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ABSTRACT

Design and Implementation of a Fast Fourier Transform Architecture using 
Twiddle Factor Based decomposition Algorithm

by

Bhaarath Kumar

Dr. Yingtao Jiang, Examination Committee Chair 
Assistant Professor 

Department o f Electrical &  Computer Engineering 
University o f Nevada, Las Vegas

W ith the advent o f signal processing and wireless communication mobile platform 

devices, the necessity for data transformation from  one form to another becomes an 

unavoidable aspect. One such mathematical tool that is w idely used for transforming time 

and frequency domain signals is Eourier Transform. Fast Fourier Transform (EFT) is 

perhaps the fastest way to achieve transformation. Many algorithms and architectures 

have been designed over the years in an attempt to make EFT algorithms more efficient 

and to target many applications.

The main objective o f our work is to design, simulate and implement an architecture 

based on the Twiddle-Eactor-B ased decomposition EFT algorithm. The significant 

feature o f the algorithm is its effective memory access reduction that accounts to be as 

much as 30% lesser than in  any other conventional EFT algorithms. As a result o f this 

memory reduction, this algorithm is said to be more power efficient and is said to 

compute in much lesser number o f clock cycles than other algorithms developed.

Ill
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The real focus o f the design is to build architecture to map this efficient algorithm on 

to hardware retaining the maximum efficiency o f the algorithm. The complete design, 

simulation and testing is done using A ctive -H D L tool which is a V H D L  package 

designed. The architecture designed is found to retain the memory savings capability o f 

the algorithm thus enabling power efficiency.

IV
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CHAPTER 1

INTRO DUCTIO N

l . I  Thesis Objective

W ith increasing demand fo r mobile computing devices, conversion o f data between the 

time and frequency domain has become vital. The Fast Fourier Transform (FFT) is one o f 

the w idely used digital signal processing algorithms for this purpose. Numerous Fast 

Fourier Transform algorithms have been developed over the years. Architectures, which 

help realize these algorithms, have found applications in diverse areas as: 

communications, signal processing, instrumentation, biomedical engineering. Sonics and 

acoustics to name a few. The goal o f our work is the architectural design and 

implementation o f a Fast Fourier Transform (FFT) processor, mapping an algorithm 

whose decomposition is uniquely based on Tw iddle factors unlike the conventional 

Decimation-In-Time (D IT ) or Decimation-In-Frequency (DIF). W ith numerous 

architectures already in  existence, one main aspect that differentiates this work from 

other architectures is the algorithm that is used for the mapping purpose. The Twiddle 

Factor based decomposition algorithm ensures a reduction in memory access by as much 

as 30% [ I ]  [10]. Hence, an architecture u tiliz ing this algorithm is expected to have lower 

power consumption than any other conventional algorithm based architecture. The 

memory reduction comes in the form  o f twiddle factor access from  the Read Only
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Memory (ROM), where it  is generally stored and retrieved. The architecture is designed, 

simulated and tested in Very large-scale integrated circuits Hardware Description 

Language (V H D L) environment.

1.2 The Fourier Analysis

1.2.1 The Fourier Series

Consider a sequence x(n) that is periodic w ith a period N so that x{n) = x(n  + kN) for 

any integer value o f k. Such a sequence cannot be represented by its z-transform, since 

there is no value o f z for which the z-transform w ill converge. In such situations, this 

sequence can be expressed using the Fourier Series (FS) tool [4] [13] [14] [15] [16]. Any 

periodic signal can be expressed as a sum o f sinusoidal and co sinusoidal oscillations. 

This decomposition is termed as Fourier Series (FS). By reversing this procedure, a 

periodic signal can be generated by superimposing sinusoidal and co-sinusoidal waves. 

Fourier series make use o f the orthogonal relationships o f the sine and cosine functions. 

The Fourier series is extremely useful in breaking down an arbitrary periodic function 

into a set o f simple terms that can be plugged in, solved individually and thep recombined 

to obtain the solution o f the original problem. The general function is as follows:

/(■ )̂ = Oq + ^ ( a „  c o s ^ ^  + 6„ s in -^^) (1.2.1.1)
n=l L  L

where ao, a„, K  are the Fourier magnitude coefficients o f the corresponding sinusoidal

and co-sinusoidal waves and 2L represents the fundamental frequency given by 2 ;r /T

rad/sec. The Fourier Coefficients can be determined from  the fo llow ing integrals:

1 ^
ao = —  j  f ( x )d x  ( 1.2.1.2)

2L ,
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1 r flTDC
7i = — J / ( x ) c o s  dx M = 1,2,... (1.2.1.3)

-L

M = 1,2,... (1.2.1.4)
- L

For non-periodic functions, one can argue that they are periodic w ith an in fin ite period,

which is oo. The Fourier series then becomes Fourier Integral given as follows:

f ( x )=  ^[a{w)co^m+b{a)?,mcox]dco  (1.2.1.5)
0

where,

a{co) = — ^ f { x )  cos caxdx (I.2 .I.6 )

1
b{co )- — ^ f{x )sm o }xd x  (1.2.1.7)

71

Thus, Fourier series are made up o f sinusoids, all o f which have frequencies that are 

integer multiples o f some fundamental frequency. A  great thing about using Fourier 

series on periodic function is that the first few terms often are a pretty good 

approximation to the whole function, not just the region around a special point. Fourier 

series are used extensively in many major engineering applications, especially for image 

processing and signal processing applications. They are also used in solving ordinary and 

partial differential equations (heat conduction, wave theory) and also for various kinds o f 

spectroscopy. Finding the coefficients o f a Fourier series is sim ilar to performing the 

spectral analysis o f that function.
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1.2.2 Fourier Transform 

The Fourier Transform (FT) is basically generalization o f the Fourier series. The Fourier 

Transform provides the means o f transforming a continuous time signal into its 

corresponding frequency domain. Instead o f sinusoidal and co-sinusoidal terms used in 

Fourier series, Fourier Transform uses exponentials and complex numbers. The Fourier 

transform X (f) o f a continuous time function x(t) can be expressed as follows:

% ( / )  = j  ( 1.2.2.1)

In general, X(f) and x(t) are complex valued functions, 7 being imaginary unity number, 

defined as the square root o f - I  and 2 z r /  being the angular frequency range associated 

with the signal. From the defin ition o f the Fourier integral, not every function x(t) has a 

transform X(f) [2] [20] [21]. W hile the exact conditions for convergence o f functions are 

not known, two conditions that are w idely considered sufficient for convergence 

(Bracewell, 1986) are:

Condition I:

The integral o f | / (x ) |  from  to coexists [2] [20]. That is.

j|/(x )|d !x< o o  ( 1.2.2.2)

Condition 2:

Any discontinuities m f(x )  are bounded [2].

Some o f the properties associated w ith Fourier Transform are Linearity, Scaling, Time 

shifting. Frequency shifting. Symmetry, Modulation, Differentiation in time and 

Convolution. The inverse Fourier Transform that converts frequency domain signal into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



time domain performs the exact opposite functionality of Fourier Transform and has the

same complexity as the earlier. The Inverse Fourier Transform is defined as

/ ( 0  = — (1.2.2.3)
2n

The Fourier Transform is used widely for image analysis, image filtering, and image 

reconstruction and image compression.

1.2.3 Discrete Fourier Transform 

The Fourier Transform described in the previous section can be compared to an analog 

tool as it mainly deals w ith  continuous signals and this is evident from the integral used 

in equation (1.2.2.2). For the special case in which the sequence to be represented is o f 

fin ite duration, it is possible to develop an alternative Fourier representation, referred to 

as Discrete Fourier Transform (DFT). DFT is thus the Fourier representation o f finite- 

length sequence which is itself a sequence rather than a continuous function, and it 

corresponds to samples equally spaced in frequency o f the Fourier Transform o f the 

signal [4]. Thus the Discrete Fourier Transform is used in the case where both the time 

and frequency variables are discrete. In short. Discrete Fourier Transform (DFT) also 

known as Finite Fourier Transform is w idely used to analyze the frequencies contained in 

a sampled signal, solve partial differential equations, and to perform other operations 

such as convolutions [6] [17] [18] [19]. The two important reasons for using Discrete 

Fourier Transform over Fourier Transform are:

•  The input and the output o f the DFT are both discrete values making it 

convenient for computer manipulations.

•  There is an algorithm called Fast Fourier Transform, which is a speedy way o f 

computing the Discrete Fourier Transform.
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The Discrete Fourier Transform is defined as:

X{ k )  = y  jc(«) , 0 < t < A - l  (1.2.3.1)
n=0

equation ( 1.2 .3.1) can be rewritten as

N - \

X { k )  = Y .^ {n )W ^  , 0 < k < N - \  (1.2.3.2)
n=0

where

(1.2.3.3)

with N  being the number o f time samples or number o f frequency samples, x(n) being 

input signal amplitude at time n and termed as Twiddle Factor. Thus, calculus is not

needed to define the DFT or its inverse, and w ith fin ite  summation lim its, we do not 

encounter d ifficu lties w ith infinities. Moreover, in the fie ld o f D ig ita l Signal Processing, 

signals and spectra are processed only in sampled form, so that the DFT is what we really 

need fo r computational purpose [7]. In simple terms, DFT is computationally less 

intensive to compute than the Fourier Transform as can be seen below in this section. A t 

the same time, the basic concepts are the same [7]. From equation (1.2.3.1) that for each 

value o f k, direct computation o f X(k) involves N complex multiplications (4N real 

multiplications) and N -I complex additions (4N-2 real additions) [8]. Consequently, it

2 7takes N  complex multiplications and N  -N  complex additions to compute all N  values o f 

the DFT [8]. Therefore, roughly 2N^ or O(N^) are required to calculate the DFT o f length- 

N  sequence [2]. The Inverse Discrete Fourier Transform (IDFT) performs the opposite 

functionality that o f the DFT and involves the same complexity and the same number o f 

computations as the later. The Inverse Discrete Fourier Transform is defined as:
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x{n) = — Ÿ , X { k ) W - ' ' \ 0 < k < N - X  (1.2.3.4)
^  n=0

Thus the Discrete Fourier Transform replaced the Fourier Transform resulting in 

computationally capable algorithm, which has found itself applicable in wide range of 

digital signal processing and image processing fields. Another aspect is the size o f the 

memory required for an A-point DFT calculation. Since, each input term in equation

( 1.2 .3.2) needs to be preserved until the last output term has been computed, the 

m inimum memory locations required is 2A  [2].

1.2.4 Fast Fourier Transform 

Direct computation o f DFT as seen from  the previous section, consumes O(N^) 

computations for an A-point operation. Though this method o f computation results in the 

correct output, the efficiency o f this method when compared to the one to be discussed in 

this section is very less. The main reason fo r the inefficiency o f the DFT algorithm is 

because it  does not explore the Symmetry and Periodicity properties o f the Twiddle 

factor . The two properties are defined as:

Symmetry property: = -W ^  (1.2.4.1)

Periodicity property: =W ^ (1.2.4.2)

The Fast Fourier Transform algorithms, utilizes the above two properties thereby 

reducing the total number o f computations from O(N^) to 0 (N  log2 N) for an A-point 

DFT. Due to huge difference in the computational complexity between direct DFT and 

that o f FFT algorithm calculations, FFT has rapidly replaced DFT as the pragmatic tool 

currently being used in every area o f science and engineering that requires 

transformation.
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1.2.4.1 Mathematical Calculation for FFT Computational Complexity 

This section introduces Fast Fourier Transform algorithm’s computational advantage 

over direct Discrete Fourier Transform calculation. The equations (1.2.3.2) and (1.2.3.3) 

are reintroduced for derivation purpose.

N - \

X( k )  = Y ,x in )W lf , 0 < k < N - l  (1.2.4.1.1)
M=0

(1.2.4.1.2)

For derivation purpose, the value o f N  is chosen to be even. Hence N  can be represented 

in the form N =2 ‘̂ , where ‘a ’ is a positive integer. Since N  is chosen to be even, the entire 

sequence o f x(n) can be split into two sequences each o f length N/2 w ith one o f the 

sequence containing even components o f jc while the second sequence containing the odd 

components. Thus equation (1.2.4.1.1) can be split into two summations each o f length 

N/2 and can be rewritten as follows:

N - 2  N - l

% (t) = ^:c(n)W;* + (1.2.4.1.3)
ôdd=\

From [2], i f  2a represents the even components and (2 a + l)  the odd components w ith 

a = 0 ,1 ,2 ... N/2-1 then equation (1.2.4.1.3) can be written as

% (t)= ^z(2a)W ^'^+ ^%(2a + l)Ŵ "'+')* (1.2.4.1.4)
(7 = 0

X(^) = '';^x(2a)(W^)'^ +'';^z(2a + l)(W^)'^(W;) (1.2.4.1.5)
fl=0 0=0

But W]j can be proved to be equal to . Hence, equation (1.2.4.1.5) becomes

%(t) = + (Ŵ  ) T L D (^)G ^;% ) (1.2.4.1.6)
n—0 0=0
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with k=0, 1, 2..., N -l. We have stated that the DFT o f a sequence is periodic in its length, 

which means that the (A ^ j-p o in t DFTs o f (a) and need to be calculated

for only N/2 o f the N  values o f k. For each value o f k, the number o f addition operations 

taking place in each o f the two summations is N/2. Flence total number o f addition 

operations is 2(N/2) =N. In addition to the N  addition operations, there are N  operations 

o f multiplications by (W^ ) .  Hence fo r N  values o f k, the total number o f operations is N^ 

additions and N^ multiplications for a total o f 2N^ operations or can be just represented as 

O(N^) as the index value 2 has comparatively lesser value. This represents the 

computational complexity when direct DFT method is employed. For large values o f N, 

direct DFT computation becomes tedious and not practical to be implemented by digital 

systems. For N  = 8, equation (1.2.4.1.6) can be diagrammatically represented using 

butterfly structures which depict the computation o f X(k) at the output from N  values o f 

x(n )â t the input.

x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

x{7)

N/2-point
DFT

N/2-point
DFT y/=\t :

X(0)

X (1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Figure 1.1: Data Flow graph o f an 8-point DFT calculated by splitting the N  point input 
into two N/2 parts containing even and odd components. The dots represent points 
wherein addition operations take place. The integers next to the large arrow-marks 
represent multiplications that take place due to ) [2]
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Using the property o f periodicity, the FFT algorithms calculate DFT o f an iV-point input 

by splitting it  into even and odd components just as direct DFT is computed, just that 

instead o f calculating k value from 0 t i l l  N - l,  they only calculate k value from 0 until 

N/2-1 and the calculated values are re-used for k=N/2, N/2+1, , N - l.  Hence, the total

number o f operations get reduced from  O(N^) fo r direct DFT computation to 0(N^/2) 

resulting in 50% lesser computation. Additional computational reduction can be brought

using the Tw iddle factor ) .  Using the property o f Symmetry, W,k+NI2
N -VFk, . Hence,

instead o f calculating (W^J) fo r k values from  0 until N - l,  it is enough i f  we calculate for

values o f k from  0 t i l l  N/2-1 and the remaining values o f k w ill be symmetric to the 

previous values. As a result, fo r an A-point input, only N/2 values o f tw iddle factors have 

to be calculated. Thus figure 1.1 can be redrawn as

x(0)

x(2)

x{4)

x(6)

x(1)
x(3)

x(5)

x(7)

N/2-point
DFT \ \  y V  *  \

N/2-point
DFT

w l *

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Figure 1.2: Data Flow graph o f an 8-point DFT calculated by splitting the N  point input 
into two N/2 parts containing even and odd components and using only N/2 twiddle 
factors. The dots represent points wherein addition operations take place. When 
compared to the figure 1.1, only four, that is only N/2 number o f tw iddle factors are 
calculated while the remaining N/2 are just represented as sign due to symmetry 
property.
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The in itia l process was to divide A-point DFT into two A/2 point DFTs o f even and odd 

components. The same process can be repeated thereby breaking down A/2 points further 

down to two N/4 points o f even and odd DFTs and the process o f division can be 

repeated until, it  results in 2-point DFTs, which signals the end o f the splitting process as 

calculating a 2-point D FT is very simple. The number o f stages o f such decomposition 

for an A-point input is logg A  . The FFT decomposition is shown diagrammatically as:

x(0) e  

x (2 )e

x(1) •  
x(3)&  

x(5)&  

x (7 )e

•X (0 )

•X (7 )

Figure 1.3: Data Flow graph o f an 8-point FFT, showing the entire decomposition until 2- 
point DFT stage is reached. The stage w ith W \ is the last stage o f decomposition w ith all 
butterflies being 2-point DFTs.

Each o f the A/2 2-point FFT’ s requires one addition, one subtraction and there are A/2 

twiddle factor multiplications per stage. One the whole, every stage requires 0(N ) 

operations per stage. Since there are logz A  stages on the whole, the total number o f 

operations for an A-point FFT becomes 0 {N \o g j A  ). Thus, when compared to direct 

DFT computation that has a operational complexity o f O(N^), FFT algorithms only have 

0(Nlog2N) which results in 50% and higher savings in computation making FFT one o f 

the fastest and computationally most efficient form o f transformation algorithms

11
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developed w ith  the significance clearly fe lt in applications requiring large values o f N  

computation. FFT algorithms have virtually overthrown computation through direct DFT 

method and have found usage in a wide spectrum o f fields ranging from  sonar/radar 

detection, cellular communication, digital signal processing applications, image 

processing, designing High Defin ition Television (HDTV), medical imaging to name a 

few. Thus FFT algorithms have become an integral part o f many scientific and 

engineering applications and hence there is an ever-increasing necessity to design more 

efficient FFT algorithms as well as architectures that map these efficient algorithms onto 

realizable hardware components.

1.2.5 Power Aware Design 

W ith the semiconductor industry well into the deep sub-micron era, lim itations on 

physical dimensions have led to unprecedented challenges in terms o f behavioral aspects 

o f devices. Greater challenges in terms o f power dissipation, which posed triv ia l 

challenges in the earlier stages, are now posing immense constraints on devices being 

designed. Heat dissipation from such devices has become a fie ld o f research by itself, 

w ith the problem seeming to worsen as the device sizes shrink. The advent o f mobile 

computing and communication devices has taken system design to a new high. In 

addition to designing and improving circuits for increased computational ability w ith an 

increased processing capability, higher operational clock frequency, higher throughput 

and increased packaging density, hardware circuits in deep sub-micron era need to be 

designed for lower power consumption to improve the life  o f battery on which these 

mobile devices solely depend, thereby reducing constraints on heat dissipation causing 

circuit breakdowns. Power reduction techniques are implemented at every level o f design

12
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abstraction starting from  device modeling all the way until circuit design at the gate and 

transistor level and layout. Special techniques have also been developed at the fabrication 

level. W ith so much importance for design and implementation o f power aware 

architectures and circuits, we take up the task o f designing and simulating architecture 

that maps a unique FFT algorithm mainly aimed at memory access reduction, which 

could ultimately lead to lesser power consumption at the architectural level.

1.3 Organization o f the Thesis Write-up 

The entire report is organized into five chapters w ith the first chapter giving a basic in- 

depth into the necessity fo r this work and few o f the technical startups needed to 

understand the underlying concepts behind our work.

Chapter 2 gives a comprehensive description about various Fourier algorithms and 

architectures based on these algorithms w ith specific focus on Fast Fourier Transform 

algorithms. Detailed explanation along w ith supporting mathematical equations has been 

provided for clarity purpose. Chapter 2 also gives a comprehensive coverage o f the 

Twiddle Factor Based FFT algorithm, which forms the background o f our architectural 

design. A  clear insight on how the decimation is performed is also given.

Chapter 3 explains in detail the architectural technicalities involved in our design. The 

various logic blocks designed and simulated are shown pictoria lly and a good insight on 

the computational complexities o f various blocks along w ith equations has been 

demonstrated. Memory reduction techniques have also been sighted to enhance the 

effectiveness o f our work.

13
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Chapter 4 deals w ith simulation output waveforms o f various important blocks that 

have been designed and explained in chapter 3. In addition, various plots that depict the 

advantage our architecture and the algorithm it  is based on possess over other 

architectures are plotted. The chapter also summarizes in mathematical units the effective 

power savings and memory access reduction achieved.

Chapter 5 concludes our work w ith a brie f summary o f our results and some 

suggestions for future designers depicting the scope for improvements that can be 

extended to our work to enhance its effectiveness.

14
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CHAPTER 2

FAST FOURIER TRANSFORM ALGO RITHM S AN D  ARCHITECTURES

2.1 Introduction

As seen in chapter 1, the Fast Fourier Transform is computationally the most efficient 

way o f computing the Fourier transformation. From Section 1.2.3, the calculation o f 

direct form  o f DFT requires O(N^) and from Section 1.2.4.1, the calculation o f DFT 

through FFT algorithm requires only 0(Nlog2N) computations for an A-point input. For 

small values o f A, this difference is not significant. But for large values o f A, the FFT is 

orders o f magnitude more efficient than direct DFT calculation. Table 2.1 below gives a 

comparative analysis o f the computational advantage o f FFT over direct DFT calculation 

for various values o f A. A  number o f FFT algorithm variants have been designed over the 

years each having inherent computational advantages and disadvantages. FFT algorithms 

on the broader spectrum are divided into two main types namely Decimation-In-Time 

(D IT) and Decimation-In-Frequency (DIF). Either o f the types involves splitting the input 

data points into odd and even components, perform DFT operations and then recombine 

the calculated values to form  the output transformed data points. The D IT  form o f FFT 

algorithm is formed by splitting x(n) which represents the time domain, into even and odd 

components o f N /r  data sequence and then continuing the decomposition or splitting

15
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operation t i l l  r-point DFT sequence is reached, where r  is specified in terms o f N  as 

N  = r ' ' , w ith k being a positive integer.

Table2.1: Comparative tabulation o f DFT and FFT computational efficiency

Transform length

m

DFT operations FFT operations DFT operations 

-Î-FFT operations

16 256 64 4

128 16,400 896 18

1024 1.05 X 10^ 10,240 102

1,048,576 1.1 X 10^^ 2.1 X  10^ 52,429

The total number o f decomposition stages is given by logrN, w ith the logrN  stage 

having all its computation as r-point DFT operations. Hence i f  r=2, then decomposition 

of x(n) would proceed until the stage wherein all DFTs operations or so called butterfly 

structure have just 2-points each for computation form ing a rad ix-r (w ith r —2 in this 

case) D IT-FFT algorithm. On the other hand, the D IF  form  o f FFT algorithms are formed 

by splitting X(k) which represents the frequency domain, into even and odd components 

o f N /r data sequence as in case o f D IT  explained above. Hence, this type o f algorithm is 

termed as rad ix-r D IF  FFT algorithm. On a comparative basis, D IT  and D IF  are 

computationally same, thus enabling using either o f the two forms o f algorithms.

16
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2.2 Decimation-In-Time (D IT ) FFT Algorithm  

As we saw in the previous section, Decimation-In-Time FFT algorithm fo r N  = /  , is 

derived by splitting A-point input sequence into N /r  equal sequences o f even and odd 

components o f the input data. For example, i f  r=2, then A-point input data sequence 

given by x(n) is divided into two N/2 sequences one containing even and the other 

containing odd components o f x(n). The equation for output X(k) is given by equation 

(1.2.4.1.6) which is restated below for convenience.

X ( t )  =  (a )G V ^,) + ( W ^ ) ^ L o ( « W ; : ^ 2 )  (2.2.1)
fl=0 a=0

Equation (2.2.1) can be generalized as

%(t) =  f / t )  + w;;, FzW  (2.2.2)

Splitting X(k) into two A/2 components results in the fo llow ing equations

FzW, t  =0, 7, 2.. . ,  AC2-7 (2.2.3)

%(t+A/2) = F;(t) - F2(t), t  =0, 7,2. . . ,  1W2-7 (2.2.4)

Equation (2.2.4) has a negative sign as compared to (2.2.3) because o f the fact 

thatW^^'^'^ = . A  butterfly is a structure that diagrammatically represents equations

(2.2.3) and (2.2.4). Using butterflies to draw flow  graphs simplifies the diagrams and 

makes them easier to read.

17
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« X=A+BW

Y=A-BW

Figure2.1: A  radix-2 Decimation-In-Time (D IT) butterfly structure

x(0

x(4

x(2

x(6

x(1

x(5

x(3

x(7

3 ><

z x
Z X

•  X(4)

Figure2.2: Flow graph o f an 8-point D IT  FFT structure using butterflies

2.3 Decimation-In-Frequency (DIF) FFT Algorithm  

As in the case o f D IT , Decimation-In-Frequency is obtained by splitting the input 

sequence into N /r  sequences. I f  r=2  (say), then the A-point input x(n) is split into two 

sequence each o f N/2 points. Unlike in D IT  wherein input data is split into even and odd 

terms, the D IF  just involves splitting the input sequence into N /r  sequence. To derive the 

algorithm, we begin by splitting the DFT formula into two summations (since r=2), one 

o f which involves the sum over the first N/2 data points and the second sum involves the 

last N/2 data points [8]. Thus from [4] [5] [ I  I ]  [12] we can write

18
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or

(N/2-1) (V-1)
%(Æ)= (2.3.1)

n=0 n=N!2

(A //2 -1 ) (A f/2 -1 ) ^

% ( t ) =  E  % (»+— )iy ;*  (2.3.2)
M=0 M=0 ^

Combining the two summations in equation (2.3.2) and using the fact that W,(N/2)k
N

= (-1) , we obtain

( A ' / 2-1) AT

% W =  %][X») + (-l)*Jc(» + — (2.3.3)
n=0 2

Considering the even and odd components o f k and representing them w ith X(2a) and 

X(2a+1) respectively, so that

(V /2 -1 )  AT

%(2a)= 2][x(M) + XM + — (2.3.4)
n=0 2

{N/2-D AT

% (2 a + i)=
M=0 2

a = 0, 7..., (A^-7) (2.3.5)

Thus D IF  equations can be generalized for r=2 as

X(k) = F](k) + F 2(k) (2.3.6)

N

19
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Figure2.3: A  radix-2 Decimation-In-Frequency (DIF) butterfly structure

X(0)

* & - •  X(1)

-1 -1

Figure2.4; Flow graph o f an 8-point D IF  FFT structure using butterflies

2.4 Decimation Based on Twiddle Factors 

In microprocessor-based system, memory access is expensive mainly due to larger 

latency and higher power consumption [ I ]  [10]. From figure 2.4, it  can be seen that the 

various twiddle factors used for the DFT operations depicted by the butterfly structure are 

repeated at different stages and even w ith in each stage. For example, the twiddle 

factor gets used in stage I as well as stage2. Even w ith in stage2, is used twice.

20
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Hence in this 8-point D IF  FFT, is seen to be used for a total o f three times. In terms 

o f computation, it  involves accessing memory thrice to bring in the same twiddle factor 

to perform DFT computation. Thus, the redundancy in twiddle factor memory access is 

obvious. For larger values o f N, the redundant memory access becomes substantial 

leading to higher power consumption. A  unique Twiddle-Factor-Based FFT algorithm

[ I ] ,  is designed to reduce the frequency o f memory access as well as multiplication 

operations. The algorithm is mainly divided into two sections based on the Twiddle 

factors that are present. The firs t section named as Super Stage (SS), computes the 

butterflies involving tw iddle factors ( /#  0) through a computation scheme sim ilar to

Hoffman coding [ I ] .  In this section, all butterflies that use the same twiddle factor are 

clustered together and computed, thereby having to load that twiddle factor only once to 

compute all the butterflies that use it, instead o f accessing the same twiddle factor each 

time a butterfly that uses it needs to be computed, resulting in substantial memory access 

reduction. In the second section, (N-1 ) butterflies involving the tw iddle factor are

computed using a top-down tree structure. Simulations proved a 20% reduction in clock 

cycles and an average o f 30% reduction in memory access for a 32-point FFT using 

Twiddle-Factor-Based FFT algorithm when compared w ith the conventional D IF  FFT 

algorithm [ I ]  [10].

Hence, using the Twiddle-factor-Based FFT algorithm, i f  a twiddle factor gets loaded 

from the memory, it gets utilized until there is no further need for it in any further 

computations. This in terms o f number o f memory access is only (N/2-1) for an A-point 

input for Twiddle Factor Based FFT as compared to (N-1) fo r conventional FFT 

algorithms. The power saving can be significant using the Twiddle-Factor-Based FFT

21
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algorithm especially fo r large values o f N. One main advantage this algorithm has apart 

from  having lesser memory access is that the second stage dealing w ith  does not 

involve any multiplication as W °= l.  Hence we also have extra power savings through

non-usage o f m ultipliers that are power hungry and computationally intensive.

2.4.1 Decimation Procedure 

In case o f Twiddle-Factor-Based FFT algorithm described in [ I ]  [10], the butterflies that 

are computed at each stage are spread across log^ N  stages o f a conventional 

decimation. The Twiddle-factor-Based FFT decomposition is shown in figure 2.5. As can 

be seen from  figure 2.5, butterflies w ith the same twiddle factor (represented by W [x], 

w ith X varying from  0 t i l l  (N/2-1) and this representation is analogous toWy^), that were

computed at different stages in a conventional algorithm, now gets computed w ith in a 

single stage thereby avoiding the necessity to load the same twiddle factor numerous 

times as compared to just once in [ I ]  [10]. The decomposition o f the algorithm proceeds 

in the fo llow ing fashion. For an A-point FFT, the binary index o f a data sample resembles 

(AkAk-i.... Ao), w ith k= log 2N -l.

(1) A t the first stage o f decomposition, all data samples o f the form  (AkAk-i.... i j  are

computed and any two data samples o f the form (AkAk-i.... 1 ) and (AkAk-i.... 1 ) 

can pair together to form a butterfly [ I ] .
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Figure 2.5: Flow graph o f a 16-point FFT structure based on Twiddle-Factor-Based 
algorithm

The twiddle factor that corresponds to this butterfly is given as where j  corresponds 

to the decimal value o f the binary sequence given by 

(OA1C-1 ....A2A 1 1 ).

(2) A t the second stage o f decomposition, all the data samples w ith binary sequence 

(AkAk-].... A 2 10) and (AkAk-i.... A 2A 1 I ) are computed. Any two data samples w ith

binary sequence (AkAk-i.... A 2 IO) and (AkAk-]....A 2 lO  ), or (AkAk-i....A2A ] l  ) and

{AkAk-i A 2A 1 I  ) can pair together to form  a butterfly. The tw iddle factor

corresponding to this butterfly is where j  corresponds to the decimal value o f 

the binary sequence given by (OAt-y .-Az 1 0 ).

23
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(3) W ith in  log2N - l stages o f decomposition, all data samples w ith twiddle factor 

other than are calculated.

(4) The stage involves butterflies whose corresponding tw iddle factor value is

(000... 1).

The obvious advantage that can be seen from  the above form  o f FFT decomposition is the 

number o f memory access that is made w ith  regards to accessing the various twiddle 

factors. Thus we only need (N/2-1) memory access as against (N-1) required by 

conventional algorithms [1] [10]. Another interesting aspect in addition to reducing the 

memory access is that the log2N‘  ̂ stage o f decomposition involves as its twiddle

factor and =1. Thus there is no m ultiplication involved w ith butterflies using this

tw iddle factor and hence the fina l stage decomposition involving (N-1) butterflies does 

not involve any multiplication thereby helping us save valuable m ultiplication operations.

Thus, the Twiddle factor based FFT algorithm seems to be a more appropriate 

algorithm that caters to the need for power aware FFT systems.

24
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CHAPTER 3

AR C H ITEC TU R AL DESIGN AN D IM PLEM EN TATIO N

3.1 Overview

In chapter 2, we had a comprehensive explanation about the Twiddle-Factor-Based FFT 

algorithm and also the computational advantages it had over other conventional FFT 

algorithms was explic itly  shown. Designing architecture to map this computationally 

challenging but intensely less memory access-involving algorithm is the main aspect o f 

our work.

Until the early to mid-90s, low power electronics were for the major part considered 

only fo r a very few applications largely comprising o f small personal battery-powered 

devices. But the m id 90s saw the remarkable development o f CMOS sub-micron 

technology, which subsequently led to the advent o f deep sub-micron CMOS era. 

Another radical change that revolutionized the electronics market was the unprecedented 

demand and subsequent development o f portable communication and computational 

devices that m ainly depended on battery power for their operation. Unfortunately, the 

battery industry could not keep pace w ith the developments in the semiconductor 

industry. As a result, high-end electronic portable devices needed constant battery 

recharging, which made them less user friendly. This resulted in extensive research done 

towards design and implementation o f newer V LS I algorithms, architectures and circuit
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techniques that would utilize the minimum possible power w ithout sacrificing any o f the 

other parameters such as bandwidth, clock speed, area and throughput.

Our architectural design, based on a power reduced FFT algorithm is a small step in 

this direction.

3.2 Design Target

The FFT algorithms have a wide range o f signal processing and communication 

transmission applications. In recent times, one important area where FFT has found 

extensive application is H igh Defin ition Television (HDTV). According to the standard 

o f European D igita l Broadcasting, FFT/IFFT must execute 8192 points in 896 

microseconds. In addition, we also target our architecture towards Orthogonal Frequency 

D ivision M ultip lexing (OFDM) transceiver whose IEEE 802.1 Ig  standard requires it  to 

execute 7024-point FFT in 51 microseconds.

3.3 A lgorithm  Setup

We recall the Twiddle Factor Based FFT decomposition structure shown in figure 2.5. 

From the structure, the algorithm can be broadly classified into three distinct divisions 

namely Input, Processing and Output stages.
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Figure 3.1: F low graph o f a 16-point FFT structure based on Twiddle-Factor-Based 
algorithm

A t the Input stage, complex form  data values corresponding to the N  unprocessed, in 

other words time domain signals x(n) where n=0,l,2 ,... ,(N-1) are input into the memory 

device from external source (generally other blocks whose output need FFT processing). 

The address location where the input data values would get stored depends on values o f 

n. That is, i f  data value corresponding to x(n) needs to be stored, it gets stored at a 

location whose address is given by binary equivalent o f (n+ 1 ) , that is i f  data 

corresponding to x(0 ) needs to be stored, it  gets stored in a memory location whose 

address is binary equivalent o f (n+1 ) or (0+1 =1 ). S im ilarly for x(4), the address is binary 

equivalent o f (4+1=5). The number o f binary bits to represent memory address depends 

on the size o f the memory device as shall be seen in the coming sections. Thus, data is 

fed into memory starting from  x(0) all the way up to x(N -l), in subsequent locations.
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The proeessing division is where the DFT butterfly operation takes place. This division is 

equivalent to the Central Processing U nit o f any computer system. This block transforms 

input time domain signals x(n) into its corresponding frequency domain signal X(k).

The transformed X(k) output values are written back to the same locations in the 

memory device from  where they were in itia lly  accessed. Thus after all operations, the 

same memory locations which contained time domain signals would now contain 

frequency domain signal output. The output division accomplishes this process. For any 

given N, the total number o f decomposition stages is given as log,. A ,  where A = / ,  k 

being any positive integer. Hence the above stated process is repeated log,. A  times 

resulting in the final values o f frequency domain X(k) signals.

3.4 Random Access Memory (R AM ) Address Generation Block Design 

The functionality o f the R A M  address generator is to determine

(1) Total number o f stages o f decomposition

(2) Total number o f DFT butterfly operational groups w ith in each stage based on 

twiddle factors

(3) Determine the memory address locations o f the data needed for each o f the DFT 

butterfly operation.

The R A M  address generator is one o f the few complex operational blocks designed in our 

architecture. Based on our observation o f the Twiddle-Factor-Based decimation FFT 

algorithm, we can make the fo llow ing conclusions assuming A=2* k is any positive 

integer.

(1) Total number o f stages o f decomposition fo r an A-point input = /ogzA
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(2) Only the butterflies in decomposition stages 1 t i l l (log2N-2 ) involve complex 

multiplications.

1 3  5 (NIT,  - 1 \
(3) Butterflies w ith twiddle factors form  the (log 2N - l ) ‘ stage

,(LOGN - 2)

and involves only multiplication w ith imaginary term j  which can be effectively 

implemented by switching or swapping real and imaginary terms o f the output 

and inverting the sign term between them, thus avoiding use o f complex 

m ultiplier.

For the purpose o f R A M  address generation, we came up w ith a pseudo code in C++ 

which could generate addresses o f all butterfly DFTs based on Twiddle-Factor-Based 

FFT algorithm decomposition described in [1] [10]. The Pseudo code consists o f two 

parts w ith the first describing the decomposition for the first (ZogzA-i) stages and the 

second describing the (log2N ) ^  stage. The first Pseudo code depicting address generation 

o f the first (ZogzA-i) stages consists o f four nested loops.

(1) Loop 1: corresponds to the current stage number (between 1 and (logzN -l))

(2) Loop 2: corresponds to the total number o f different twiddle factors that are used 

with in a given stage

(3) Loop 3: fo r a given twiddle factor, we have butterfly DFT structures that vary in size. 

Loop3 computes total number o f different sizes o f butterflies that utilize a given 

twiddle factor.

(4) Loop 4: Computer total number o f butterflies for a given size and a tw iddle factor
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3.4.1 Formulae o f Computational Complexity for the Loop Structures 

fo r (log2N - l) Stages o f Decomposition 

Loop 1 Computation -  The loop 1 as seen from  section 3.4, computes the total number o f 

stages o f decomposition excluding the last stage, which is generally computed separately 

as this stage does not involve any tw iddle factor multiplication. Excluding the last stage 

o f decomposition, the total number o f stages is (log2N - l)  and hence loop l index varies 

from 1 to (log2N -l) .

Loop 2 Computation -  The generalized formula for the calculation o f Tw iddle factors 

that are used in each o f the (log2N - l) stages, where N = / ,  k being any positive integer is 

given as

W \  , where jc= i, 3, 5, 7... [ (N /r^ ') - l]  (3.4.1.1)

where cs represents the current stage number

The current stage value (cs) varies from  1 to (log2N -l) . For our architectural design we 

assumed r=2. Hence, (3.4.1.1) becomes

W \  , where x=7, 3, J, 7... /(ZW2 7 (3.4.1.2)

= , where x=7, 3, 5, 7... 7(ZW2 ")-77 (3.4.1.3)

The total number o f butterflies in each stage is given as

( 2 "  -1 )A
)(CS+1)

(3.4.1.4)

Equation (3.4.1.4) gives the total number o f butterfly operations per stage. Thus, for 

(log2N - l) stages, the total number o f butterflies is given as
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log2 N - \  JtJ

I  (3 4.1.5)
CS=1 ^

Using equation (3.4.1.3) and the values N=16  and r=2, we can work out an example to 

calculate the tw iddle factors used at various stages o f decomposition using the Twiddle- 

Factor-based FFT algorithm. Number o f stages w ith tw iddle factor multiplications is 

given as (log2N - l)  = (log2 l 6 - l )  =3. Thus the stage index value or CS varies from  1 to 3. 

Stage#l:

Tw iddle factors accessed when C 5= l is given as

" , wherez=7, j ,  5, 7... /(A /2")-77

= , where x = l,  3, 5 and 7

Therefore the tw iddle factors that are used when C5'=l areW/g W,g Wjg and W j 

Stage#2:

Twiddle factors accessed when CS=2 is given as

, where z=7, J, 5, 7... 7(7W2")-77

= ' ,  where x = la n d  3

Therefore the tw iddle factors that are used when CS=2 are W l̂ and lT,g 

Twiddle factors accessed when C5=3 is given as

w;" ' , where x=7, J, 5, 7... 7(A/2")-77

= Vkif' where x = i 

Therefore the tw iddle factors that are used when C 5=l is IT,g

Loop 3 Computation -  For a given tw iddle factor w ith in any given stage, there can be 

DFT butterfly structures o f varying sizes, where size o f a butterfly w ith reference to
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conventional FFT algorithm can be said to be (N/2^^) where CS corresponds to current 

index value o f stage number which varies from  1 to log2N  fo r a given value o f A. In case 

o f conventional FFT algorithms, all butterflies that were computed w ith in a single stage 

were o f the same size. On the other hand, Twiddle-factor-Based FFT algorithm, 

computes butterflies based on their tw iddle values. Hence, butterflies that are computed 

w ith in a single stage need not necessarily contain butterflies o f the same size. The total 

numbers o f different sized butterfly structures that utilize a single twiddle factor at any 

given stage o f decomposition equals the value o f the stage o f decomposition where the 

butterfly is currently present. For example, IT,g twiddle factor that is present in stage 1, 

would have butterflies o f only one size using that twiddle factor as it  lies in the first stage. 

Similarly, IT,g which lies in stage 3, would have butterflies o f three different sizes. The

different sizes might also be specified in terms o f levels, w ith each level being occupied 

by butterflies o f one particular size. Hence three different sizes for a single tw iddle factor 

means there are three levels fo r that tw iddle factor. The size o f butterflies varies starting 

from  A/2 for the first level and successive steps having half the size o f the butterflies in 

the previous level. For example, we saw that IT,g had three different sizes o f butterflies. 

Hence,

Size o f butterflies present in level 1 = A/2

Size o f butterflies present in level 2 = V2(N/2 ) = N/4

Size o f butterflies present in level 1 = ViiNM) = N / 8

Loop 4 Computation -  Having formulated the number o f stages o f decomposition, total 

numbers o f twiddle factors per stage and the total number o f levels o f butterflies per
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twiddle factor. We are le ft w ith calculating the total number o f butterflies to be computed 

in each o f the levels. The formula for calculating the total number o f butterflies present 

per level is given as For example, again considering tw iddle factorW,g, we can

thus calculate the number o f butterflies in each o f the three levels. Thus 

Total number o f butterflies present in level 1 = = 1

Total number o f butterflies present in level 2 = = 2

Total number o f butterflies present in level 3 = 2̂ '̂̂  ̂= 4 

An important aspect o f the butterfly decimation is that w ith in a given level, the butterflies 

can be computed in any order. S im ilarly for a given twiddle factor w ith in a stage, the 

various levels can be computed in any order and so can be done w ith different twiddle 

factors w ith in  a given stage. Thus the parallelism can be exploited at various levels o f 

decomposition. This feature makes the Fast Fourier Transform the most sought after 

transformation algorithm in numerous signal processing and communication applications.

3.4.2 Pseudo Code Implementation 

Based on the four loop structure calculated fo r the first (log2N - l)  decomposition stages 

based on Twiddle-Factor-Based FFT algorithm, a C-like pseudo code to implement the 

DFT butterfly operations over (log2N - l)  stages is shown below in figure (3.2).

bf_size = N/2 
LOOP 1:
i  = 1 to (log2N -l) , i+  + 
a7 = (2 ^ (W ))

LOOP 2.

bf_size = N/2 
a = a l
a = a + 2 ( j - l ) *  a l
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LOOP 3:
K  = (i-1) to 0, k- -

LOOP 4:
m = 1 to (N/(bf_size*2)) 
b = a + bf_size 
c[m ] = a
a = a + (2 *bf_size)
D FT  Butterfly operation to be performed

LOOP 4 ENDS 
a = c [ l ] / 2

bf_size = (bf_size/2 )

LOOP 3 ENDS 
LOOP 2 ENDS 
LOOP 1 ENDS

Figure 3.2: Pseudo code for the (log 2N - l) stages decomposition

3.4.3 Architectural Blocks Design and Implementation 

For the pseudo code designed in figure (3.2), a logic design at the behavioral level is done 

using Very large-scale integrated circuits Hardware Description Language (V H D L) tool. 

Aldec Inc., license version o f Active H D L  version 6.3 was used entirely to design and 

simulate the various architectural blocks. The architectural implementation o f the (log2N- 

1) stages o f decomposition based on Twiddle factors is shown in figure (3.3). On 

comparing the pseudo code w ith the architectural blocks, we can find that the block 

i j j lo c k  corresponds to loop l, v^hWe j_b lock  and k jb lock  correspond to loop2 and loop3 

respectively. Due to logical implementation complexity, loop4 is implemented using 

three blocks namely m jblock, m ljb lo c k  and m2_block. The main functionality o f the 

R A M  address generator as stated earlier is to generate address o f data elements present in
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the memory unit that are needed for all the D FT butterfly operations over the entire 

decomposition stages. For every butterfly operation, two data elements are required, 

which implies that two addresses are required to be generated by the R A M  address 

generator fo r every butterfly operations that gets computed. From the architectural 

design, qa and qb represent the two binary address values that get generated. Each o f the 

two outputs is a binary sequence o f w idth determined by the size o f the memory unit it 

accesses as can be seen in the upcoming sections. A ll the blocks are o f non-pipelined 

nature wherein only one block remains operational at any instant. The blocks gets 

initiated one after the other in the order required automatically by triggering signals 

which present w ith in one block trigger the next after the completion o f execution by 

current block. There are six blocks in total implementing the four nested fo r loops. The 

value o f qa is generated at multiple locations along the six blocks. The correct value o f qa 

that corresponds to any particular butterfly operation is chosen among the different 

values based on a resolution function block. The alphabet V represents a signal that 

toggles fo r every value o f loop l index and in turn triggers j jb lo c k  which then gets 

executed loop2 index times and V ’ represents the situation wherein jjb lo c k  completes 

executing loop2 index times and hence control is transferred back to ijb lo c k  fo r further 

processing. S im ilarly, W and W’ represent the computational triggering signal between 

j_b lock  and k_block. On the same ground, we can explain the functionality o f X, X ’, Y, Z 

and Z ’. The complete V H D L  implementation o f the architecture described in figure (3.3) 

is shown in A P P E N D K . The other important signals that form a part o f our design are 

the clear, enable and clock. The clock is basically a synchronizing signal whose complete 

functionality is explained in section 4.7. The clear signal is used as an erasing signal
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which when active high or 1  erases all the values at the output ports and assigns them to 

high impedance.

dock

dear
enable k blockenable

To e n a b le  (logN ) 
s la g e  b lo ck s W"

loop3
dock
dear q ak

q a

m2 block ml block
q a m  R eso lu tion  

block
—►

Figure 3.3; B lock design representation o f (log2N - l)  stages based on Twiddle factor 
decomposition algorithm

The enable signal is basically to determine i f  a block needs to be operational at any given 

instant. Any block proceeds w ith its execution only i f  enable signal remains active low  or 

0 , fa iling which, the previous output o f that block is retained irrespective o f changes in its 

input.
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3.5 Formulae o f Computational Complexity fo r the Loop Structures 

for log2]Sf  ̂Stage o f Decomposition 

In section 3.4, we saw the R A M  Address generation block design fo r the first (log2N -l)  

stages o f decomposition based on tw iddle factors. The final stage or log2N‘  ̂ stage o f 

decomposition is probably unique when compared to the other stages mainly in terms of 

usage o f multipliers. The log2N ’  ̂ stage is classified in such a way that all the butterflies in 

this stage irrespective o f their levels or sizes use only the tw iddle f a c t o r . The value of

is always equal to 1, irrespective o f the value o f N. DFT butterfly calculations based 

on equations (2.3.6) and (2.3.7) reveal that using is equivalent to m ultiplying

equation (2.3.7) by 1. The tw iddle factors used for multiplication in the first (log2N -l)  

stages are complex in nature (containing real and imaginary terms). Hence when these 

complex twiddles get into equation (2.3.7), they result in complex multiplications, which 

are computationally complex and intensive to design and implement. Hence the absence 

o f complex multiplications in the (log2N"') stage makes this stage computationally less 

intensive and results in large savings in terms o f clock cycles for computation and also in 

terms o f power dissipation. The total number o f butterflies that are computed in this stage 

is given as (N-1 ). Since there is no multiplication by twiddle factor involved in this stage, 

we can disable all the multipliers that are designed to handle multiplications. This 

procedure is more complex in other conventional FFT algorithms. Though W° factor is 

present even in other FFT algorithms, they get utilized at different stages o f 

decomposition, unlike in Twiddle factor based algorithm [1] wherein gets utilized 

only in one stage. Hence in conventional algorithms, disabling the multipliers at different 

time intervals is more d ifficu lt. This is one obvious advantage Twiddle-factor-based FFT
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algorithm has over other FFT algorithms. As a result, we can disable the multipliers for 

clock cycles equivalent to implementing (N-1 ) complex multiplications. This results in 

power savings as digital circuits like memory units and multipliers are power hungry. 

Though power efficient m ultipliers are being designed, it  is more suitable to reduce the 

usage o f multipliers.

3.5.1 Memory Reduction Technique 

The Twiddle-Factor-Based FFT algorithm [1] [10], describes a methodology by which 

memory access can be reduced even at the (log2N) stage. From figure 3.1, butterflies 

w ith in the (log2N) stage is decomposed into (log2N) further sub-stages as depicted in 

figure 3.4. From figure 3.4 it  can be seen that in sub-stage 1 (S I), the two outputs o f 

butterfly are represented as A  and B. The output value A  serves as input for C and that o f 

B used as input for D  present in sub-stage2 (S2), while input values for points E  and F  do 

not depend on their previous stages. Hence input to these points has to be accessed 

directly from memory units. It becomes redundant i f  A and B get stored in the relatively 

slow memory units and then C and D  accessing those values back from  the same memory 

unit. Instead, A and B can be stored in temporary registers from where C and D  can 

access them.
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Figure 3.4: (log2N f^  stage decomposition structure fo r # =  16

W hile one o f the inputs to every butterfly can thus be accessed from temporary registers 

where the previous stage outputs get stored, the second input to the butterflies is only 

accessed from  the main memory units. As a result o f this, main memory accessing gets 

reduced by as much as 50%. Accessing data from  main memory units is more power 

consuming than accessing them from  temporary registers simply because, temporary 

registers can be built according to user needs and can be placed closer to the processing 

unit. Moreover the main memory structure is designed in a more complex way when 

compared to the temporary register bank. The decoding for temporary register location is 

also simple when compared to the main memory. Based on our evaluation, the total 

number o f temporary registers required for an A-point input is N/2.
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3.5.2 Pseudo Code Implementation 

A  C-like pseudo code fo r implementation o f (log2N) stage is given in  figure (3.5). It is a 

two for loop structure generating the addresses qa and qh that represent the binary 

equivalent o f the addresses o f the two memory locations from where data fo r computing 

the butterfly is accessed. This pseudo code only deals w ith address generation and not 

w ith memory reduction concept.

bf_size = N/2 
LOOP 1:
k = 1 to (log2N), k+ + 
a l = 0 ; a= 0

LOOP 2:
m = 1 to (N/(bf_size*2)), m ++ 
a = a + a l 
b = a + bf_size 
c = a; 
d  = b; 
c = (a + b) 
d = (a — b) 
a l = (bf__size) * 2

LOOP 2 ENDS 
bf_size = (bf_size/2 )

LOOP 1 ENDS

Figure 3.5: Pseudo code for the (log2N - l)  stages decomposition

3.5.3 Architectural Blocks Design and Implementation 

The two-loop pseudo code is logically designed using V H D L  at the behavioral level. The 

blocks are designed in such a way that o f the two data values that are required for
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computation o f every butterfly, one data comes from the temporary register while the 

other comes from main memory unit. On one hand, the outputs from  the butterflies that 

are computed in the (log2N - l)  sub-stages are stored back into temporary registers while 

on the other hand, the outputs o f butterflies computed in the (logzN/^ sub-stage get stored 

into the main memory unit rather than in the temporary registers mainly because, the 

(log2N f^  sub-stage forms the final stage o f computation and hence it  forms the output 

stage and the output values need to be written back onto main memory from where they 

would be accessed by other systems. Figure (3.6) shows the architectural blocks o f the 

(log2Nf'^ stage implementation. As explained in section 3.4.3, the functionality o f A, A ’, 

B, B ’, C, C ’ , D  and D ’, is to trigger the successive blocks to which they are respectively 

connected. The clear, enable and clock signals perform the same functionality as that 

explained in section 3.4.3. The q_temp_reg_addr is the address corresponding to the 

temporary register location from wherein data needs to be accessed. The q b jo g n  

represents the second address needed fo r performing the butterfly operation, which is 

fetched from  R AM . The V H D L  block implementation o f the architecture explained in 

figure (3.6) is given in APPENDIX. On the design front, we plan on designing a 1024- 

point FFT architecture targeting H D TV  application. For this purpose, we need 512 

temporary registers each o f 32-bits wide. The 512, 32-bit temporary registers are 

implemented as a tree structure. In itia lly , one 32-bit temporary register is designed. It is 

then duplicated or in V H D L  terms port mapped to form  the second temporary register.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



clock
c le a r

d ock
c le a r

clock
clear

en ab le
q b jo g n  1 q je m p _ r e g _ s d q n

From (logN-1) 
s ta g e s  block

q je m p _ re g _ a d d r

clock
clear

clock
clear

iogn_block5
enatde en ab le

q b jo g n  2 q je m p _ re g _ a d d r2

logn_block3

lo g n _ b lo c k 4

q a j o g n

Figure 3.6: V H D L  Block implementation o f (log2N f  stage based on Twiddle factor 
decomposition algorithm

Now, the two identical registers are considered to be a single entity and this is then port- 

mapped to form  two more identical registers, resulting in four registers. Proceeding this 

way, we get to design 512, 32-bit temporary register bank. During the different stages o f 

algorithm execution, data is constantly written onto and read out from the temporary 

registers. Hence, there is a necessity to generate the address o f the temporary register 

where data is to be currently written or to be read. The logic block implemented as shown 

in figure 3.6 generates the address corresponding to the right temporary register. This 

address is decoded in stages by a decoder. Each stage o f temporary register design has its 

own decoder, which decided the exact location o f the temporary register.

The number o f address bits needed to specify a location in the temporary register bank 

is determined using the fo llow ing expression

Number o f address bits = log2 (total number o f register locations) (3.5.3.1)

Hence, in case o f temporary register bank, we have N/2 or 512 register locations. 

Substituting in equation (3.5.3.1), the number o f address bits is 9. Thus we need 9-bit
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binary sequence to represent each o f the temporary register locations. In the previous 

section, we saw that in the (log2N f^  stage, data is accessed both from main memory unit 

as well as from  temporary registers. To achieve this, the design incorporates multiplexers 

to choose between the two data source. Each temporary register has a Read and Write 

signal. I f  the Read signal is set to high or 1, data is read out o f temporary register, while 

making Write signal high on the other hand, enables us to write data into the registers.

The complete block architecture for address generation fo r both (log2N - l)  stages and 

(log2N f '  stage is shown in figure (3.7).

LfelotSc I *mrnbW k Wof*

To (logN)
Wqe Wock* " 1  ^  '  V'

Ioop1 loops

H  l.,v

......1.....

r . * * » mWock

X'

qak

qam R w o W o r

qbJogN-1

clock dock
cW r

k>gfi bfodf.1 A ...► kgn.M ocia

en»Me
g  J b g n .b b c K l

L
O'

L
RwoAAor

Woch
fog #0*2

qb

Address to temp 
register

W logn

Figure 3.7: B lock implementation o f (log2N - l)  stages and (log2N f^  stage based on
Twiddle factor decomposition algorithm
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3.6 Random Access M emory Design 

The Random Access Memory (RAM ) is the main memory system designed and 

simulated in our architecture structure. Our FFT architecture is designed for 1024 points 

input system. Hence we have 7024-points time domain input signals that need 

transformation. For this purpose, the input data needs to be stored in a memory unit from  

where they can be accessed whenever necessary. The design and implementation o f the 

Random Access Memory (R AM ) tends to serve this purpose.

The biggest advantage that FFT algorithms possesses that other transform algorithms 

do not is that o f In-place computation. The FFT algorithms as seen get computed in 

stages. In conventional FFT algorithms, input data as well as output data are accesses in 

and out o f R AM , which serves as the primary memory unit. The input data that is used in 

the computation at each stage is only needed fo r that stage. Once the output to that stage 

gets generated, the inputs that this stage used are no more needed and can be replaced by 

the output data obtained. This process o f replacing or re-using the same set o f memory 

locations that stored the input data to store output data values is termed as In-place 

computation. This concept results in m inimum requirement and usage of memory unit 

size, which makes it  optimal for digital systems. Hence, for an A-point FFT 

implementation.

The number o f M ain memory (R AM ) locations needed = N  (3.6.1)

I f  each memory location is represented by the term word, then, for a 7024-point FFT 

implementation, we need 1024 words or locations in the R A M  to store all the input and 

output values. The address locations for the memory locations start from  binary
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equivalent o f 0 and continue all the way up to 1023, thus specifying all the 1024 

locations. Each location can store data o f width 52-bits. From equation (3.5.3.1), the 

number o f bits requires to address each location can be calculated to be 10. Hence, the 

address sequence starts from  0 0 0 0 0 0 0 0 0 0  all the way until 1 1 1 1 1 1 1 1 1 1  w ith increment 

o f 1. Two distinct but sim ilar R A M  blocks having the same set o f address sequence is 

designed to store both the real and imaginary part o f the complex data input o f the form 

(a+ jb) w ith a and b being any real number. Thus, accessing the exact memory locations 

from both the blocks simultaneously results in accessing both the real and imaginary 

parts o f an input data. The basic structure o f a 7-word R A M  is shown in figure (3.8). This 

structure is common fo r both the real and imaginary parts o f R A M  design block.

clock

Enable from decoder

Data to be written 
 — —

Signal to read out data

Signal to write in data

Data to be read

Figure 3.8: B lock level representation o f 1-word R A M  cell fo r storing 52-bit data

From figure (3.8), the basic building block o f a R A M  word consists o f a Read, Write, 

Clear and enable from  decoder as its signals. The Read  and Write signals enable us to 

input data into and output data respectively from  any memory location. The Clear signal 

i f  high or 7 erases the contents o f the memory location and replaces the output as well as 

the content o f the memory to high impedance. Only i f  the enable from  decoder is made
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active low  or 0, w ill it  be possible to access data from  or into the location. Otherwise, 

whatever was the previous output continues to remain at the output port and no changes 

get reflected. The structural design methodology followed for R A M  is sim ilar to the way 

the temporary register bank was designed in section 3.5.3. The V H D L implementation o f 

the R A M  cell is shown in APPENDIX.

In order to access the exact location in the R A M  block, we need to decode the address 

b it sequence generated by the R A M  address generator. The decoder block implements 

this procedure. The decoder is basically a de multiplexer, which chooses one among its 

many outputs based on the value o f the input. The basic structure o f a decoder is shown 

in figure (3.9).

clock

Decoder enable

2-bli address to choose 
between 4 outputs

RAM

decoder

output 1

o utgu t2

o u tgu t3

outgut4

Figure 3.9: B lock representation o f a R A M  decoder

In our design, we implement one decoder to decode 2 address bits thus enabling us to 

locate four R A M  word cells. In other words, one decoder can help us operate four 

different memory locations. Thus for a 7024-points R A M  cell locations, we need 341 

decoders in total. This can be made clear by figure (3.10) and the explanation given 

below. We know that we need 7 decoder to decode 4 R A M  cells and are shown below. 

Let this combination be termed as a group. Hence, a group contains 4 RAM  cells and 7
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decoder. Based on the previous calculation, i f  we have four separate groups, each having 4 

RAM cells and 1 decoder as in figure (3.10a), then we got to a total o f 16 RAM  cells and 4 

decoders decoding these 16 RAM  cells.

CELL 4CELLSCELL1 CELL 2

DECODER 1

Figure 3.10a: Basic group formation o f R A M  cells using decoders

This is depicted in figure (3.10b). To choose one group among the four available, we need a 

decoder. Thus, for a total o f 16 RAM cells decoding, we get to use 5 decoders. Let us term 

this as high group.

ij I cai7[ j cEu.*! CEU.2 CELL3 CEU.

DECODER

Figure 3.10b: Hierarchical group formation o f R A M  cells using decoders
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Proceeding on a sim ilar ground, we can see that for four such high groups to get decoded, 

we need 20 decoders, thus decoding 64 R A M  cells. In order to one among the four high 

groups, we need a decoder. Hence fo r decoding 64 R A M  cells, we need a total o f 21 

decoders. The calculation can thus be extended to higher levels o f grouping and thus for a 

1024 cells R A M  structure, we would need a total o f 341 decoders. The V H D L block 

level design o f such a hierarchical R A M  and decoder stmcture fo r 64-words R A M  is 

shown in APPENDIX. The disadvantage o f such huge memory units is obvious from our 

previous discussions. The humongous hardware requirements hamper the performance of 

such memory units in terms o f operational speed, data retrieval and storage time, and area 

and power consumption. Hence in recent times, high-end research is devoted to designing 

and fabricating huge memory devices w ith minimum hardware. As a result, high-speed 

memories such as cache and flash  memories have been designed so as to reduce the 

operational delays and also power consumption. These high-end memories are designed 

to be very small and hence are area efficient as well. A ll these benefits have created a 

tremendous scope for such memories and are widely being utilized in many system 

designs especially mobile devices where area and power savings are o f primary 

importance.

3.6.1 Read Only Memory (ROM)

In the previous section, we saw the design and implementation o f Random Access 

Memory (RAM ). The R A M  is a memory unit wherein data can be written, read and 

erased. Thus R A M  can be termed as an erasable memory. On the other hand, ROM is a 

Read only option memory wherein data to be stored is pre-determined during its 

fabrication and is hardwired. Thus the data once hardwired cannot be changed and as a
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result, no new data can be written on to a ROM  cell. Hence there is only a Read option 

and no Write option. The RO M  is thus used only i f  there are stored values that do not 

change during the course o f execution. In any FFT algorithm, the tw iddle factors , k 

=0, 1... ((N /2 )-l) do not change their values once computed. Hence for a given A-point 

FFT, the entire N/2 number o f complex tw iddle factors is stored in the ROM, whose size 

is determined as N/2. Thus fo r our 1024-point architecture, we need 512 locations in  the 

ROM  to store the various tw iddle factor values w ith each location being 52-bits wide. 

Since, there are 512 R O M  locations; we need 10-hit binary sequence to address every 

ROM  location. The address to the RO M  blocks are generated by ROM  address 

generation block, which keeps generating consecutive address locations o f twiddle 

factors when ever it  gets triggered by a signal from  the R A M  address generation block. 

Every time the second fo r loop in the R A M  address generation block gets executed, a 

new twiddle factor needs to be accessed from  ROM. Hence, a trigger signal is sent to the 

ROM  address generation block indicating that address for the new tw iddle factor be 

generated by it and sent to the ROM  blocks which w ill then output the tw iddle factor 

values to the location o f the butterfly operation. Figure (3.11) below shows the ROM 

blocks designed in our architecture. V H D L  block representation o f RO M  is shown in 

APPENDIX.
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Figure 3.11: Block representation o f Read Only Memory (ROM) and its controller

3.7 Data-Path Design

W ith the address generation block, Random Access Memory and Read Only Memory 

design complete, the architecture can now generate the addresses o f the locations from 

where time domain signals stored in the Random Access Memory and twiddle factors 

from  the Read Only Memory can be accessed. Once the time domain signal and 

corresponding twiddle factor data from  the memory units get accessed, they must be 

transformed into frequency domain output signal. In other words, DPT butterfly 

operation needs to be performed on the accessed input data. For this purpose, we 

designed the data-path block. It is in this block that arithmetic operations such as 

addition, subtraction and m ultiplication are performed.

The formulation for each o f the DFT butterfly operations in the Twiddle-Factor-Based 

FFT algorithm [1] is based on equations (2.3.6) and (2.3.7) and may be recalled for 

clarity.

%(ik) = F # )  + F2W (3.7.1)
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k= 0 , l,2 . . . ( N /2 - l )  (3.7.2)

Equations (3.7.1) and (3.7.2) involve one addition, one subtraction and one 

multiplication. The (log 2N) stages Twiddle-Factor FFT algorithm [1] can be divided into 

three distinct groups based on twiddle factors.

Group 1: consists o f butterflies from stages 1 t i l l  (log2N-2 ). The tw iddle factors that are 

utilized in any o f these stages are complex in nature, which is o f the form  (a+ jb) w ith a, b 

being any real number. The input data F j (k) and F 2 (k) stored in the memory units are 

also complex in nature as the twiddle factors itself. Hence, when equations (3.7.1) and 

(3.7.2) get computed, we need to perform one addition, one subtraction and one complex 

multiplication which are computationally more intensive than a real multiplication.

Group2: consists o f butterflies in the (log2N -l)^ ‘ stage. The twiddle factor that gets

utilized in this stage is o f value 7= . Hence, when equations (3.7.1) and (3.7.2) get

computed, we need to perform one addition, one subtraction and one triv ia l multiplication 

w ith just the imaginary term j .  We term this multiplication triv ia l because m ultiplication 

w ith j  can be easily performed by just swapping the input real and imaginary terms and 

invert the sign between the two terms. Thus, there are no m ultiplication operations 

actually involved. Hence all multipliers designed can be disabled.

Group3: consists o f butterflies in the (log2N) stage. The twiddle factor that gets utilized 

in this stage is whose value is always 1 irrespective o f the value o f N. Hence, when 

equations (3.7.1) and (3.7.2) get computed, we need to perform just one addition and one
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subtraction and there are no multiplications involved in this group. Hence all multipliers 

designed can be disabled.

From the above three groups, we can find  the addition and subtraction operations to be 

common, while in case o f m ultiplication, only group 1 involves complex multiplication 

and the other two groups do not involve any multiplication. Hence, exception for addition 

and subtraction operations, we need three separate methods, by which we can choose 

between performing complex multiplications, swapping operations and no 

multiplications.

3.7.1 Complex M u ltip lie r Implementation 

As seen from  section 3.7, butterflies computed in  group 1 have complex multiplications. 

Each o f the butterfly operation thus involves one complex multiplication. Complex 

multiplications are more complicated when compared to real multiplications as they 

contain two terms real and imaginary. Hence complex multiplication involves more 

computations than an ordinary real multiplication. There are two methods for 

implementing complex multiplications in digital system. From equation (3.7.2) complex 

multiplication takes place between F 2 (k) a n d W j, where k=0, 1..., ((N /2)-l). I f  complex

F 2 (k) is considered to be o f the form  (a+ jb) and the complex term is considered to be

o f the form (c+ jd) w ith a, b, c, d  be any real numbers. The complex m ultiplication now 

becomes

(3.7.1.1)

= ac+jad+jbc-bd  (3.7.1.2)
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Equation (3.7.1.2) can be implemented in two methods.

Method 1: This method is a straightforward implementation o f equation (3.7.1.2). 

Equation (3.7.1.2) has two addition, one subtraction and four real m ultiplication 

operations. The terms ac and bd represent the real term o f complex multiplication while 

ad  and be represent the imaginary part. Pictorial representation o f the multiplication 

method 1 is given below in figure (3.12).

Method2: This method implements equation (3.7.1.2) using three additions, two 

subtractions and three real multiplications [17]. In this method, the number o f real 

multiplications gets reduced at the cost o f increase in the number o f additions and 

subtractions. Pictorial representation o f the multiplication method2 is given below in 

figure (3.13).

Figure 3.12; Complex multiplication implementation using method 1

O f the two above discussed methods o f complex multiplication implementation, method2 

has an obvious advantage in terms o f number o f real multiplications. But the trade-off is
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an increase in the number o f addition and subtraction operations. In general digital circuit 

design terms, a m ultip lie r design and layout is on the higher side in terms o f area and 

power consumption. It consumes more clock cycles for its execution when compared to 

an adder or subtraction circuitry. Taking these factors into consideration, method2 of 

implementing complex multiplication is better when compared to method 1. Hence our 

design incorporates method2 for implementing complex multipliers.

ac-bd

Figure 3.13: Complex m ultiplication implementation using method 2

From [9], it  is seen that the implementation o f a real m ultip lier involves three major steps 

namely Booth encoding. Partial Product reduction and Carry propagate addition. The 

purpose o f these three steps in order specified is to reduce the number o f computations on 

the multiplication operations. The partial product reduction is based on Wallace tree 

structure. Complete description about the three steps is mentioned in detail in [9]. 

Assuming each o f the three steps takes one clock cycle to execute, it  takes three complete
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clock cycles fo r implementing one real multiplication. This is depicted in figure (3.14). 

The complex multiplication using methodZ can be implemented using 3 real 

multiplications, 3 real additions and 2 real subtractions. The complete block level 

implementation is shown in figure (3.15). The implementation is seen to consist o f 5 

stages, w ith each stage consuming one clock cycle.

Booth Partial Product Carry Propagate
Encoding Reduction Addition

Figure 3.14: Real multiplication implementation stages.
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Figure 3.15: Complex multiplication implementation using method 2
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3.7.2 Group 1 Design and Implementation

In the previous section, we saw two ways by which complex multiplication could be 

implemented. We also considered one o f the two methods to be more suitable fo r our 

design. Having described the logic implementation methodology, we need to now see the 

V H D L implementation o f the various blocks that make up data-path for group 1 

butterflies described in  section 3.7. Based on equations (3.7.1) and (3.7.2) we can design 

our data-path. Equation (3.7.1) involves addition o f the two input data F i(k) and F 2 (k). 

Since F j(k) and F 2 (k) are both complex in nature, we need to add the real and imaginary 

parts o f the two data separately to satisfy equation (3.7.1). Hence we need two real adders 

to implement equation (3.7.1). Equation (3.7.2) can be split into two parts w ith  the first 

being (F i(k}-F 2 (k)) and the second being complex m ultiplication w ith . Hence, the 

second equation involves one subtraction and one complex multiplication. Due to the 

complex nature o f data, we need to have two separate subtracters one each fo r real and 

imaginary term. The block diagram depicting the data-path for group 1 as designed in our 

architecture is shown in figure (3.16).

3.7.3 Group2 Design and Implementation

We know that the tw iddle factor that gets utilized in this group is o f value j .  Based on 

equations (3.7.1) and (3.7.2) we can design our data-path for group2. Equation (3.7.1) is 

same as that for group 1 butterflies. Hence we can retain the same adders and subtracters 

used for group 1 implementation. Equation (3.7.2) can be split into two parts w ith the first 

being (F i(k)-F 2 (k)) and the second being multiplication w ith j .  As discussed earlier, just 

swapping the real and imaginary terms and inverting the sign between the swapped terms 

can achieve m ultip ly ing w ith imaginary term j. Hence, the multipliers are disabled
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Figure 3.16: B lock level Data-path for group 1 fo r tw iddle factor based architecture

whenever butterflies o f this group get executed. O f the 32-bits o f data, the first b it 

represents the sign bit and is 1 for negative numbers and 0 fo r positive numbers. Once 

subtraction operation takes place, we use two registers to swap the real and the imaginary 

terms. The two registers get activated only when group2 butterflies get computed. Thus 

data-path for group2 utilizes the same adders and subtractors that were used for group 1 

computation. It only requires two new registers to swap real and imaginary data. The 

block diagram depicting the data-path for group2 as designed in our architecture is shown 

in figure (3.17)
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Figure 3.17: B lock level Data-path fo r group2 fo r twiddle factor based architecture

3.7.4 Group3 Design and Implementation 

We know that the tw iddle factor that gets utilized in this group is o f value 1. Based on 

equations (3.7.1) and (3.7.2) we can design our data-path for group 3. Equation (3.7.1) is 

same as that fo r group 1 and group2 butterflies. Hence we can retain the same adders and 

subtracters used fo r group land 2 implementation. Equation (3.7.2) can be split into two 

parts with the firs t being (F ](k)-F 2 (k)) and the second being multiplication w ith  i .  As 

discussed earlier, m ultip ly ing w ith 1 can be just ignored. Hence equation (3.7.2) just 

involves two real subtractions one each fo r real and imaginary term. Hence fo r group3 

butterfly computations, we do not need to design any further blocks. We only disable the 

multipliers used in  group 1 and the two swapping registers used in group2. The block
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diagram depicting the data-path for group3 as designed in our architecture is shown in 

figure (3.18)
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Figure 3.18: Block level Data-path fo r group3 fo r twiddle factor based architecture

3.8 Summary

In this chapter, we summarize the various aspects o f design o f the main blocks o f the 

architecture we designed based on Twiddle-Factor-Based FFT algorithm [1]. The main 

blocks include the Random Access ^ e m o ry  Address generator. Read Only Memory 

Address generator, the 1024-words Random Access Memory (RAM ), 572-words Read 

Only Memory (ROM), Address decoders. Temporary register bank and Data-path. A  few 

multiplexers are also designed and used in the architecture mainly used to regulate the 

flow  o f various signals across the blocks. Signal clarifications are done using Resolution 

function blocks that are designed at necessary locations. This is done mainly because few 

o f the signals have either multiple sources or destination thereby necessitating resolution 

functional blocks to resolve the signal conflicts. The resolution functions subsequently
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increase the complexity o f the architecture which can be seen from the operational speed 

o f the design.
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CHAPTER 4

ARCHITECTURAL S IM U LA T IO N  RESULTS AND DISCUSSION 

4.1 Output Simulation Results 

From chapter 3, we can obtain the architectural design o f the various blocks that are used 

in our proposed FFT processor. A ll the blocks are designed using VH D L. In this chapter, 

we get to simulate the various blocks that were previously designed. By simulation, we 

obtain the output waveforms fo r the blocks for different input signals under varying 

control signal environments. We shall also determine numerical values o f some important 

design parameters such as clock frequency, number o f arithmetic operations and hence 

number o f arithmetic operators required to meet the target time constraint and the 

operational speed o f the designed processor. During this discussion we shall come across 

some o f the main advantages as well as drawbacks the design has and also some 

important challenges that require special attention for future designers.

4.2 R A M  Address Generation B lock Parameters 

This is the logic V H D L  block designed to generate b it sequences that represent addresses 

o f memory locations in the Random Access Memory (RAM ) from  where complex data 

values needed to perform DFT butterfly operations are accessed. The logic for the 

address generation is based on [1] [10] and the pseudo codes for both the (log2N - l)  stages 

and (log2N f^  stage are given in sections (3.4.2) and (3.5.2) respectively. In blocks that
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represent the (log2N - l)  stages, qa and qb represent the two output ports through which the 

address values are output. Both ports output 70-bit binary sequence. For the (log2N f^  

stage computation, qaddr and qb form the two ports outputting address values to the 

temporary registers and R A M  respectively. W hile qaddr outputs 9-bit address, qb outputs a 

70-bit address sequence. The difference in the number o f bits between the two ports is 

mainly because o f the difference in the size o f the two different memory units. The 

enable signal is used to enable or disable the block. Disabling the block (enable signal 

= ’ 1’ ) retains the previous values o f the output ports. The other signals that affect the 

functioning o f this block are the clear. The clear signals represent the clear function 

which when made 7, erases the values at the output ports by assigning them to high 

impedance value z. Once the (log2N - l)  stages are executed, the blocks corresponding to 

(log2N f^  stage get activated. Each o f the blocks designed get activated one after the other 

w ith  one block triggering the successive block. As a result, the inherent delay w ith in  the 

R A M  address generation block for generating successive address is 2 (20nsec) to 4 (40 

nsec) clock cycles (w ith 2 being the dominant delay factor) depending on which loop the 

control is currently in and in which loop the next address is to be generated. The inherent 

delay is mainly attributed to the non-pipelined nature o f the design. As a result, each loop 

w ith in the address generation unit gets initiated by its preceding loop, which then remains 

idle t il l all the succeeding loops complete their execution. As a result o f this idle nature, 

we encounter more delay than in a pipelined structure wherein every block operates at 

every clock cycle.
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4.3 ROM  Address Generation B lock Parameters 

The block signifies address generation fo r accessing twiddle factors needed for DFT 

butterfly operations. The output port generates the 9-bit address needed to access the 

twiddle factors from  the various 512 RO M  locations. Once the address is output, a 

triggering signal initiates the RO M  block to generate the data value corresponding to the 

address from  the ROM  address generation block. The real and the imaginary data values 

are output from separate RO M  address blocks. The clear represents erasing signal and 

has the same functionality as described in section 4.2. The ROM block is designed to 

generate address without any delay and hence it  can generate address every clock cycle as 

per the requirement. There is no inherent delay in this block.

4.4 Random Access Memory Parameters 

The R A M  as described is a 52-bit, 7024-words block. The 70-bit address generated for 

data access from  R A M  is decoded by the ram_decoder, to find the exact location from 

where data is to be read out or stored. Once the address gets decoded, data from  that 

corresponding location gets read out or data gets stored in depending on whether read or 

write  operation is specified. The read and write  signal get activated automatically by the 

controller design, which activates the read signal as soon as address gets generated by the 

R A M  address generator. W hile the read signal is high or 7, write  signal remains active 

low  or 0 and vice-versa. There is no inherent delay in this block and hence once address 

is placed for decoding, data from  R A M  can be accessed w ith in the same clock cycle.
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4.5 Read Only Memory B lock Parameters 

The ROM, which stores the twiddle factors, is a 52-bit, 572-locations block. The input to 

the ROM is a 9-bit address sequence from the RO M  address generator block. Once the 

address is present at the input port, the data stored in that address location is loaded on to 

the output port. The output is a 52-bit tw iddle factor data. As soon as the address from  the 

ROM memory controller gets generated, the twiddle factor value from the corresponding 

location is loaded onto the output port. There is no inherent delay in this block and hence 

data can be accessed w ith in one clock cycle (lOnsec).

4.6 Data-Path B lock Parameters 

The data-path serves as the arithmetic back bone o f the processor under design. From 

sections 3.7.2, 3.7.3 and 3.7.4, data-path seems to vary between the three sections with 

some components being common among the three. The addition and subtraction 

operations in equations (3.7.1) and (3.7.2) respectively are common while the varying 

component is the m ultiplication w ith the tw iddle factor. Figure (3.13) clearly specifies the 

various blocks that are designed to minimize the number o f m ultiplication operations.

Assuming the arithmetic blocks getting executed one after the other, one block at a 

time, it  takes 5 clock cycles (50 nsec) excluding the operation o f loading the data into the 

data-path from  memory unit and writing them back into memory unit after data-path 

operation, which takes one clock cycle each to implement any DFT butterfly arithmetic 

operation in group 1.
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Group 2 data path does not involve any multiplication as only swapping between real 

and imaginary terms are necessary. Hence on the whole it  takes 2 elock cycles (20nsec) 

excluding the operation o f loading the data into the data-path from  memory unit and 

writing them back into memory unit after data-path operation, which takes one clock 

cycle each to implement any DFT butterfly arithmetic operation in group 2.

Groups data-path is probably the simplest among the three as it  only involves 

multiplication w ith i ,  which can just be neglected. Hence other than the addition and 

subtraction operations specified in equations (3.7.1) and (3.7.2), no other arithmetic 

operations are required. Hence the number o f clock cycle’ s butterflies in this group take 

to complete the arithmetic operations is just 1  (10 nsec) excluding the operation o f 

loading the data into the data-path from  memory unit and writing them back into memory 

unit after data-path operation, which takes one clock cycle each to implement any DFT 

butterfly arithmetic operation in group 2.

4.7 Clock Generation and Frequency Calculation 

As seen in section 3.2, our architecture is designed to target two main applications 

namely H D T V  and OFDM  transceiver. W hile H D TV  FFT necessitates 8792-points in 

896 microseconds, O FDM  transceiver requires 7024-points execution w ith in  57 

microseconds. O f the two target tim ings, OFDM  transceiver’ s 57micro-seconds is o f the 

shortest duration and hence we need to design our architecture to satisfy 7024-point 

execution w ith in  57 micro-seconds which i f  satisfied would also help achieve 8792- 

points FFT execution in 896 micro-seconds. In order to achieve the tim ing target, we
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need to first determine the clock operational frequency. The clock is basically used to 

synchronize the various blocks that are designed and used in the architecture at any given 

instant. For example, i f  two distinct blocks need to get executed at the same instant, we 

need to ensure that they start and end their executions exactly at the same instant and not 

at d iffering time intervals. To ensure this, we need a signal that can synchronize all the 

blocks o f the architecture. To ensure synchronization, we need to make sure that the 

blocks gets enabled or disabled either at the rising or fa lling edge o f the clock pulse. The 

clock frequency thus determines how frequently the clock signal rises or falls which 

ultimately determines the number o f calculations that can be performed w ith in the 

required time frame. On the other hand, we can also determine the clock frequency based 

on the number o f operations i f  known. In our design, we determine the clock frequency 

based on our target tim ing o f 51 microseconds to perform 1024 points FFT operations.

We thus need to determine the number o f operations that are involved in 1024 points FFT 

calculations. To determine the clock frequency, we do the fo llow ing calculations.

(1) The (log 2N f^  stage o f operation based on Twiddle Factor decomposition involves 

no tw iddle factor multiplications. Assuming a pipelined structure wherein all the 

blocks o f a given design have the ability to operate simultaneously and no block 

needs to be idle and wait fo r data from  its previous block. This enables us to 

generate an output every clock cycle. This assumes one clock cycle period for 

every butterfly operation through the data-path as described in section 3.7.4.

Total number o f butterflies involved in the (log2N)'^ stage = (N-1 ). (4.7.1)

Hence, total number o f clock cycles needed assuming one clock cycle for every 

butterfly operation = (N-1 ) (4.7.2)
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(2) The (logzN -lf^  stage involves butterflies w ith imaginary term ‘j ’ twiddle factor 

multiplication.

Total number o f butterflies involved in the (log2N - l f '  stage = ((N /2)-l). Hence, 

total number o f clock cycles needed assuming one clock cycle for every butterfly 

operation = ((N/2 ) - l  ) (4.7.3)

(3) The firs t (log2N-2 ) stages involve complex multiplications.

Total number o f butterflies involved in the (log2N-2 ) stages

(log, N-2)
is ^ ( A / 2 ' ' ^ ) ( 2 ' - l )  (4.7.4)

i=l

Hence, total number o f clock cycles needed assuming one clock cycle fo r every

(log, N-2)
butterfly operation = ^ (A /2 ^ '^ '^ ) (2 ' -1 )  (4.7.5)

f=l

Substituting N=1024 in (1), (2) and (3), the total number o f butterfly operations involved 

= 5120. Hence assuming one clock cycle for every butterfly operation, the total number 

o f clock cycles necessary fo r N=1024 is 5120. Since our target tim ing is 51 

microseconds, to implement 5120 clock cycles w ith in 51 microseconds, each clock pulse 

should be o f time width 0.02 microseconds. Hence the corresponding clock frequency 

becomes i 00 Mega-hertz.

4.8 Memory Access Feature 

The architecture under design is based on Twiddle-factor FFT algorithm [1] [10], which 

claims to reduce the number o f memory access when compared to conventional FFT 

algorithms. Since our architecture maps the tw iddle factor based FFT algorithm, it is also
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expected to reduce the memory access when compared to other architectures targeting 

conventional FFT algorithms.

W hile describing the decomposition procedure fo r Twiddle-Factor Based FFT 

algorithm, we showed that once a tw iddle factor gets loaded from  ROM  on to the data

path, no other tw iddle factor is loaded until all the butterflies that use this particular 

twiddle factor get computed. In other words, every tw iddle factor gets loaded only once 

during the entire architecture implementation. The number o f twiddle factors that are 

present in the decomposition o f an N-point FFT is (N/2). Hence based on the above 

explanation, the total number o f times the tw iddle factors would be accessed from  the 

ROM  where they are stored is (N/2).

In case o f conventional FFT algorithms namely D IF  or D IT  FFT algorithms, a 

tw iddle factor gets loaded from  ROM  every time a butterfly gets accessed. The total 

number o f butterfly DFT operations that get computed for an A-point input is (N/2) 

log2N. Hence for any conventional FFT algorithms, the total number o f times the twiddle 

factors would be accessed from the RO M  where they are stored is (N/2) log2N.

In terms o f our architectural design, we can see that from  loop 2 execution given in 

section (3.4.1), the total number o f times loop 2 gets executed is given by

(4 8 1)

where loop l varies from  1 t i l l  (log2N - l)

In addition to (4.8.1), the final (log2N)‘  ̂ stage, utilizes only W° factor.

Hence the total number o f RO M  memory access in our architecture is given as

+ 7 (4.8.1)

where loop l varies from  1 t i l l  (log2N - l)
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Hence in terms o f ROM  access, our architecture seems to comply w ith  the memory 

access reduction claim o f [1] [10]. Thus for various values o f N, the variation in ROM 

memory access o f our architecture based on [1] [10] as compared to other architectures 

based on conventional FFT algorithms like D IT  and D IF  are in a graphical form  in figure

(4.1). In addition to the memory savings obtained through Read Only Memory (ROM), 

the twiddle factor based architecture can obtain additional memory savings through lesser 

Random Memory Access (R AM ) accessing.

Computation o f every butterfly DFT structure necessitates 4 R A M  accesses two o f 

which are fo r reading out the input data from R A M  and the other two for storing back the 

computed result back on to the same locations in the RAM . Hence for any given A-point 

input conventional FFT algorithm and hence any architecture based on it, there are

N
2A  log2 A  R A M  accesses since there are a total o f — log^ A  number o f butterfly 

operations each requiring 4 R A M  accesses.

Comparison of Read Only Memory (ROM) memory 
access between Twiddle factor based 

architecture and Conventional FFT algorithm 
based architectures
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Figure 4.1: Graphical comparison for ROM access between twiddle factor based 
architecture and conventional D IT  or D IF  based architectures
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In case o f twiddle factor based architecture, the final stage o f decomposition involves 

butterflies utiliz ing as the only tw iddle factor. There are (N-1 ) butterflies in the final

N
stage o f which the first (—  - 1) butterflies have only 1 R A M  access as all other three

N
accessing is done from the temporary registers. The last (— ) butterflies on the other

hand have only 1 input accessing from  R A M  while both data at the output o f the butterfly 

gets stored back on to the R A M  instead o f the temporary registers. This is because these 

set o f butterflies form  the last stage o f operation and hence the final FFT data result needs

N
to be accessed from RAM . Hence these (— ) butterflies each have 3 R A M  accessing.

Hence the total R A M  accessing from  the last stage o f decomposition is 

N  3N
(—  -1 )  + = (2N  - 1). The butterflies in the remaining stages have 4 R A M  access as

usual. Hence, total number o f R A M  memory access for all stages is given as 

N
4((— log2 N ) - ( N  - 1)) + 2N  - 1  = (2N  log2 N  -  2N  + 3). Hence, when compared to the

(2 Nlog2 N) R A M  access obtained from  conventional D IT  or D IF  based architectures, 

(2A log2 A - 2 A  + 3) seems to be a significant reduction o f as much as 25%. This 

directly has an impact on power consumption as it  can be further reduced. Though 

temporary register accessing is still present, it  is much faster when compared to the slow 

R A M  accessing m ainly due to its small sizing and its positioning closer to the data-path 

than the RAM . This reduction in R A M  memory access is shown pictoria lly in the graph 

depicted in figure (4.2).
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Comparison of Random memory Access 
(RAM)access between Twiddle Factor based 
architecture and Conventional FFT algorithm 

based architectures
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Figure 4.2: Graphical comparison for R A M  access between tw iddle factor based 
architecture and conventional D IT  or D IF  based architectures

4.9 M u ltip lie r Operational Savings Using the Twiddle Factor Based Architecture 

As seen from  sections (3.7.2), (3.7.3) and (3.7.4), the entire decomposition operation o f 

FFT based on Twiddle factors can be classified into three groups, two o f which namely 

group2 and group3 do not involve any multiplication operations. As a result, the 

multipliers designed and used in the data-path can be disabled while butterflies from 

these two groups get computed. In conventional FFT algorithms, butterflies requiring no 

twiddle factor multiplications are available in every stage o f decomposition along w ith 

other butterflies that do involve multiplications. Hence disabling the multipliers at 

different time instances becomes very complex and hence most architectures do not 

disable the multipliers at any instant [22], [23]. As a result, irrespective o f whether a 

butterfly involves m ultiplication operation or not, the m ultip lier used in the data-path 

remains enabled thus consuming unnecessary clock cycles as well as power. In our
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architecture, the butterflies involving no tw iddle factor multiplications are classified into 

separate stages and hence it  is easy to disable the m ultip lier across those stages.

Total number o f butterfly operations where m ultip lier remains enabled in conventional

N
FFT algorithm based architectures = — log2 N (4.9.1)

Total number o f butterfly operations where m ultip lier remains enabled in Twiddle factor

based FFT architecture = ( - y  lo g j N  ) -  [ ( - y - l )  + (N-1)]

( — log2iV - — - 2 )  
2 = 2

(4.9.2)

Equations (4.9.1) and (4.9.2) give a comparative analysis o f the savings we attain in 

terms o f number o f times the multipliers get utilized effectively. A  graphical 

representation is shown in figure (4.3).

Comparison of Number of times multiplier gets utilized
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Figure 4.3; Graphical comparison fo r m ultip lier operation usage between twiddle factor 
based architecture and conventional D IT  or DEF based architectures
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4.10 Design Issues and Challenges 

The previous sections described the computational complexity, operational speed in 

terms o f number o f clock cycles and also the inherent delays present in each o f the 

architecture blocks. We observed that pipelining a structure could result in a shorter 

execution time than a non-pipelined structure as pipelining involves every block 

operating at every clock cycle (when one block computes on one set o f data, its preceding 

block computes on the next set o f data while the succeeding block works on the previous 

set o f data that was earlier fetched. That is i f  block (x+1 ) works on data (y+J), then at the 

same clock cycle, block x, which precedes block (x+J) works on data (y+2) while the 

succeeding block |jc+2 j works on data y). The non-pipelined structure on the other hand, 

involves enabling only one block at a time while the succeeding as well as the preceding 

blocks remains idle t i l l  the current block completes its execution.

In case o f our architectural design, we have managed to pipeline every block except 

fo r the R A M  Address generation block. The main challenge involved in pipelining this 

block is the presence o f nested loop structure (a loop w ith in another loop). The presence 

o f nested loops in the address generation logic design makes pipelining a non-pragmatic 

and extremely challenging task. Since nested loops involve transfer o f control back from 

the outermost loop to the inner most and then all the way back to the outer loop, keeping 

track o f the current values o f registers and variables in each loop becomes tedious. 

Consequently, we were not able to pipeline R A M  Address generation block while all 

other blocks could be pipelined. Non-pipelining o f this block resulted in its inherent delay 

being apparent while FFT butterflies get computed. From section 4.2, we know that the 

delay caused by R A M  Address generation block is 2 to 4 clock cycles o f which 2 is the
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most dominant delay factor. We also saw that all the other blocks designed and 

implemented in our architecture do not involve any delay is the most dominant delay 

factor. We also saw that all the other blocks designed and implemented in our 

architecture do not involve any delay. Hence, we encounter 2-clock pulse delay fo r every 

butterfly computed.

  N
Total number o f butterflies for an W point FFT = -^ lo g ^  N  (4.10.1)

Hence for N  = 1024, total number o f butterflies computed = 5120 (4.10.2)

From section 4.7, the clock frequency utilized in our architecture is found to be 100 M Hz. 

Hence the tim ing w idth o f each pulse obtained by taking the inverse value o f the clock 

frequency = 10 nanoseconds. (4.10.3)

Hence assuming 2-clock cycle in calculating every butterfly, it  takes 10240 clock cycles 

to calculate all the 5120 butterflies. Since each clock pulse is o f 10 nanoseconds width, it 

takes a total o f 102400 nanoseconds or 102.40 microseconds to compute 1024 input FFT 

using twiddle factor-based algorithm. Since the R A M  Address generation block cannot 

generate address every clock cycle, the data-path that basically requires data from  those 

corresponding address locations to compute the butterflies w ill not be able to do so. Since 

the R A M  Address generation block could not be pipelined, the data-path follows suit 

though it  is simple to pipeline this block. Hence in addition to the 2-clock cycle we 

encounter due to R A M  Address generation block delay, we also have data-path delay 

included.

The data-path delay as discussed earlier is determined based on whether complex 

multiplication is involved or not. I f  complex multiplication is involved, then based on 

figure (3.16), we have 5 stages o f computation and hence the delay is 5 clock cycles. In
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case o f no complex multiplication involvement, then the delay is only 2 clock cycles. In 

addition to these delays, there are also delays due to resolution functions that add up to 

additional 2 clock cycles fo r every butterfly computation. The total clock cycles required 

computing a butterfly involving no complex m ultiplication is given as 6 clock cycles that 

includes the R A M  address generation delay, data-path delay and additional delays due to 

resolution functions.

The total number o f butterflies for N  = 1024 which involve complex multiplication is 

1534.

Hence, the total number o f clock cycles required computing 3586 butterflies

= 1534 * 6=9204 (4.10.4)

Similarly, the total clock cycles required computing a butterfly involving complex 

multiplication is given as 9 clock cycles that includes the R A M  address generation delay, 

data-path delay and additional delays due to resolution functions.

The total number o f butterflies for N  = 1024 which involve complex multiplication is 

3586.

Hence, the total number o f clock cycles required computing 3586 butterflies

= 3586*9=32274 (4.10.5)

Combining equations (4.10.4) and (4.10.5), we can determine the total number o f clock 

cycles involved in computing 1024 input FFT based on tw iddle factor architecture is 

4 I47&

W ith a 10 nanoseconds clock pulse width, the total time taken to execute 1024 points

input FFT based on tw iddle factor architecture is calculated to be 414.78 microseconds.
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4.11 Architectural Salient Features and Drawbacks 

The biggest advantage the tw iddle factor based FFT architecture has over other 

conventional D IT  or D IF  based architectures is in terms o f memory access which 

ultimately results in power savings.

(1) Our architectural design has 10 times lesser Read Only Memory (ROM) access 

when compared to D IT  or D IF  based architectures.

(2) The Random Access Memory (R AM ) access is reduced by as much as 25%  in  our 

design as compared to other previous architectures.

(3) Our design has 1.45 times lesser number o f operations taking into account the 

total number o f memory accesses and multiplication computations.

(4) Clock gating where unused blocks are disabled in order to reduce unwanted 

power consumption while the blocks remain idle is utilized in our design w ith the 

help o f resolution blocks that enable and disable different blocks.

(5) As a result o f the reduction in the number o f operations performed, fo r a 1024 

point FFT based on tw iddle factor design, power reduction up to 31.25% in terms 

o f memory access and arithmetic blocks usage is expected.

The main drawback that this design suffers is in the time duration taken to compute 1024- 

point operations. This is mainly attributed to the non-pipelined nature o f our design. 

When compared to our in itia l target application o f OFDM transceiver which necessitates 

a 7024-point FFT to get computed w ith in  51 microseconds. Hence we can observe that 

our architectural design despite its advantages in terms o f computational complexity and 

power savings, is 8 times more time consuming in computing 7024-point FFT as required 

by the standardized O FDM  transceiver.
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CHAPTER 5

CONCLUSIONS AN D  SUGGESTIONS FOR FUTURE W ORK 

5.1 Summary o f W ork 

Our entire work focuses on one-to-one mapping o f the Twiddle factor based FFT 

algorithm described in [1] [10] on to hardware blocks so as to extract the maximum 

benefits derived from the algorithm. Based on the algorithm, various logic blocks were 

designed and simulated using VH D L. Memory savings in terms o f memory access have 

been mapped on to the blocks from  the algorithm. The architecture makes minimum 

utilization o f arithmetic hardware blocks, especially the multipliers. Though this 

architecture is advantageous in terms o f power savings when compared to other previous 

architectures, the major drawback it  faces is in terms o f the time it  takes to complete its 

required execution. This is attributed to the non-pipelined nature o f its design. Thus 

7024-points FFT can be computed using the Twiddle factor based FFT architecture in 

414.78 microseconds w ith up to 7.45 times lesser number o f operations resulting in 

power savings o f up to 31.25% is expected. A ll necessary blocks have been designed and 

simulated in Active-H D L 6.3.

5.2 Suggestions for the Future 

As seen in Chapter 4, the main factor that delimits the efficient usage o f the twiddle 

factor based architecture is the execution time. Consequently, we have explained that

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pipelining the R A M  Address generation block, which automatically enables pipelining o f 

other blocks like the data-path is the most important way o f reducing the tim ing problem. 

An efficient way o f pipelining nested loop structures need to be developed in order to 

reduce the large execution time fo r processors.

It is a well-known fact that pipelining make architecture attain their fu ll efficiency and 

help achieve a higher throughput though w ith some in itia l latency. One other important 

method to reduce the delay o f operation is to utilize high-speed hardware blocks, 

especially the arithmetic blocks like the adders and multipliers. The type o f complex 

m ultip lie r used for our data-path is shown in figure (3.13). It can be seen that this type o f 

complex m ultip lie r design uses more addition operations than real multiplications. Hence 

usage o f fast adders becomes a necessity in-order to maximize efficiency and increase 

throughput. From [9], it  can be inferred that fo r arithmetic adders involving b it widths o f 

24 or higher. Carry Look Ahead (C LA ) adders are probably the fastest when compared to 

Ripple Carry Adders (RCA) or Carry Save Adders (CSA) and many others. Hence, it  is 

highly recommended to design C LA  adders while seeking improvement in the current 

design. For implementing real multipliers. Array Based multipliers that are w idely and 

most commonly used over various logic designs can be utilized.

Power analysis to estimate the power efficiency o f the tw iddle factor based 

architecture w ith all the above said improvements implemented should be carried out 

using power estimation CAD tools. This would give an accurate picture o f the 

effectiveness o f the tw iddle factor based algorithm [1] [10] over conventional D IF  or D IT  

algorithms.
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Further savings in terms o f memory access, which is the main highlight o f our design, 

can be effectively obtained by using smart memories like Cache and flash memories. 

These memory units, unlike the Random Access Memory are small in size and are 

comparatively much more efficient in terms o f accessing time. As these memories are 

smaller in size and are placed closer to the processor than the Ram, which consequently 

enables them to be much quicker than conventional large-scale memories. These 

memories help in reducing frequent R A M  or ROM  access and in turn increase the 

effective power saving capacity o f our design.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX

V H D L DESIGN OF VARIOUS ARCH ITECTU RAL BLOCKS’

The V H D L design and implementation o f various Twiddle factor based FFT architectural 

blocks described in Chapters 3 and 4 are pictoria lly represented in this Appendix.

A

K *

5 f  '

# .  ; e %

TTT
*§•

Figure A  l l :  V H D L  block representation o f (log2N- l )  stages R A M  Address generation 
block based on Tw iddle factor decomposition algorithm generating 70-bit R A M  address 
sequences qa and qb
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