Figure 3.4: (log,N)™ stage decomposition structure for N = 16

While one of the inputs to every butterfly can thus be accessed from temporary registers
where the previous stage outputs get stored, the second input to the butterflies is only
accessed from the main memory units. As a result of this, main memory accessing gets
reduced by as much as 50%. Accessing data from main memory units is more power
consuming than accessing them from temporary registers simply because, temporary
registers can be built according to user needs and can be placed closer to the processing
unit. Moreover the main memory structure is designed in a more complex way when
compared to the temporary register bank. The decoding for temporary register location is
also simple when compared to the main memory. Based on our evaluation, the total

number of temporary registers required for an N-point input is N/2.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2 Pseudo Code Implementation
A C-like pseudo code for implementation of (log,N)™ stage is given in figure (3.5). Itis a
two for loop structure generating the addresses g, and g, that represent the binary
equivalent of the addresses of the two memory locations from where data for computing
the butterfly is accessed. This pseudo code only deals with address generation and not

with memory reduction concept.

bf _size = N/2

LOORP 1:

k =110 (log:N), k++
al =0;a=0

LOOP 2:

m = 1 to (N/(bf _size*2)), m++
a=a+al

b =a+ bf_size
c=a;

d=b;

c=(a+b)
d=(a-b)

al = (bf _size)*2

LOOP 2 ENDS
bf _size = (bf _size/2)

LOOP 1 ENDS

Figure 3.5: Pseudo code for the (log,N-1) stages decomposition

3.5.3 Architectural Blocks Design and Implementation
The two-loop pseudo code is logically designed using VHDL at the behavioral level. The

blocks are designed in such a way that of the two data values that are required for

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computation of every butterfly, one data comes from the temporary register while the
other comes from main memory unit. On one hand, the outputs from the butterflies that
are computed in the (logoN-1) sub-stages are stored back into temporary registers while
on the other hand, the outputs of butterflies computed in the (log;N. I sub-stage get stored
into the main memory unit rather than in the temporary registers mainly because, the
(log:N)" sub-stage forms the final stage of computation and hence it forms the output
stage and the output values need to be written back onto main memory from where they
would be accessed by other systems. Figure (3.6) shows the architectural blocks of the
(logaN)yt stage implementation. As explained in section 3.4.3, the functionality of A, A’,
B,B’, C,C’, D and D’, 1s to trigger the successive blocks to which they are respectively
connected. The clear, enable and clock signals perform the same functionality as that
explained in section 3.4.3. The q_temp_reg_addr is the address corresponding to the
temporary register location from wherein data needs to be accessed. The gb_logn
represents the second address needed for performing the butterfly operation, which is
fetched from RAM. The VHDL block implementation of the architecture explained in
figure (3.6) is given in APPENDIX. On the design front, we plan on designing a 1024-
point FFT architecture targeting HDTV application. For this purpose, we need 512
temporary registers each of 32-bits wide. The 512, 32-bit temporary registers are
implemented as a tree structure. Initially, one 32-bit temporary register is designed. It is

then duplicated or in VHDL terms port mapped to form the second temporary register.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock
clock clock >
clear dﬂ.,. C’EEL; qb_togn1] lg_temp_reg addr1
enable " logn_block1 | A™ “liogn blockz | B _!iogn_block3 | - T
» - >
enable
From (logN-1) t dd
rom {logN- X , q_lemp_reg_addr
stages block Q‘ A] ‘ B —l c o >
fock Y s
clock cia
claar’ clear .
—Pliogn_block5 | o D logn_blocka gb_logn
bl
enanie » enable
, Resolution
D Al block
aqb_logn2} |q_temp reg_addr2

qa._m;n

Figure 3.6: VHDL Block implementation of (logN)" stage based on Twiddle factor
decomposition algorithm
Now, the two identical registers are considered to be a single entity and this is then port-
mapped to form two more identical registers, resulting in four registers. Proceeding this
way, we get to design 512, 32-bit temporary register bank. During the different stages of
algorithm execution, data is constantly written onto and read out from the temporary
registers. Hence, there is a necessity to generate the address of the temporary register
where data is to be currently written or to be read. The logic block implemented as shown
in figure 3.6 generates the address corresponding to the right temporary register. This
address is decoded in stages by a decoder. Each stage of temporary register design has its
own decoder, which decided the exact location of the temporary register.

The number of address bits needed to specify a location in the temporary register bank
is determined using the following expression
Number of address bits = log; (total number of register locations) (3.5.3.1)
Hence, in case of temporary register bank, we have N/2 or 512 register locations.

Substituting in equation (3.5.3.1), the number of address bits is 9. Thus we need 9-bit

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

binary sequence to represent each of the temporary register locations. In the previous
section, we saw that in the (log>N fi stage, data is accessed both from main memory unit
as well as from temporary registers. To achieve this, the design incorporates multiplexers
to choose between the two data source. Each temporary register has a Read and Write
signal. If the Read signal is set to high or I, data is read out of temporary register, while
making Write signal high on the other hand, enables us to write data into the registers.

The complete block architecture for address generation for both (log2N-1) stages and

(logoN)" stage is shown in figure (3.7).

{
chock
e m;j: g
— v W™
] LMK T ey 1 LblooK Pk plock |l
e enabie
i
To enable flogh) e
a@e bocks Q v [] W I
X x
ionpt fonp2 00p3 Lol
ek h 4 _ . o
cioar™ cloar cloar ™ proan > >
~ z i v s ¢ 8 on & o
erobte | MZ_bI0ck Tt ook o _block =
- - ol qam rmsomm
Bk
I Fa) l?
foopd qb_logh-1
-
qb
clock ciock Zetock - § ey
— v e — =
tioar gl 0 lognt | ki lemp rey addrt
Y - — _ e L. iab g rey
enatis - joge_block! | fogn Mock2 | B - jogn_block] e
enabie i
e —
From Bogh-1} . . L i temp feg sodr
slages block 4 A % 4 8 E o o > >
R Address to temp
L] s
) ; register
™ oear™ L,
P 0gn_blocks | D fogn._blackd ab_jogh
snable enzble ig""
) g; Ragsedution
L o A | block
Qawm‘gﬂzgga temp reg adde?
aa.logn

Figure 3.7: Block implementation of (log;N-1) stages and (logzN)’h stage based on

Twiddle factor decomposition algorithm

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Random Access Memory Design |
The Random Access Memory (RAM) is the main memory system designed and
simulated in our architecture structure. Our FFT architecture is designed for 1024 points
input system. Hence we have 1024-points time domain input signals that need
transformation. For this purpose, the input data needs to be stored in a memory unit from
where they can be accessed whenever necessary. The design and implementation of the

Random Access Memory (RAM) tends to serve this purpose.

The biggest advantage that FFT algorithms possesses that other transform algorithms
do not is that of In-place computation. The FFT algorithms as seen get computed in
stages. In conventional FFT algorithms, input data as well as output data are accesses in
and out of RAM, which serves as the primary memory unit. The input data that is used in
the computation at each stage is only needed for that stage. Once the output to that stage
gets generated, the inputs that this stage used are no more needed and can be replaced by
the output data obtained. This process of replacing or re-using the same set of memory
locations that stored the input data to store output data values is termed as In-place
computation. This concept results in minimum requirement and usage of memory unit
size, which makes it optimal for digital systems. Hence, for an N-point FFT

implementation,
The number of Main memory (RAM) locations needed = N 3.6.1)

If each memory location is represented by the term word, then, for a 1024-point FFT
implementation, we need 1024 words or locations in the RAM to store all the input and

output values. The address locations for the memory locations start from binary

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equivalent of 0 and continue all the way up to 1023, thus specifying all the 1024
locations. Each location can store data of width 32-bits. From equation (3.5.3.1), the
number of bits requires to address each location can be calculated to be /0. Hence, the
address sequence starts from 0000000000 all the way until /111111111 with increment
of 1. Two distinct but similar RAM blocks having the same set of address sequence is
designed to store both the real and imaginary part of the complex data input of the form
(a+jb) with a and b being any real number. Thus, accessing the exact memory locations
from both the blocks simultaneously results in accessing both the real and imaginary
parts of an input data. The basic structure of a I-word RAM is shown in figure (3.8). This

structure is common for both the real and imaginary parts of RAM design block.

clock
. -

clear
Enable from decoder RAM
— cell Data to he read

Data to be written R
data

Signal to read out data storage

Signal to write in data
—»

Figure 3.8: Block level representation of 1-word RAM cell for storing 32-bit data

From figure (3.8), the basic building block of a RAM word consists of a Read, Write,
Clear and enable from decoder as its signals. The Read and Write signals enable us to
input data into and output data respectively from any memory location. The Clear signal
if high or 1 erases the contents of the memory location and replaces the output as well as

the content of the memory to high impedance. Only if the enable from decoder is made

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

active low or 0, will it be possible to access data from or into the location. Otherwise,
whatever was the previous output continues to remain at the output port and no changes
get reflected. The structural design methodology followed for RAM is similar to the way
the temporary register bank was designed in section 3.5.3. The VHDL implementation of

the RAM cell is shown in APPENDIX.

In order to access the exact location in the RAM block, we need to decode the address
bit sequence generated by the RAM address generator. The decoder block implements
this procedure. The decoder is basically a de-multiplexer, which chooses one among its

many outputs based on the value of the input. The basic structure of a decoder is shown

in figure (3.9).
clock |
— ™ output1
clear RAM - ,
output
Decoder enable Ixd A%
decoder | OUpU!S
el :
2-bit address to choose oute utd

between 4 outpuls

Figure 3.9: Block representation of a RAM decoder

In our design, we implement one decoder to decode 2 address bits thus enabling us to
locate four RAM word cells. In other words, one decoder can help us operate four
different memory locations. Thus for a 1024-points RAM cell locations, we need 341
decoders in total. This can be made clear by figure (3.10) and the explanation given
below. We know that we need I decoder to decode 4 RAM cells and are shown below.

Let this combination be termed as a group. Hence, a group contains 4 RAM cells and !

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoder. Based on the previous calculation, if we have four separate groups, each having 4
RAM cells and I decoder as in figure (3.10a), then we got to a total of 16 RAM cells and 4

decoders decoding these 16 RAM cells.

CELL1 CELL2 CELL3 CELL4

DECODER 1

Figure 3.10a: Basic group formation of RAM cells using decoders

This is depicted in figure (3.10b). To choose one group among the four available, we need a
decoder. Thus, for a total of 16 RAM cells decoding, we get to use 5 decoders. Let us term

this as high group.

-m-amm-m-
DEwR

DECODER

Figure 3.10b: Hierarchical group formation of RAM cells using decoders

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proceeding on a similar ground, we can see that for four such high groups to get decoded,
we need 20 decoders, thus decoding 64 RAM cells. In order to one among the four high
groups, we need a decoder. Hence for decoding 64 RAM cells, we need a total of 21
decoders. The calculation can thus be extended to higher levels of grouping and thus for a
1024 cells RAM structure, we would need a total of 341 decoders. The VHDL block
level design of such a hierarchical' RAM and decoder structure for 64-words RAM is
shown in APPENDIX. The disadvantage of such huge memory units is obvious from our
previous discussions. The humongous hardware requirements hamper the performance of
such memory units in terms of operational speed, data retrieval and storage time, and area
and power consumption. Hence in recent times, high-end research is devoted to designihg
and fabricating huge memory devices with minimum hardware. As a result, high-speed
memories such as cache and flash memories have been designed so as to reduce the
operational delays and also power consumption. These high-end memories are designed
to be very small and hence are area efficient as well. All these benefits have created a
tremendous scope for such memories and are widely being utilized in many system
designs especially mobile devices where area and power savings are of primary

importance.
3.6.1 Read Only Memory (ROM)

In the previous section, we saw the design and implementation of Random Access
Memory (RAM). The RAM is a memory unit wherein data can be written, read and
erased. Thus RAM can be termed as an erasable memory. On the other hand, ROM is a
Read only option memory wherein data to be stored is pre-determined during its

fabrication and is hardwired. Thus the data once hardwired cannot be changed and as a

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

result, no new data can be written on to a ROM cell. Hence there is only a Read option

and no Write option. The ROM is thus used only if there are stored values that do not
change during the course of execution. In any FFT algorithm, the twiddle factors W, , k

=0, 1... ((N/2)-1) do not change their values once computed. Hence for a given N-point
FFT, the entire N/2 number of complex twiddle factors is stored in the ROM, whose size
is determined as N/2. Thus for our 1024-point architecture, we need 512 locations in the
ROM to store the various twiddle factor values with each location being 32-bits wide.
Since, there are 512 ROM locations; we need 10-bit binary sequence to address every
ROM location. The address to the ROM blocks are generated by ROM address
generation block, which keeps generating consecutive address locations of twiddle
factors when ever it gets triggered by a signal from the RAM address generation block.
Every time the second for loop in the RAM address generation block gets executed, a
new twiddle factor needs to be accessed from ROM. Hence, a trigger signal is sent to the
ROM address generation block indicating that address for the new twiddle factor be
generated by it and sent to the ROM blocks which will then output the twiddle factor
values to the location of the butterfly operation. Figure (3.11) below shows the ROM
blocks designed in our architecture. VHDL block representation of ROM is shown in

APPENDIX.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ROM access

919,01,, address
clear clock 512- Twiddle factor data
ROM controlier enable C;ﬁgzer clear . words
' — ' ‘ ROM
——————
L ——p ‘ Triggeting
Signal to initiate ROM signal to cutput
from RAM address new twiddie
generator blocks factor

Figure 3.11: Block representation of Read Only Memory (ROM) and its controller

3.7 Data-Path Design

With the address generation block, Random Access Memory and Read Only Memory
design complete, the architecture can now generate the addresses of the locations from
where time domain signals stored in the Random Access Memory and twiddle factors
from the Read Only Memory can be accessed. Once the time domain signal and
corresponding twiddle factor data from the memory units get accessed, they must be
transformed into frequency domain output signal. In other words, DFT butterfly
operation needs to be performed on the accessed input data. For this purpose, we
designed the data-path block. It is in this block that arithmetic operations such as

addition, subtraction and multiplication are performed.

The formulation for each of the DFT butterfly operations in the Twiddle-Factor-Based
FFT algorithm [1] is based on equations (2.3.6) and (2.3.7) and may be recalled for
clarity.

X(k) = Fi(k) + Fy(k) (3.7.1)

X(k+ %) —(Fi(k) = Fa(k))W",,
50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k=0, 1,2... (N/2-1) (3.7.2)
Equations (3.7.1) and (3.7.2) involve one addition, one subtraction and one
multiplication. The (log,N) stages Twiddle-Factor FFT algorithm [1] can be divided into

three distinct groups based on twiddle factors.

Groupl: consists of butterflies from stages I till (logoN-2). The twiddle factors that are
utilized in any of these stages are complex in nature, which is of the form (a+jb) with a, b
being any real number. The input data F; (k) and F, (k) stored in the memory units are
also complex in nature as the twiddle factors itself. Hence, when equations (3.7.1) and
(3.7.2) get computed, we need to perform one addition, one subtraction and one complex

multiplication which are computationally more intensive than a real multiplication.

Group2: consists of butterflies in the (log,N-1)" stage. The twiddle factor that gets

utilized in this stage is of value j=x[——i . Hence, when equations (3.7.1) and (3.7.2) get
computed, we need to perform one addition, one subtraction and one trivial multiplication
with just the imaginary term j. We term this multiplication trivial because multiplication
with j can be easily performed by just swapping the input real and imaginary terms and
invert the sign between the two terms. Thus, there are no multiplication operations

actually involved. Hence all multipliers designed can be disabled.

Group3: consists of butterflies in the (log,N)™ stage. The twiddle factor that gets utilized
in this stage is W whose value is always I irrespective of the value of N. Hence, when

equations (3.7.1) and (3.7.2) get computed, we need to perform just one addition and one

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subtraction and there are no multiplications involved in this group. Hence all multipliers

designed can be disabled.

From the above three groups, we can find the addition and subtraction operations to be
common, while in case of multiplication, only groupl involves complex multiplication
and the other two groups do not involve any multiplication. Hence, exception for addition
and subtraction operations, we need three separate methods, by which we can choose
between performing complex multiplications, swapping operations and no

multiplications.

3.7.1 Complex Multiplier Implementation

As seen from section 3.7, butterflies computed in groupl have complex multiplications.
Each of the butterfly operation thus involves one complex multiplication. Complex
multiplications are more complicated when compared to real multiplications as they
contain two terms real and imaginary. Hence complex multiplication involves more
computations than an ordinary real multiplication. There are two methods for

implementing complex multiplications in digital system. From equation (3.7.2) complex

multiplication takes place between F; (k) andW,\’,‘ , where k=0, I..., ((N/2)-1). If complex

F>(k) is considered to be of the form (a+jb) and the complex term W,\’,c is considered to be

of the form (c+jd) with a, b, ¢, d be any real numbers. The complex multiplication now

becomes

(a+jb)* (c+jd) (3.7.1.1)
= ac+jad+jbc-bd (3.7.1.2)
52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation (3.7.1.2) can be implemented in two methods.

Methodl: This method is a straightforward implementation of equation (3.7.1.2).
Equation (3.7.1.2) has two addition, one subtraction and four real multiplication
operations. The terms ac and bd represent the real term of complex multiplication while
ad and bc represent the imaginary part. Pictorial representation of the multiplication

methodl is given below in figure (3.12).

Method2: This method implements equation (3.7.1.2) using three additions, two
subtractions and three real multiplications [17]. In this method, the number of real
multiplications gets reduced at the cost of increase in the number of additions and
subtractions. Pictorial representation of the multiplication method2 is given below in

figure (3.13).

~.

Le JLe o) Lef o] lefle] le]

4

ac-bd+jad+jbe

Figure 3.12: Complex multiplication implementation using method 1

Of the two above discussed methods of complex multiplication implementation, method2

has an obvious advantage in terms of number of real multiplications. But the trade-off is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an increase in the number of addition and subtraction operations. In general digital circuit
design terms, a multiplier design and layout is on the higher side in terms of area and
power consumption. It consumes more clock cycles for its execution when compared to
an adder or subtraction circuitry. Taking these factors into consideration, method2 of
implementing complex multiplication is better when compared to methodl. Hence our

design incorporates method2 for implementing complex multipliers.

Le Lo dlelfo) o] le]la] el
N

ac-bd fad+jbe

Figure 3.13: Complex multiplication implementation using method 2

From [9], it is seen that the implementation of a real multiplier involves three major steps
namely Booth encoding, Partial Product reduction and Carry propagate addition. The
purpose of these three steps in order specified is to reduce the number of computations on
the multiplication operations. The partial product reduction is based on Wallace tree
structure. Complete description about the three steps is mentioned in detail in [9].

Assuming each of the three steps takes one clock cycle to execute, it takes three complete

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock cycles for implementing one real multiplication. This is depicted in figure (3.14).
The complex multiplication using method2 can be implemented using 3 real
multiplications, 3 real additions and 2 real subtractions. The complete block level
implementation is shown in figure (3.15). The implementation is seen to consist of 5

stages, with each stage consuming one clock cycle.

Booth Partial Product Carry Propagate
Encoding Reduction Addition

Figure 3.14: Real multiplication implementation stages.

Encoding_ Proon: PR L > Addz e
Muit1 roduct | L) 1
reduction Imag part of
4 . FFT output
.| Sub2 —
_ Partial
Encoding | . Product F CPA
Muit2 reduzctio'n 2 i Add3
Real part of
Addt . FET output
I - Partial CPA
[} Encoding_ || product |l 3
l Mult3 reduction
Sub1 3
Stage1 Stage?2 Stage3 Staged Stageb

Figure 3.15: Complex multiplication implementation using method 2

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7.2 Groupl Design and Implementation

In the previous section, we saw two ways by which complex multiplication could be
implemented. We also considered one of the two methods to be more suitable for our
design. Having described the logic implementation methodology, we need to now see the
VHDL implementation of the various blocks that make up data-path for groupl
butterflies described in section 3.7. Based on equations (3.7.1) and (3.7.2) we can design
our data-path. Equation (3.7.1) involves addition of the two input data F;(k) and Fa(k).
Since F(k) and F 2(k) are both complex in nature, we need to add the real and imaginary
parts of the two data separately to satisfy equation (3.7.1). Hence we need two real adders

to implement equation (3.7.1). Equation (3.7.2) can be split into two parts with the first
being (Fi(k)-F>(k)) and the second being complex multiplication with W,\',‘. Hence, the

second equation involves one subtraction and one complex multiplication. Due to the
complex nature of data, we need to have two separate subtractors one each for real and
imaginary term. The block diagram depicting the data-path for groupl as designed in our

architecture is shown in figure (3.16).

3.7.3 Group2 Design and Implementation

We know that the twiddle factor that gets utilized in this group is of value j. Based on
equations (3.7.1) and (3.7.2) we can design our data-path for group2. Equation (3.7.1) is
same as that for groupl butterflies. Hence we can retain the same adders and subtractors
used for groupl implementation. Equation (3.7.2) can be split into two parts with the first
being (F(k)-F2(k)) and the second being multiplication with j. As discussed earlier, just
swapping the real and imaginary terms and inverting the sign between the swapped terms

can achieve multiplying with imaginary term j. Hence, the multipliers are disabled

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a_real output

a_real
—— % Add1 >
b_real
) a_imaginary_output
a_imag
] Add2 >
b_imag b_imag_output
e ot
a_real
= »| Encoding_ Partial CP Addd 1=
Sub1 Product
G L Mutt reduction | * L
? 1
) - Partial
a_imal Encoding CPA |
| Suh? E v Product
bimag " *:’M“"?—,] reduction 12 | Adds |-
2
_I: b_real_output
Add3
l STT— ~ Partial
= Encoding_ | : ’ CPA
S T el Product g
Twiddle_factor_real Mult3 reduction 3

Sub3

e

Twiddle_faclor_imag

3

Figure 3.16: Block level Data-path for group1 for twiddle factor based architecture

whenever butterflies of this group get executed. Of the 32-bits of data, the first bit

represents the sign bit and is I for negative numbers and O for positive numbers. Once

subtraction operation takes place, we use two registers to swap the real and the imaginary

terms. The two registers get activated only when group2 butterflies get computed. Thus

data-path for group?2 utilizes the same adders and subtractors that were used for groupl

computation. It only requires two new registers to swap real and imaginary data. The

block diagram depicting the data-path for group2 as designed in our architecture is shown

in figure (3.17)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a_real a_real_oulput
> Add1 -

b_real

) a_imaginary_output

a_ima >
p| Add2

b_imag

a_real
mp

b real

b_real output

a_imag » D
‘ »| Sub2
b_imag Sign
inverter b_imag_output

Figure 3.17: Block level Data-path for group2 for twiddle factor based architecture

3.7.4 Group3 Design and Implementation
We know that the twiddle factor that gets utilized in this group is of value 1. Based on
equations (3.7.1) and (3.7.2) we can design our data-path for group 3. Equation (3.7.1) is
same as that for groupl and group2 butterflies. Hence we can retain the same adders and
subtractors used for groupland 2 implementation. Equation (3.7.2) can be split into two
parts with the first being (F(k)-F2(k)) and the second being multiplication with 1. As
discussed earlier, multiplying with 7 can be just ignored. Hence equation (3.7.2) just
involves two real subtractions one each for real and imaginary term. Hence for group3
butterfly computations, we do not need to design any further blocks. We only disable the

multipliers used in groupl and the two swapping registers used in group2. The block

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

diagram depicting the data-path for group3 as designed in our architecture is shown in

figure (3.18)

a real a_real_output
Addl — . oo

b_real

) a_imaginary_output

a_imag -
» Add2

b imag

a_resl
e i
e
b_real

b real output >

Sub1

a_imag b_imag_output
> Sub2

e
b_imag

: o

Figure 3.18: Block level Data-path for group3 for twiddle factor based architecture

3.8 Summary
In this chapter, we summarize the various aspects of design of the main blocks of the
architecture we designed based on Twiddle-Factor-Based FFT algorithm [1]. The main
blocks include the Random Access Memory Address generator, Read Only Memory
Address generator, the 1024-words Random Access Memory (RAM), 512-words Read
Only Memory (ROM), Address decoders, Temporary register bank and Data-path. A few
multiplexers are also designed and used in the architecture mainly used to regulate the
flow of various signals across the blocks. Signal clarifications are done using Resolution
function blocks that are designed at necessary locations. This is done mainly because few
of the signals have either multiple sources or destination thereby necessitating resolution

functional blocks to resolve the signal conflicts. The resolution functions subsequently

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increase the complexity of the architecture which can be seen from the operational speed

of the design.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

ARCHITECTURAL SIMULATION RESULTS AND DISCUSSION
4.1 Output Simulation Results
From chapter 3, we can obtain the architectural design of the various blocks that are used
in our proposed FFT processor. All the blocks are designed using VHDL. In this chapter,
we get to simulate the various blocks that were previously designed. By simulation, we
obtain the output waveforms for the blocks for different input signals under varying
control signal environments. We shall also determine numerical values of some important
design parameters such as clock frequency, number of arithmetic operations and hence
number of arithmetic operators required to meet the target time constraint and the
operational speed of the designed processor. During this discussion we shall come across
some of the main advantages as well as drawbacks the design has and also some

important challenges that require special attention for future designers.

4.2 RAM Address Generation Block Parameters
This is the logic VHDL block designed to generate bit sequences that represent addresses
of memory locations in the Random Access Memory (RAM) from where complex data
values needed to perform DFT butterfly operations are accessed. The logic for the
address generation is based on [1] [10] and the pseudo codes for both the (log,N-1) stages

and (log,N,)”' stage are given in sections (3.4.2) and (3.5.2) respectively. In blocks that

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represent the (log,N-1) stages, g, and g, represent the two output ports through which the
address values are output. Both ports output 10-bit binary sequence. For the (logzN)'h
stage computation, g and gp form the two ports outputting address values to the
temporary registers and RAM respectively. While q,44- outputs 9-bit address, g5, outputs a
10-bit address sequence. The difference in the number of bits between the two ports is
mainly because of the difference in the size of the two different memory units. The
enable signal is used to enable or disable the block. Disabling the block (enable signal
="1") retains the previous values of the output ports. The other signals that affect the
functioning of this block are the clear. The clear signals represent the clear function
which when made I, erases the values at the output ports by assigning them to high
impedance value z. Once the (log.N-1) stages are executed, the blocks corresponding to
(log:N fid stage get activated. Each of the blocks designed get activated one after the other
with one block triggering the successive block. As a result, the inherent delay within the
RAM address generation block for generating successive address is 2 (20nsec) to 4 (40
nsec) clock cycles (with 2 being the dominant delay factor) depending on which loop the
control is currently in and in which loop the next address is to be generated. The inherent
delay is mainly attributed to the non-pipelined nature of the design. As a result, each loop
within the address generation unit gets initiated by its preceding loop, which then remains
idle till all the succeeding loops complete their execution. As a result of this idle nature,
we encounter more delay than in a pipelined structure wherein every block operates at

every clock cycle.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 ROM Address Generation Block Parameters
The block signifies address generation for accessing twiddle factors needed for DFT
butterfly operations. The output port generates the 9-bit address needed to access the
twiddle factors from the various 5/2 ROM locations. Once the address is output, a
triggering signal initiates the ROM block to generate the data value corresponding to the
address from the ROM address generation block. The real and the imaginary data values
are output from separate ROM address blocks. The clear represents erasing signal and
has the same functionality as described in section 4.2. The ROM block is designed to
generate address without any delay and hence it can generate address every clock cycle as

per the requirement. There is no inherent delay in this block.

4.4 Random Access Memory Parameters
The RAM as described is a 32-bit, 1024-words block. The 10-bit address generated for
data access from RAM is decoded by the ram_decoder, to find the exact location from
where data is to be read out or stored. Once the address gets decoded, data from that
corresponding location gets read out or data gets stored in depending on whether read or
write operation is specified. The read and write signal get activated automatically by the
controller design, which activates the read signal as soon as address gets generated by the
RAM address generator. While the read signal is high or I, write signal remains active
low or 0 and vice-versa. There is no inherent delay in this block and hence once address

is placed for decoding, data from RAM can be accessed within the same clock cycle.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Read Only Memory Block Parameters
The ROM, which stores the twiddle factors, is a 32-bit, 512-locations block. The input to
the ROM is a 9-bit address sequence from the ROM address generator block. Once the
address is present at the input port, the data stored in that address location is loaded on to
the output port. The output is a 32-bit twiddle factor data. As soon as the address from the
ROM memory controller gets genefated, the twiddle factor value from the corresponding
location is loaded onto the output port. There is no inherent delay in this block and hence

data can be accessed within one clock cycle (10nsec).

4.6 Data-Path Block Parameters

The data-path serves as the arithmetic back bone of the processor under design. From
sections 3.7.2, 3.7.3 and 3.7.4, data-path seems to vary between the three sections with
some components being common among the three. The addition and subtraction
operations in equations (3.7.1) and (3.7.2) respectively are common while the varying
component is the multiplication with the twiddle factor. Figure (3.13) clearly specifies the
various blocks that are designed to minimize the number of multiplication operations.

Assuming the arithmetic blocks getting executed one after the other, one block at a
time, it takes 5 clock cycles (50 nsec) excluding the operation of loading the data into the
data-path from memory unit and writing them back into memory unit after data-path
operation, which takes one clock cycle each to implement any DFT butterfly arithmetic

operation in group 1.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group 2 data-path does not involve any multiplication as only swapping between real
and imaginary terms are necessary. Hence on the whole it takes 2 clock cycles (20nsec)
excluding the operation of loading the data into the data-path from memory unit and
writing them back into memory unit after data-path operation, which takes one clock

cycle each to implement any DFT butterfly arithmetic operation in group 2.

Group3 data-path is probably the simplest among the three as it only involves
multiplication with I, which can just be neglected. Hence other than the addition and
subtraction operations specified in equations (3.7.1) and (3.7.2), no other arithmetic
operations are required. Hence the number of clock cycle’s butterflies in this group take
to complete the arithmetic operations is just I (10 nsec) excluding the operation of
loading the data into the data-path from memory unit and writing them back into memory
unit after data-path operation, which takes one clock cycle each to implement any DFT

butterfly arithmetic operation in group 2.

4.7 Clock Generation and Frequency Calculation
As seen in section 3.2, our architecture is designed to target two main applications
namely HDTV and OFDM transceiver. While HDTV FFT necessitates §192-points in
896 microseconds, OFDM transceiver requires /024-points execution within 51
microseconds. Of the two target timings, OFDM transceiver’s 5/micro-seconds is of the
shortest duration and hence we need to design our architecture to satisfy 1024-point
execution within 5/ micro-seconds which if satisfied would also help achieve 8192-

points FFT execution in 896 micro-seconds. In order to achieve the timing target, we

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

need to first determine the clock operational frequency. The clock is basically used to
synchronize the various blocks that are designed and used in the architecture at any given
instant. For example, if two distinct blocks need to get executed at the same instant, we
need to ensure that they start and end their executions exactly at the same instant and not
at differing time intervals. To ensure this, we need a signal that can synchronize all the
blocks of the architecture. To ensure synchronization, we need to make sure that the
blocks gets enabled or disabled either at the rising or falling edge of the clock pulse. The
clock frequency thus determines how frequently the clock signal rises or falls which
ultimately determines the number of calculations that can be performed within the
required time frame. On the other hand, we can also determine the clock frequency based
on the number of operations if known. In our design, we determine the clock frequency
based on our target timing of 5/ microseconds to perform /024 points FFT operations.
We thus need to determine the number of operations that are involved in 1024 points FFT
calculations. To determine the clock frequency, we do the following calculations.

(1) The (log,N)’h stage of operation based on Twiddle Factor decomposition involves
no twiddle factor multiplications. Assuming a pipelined structure wherein all the
blocks of a given design have the ability to operate simultaneously and no block
needs to be idle and wait for data from its previous block. This enables us to
generate an output every clock cycle. This assumes one clock cycle period for
every butterfly operation through the data-path as described in section 3.7.4.

Total number of butterflies involved in the (log,N)'h stage = (N-1). (4.7.1)
Hence, total number of clock cycles needed assuming one clock cycle for every

butterfly operation = (N-1) 4.7.2)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) The (log,N-1)™ stage involves butterflies with imaginary term §” twiddle factor
multiplication.
Total number of butterflies involved in the (log,N-1)’h stage = ((N/2)-1). Hence,
total number of clock cycles needed assuming one clock cycle for every butterfly
operation = ((N/2)-1) 4.7.3)
(3) The first (logoN-2) stages involve complex multiplications.

Total number of butterflies involved in the (log,N-2) stages

(log, N-2)

is D (N/29P)2' -1 @4.74)

Hence, total number of clock -cycles needed assuming one clock cycle for every

(log, N-2)

butterfly operation =) (N/2“")(2'-1) 4.7.5)
i=1

Substituting N=1024 in (1), (2) and (3), the total number of butterfly operations involved
= 5120. Hence assuming one clock cycle for every butterfly operation, the total number
of clock cycles necessary for N=1024 is 5120. Since our target timing is 51
microseconds, to implement 5720 clock cycles within 51 microseconds, each clock pulse
should be of time width 0.02 microseconds. Hence the corresponding clock frequency

becomes 100 Mega-hertz.
4.8 Memory Access Feature
The architecture under design is based on Twiddle-factor FFT algorithm [1] {10}, which

claims to reduce the number of memory access when compared to conventional FFT

algorithms. Since our architecture maps the twiddle factor based FFT algorithm, it is also

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expected to reduce the memory access when compared to other architectures targeting
conventional FFT algorithms.

While describing the decomposition procedure for Twiddle-Factor Based FFT
algorithm, we showed that once a twiddle factor gets loaded from ROM on to the data-
path, no other twiddle factor is loaded until all the butterflies that use this particular
twiddle factor get computed. In otﬁer words, every twiddle factor gets loaded only once
during the entire architecture implementation. The number of twiddle factors that are
present in the decomposition of an N-point FFT is (N/2). Hence based on the above
explanation, the total number of times the twiddle factors would be accessed from the
ROM where they are stored is (N/2).

In case of conventional FFT algorithms namely DIF or DIT FFT algorithms, a
twiddle factor gets loaded from ROM every time a butterfly gets accessed. The total
number of butterfly DFT operations that get computed for an N-point input is (N/2)
logsN. Hence for any conventional FFT algorithms, the total number of times the twiddle
factors would be accessed from the ROM where they are stored is (N/2) log:N.

In terms of our architectural design, we can see that from loop 2 execution given in
section (3.4.1), the total number of times loop 2 gets executed is given by

(N/2toop] index +1), 4.8.1)
where loopl varies from / till (log,N-1)
In addition to (4.8.1), the final (log,N)™ stage, utilizes only W) factor.
Hence the total number of ROM memory access in our architecture is given as
(Ny2(loop] index +1)y | 4 (4.8.1)

where loop1 varies from I till (logsN-1)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence in terms of ROM access, our architecture seems to comply with the memory
access reduction claim of [1] [10]. Thus for various values of N, the variation in ROM
memory access of our architecture based on [1] [10] as compared to other architectures
based on conventional FFT algorithms like DIT and DIF are in a graphical form in figure
(4.1). In addition to the memory savings obtained through Read Only Memory (ROM),
the twiddle factor based architecture can obtain additional memory savings through lesser
Random Memory Access (RAM) accessing.

Computation of every butterfly DFT structure necessitates 4 RAM accesses two of
which are for reading out the input data from RAM and the other two for storing back the
computed result back on to the same locations in the RAM. Hence for any given N-point

input conventional FFT algorithm and hence any architecture based on it, there are
N
2Nlog, N RAM accesses since there are a total of —2—log2N number of butterfly

operations each requiring 4 RAM accesses.

Comparison of Read Only Memory (ROM) memory
access between Twiddle factor based
architecture and Conventional FFT algorithm
based architectures

g 6000 -
5000 //-
4000 a— ROM access in
3000 / conwentional FFT
/ algorithm based
v 2000 / architectures
1000 —e— ROM access in
(o} ——'—.-=%=l/,—~——,"”,/'. . twiddle factor based
architecture

& IS g,,p@ j""’ e’/\&b

Number of FFT Input data points

Figure 4.1: Graphical comparison for ROM access between twiddle factor based
architecture and conventional DIT or DIF based architectures

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In case of twiddle factor based architecture, the final stage of decomposition involves

butterflies utilizing W, as the only twiddle factor. There are (N-1) butterflies in the final

stage of which the first (—12!—1) butterflies have only I RAM access as all other three

accessing is done from the temporary registers. The last (%) butterflies on the other

hand have only 1 input accessing from RAM while both data at the output of the butterfly
gets stored back on to the RAM instead of the temporary registers. This is because these

set of butterflies form the last stage of operation and hence the final FFT data result needs
to be accessed from RAM. Hence these (%) butterflies each have 3 RAM accessing.

Hence the total RAM accessing from the last stage of decomposition is

(%—1) +3TN = (2N —1). The butterflies in the remaining stages have 4 RAM access as

usual. Hence, total number of RAM memory access for all stages is given as
4((% log, Ny—=(N-1))+2N —-1=(2Nlog, N —2N +3). Hence, when compared to the

(2Nlog; N) RAM access obtained from conventional DIT or DIF based architectures,
(2Nlog, N —2N +3) seems to be a significant reduction of as much as 25%. This

directly has an impact on power consumption as it can be further reduced. Though
temporary register accessing is still present, it is much faster when compared to the slow
RAM accessing mainly due to its small sizing and its positioning closer to the data-path
than the RAM. This reduction in RAM memory access is shown pictorially in the graph

depicted in figure (4.2).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison of Random memory Access
(RAM)access between Twiddle Factor based
architecture and Conventional FFT algorithm

based architectures

21000
= & 18000 A
< o N
C 8 15000 /4 —e— RAM access in
8 ® 12000 /4 twiddle factor based
j: g’ 9000 / architecture
E E 6000
2 £ 3000 // —=—RAM access in
0 —®— * ' ; ' ' conventional FFT
© 9 & © 9 13 algorithm based
N N
¥ ¥ ¥ e,/fﬁ’ éff” %”\QQ/ architectures

Number of FFT Input data points

Figure 4.2: Graphical comparison for RAM access between twiddle factor based
architecture and conventional DIT or DIF based architectures

4.9 Multiplier Operational Savings Using the Twiddle Factor Based Architecture
As seen from sections (3.7.2), (3.7.3) and (3.7.4), the entire decomposition operation of
FFT based on Twiddle factors can be classified into three groups, two of which namely
group2 and group3 do not involve any multiplication operations. As a result, the
multipliers designed and used in the data-path can be disabled while butterflies from
these two groups get computed. In conventional FFT algorithms, butterflies requiring no
twiddle factor multiplications are available in every stage of decomposition along with
other butterflies that do involve multiplications. Hence disabling the multipliers at
different time instances becomes very complex and hence most architectures do not
disable the multipliers at any instant [22], [23]. As a result, irrespective of whether a
butterfly involves multiplication operation or not, the multiplier used in the data-path

remains enabled thus consuming unnecessary clock cycles as well as power. In our

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architecture, the butterflies involving no twiddle factor multiplications are classified into
separate stages and hence it is easy to disable the multiplier across those stages.

Total number of butterfly operations where multiplier remains enabled in conventional
. . N
FFT algorithm based architectures = ?log2 N 4.9.1)
Total number of butterfly operations where multiplier remains enabled in Twiddle factor
. N N
based FFT architecture = (Elog2 N)- [(7 -1+ (N-1)]

= (%log2 N —%—2) (4.9.2)

Equations (4.9.1) and (4.9.2) give a comparative analysis of the savings we attain in
terms of number of times the multipliers get utilized effectively. A graphical

representation is shown in figure (4.3).

Comparison of Number of times multiplier gets utilized

6000

5000 m_ | |- Number of times
multipliers get utilized
in conventional FFT

4000 / / algorithm based

architectures

3000 1— .
/ —&o— Number of times

2000 A multipliers get utilized
in Twiddle factor based
FFT algorithm based
architectures

1000

Number of times multiplier gets
utilized

\J v S © N
N pid 5o’ ;{? N

SR R

Number of FFT Input data points

Figure 4.3: Graphical comparison for multiplier operation usage between twiddle factor
based architecture and conventional DIT or DIF based architectures

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.10 Design Issues and Challenges

The previous sections described the computational complexity, operational speed in
terms of number of clock cycles and also the inherent delays present in each of the
architecture blocks. We observed that pipelining a structure could result in a shorter
execution time than a non-pipelined structure as pipelining involves every block
operating at every clock cycle (when one block computes on one set of data, its preceding
block computes on the next set of data while the succeeding block works on the previous
set of data that was earlier fetched. That is if block (x+1) works on data (y+1), then at the
same clock cycle, block x, which precedes block (x+1) works on data (y+2) while the
succeeding block (x+2) works on data y). The non-pipelined structure on the other hand,
involves enabling only one block at a time while the succeeding as well as the preceding
blocks remains idle till the current block completes its execution.

In case of our architectural design, we have managed to pipeline every block except
for the RAM Address generation block. The main challenge involved in pipelining this
block is the presence of nested loop structure (a loop within another loop). The presence
of nested loops in the address generation logic design makes pipelining a non-pragmatic
and extremely challenging task. Since nested loops involve transfer of control back from
the outermost loop to the inner most and then all the way back to the outer loop, keeping
track of the current values of registers and variables in each loop becomes tedious.
Consequently, we were not able to pipeline RAM Address generation block while all
other blocks could be pipelined. Non-pipelining of this block resulted in its inherent delay
being apparent while FFT butterflies get computed. From section 4.2, we know that the

delay caused by RAM Address generation block is 2 to 4 clock cycles of which 2 is the

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

most dominant delay factor. We also saw that all the other blocks designed and
implemented in our architecture do not involve any delay is the most dominant delay
factor. We also saw that all the other blocks designed and implemented in our

architecture do not involve any delay. Hence, we encounter 2-clock pulse delay for every

butterfly computed.
Total number of butterflies for an N-point FFT = %log2 N 4.10.1)
Hence for N = 1024, total number of butterflies computed = 5120 (4.10.2)

From section 4.7, the clock frequency utilized in our architecture is found to be 100 MHz.
Hence the timing width of each pulse obtained by taking the inverse value of the clock
frequency = 10 nanoseconds. (4.10.3)
Hence assuming 2-clock cycle in calculating every butterfly, it takes 10240 clock cycles
to calculate all the 5120 butterflies. Since each clock pulse is of 10 nanoseconds width, it
takes a total of 102400 nanoseconds or 102.40 microseconds to compute 1024 input FFT
using twiddle factor-based algorithm. Since the RAM Address generation block cannot
generate address every clock cycle, the data-path that basically requires data from those
corresponding address locations to compute the butterflies will not be able to do so. Since
the RAM Address generation block could not be pipelined, the data-path follows suit
though it is simple to pipeline this block. Hence in addition to the 2-clock cycle we
encounter due to RAM Address generation block delay, we also have data-path delay
included.

The data-path delay as discussed earlier is determined based on whether complex
multiplication is involved or not. If complex multiplication is involved, then based on

figure (3.16), we have 5 stages of computation and hence the delay is 5 clock cycles. In

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case of no complex multiplication involvement, then the delay is only 2 clock cycles. In
addition to these delays, there are also delays due to resolution functions that add up to
additional 2 clock cycles for every butterfly computation. The total clock cycles required
computing a butterfly involving no complex multiplication is given as 6 clock cycles that
includes the RAM address generation delay, data-path delay and additional delays due to
resolution functions.
The total number of butterflies for N = 1024 which involve complex multiplication is
1534.
Hence, the total number of clock cycles required computing 3586 butterflies

= 1534* 6=9204 (4.10.4)

Similarly, the total clock cycles required computing a butterfly involving complex

multiplication is given as 9 clock cycles that includes the RAM address generation delay,
data-path delay and additional delays due to resolution functions.
The total number of butterflies for N = 1024 which involve complex multiplication is
3586.
Hence, the total number of clock cycles required computing 3586 butterflies

= 3586* 9=32274 (4.10.5)
Combining equations (4.10.4) and (4.10.5), we can determine the total number of clock
cycles involved in computing 1024 input FFT based on twiddle factor architecture is
41478.
With a /O nanoseconds clock pulse width, the total time taken to execute 1024 points

input FFT based on twiddle factor architecture is calculated to be 414.78 microseconds.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.11 Architectural Salient Features and Drawbacks
The biggest advantage the twiddle factor based FFT architecture has over other
conventional DIT or DIF based architectures is in terms of memory access which
ultimately results in power savings.

(1) Our architectural design has /0 times lesser Read Only Memory (ROM) access
when compared to DIT or DIF based architectures.

(2) The Random Access Memory (RAM) access is reduced by as much as 25% in our
design as compared to other previous architectures.

(3) Our design has 1.45 times lesser number of operations taking into account the
total number of memory accesses and multiplication computations.

(4) Clock gating where unused blocks are disabled in order to reduce unwanted
power consumption while the blocks remain idle is utilized in our design with the
help of resolution blocks that enable and disable different blocks.

(5) As a result of the reduction in the number of operations performed, for a 1024
point FFT based on twiddle factor design, power reduction up to 31.25% in terms
of memory access and arithmetic blocks usage is expected.

The main drawback that this design suffers is in the time duration taken to compute 1024-
point operations. This is mainly attributed to the non-pipelined nature of our design.
When compared to our initial target application of OFDM transceiver which necessitates
a 1024-point FFT to get computed within 51 microseconds. Hence we can observe that
our architectural design despite its advantages in terms of computational complexity and
power savings, 1s 8 times more time consuming in computing /024-point FFT as required

by the standardized OFDM transceiver.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK
5.1 Summary of Work
Our entire work focuses on one-to-one mapping of the Twiddle factor based FFT
algorithm described in [1] [10] on to hardware blocks so as to extract the maximum
benefits derived from the algorithm. Based on the algorithm, various logic blocks were
designed and simulated using VHDL. Memory savings in terms of memory access have
been mapped on to the blocks from the algorithm. The architecture makes minimum
utilization of arithmetic hardware blocks, especially the multipliers. Though this
architecture is advantageous in terms of power savings when compared to other previous
architectures, the major drawback it faces is in terms of the time it takes to complete its
required execution. This is attributed to the non-pipelined nature of its design. Thus
1024-points FFT can be computed using the Twiddle factor based FFT architecture in
414.78 microseconds with up to 1.45 times lesser number of operations resulting in
power savings of up to 31.25% is expected. All necessary blocks have been designed and

simulated in Active-HDL 6.3.

5.2 Suggestions for the Future
As seen in Chapter 4, the main factor that delimits the efficient usage of the twiddle

factor based architecture is the execution time. Consequently, we have explained that

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pipelining the RAM Address generation block, which automatically enables pipelining of
other blocks like the data-path is the most important way of reducing the timing problem.
An efficient way of pipelining nested loop structures need to be developed in order to
reduce the large execution time for processors.

It is a well-known fact that pipelining make architecture attain their full efficiency and
help achieve a higher throughput though with some initial latency. One other important
method to reduce the delay of operation is to utilize high-speed hardware blocks,
especially the arithmetic blocks like the adders and multipliers. The type of complex
multiplier used for our data-path is shown in figure (3.13). It can be seen that this type of
complex multiplier design uses more addition operations than real multiplications. Hence
usage of fast adders becomes a necessity in-order to maximize efficiency and increase
throughput. From [9], it can be inferred that for arithmetic adders involving bit widths of
24 or higher, Carry Look Ahead (CLA) adders are probably the fastest when compared to
Ripple Carry Adders (RCA) or Carry Save Adders (CSA) and many others. Hence, it is
highly recommended to design CLA adders while seeking improvement in the current
design. For implementing real multipliers, Array Based multipliers that are widely and
most commonly used over various logic designs can be utilized.

Power analysis to estimate the power efficiency of the twiddle factor based
architecture with all the above said improvements implemented should be carried out
using power estimation CAD tools. This would give an accurate picture of the
effectiveﬁess of the twiddle factor based algorithm [1] [10] over conventional DIF or DIT

algorithms.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further savings in terms of memory access, which is the main highlight of our design,
can be effectively obtained by using smart memories like Cache and flash memories.
These memory units, unlike the Random Access Memory are small in size and are
comparatively much more efficient in terms of accessing time. As these memories are
smaller in size and are placed closer to the processor than the Ram, which consequently
enables them to be much quicker than conventional large-scale memories. These
memories help in reducing frequent RAM or ROM access and in turn increase the

effective power saving capacity of our design.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

VHDL DESIGN OF VARIOUS ARCHITECTURAL BLOCKS'
The VHDL design and implementation of various Twiddle factor based FFT architectural

blocks described in Chapters 3 and 4 are pictorially represented in this Appendix.

F-3
‘= 5= +o4 v v
t & I
by B
| e o =
= + ooy o+ o= » 1 'a
S % 5 2 T % £ < = | = 2 %
e " 2 fﬁ“ o = Pind =
5 5 F 2 2 % 2 % i - ey 5
=1 2 % £ £ g Tz
‘5 ¥ 2R = 2 ¥ % =
b B ,‘; = P P r
-~ =
= 2 5 ; ~~~~~~ B i i
s Z
P~ 3 5 i
= T
2 =
=2 - i
% " ‘i ¥ Aot hd * £-- -
« ¥ e — 3 [= - =
= 2 "o
g -
vy oy = 4) 5 2 £ .
TR E L . e o 2 0%
B = E 7T T
) § - -
1
pp—
% b E 3
¥ K i - T T § L
E F R = LI SN S, S S - -
A = £ = E = = = &
2 - 1 Q . 1
2 ' s 3 {_ N o K
== i ey b b »
73] P
2 * & =
=1 Z S
ten I 4
- & e -
= [
2 h— I
= i
= 1
=
2 7 L
g = 1 S =
= 2* r X <&] SR =
= &3 il S
- S| = H
% ' >
13 £ 3
ey 2 2
8] 2 s
=1 & =
=2 = =
[y =*
4 & R
3
z & <

Figure A-11: VHDL block representation of (log,N-1) stages RAM Address generation
block based on Twiddle factor decomposition algorithm generating 10-bit RAM address
sequences qa and gb

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NN ol ek

cIB el ena®<ena
after_two_write_in_temp_reg®—
after_every write_in_temp_reg&-—
- ~mx-signat-out3-in-from-datapath@— |- -~
U V4 U3
N blocki_inkiation_of block? [*— i’*"blocm_iﬂaﬁon_h no_of_compuations +N Gaddri(5:0)
+ck blockl_sub_blockt_iniBafion [+ ick signal_from_sub_block_to_blocki " after_every_waite_in temp_reg g logn f+——
ok no_of stages |+ e sub_block?_iniaion U-afer_two_wake_in_temp, reg b_resobuton {
lana valus_from_logn_blockd_out +ona ek signal_from_sub_block? fo_sub_blockd [$—
Bo-—Jlog_N_stage_signal_in —+{no_of_stages_in e
log_N_stage signal in)] |
{r"' signal_after_sub_block!_in signal_after_sub_block2 il
i e ‘ | - s o0 i fom et
-7 ‘ ——= — —+{na_of_computations_in
no_of_steges_in q%_logn
t4 4 5 NEW-LOGN-BLOCK -sub-blosid
4 HLOGN- -sub-blosk? new U6
N block?_niaion_of_sub_blockt [+ +N @ log2 p————Erqa_logn2 Jo ol
block!_ntition_tobiafiEgimputation block2 Hator_two write_n RAM qaddi25:0)
ek vahs_from_block2 H block?_iniation lo_sub_blocki_in qb_ogni2 i e
ek Hek gb_tesolition 2 ’ ;i_in(&l])
lena ek signal_from_sub_block!_to_block |+ 2 061
+tsub_blockd_initiating_block2 +lena ot
(new_logn_biockZ 9,43 o Gt +ab_ognl_in
“*-{no_of_tomputation_tlack2 in
B/ b lvae_from_block?_n o qb"em‘i‘?]
after_two_write_in_RAM +lvakue_rom_logn bock_in o L
l N ey RESOLUTION_FOR g
Ur (CJALDEC. Inc
- 2260 Corporate Circle
+1block? netion_fo_sub_blocRbad temp_reg+————E5Read_temp_reg Henderson, NV 89074 yp. Design Verification Company
ek Wike temp_regt———Z5Wiite_temp_reg
e ‘Created: | 6/16/2005
e Title: No Title
~-+|mx_signal_owt3_in_from_datapath
sub_block?_initiation_in

+tvalue_from_logn_blockt_in

READ_WRITE_RESOLUTION_FOR_TEMP_REG_new

Figure A-I2: VHDL block representation of the (log.N)" stage RAM Address generation
block based on Twiddle factor decomposition algorithm generating 10-bit RAM address
sequences qa_logn2 and gb_logn and 6-bit Temporary register bank address qaddr

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B clr

ok ek
read_1_imagB-<read _1_imag
write_1_imag®-write_1_imag]
) vidk daa_out 1_imeg(3t:0) +—E2 BusOutput0(31.0)
read_1_imagi— e
address_from_decoder® s 1 jmag
data_in_imaginary(31:0B> e in_1_imagf310)
reed_1_imag
write_1 imagid——+1{wie_t_imeg

ram_cell_imag 1

Figure A-I3: VHDL design of a I-word RAM cell for storing imaginary part of data.

el clr

read_1_realis+read_1_real

write_1_real< write_1_real ut
read 1_realB— - c:k dte_out 1310y ~——Ddata_outpul(31:0)
el
address_from_decoderE s |
data_in_real(31:0) deta_in_1(31:)

+read_t

write_1_realZ— +urie_t

ram_cell_real 1

Figure A-14: VHDL design of a I-word RAM cell for storing real part of data

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clr®< solr
clkBB—

read_1_realZ~-read_1_real
write_1_real#-< jwrite_1_real

de_ena_2x4_real
@h

Us

BUS1549(0)

»eir

——*1de_ena_2x4_real

+clk de_out 2x4_real(3:0)

—*+de_inp_2x4_real(1:0)

BUS1549(1)

BUS1549(2)
BUS1549(2)

p——

decoder_2x4_real

de_inp_2x4_real(1:0)

Figure A-I5: VHDL design of a 2x4 Decoder block choosing one among four outputs
based on a 2-bit input. The input port is given as de_inp_2x4_real(1:0) and output ports
are represented by de_out_2x4_real(3:0)

uo

e

o

-

U12 rom_design_imag_new

+

1elk rom_imag_out(3:0)

-mem_contr_ena

rom_address(5:0)

rom_initiation

clk mem_contr_out(5:0)

clr rom_initiation_signal [

mem_contr_ena

rom_sig_in

signal_from_block3_input

mem_cohtersagy_controllert

rom_design_real_new

U10

Eorom_imga_out_real(31:0)

E3

-{mem_contr_ena

- rom_address(5:0)

*-1 rom_initiation

signal_from_block3_input

ek rom_real_out(3:0)

BusOutput1 (31:0)

Figure A-16: VHDL design of a 64-words ROM and a decoder along with interconnects
outputting 32-bits real and imaginary twiddle factors

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

kB< clk Mok data_out_{_imag30)—

read 1_imagE~ read 1 imag o
write_1_imag@{fwite_1_imag st +datin_{_imag(31:0)
ol ielr de_era_ 24 i
de_inp_24_imag(1.0}

. . r~—+{de_inp_2xd_imag_1(1:0)
data_in_1_imag(31 OfD—
read 1 imagip— et imag3t0) s g

write_1_imagé ke _{_inag

Hg words RAM imag2\ +—data_out 1_imag(31:0)

de_inp_2x4_imag_2(1.0)B ok dta_out 1_imag31)
e

data_in_{_imag(31.0)

de_ena_2xd b

do_itp_2ud_imag(10)
de_inp_2x4_imag 1(1:0)B —{de inp_dd_mag_1(1:0
{read_1_imag

+

st g
BUs1172)

U4 +{wie_1_imag

ck de_out 24 imag(3.0)

de ena_2x4 imag ﬁ» ch

de_ena_2xd_imag

de_inp 2¢4_imag(:0)% 24 gl

decoder_2x4_imag

16 words RAM_imag2\
BUSHTE) U3

ok data_out 1_imag(31:0) 3

ck

data_in_1_imagi31:)

+ide ena 24 §

de_inp_2x4_imag(1:0)
—1de_inp_2xd_imag_1(1:0)
Hread_1_imag

*iwite_1_imag

\16 words RAM_imag2\
Us S ;

In

i yNV8S04 The Design Verification Company
de 1_1_imagiat0) '
11/4/2004

+ide_ena_d4_imag

de_inp_2x4_imag(10) No Title

de_inp_2x4_imag_1(1:0)
¥iread_1_imag

Hwite_1_imag

V16 words RAM_imag2\

Figure A-17: VHDL design of 64-words RAM using four /6-words RAM cells and a
decoder along with interconnects outputting 32-bits real and imaginary data

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1]

B a a001(3t0) addl_out3t0)
a_real_inp(31.0) ol ena m doapath 1 [
B h_add131:0)

b_real_inp(31.0} ok
@ +ickr
add1_ena Upadder_new 1
B o a0d30) 202 ouiELl) P
jm ag_lnp(310) (+1edd)_ena
B b adiapg)
fiag_inp(31.0) +ok
+clr
B adder2 new
add2 ena U3 -

subfig

o sl subl_oufto)

b_subri(31:0}
ok

+Helr

B

+[subl_ena

Hasublractor Q_ne\#

mult!_ena

a_Subi231.08} sub2_outfd:G}

Hor
SUb2_Bn;|—’" sub ena

b_subi2(31:)

+{ck

mult2_ena

subtractor?_news

add3 ena

mutd ena subd ena addd ena addd_ena a tea ol310)
B By B - B
— - 7
a imag_owt(31.0
g AL O]
Haddd_ena ad4_ouf310) (=
3 a4 310}
4 add43t0)
ek
u1o +elr
bufg subdple) subd autpr) by | GdEXd_new
, T‘mm) b imag_out group?(31:0)
M{Cl
— m +cr
JI H5 = +isubd_ena
r— Bty ot ourd) sublractordnaw meag_otwpr(M.O)
e — b_rea!_% 9r0up2(31:0)
K E 2
i “~+-add$ ena adds_out31:0) {=——
’—r e -ufS_addsdN0) mx_datapath 2
ok
P mi ey p—r o
i h S attL)
ek 3 mut3310) mutd o0} ad def5”ne»*.f_1
’ c"m "l-k"”““"“’ b rea o o317
| | _’—Hm ena +l
mulfplier? new i :
(U7 multipler2 1 e b rea ont _goup3(31 0)
o 2dd10) addd punt0) F b_imag_on@roup3(31:0)

mulfiplier3_ne#

¢ imag(310)&

¢ rea310) B

sub3 ;;,

b 2310} {GJALDEC. Inc ! LD E C
N 2160 Corporate Circle |
N nderson, NV 8074 The Design Verifcation Company
U adder3 new Created: | 11/1/2004
— Ut)
. H NX Sk
i) sud oupin) e No Title =
ok me_signal_out! r—-FF
R +or mw_signal ou? [+—8
i —L% o datapath | in - mx_signal_eud TIIX_SI(
Helr) _l-E
—+Imx_datapath_2 in o
sub3_ena

aihtrantard naw

mx_datapath_resolution_new

Figure A-I18: VHDL design block showing the data-paths for groupl, group2 and group3.
The output signals for each group are represented by b_real_out_groupX and
b_imaginary_out_groupX with X representing individual group numbers.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add?_ena-
add!_ena——
- U U3
02
ek demar_outi(314) o imag ip0) o imag_ouBt) Hok - daa s ottty ———Ddata_ mux_outt(31:0)
i dem_oﬂmﬂ)*--:l:"*a_reﬂ_hp@m) 2 sed o) Her ada ooty ———data mux_ouf2(31:0)
dermux_csE——+{demuss denw_o!ﬁ(31:0); St b imag ouBt) j[_q | s
demux_enalB——dem e dema o3ty s {adt2_ema b, rea_ou31) +date o ena
X inp1(31.0)B——{temu imtit) odd3 sna o sirel ot p— FHdat mu ipt10)
3 inp2(31 B demucim23t1) r»- addt s1a my_sinal_ou2}? Lt daa_max_rp2319)
demullip!exe[_qa_qb add5_ena mx_signal_out3 +idata_mux_inp3(3t0)
add3 enal *bj:;l:) . LY
add4 ena® M multiplexer_datapath
- imag(31.0)2- ¢ inagta)
, —data_mux_ena
¢ real31.08 He i) -
addd enal: ’ ::f ————&mx _signal_out1
mult_enalEr——————imitt wma & m_signal_ouf3
mult?_enal—————|mizem
mut3 ena——————{mis ene
sub1_engfB-————/sibt em
SUb2_ena@’"“‘—‘*'sub2_ena
sub3 engf——————+|sid ema
sub4_enaBr—————+lsit o
Dalapath_complete

Figure A-19: VHDL design block showing the resolution function designed for the data-
path to choose between the three data-path groups and also for determining the Read and
Write operations of the RAM block and other resolution blocks.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

okB< clk NBN
cB- clr
enaB- Jena

sig_aftg Q_ata_into_ram

U5 /s EB
C5 Mux ena
N a_ou_for_resobing_m mi a_out_for_resobing_m_m1_resobe muy_ena "'—;%' a_oud_for_tesobing_m_migaesobiae fo_ram +——@read_va|ue_to_
ek b_out_for_resobing m mi r+ Hick ¢s_mux_ena_feedr— Hek wite_value_to_tam f—%%wrile_value_tq
Hek Q@50 Heh Hek
+em BB+ —+1es_mux_ena_feedback Hena
—H{sig_after_data_into_ram rom_sigh— +ena my_datepah_out
signal_from_block3_1 ¥ —+{mx_datapath_out ; .
prog_contr_resolutlon_ram_read_wr fte
r*1read_afer_fom_tam
signal_from_block3 1 + te_ae_fom fam —&mux_datapath out
rom sig&— .
- prog_contr_resoluﬂon_mux_cs_ena
hG0E—
ijkmm1m? resolution qa_inttostdlogic lognstage ————————read after from ram
U4 wiite_affer from ram
@5E- ——

Ha_ouk_for_resohing_m_m1_teselve mix_ena +—@mux_ena

+1b_out_for_resobving_m_mi_resolve
Hek
Heh

+Hem

prog_contr_resolution_ muxena

Figure A-110: VHDL design block showing RAM Address generation block with
resolution functions that aid in enabling and disabling various signals at different
instances of time

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ol clr mux_clr-+ mux_clr ki< gk NBSN

ena+ ena em corlr e%r(fmem contrena
Y L !
U1 - ¥/ "US
¥iN 8_out_for_resobing_m_m1 2_out_for_jesohving_m_m1_tesobe mix_ena[1) +1a_out for_tesalving_m_m1eadsebae_to_ram
+1ck b_out for_reschving_m mi ek ¢5_mux_ena_feed [+— ek wite_value _to_vam}*—
ek 4{5:0) ek Hekr
+lena ®iED) —*{cs_mux_ena_feedback Hena
(—* |sig_aftes_data_into_ram rom_sig *—I *lena Jmx_datapath_out
signal_fiom_block3_1 ath_out - .
Ao . doopan. prog_contr_resolution_ram_read_wsite
T T T r—+{read_after_from_ram
11m2_resolufion_ga_inttostdlogic_logngtade
wie_aftr_iom_ram —&mux_datapath_out
prog_contr_resolution_mux_cs_ena data_ong (31:0)
-] Y6 Y data_out_1_imag(31:0)
UJ 1 1 4
Mok dals_out 131D ek data_out_1_imag(310)P——r1D
ek mix_outs:0) t+—
a_out_for_resoling_m_m1_resolve miux_ena |+ rich ek
mux_ck
b_ott for_tesohing_m_m1_resolve —>data_in_1(31:0) —{data_in_1_imag(31:0)
—+{mx_cs_from_resoldion
rTc_out_after_two_reads_ram r+1de_ena_2+4_real de_ena_2+4_imag
+|mux_ena_fiom_resolition TTTAA é}_ 134)
ek ~11+1de_inp_2r4_teak1:0) ~+{de_inp_2xd_imag{1:0)
Hm_inp1(5:0) AR ARB
Helr de_inp_2x4_teal_1(1:0) de_inp_2x4_imag_1(1:0}
misx_inp2(5:0} MO 1)A2:3)A45 Ay APy
+ena de_inp_2x4_real_2(1:0) —{de_inp_2x4_imag_2(1:0)
multiplexer_ga_gb ——-{ LI mx_datapath_out +11ead 1 tead_1_imag
- wite_1 wite_1_jmag)
prog-soni—reselutionmux_enable de_ena_2x4_imag
g
164 WORDS RAM2: 164 WORDS RAM_imag2!
de_ena_2>(4_reaﬁg
Lin %
WU N
rom_lmag_out(?O)
u2 ut0 ,
: ek ¢_out_for_resoving ut(30)
data_in_1 (31 0) ek read_aRer_for_resclving »ck 1om_imag_out(3:0) Helk Tom_real_out(3:0) &,
g data_in_1(31:0) sig_after_deta_from_rampp—— () ALDEC inc *|mem_contr_ena RL mem_contr_sna
3 B data_in_1_imag(31:Oprite_after_for_tesolving tom_address(5:0) Tom_address{5:0)
data_in_1_imag(31:0) 2 50 Corp rateggc‘l o e
mux_output{5:0) ’NV!___ 74rom_initiation Hifi afl‘t*l cwm_mmn
L. 1ead_1 Ug g signal_from_block3_input signal_from_block3_input
B *|signal_to_inpet_cata_into_ram_inilly /320 Jaci
ional to inout data int int ek mem_cont_outi5:0) m..._aes:gnjeal_new
signal_to_tnput_data_into_ram_ip Rl
gnal_to_ P’_ - - -]}”&é +leh rom_iniiation_signat plliile
Ltwioe-write-signalreselution?— mem_conk_ena L
Sl J rom_design_imag_new

rom_sig_in

mem_contr_enaf

memory_controliert

Figure A-I11: VHDL design block showing RAM Address generation block, the RAM
blocks, the ROM memory controller block, the ROM blocks and all the other
interconnects

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

drB e mux_cir &< mux_clr

enaf< ena BB mem_congr—ena
mem_contr_ena N
u Y2 EB
+IN a_out_for_resobving m m! a_out_for_resobving_m_mi_resoivecs_ mux_ena [+ -Ja_out_for_resohing_m_mi_tesdivelue_to_ram
Hek b_out for_resohing_m_mi ik cs_mux_end_feed [t | o e d3ek wite_value_to_ram +—
+e 4a(5:0) = el el
“+lena G(50) Py “—+ics_mux_ena_feedback +lena
—+{sig_after data_into_ram rom_sig +-l *fena my_datapath_out
signa!_from_lock3_t —{mx_datapath_out 9 :
e el prog_contr_resolution_ram_read_wrile
- . - & —+{read_siter_from_ram
I}kmleQ_TESO'LT]OY _qagnttostd!oglc_lognstage T
1 wite_after from ram
H44 J
1 ™ by 3
T Gesenttassliion-tninss=
+{add1 ena data_mux_outt31:0) P L — =
U T
+{add2 ena data_mux_ou2{31:0) 1+ 5 1 m
Haddgens msipal ot b h ek daa o 1310y bt | | adek dam ot 1
ok ux_out{50) [
+{ad¥4_ena x_signal_outd & out for_resohing_m mi_fesoive mux_ena el el
+Hmix ol
+|add5_ena - b_out_for_resohing_m_m1_resoive (data_in_1(31:0) data_in_1_imap(31.
“+Imux_cs_from_resolution
-4c_imag(31:0} (T*{c_out_after_two_reads_ram r+ide_ena_X4_real de_ena_2x4_imag
+imax_ena_from _resalution) ABE)
reic_reai310) . +{ck wr=ide_ing 4 real{1:0) de_inp_2x_imag(1
) mo_opl(50) AR AR |
+4ck 1.) +cr =t=pde_inp_2d_reat_1{1.0} de_inp_2x4_imag_
mux_inp2(5:0) A 1IARI)AAS) Af ;1’2- AR |)
e +|ena =t-de_inp_xd_redd_2(1:0) de_inp_2x4 _imag_.
+|data_mux ena multiplexer_ga_ob -t LY catapath out ead_+ read_1_imag
“o-{dermux_Cs a wite_! wite_1_imag
brog-sent—resolutionmux_enable
» e era] SINCRDS RAMD \BINORDSE
demsc_inpt{31:0)
demux_inp2(31:0)
—B
+{multt_ena .
mx_signal_out3 Hg
+{mutd_ena = -
U2
{multd_ena +{ok ¢_out_for_resoving
+|subl_ena »felr read _after_for_resalving ok um_jmag_out(3.0)
+|suh?2_ena data_in_1(31.0} sig_after_data _frem_ram |mer_conir_ena
! DEC. Inc E==:=:
+|subd ena ~{data_in_t_imag(3t:0) wite_after_for_resoMng b?porale rcle — om_address(5.0)
+{subd_ena mux_outputiS:0) fson—NV-gﬂ, T Des:gnV . aarmm_hiﬂaﬁm
n L read_t 9 signal_from_blocka_input U0
- » . X Ry mareem——+-1signal_to_input_data_inta_ram_inically d: 5/11/2 I———:
signal_to_inpurt_data_into_ram_inddally . ek mem_contr_out50) :
i)
- No T't- cr rom infiation_signal +ick om_real_outf39)
L@WGMF&:%:S@H&‘:F@SN' fion2 mem,_canty_ena . +4mem contr_ena
- rom_desigi Jipag new
om_sig_in “—i-fiom address(5:0)
mem_contr_ena B— .
- rom inifiation
memoary_controtlert
signal_from_blockd_input
ram_desinn real neu:

Figure A-112: VHDL design block partially showing interconnection between all the
blocks of the Twiddle factor based FFT architecture.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY
[1] Yingtao Jiang, Ting Zhou, Yiyan Tang and Yuke Wang , “Twiddle-Factor-Based FFT
Algorithm with Reduced Memory Access”, In the Proceedings of the International
Parallel and Distributed Processing Symposium, IEEE, 2002.
[2] Bevan M.Baas, “An Approach to Low-Power, High-Performance, Fast Fourier
Transform Processor Design”, Ph.D. dissertation, Stanford University, Stanford, CA,
February 1999.
[3] Smith, Steven W., “The Scientist and Engineer's Guide to Digital Signal Processing”,
2nd edition. San Diego: California Technical Publishing, 1999. ISBN 0-9660176-3-3.
[4] Alan V.Oppenheim and Ronald W.Sschafer, “Digital Signal Processing”, October
2000. ISBN-81-203-0532-9
[5] Brown, J. W. and Churchill, R. V., “Fourier Series and Boundary Value Problems”,
5Sth ed. New York: McGraw-Hill, 1993.
[6] Brigham E.O., “The Fast Fourier Transform and Its Applications”, Prentice-Hall,
Englewood Cliffs, NJ, 1988.
[7] Julius O.Smith II, “Mathematics of the Discrete Fourier Transform (DFT), with
Music and Audio Applications”, W3K Publishing, 2003. ISBN 0-9745607-0-7.
[8] John Proakis, Dimitris Manolakis, “Digital Signal Processing - Principles, Algorithms

and Applications”, Pearson, ISBN 0133942899.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9] Jan M.Rabaey, Anantha Chandrakasan and Borivoje Nikolic, “Digital Integrated
Circuits-A Design Perspective”, Prentice Hall, Second Edition, 2003. ISBN 0-13-
090996-3.

[10] Yiyan Tang, Yingtao Jiang and Yuke Wang, “Reduce FFT Memory reference for
low power applications”. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 2002, Volume 3, 13-17 May 2002 Pages(s):I1I-3204- I11-3207 vol.3.
[11] Byerly, W.E., “An Elementary Treatise on Fourier's Series, and Spherical,
Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical
Physics”. New York: Dover, 1959.

[12] Carslaw, H. S., “Introduction to the Theory of Fourier's Series and Integrals”, 3rd
ed., rev. and enl. New York: Dover, 1950,

[13] Davis, H. F., “Fourier Series and Orthogonal Functions”, New York: Dover, 1963.
[14] Dym, H. and McKean, H. P. “Fourier Series and Integrals”, New York: Academic
Press, 1972.

[15] Folland, G.B., “Fourier Analysis and Its Applications”, Pacific Grove, CA:
Brooks/Cole, 1992.

[16] Groemer, H., “Geometric Applications of Fourier Series and Spherical Harmonics”,
New York: Cambridge University Press, 1996.

[17] Oppenheim A.V., Schafer R.W., and Buck J.R., “Discrete-Time Signal Processing”,

Prentice-Hall, 1999.

[18] Smith S.W., “The Scientist and Engineer's Guide to Digital Signal
Processing”, (http://www.dspguide.com/pdfbook.htm), California Technical Publishing,

San Diego, 2nd edition, 1999.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dspguide.com/pdfbook.htm

[19] Retrieved from “http://en.wikipedia.org/wiki/Discrete_Fourier_transform”.

[20] Bevan M. Baas, "A Low-Power, High-Performance, 1024-point FFT Processor."

IEEE Journal of Solid-State Circuits (JSSC), pp. 380-387, March 1999.

[21] Bevan M. Baas, "A 9.5mW, 330usec, 1024-point FFT Processor," Proceedings of
the 1998 Custom Integrated Circuits Conference (CICC), Santa Clara, CA, USA, 11-14

May 1998.

[22] Wen-Chang Yeh, and Chein-Wei Jen, “High-Speed and Low-Power Split-Radix
FFT”. In IEEE International Conference on Signal Processing, Vol., 51, No.3, March

2003.

[23] He .S. and Torkelson, “Designing pipeline FFT processor for OFDM
(de)Modulation,” in Proc. IEEE URSI International Symposium of Signals, System and

Electron, 1998, pp.257-262.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://en.wikipedia.org/wiki/Discrete_Fourier_transform%e2%80%9d

VITA

Graduate College
University of Nevada, Las Vegas

Bhaarath Kumar

Home Address:
1600, E. Rochelle Ave., Apt 42
Las Vegas, NV-89119.

Degrees:
Bachelor of Engineering, Electronics and Communication Engineering, 2002,
University of Madras, India

Thesis Title:
Design and Implementation of a Fast Fourier Transform Architecture using
Twiddle Factor Based Decomposition Algorithm.

Thesis Examination Committee:
Chairperson, Dr. Yingtao Jiang, Ph. D.
Committee Member, Dr. Emma Regentova, Ph. D.
Committee Member, Dr. Eugene McGaugh, Ph. D.
Graduate College Representative, Dr. Ajit K.Roy, Ph. D.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Design and implementation of a fast Fourier transform architecture using twiddle factor based decomposition algorithm
	Repository Citation

	tmp.1534456447.pdf.BMX2Z

