
Journal of Instruction-Level Parallelism 6 (2004) 1-24 Submitted 2/04; published 4/04

Design and Implementation of a Lightweight Dynamic
Optimization System ∗

Jiwei Lu jiwei@cs.umn.edu

Howard Chen chenh@cs.umn.edu

Pen-Chung Yew yew@cs.umn.edu

Wei-Chung Hsu hsu@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota, Twin Cities
Minneapolis, MN

Abstract

Many opportunities exist to improve micro-architectural performance due to perfor-
mance events that are difficult to optimize at static compile time. Cache misses and branch
mis-prediction patterns may vary for different micro-architectures using different inputs.
Dynamic optimization provides an approach to address these and other performance events
at runtime. This paper describes a software system of real implementation that detects per-
formance problems of running applications and deploys optimizations to increase execution
efficiency. We discuss issues of detecting performance bottlenecks, generating optimized
traces and redirecting execution from the original code to the dynamically optimized code.
Our current system speeds up many of the CPU2000 benchmark programs having large
numbers of D-Cache misses through dynamically deployed cache prefetching. For other
applications that don’t benefit from our runtime optimization, the average cost is only
2% of execution time. We present this lightweight system as an example of using existing
hardware and software to deploy speculative optimizations to improve a program’s runtime
performance.

1. Introduction

Recent work in dynamic optimization has shown that a run-time system can improve pro-
gram performance by performing optimizations that are difficult to deploy statically due to
dynamically linked libraries, micro-architecture specific features, and inaccurate run-time
profiles [1],[2],[3],[4],[5],[6]. Existing dynamic optimization schemes have focused on finding
the most frequent execution paths through interpretation or instrumentation and making
these “hotspots” more efficient. Since the time spent optimizing a program incurs overhead
to the total program execution, focusing on the most frequently executed code can ideally
gain the most benefit for the work done. However, there are more things the dynamic opti-
mization can do. Dynamic optimization presents an opportunity to apply more aggressive
optimizations by allowing optimizations to be applied speculatively. It also has potential to
remove any previously applied optimizations that do not provide a performance benefit. On
the other hand, collecting information to guide more aggressive optimizations is not practi-
cal through interpretation or instrumentation based profiling, because hardware support is

*. This work is supported in part by the U.S. National Science Foundation under grants CCR-0105574 and
EIA-0220021, and grants from Intel, Hewlett Packard and Unisys.

c©2004 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

Main
Program

Trace
Cache

Main Thread

Trace
Selector

Optimizer

Patcher Phase
Detector

User Event
Buffer (UEB)

DynOpt Thread

Kernel Space
System Sample

Buffer (SSB)

Figure 1: ADORE Framework

required to efficiently detect changes in cache, branch prediction, and many other types of
performance behavior. In addition, overhead limitations of interpretation and instrumenta-
tion make it expensive to continuously monitor the program, including optimized code, for
the entire execution [3]. Our work describes a system that continuously monitors program
execution using existing performance monitoring hardware, and deploys optimizations only
to hot-spot specific performance bottlenecks. This scheme allows us to apply optimizations
only to existing program bottlenecks and continue to monitor program behavior after apply-
ing these optimizations, creating a framework for applying more aggressive optimizations.
In our current dynamic optimization system, we use hardware performance monitoring reg-
isters on Itanium r©2 machines to detect hot regions and performance bottlenecks in place
of instrumentation and interpretation schemes presented in the past. We compile a set of
SPEC2000 benchmarks and use a performance-monitoring tool [7] provided with the Linux
kernel to detect performance bottlenecks in these benchmarks. By applying runtime opti-
mizations such as data cache prefetching, our system is able to speed up some programs
having large cache misses by 3%-106% while limiting the overhead to only 1-2% on average.
The remainder of the paper is organized as follows. Section 2 introduces the framework of
our runtime optimization system including performance monitoring, sampling, trace selec-
tion and phase detection. Section 3 discusses the runtime optimization and trace patching.
In Section 4, we present the performance evaluation of runtime optimization. Section 5 and
Section 6 contain the related works, conclusion and future work.

2. System Framework

2.1 Overview

ADORE (Adaptive Object code RE-optimization) is a trace-based user-mode dynamic opti-
mization system. Unlike other dynamic optimization/translation systems [1],[2],[8],[9],[10],
[11],[12], it is based on Hardware Performance Monitoring (HPM). It is implemented as a
shared library on Linux for IA64 that can be automatically linked to the application at
startup. Figure 1 illustrates the framework of ADORE. In ADORE, there are two threads
existing at runtime, one is the original main thread running the unmodified executable; the
other is a dynamic optimization thread in charge of phase detection, trace selection and run-

2

Design and Implementation of a Lightweight Dynamic Optimization System

int BP_SYM(__libc_start_main) (int (*main)(int, char **, char **), ...)
{

void (*dyn_open)(void);
void (*dyn_close)(void);
void * dyn_handle;

...

dyn_handle = dlopen ("libdyn.so", RTLD_LAZY);

if (dyn_handle) {
dyn_open = dlsym(dyn_handle, "dyn_open_session");
dyn_close = dlsym(dyn_handle, "dyn_close_session");

on_exit(dyn_close, NULL);

(*dyn_open)();
}

exit ((*main) (argc, argv, __environ));
}

Figure 2: Entry-point Startup Code

time optimization. When the Linux system starts a program, it invokes a libc entry-point
routine named libc start main, within which the main function is called. We modified this
routine by adding our startup code as shown in Figure 2.

Function dyn open and dyn close are used to open/close the dynamic optimizer.
dyn open carries out four tasks. First, it creates a large shared-memory area for the original
process. This is where the trace cache resides to keep the optimized traces. Second, it ini-
tiates perfmon. Perfmon is a generic kernel interface developed by HP labs [7]. It provides
controls for setting and retrieving performance counter values from the Itanium 2’s Perfor-
mance Monitoring Unit (PMU). Perfmon resets the PMU, determines the sampling rate
and creates a kernel buffer, which is called System Sampling Buffer (SSB) in Fig. 1. Third,
dyn open installs a signal handler (call back function) to copy all the sample events from
the SSB to a user buffer every time the SSB overflows. The user buffer is a larger circular
buffer, shown as the User Event Buffer (UEB) in Fig. 1. Finally, dyn open creates a new
thread for dynamic optimization that has the same lifetime as the main thread. dyn close
is registered by the library function on exit so that it can be invoked at the end of the main
program execution. dyn close’s job is to free the memory and notify the optimizer thread
that the main program is complete.

2.2 Performance Monitoring on Itanium 2 Processor

ADORE is an HPM based dynamic optimizer. It depends on continuous hardware samples
to accomplish trace selection and to guide a variety of runtime optimizations. The collected

3

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

0%

1%

10%

100000 200000 400000 800000 1000000 2000000 4000000 8000000

Sampling Overhead (GeoMean)

Figure 3: Sampling and Phase Detection Overhead. It shows the overhead (percentage)
in Geometric Mean for a set of CPU2000 benchmark programs (Note that x
axis is sampling intervals in cycles, y axis is the percentage of execution time in
logarithmic scale). The longer the sampling interval, the less overhead.

samples incorporate most of the information that the dynamic optimizer needs. On the
Itanium 2 processor, 4 performance counters can monitor hundreds of performance metrics
that give users a complete snapshot of a program’s runtime performance from all aspects.
Through this HPM sampling model, a dynamic optimizer is able to shift two critical and
time consuming tasks to the hardware: profiling and diagnosing. In addition to CPU cycles,
Branch Mis-Prediction rate, Pipeline Flush, Memory Stalls and many other counters, the
PMU on Itanium 2 processor implements registers for special event based sampling. For
instance, the Branch Trace Buffer (BTB) is a set of eight registers that bank the four most
recent branch outcomes and source/target address information. The Data Event Address
Registers (DEAR) and the Instruction Event Address Registers (IEAR) hold the most recent
data/instruction related events, such as D/I-Cache misses, D/I-TLB misses, and ALAT
misses [13]. Continuous HPM sampling in the ADORE system is achieved through a signal
handler communicating with perfmon. This signal handler is a callback function that copies
the sample data from SSB to UEB when perfmon raises a signal indicating the overflow of
SSB. UEB is eight times the size of the SSB in our current system. We call the time period
for the SSB to overflow a profile window. Hence the UEB holds the most recent eight profile
windows. Usually one profile window consists of 4K samples. Each sample is in the form of
an n-tuple: < sample index, PC address, CPU cycles, Retired Instruction Count, D-Cache
Miss Count, I-Cache Miss Count, BTB values and D/I-EAR values >. After every 4K
sampling intervals elapse, a new profile window arrives. To avoid spin-wait, the dynamic
optimizer sleeps until a profile window arrives.

2.3 Sampling Rate

The sampling rate is very crucial because it not only controls the granularity of runtime
profiles, but it also affects the decision making of ADORE and its response time as well.
Higher sampling rates bring more overhead to the entire system. Figure 3 shows the cost
of HPM sampling plus phase detection of ADORE with various sampling intervals (CPU
cycles) for a set of CPU2000 benchmark programs. As we can see, sampling intervals larger
than 200, 000 cycles/sample incur negligible overhead. With shorter sampling intervals, the

4

Design and Implementation of a Lightweight Dynamic Optimization System

0.00%

2.00%

4.00%

6.00%

100000 200000 400000 800000 1000000 2000000 4000000 8000000

�������

Figure 4: Average (geometric mean of CPU2000 benchmarks) speedup achieved by dynamic
optimization with different sampling intervals.

overhead rises, and it becomes unacceptable when fewer than 100, 000 cycles/sample are
taken.

However, a larger sampling interval (i.e. smaller sampling rate) doesn’t necessarily
ensure better performance of an HPM based dynamic optimizer. The optimizer needs a
reasonable number of samples to truly reflect the performance bottlenecks in an appropriate
time interval. Too few samples may lead to incorrect judgments. Further, a slightly higher
sampling rate results in a higher arrival rate of new profile-windows and improves the
system’s sensitivity to performance changes. Fig. 4 shows the net speedup achieved by
ADORE on the same set of CPU2000 benchmarks with various sampling intervals (from
10, 000 cycles/sample to 8, 000, 000 cycles/sample). Best performance is obtained when the
sampling interval is around 400, 000 cycles/sample. Hence the sampling rate is usually set
to be 300, 000 to 500, 000 cycles/sample.

2.4 Runtime Trace Selection

In our work, a trace is the same as a superblock [14], but different from a fragment [15]. It
is a single-entry, multiple-exit code sequence, which may contain tens or even hundreds of
basic blocks. ADORE’s goal of binary optimization at runtime is simple: select a small set
of the hottest traces (2% of original code size on average) that represent the hottest code
in the most recent time intervals of a program’s execution and optimize them based on the
profile collected through HPM sampling. To find and construct these hot traces, we first
build a path profile [16] using the BTB samples. An example of a BTB sample is shown
in Figure 5. The BTB is a circular buffer where the four most recent branch source/target
pairs are stored. These four pairs represent a unique execution path at runtime. If this
unique path shows up enough times in the profiles, we consider it to be a hot path and
use it to build traces. Hot path fragments are often linked together to form larger paths in
trace selection. Trace selection starts from the hottest branch target address and extends
the current trace as far as the path profile may guide. To expedite the path lookup from the
samples, we build a special hash-table for path search. This hash-table is referenced using
the three most recent branch source addresses and the next branch address in the current
trace selection. If there is one hottest path fragment that matches the same four branch
addresses, the fourth branch’s target address (predicted as taken) will be returned, and the
new basic block from that address can be added into the current trace. If only the first three

5

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

40000…EF32h => 40000…9200h

40000…92C2h => 40000…EF60h

40000…F172h => 40000…F390h

40000…F551h => 40000…8100h

40000…EF32h: br.cond 40000…9200h

…

40000…9200h:

…

40000…92C2h: br.cond 40000…EF60h

…

40000…EF60h:

…

40000…F172h: br.cond 40000…F390h

…

40000…F390h:

…

40000…F551h: br.ret 40000…8100h

Figure 5: BTB Sample (left) and Its Corresponding Path

branch addresses can be matched with a hot path fragment, the fourth branch is usually
predicted as fall-through. In other cases, the hash-table tries to return sub-optimal results
(i.e. the hottest path that begins with only the one or two most recently taken branch
addresses). Except for that, ADORE also creates two other smaller hash tables for simple
branch source/target and target/source mapping. The total space overhead for those tables
is around 1-2MB and will not be larger than 10MB, because the number of samples that
we handle is fixed (there are only eight profile windows).

To reduce the impact of sampling error, we set a threshold Tp for the relative frequency
of each path fragment (e.g. Tp = 90%). In this sense, not all path fragments are used.
Fragments with relative frequency less than Tp will not be considered in trace selection.
Therefore, only the hottest code region will be selected for traces.

Instructions along the hottest path are decoded into a low-level IR and added into the
current trace until a trace stop point is reached. Trace stop points include function returns,
back-edge branches (i.e. a loop), and conditional branches whose taken/fall-through bias
is balanced. On the Itanium 2 processor, function call/returns implicitly shift the register
stack. If trace selection goes across them, it must preserve the change of the register stack,
which is hard in user mode. Fortunately, we can assume that all function calls are fall-
through branches because sooner or later most of the function calls will return to their call
sites. For the hot paths in the function body, as long as the function is called frequently,
trace selection will select them as additional traces into the trace cache.

When a stop point indicates that the current trace has to end, ADORE will add it into
the trace queue and prepare to select the next trace. After all traces have been constructed,
the runtime optimizer starts. The PMU provides the information we need to choose the
hottest traces. However, to predict which traces will continue to dominate execution time
in the future and prevent optimizing traces with performance issues that only occur for
very short periods of time, we perform additional work to estimate when program behavior
reaches stability.

6

Design and Implementation of a Lightweight Dynamic Optimization System

2.5 Phase Detection

Modern processor design often includes hardware that can adapt to the system’s runtime
behavioral change and achieve performance benefit. For instance, some processors can au-
tomatically raise or lower the CPU clock rate to reduce power consumption [17]. A program
during its runtime may also exhibit significantly different behavior, in terms of CPI, branch
miss prediction, cache miss rate, and so forth. Hence a phase is defined to be a time period
in which there is little performance variance in a running program’s behavior. Recent re-
search [18],[19],[20] extensively explored phase detection schemes for hardware and software
implementations. Characteristics of some well-known methods are carefully evaluated in
Dhodapkar’s work [21]. These approaches detect a program’s phase change accurately with
good sensitivity. The phases detected by them usually exhibit good performance stability
and suitable length.

An interesting property of program phases is that a high-level phase is often made up
of a number of small low-level phases. For different purposes, a phase detector can decide
to detect small sub-phases, or large phases. Hardware approaches usually recognize phases
of finer granularity.

A dynamic optimizer can benefit from phase detection. By detecting the phase change,
the dynamic optimizer may evict code fragments optimized for the prior phases and start the
new optimization. This new optimization can use completely different strategies depending
on the new phase’s behavior. In HP’s Dynamo system [1], when the fragment cache goes
through a period in which a large number of new created fragments occur, the system will
consider this to be a phase change and flush its fragment cache completely. However, such
implicit phase detection is inadequate for ADORE since it optimizes only a selected set of
hot traces. After the optimization is done, the optimizer will hibernate. Therefore we need
to design an explicit phase detector to wake up the optimizer to apply new optimizations
when new phases arrive.

Before doing this, we must first define a set of goals that a dynamic optimizer wants
the phase detector to achieve. This phase detector should be less sensitive and detect only
major phase changes. Optimizing short phases is not cost effective for a software-based
dynamic optimizer. As long as the real phase change hasn’t occurred, it may tolerate ran-
dom performance variance at an appropriate level. Second, since most of the optimization
requires a fair amount of samples to be collected, the phase detector needs to slightly delay
announcing the occurrence of a new phase after detecting it. Third, this phase detection
must be efficient and easy to implement.

To fulfill these goals, the latest version of ADORE implements a state-driven phase
detector. It works as follows: once a new profile window arrives, ADORE calculates the
mean PC address (PCcenter) for all the samples in it. For the prior 7 profile windows (The
system only keeps 8 profile windows), it calculates the expectation E and standard devi-
ation D of the 7 PCcenters . After that a state machine will check the current PCcenter

to see whether it has drifted away from the bound of [E-D, E+D]. If the out-of-bound
distance is larger than a threshold, e.g. 80% of D, and is followed by another difference
larger than a second threshold, e.g. 30% of D, it enters a Phase Change state. Similarly,
after two profile windows having their PCcenters within the bound, the state machine en-
ters a Stable Phase Ready state. After staying in this state for one more profile window, a

7

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

10000

15000

20000

25000

30000

35000

40000

Execution time (sec)

C
om

po
si

te
 P

e
rf

o
rm

an
ce

Va

lu
e

Current Value Low er Bound (E-D)

Upper Bound (E+D) Phase Change/Stable

Figure 6: Phase Detection for 256.bzip2

Phase Stable signal is raised to trigger the runtime optimizer. This one more profile window
ensures that enough samples for the new stable phase have been collected. Fig. 6 depicts
this procedure of detecting phases for 256.bzip2. The straight lines at the bottom represent
phase changes (upper line) and stable phases (floor line).

Further, PCcenter may not be enough for all the applications. For phases of huge
granularity, the change of working set may not necessarily match the change of other per-
formance characteristics, such as CPI. Accurate phase change can be observed by using the
composite of CPI, PCcenter and other performance counter values. That’s why “composite
performance value” (“PCcenter × CPI” at present) was used to detect phase changes of
256.bzip2 (Fig. 6). However, for most CPU2000 benchmark programs, using PCcenter to
detect phase change is enough.

3. Trace Optimization

3.1 Dynamic Register Allocation

Many runtime optimization techniques require the insertion of new code. For example,
data cache prefetching inserts code to pre-compute data addresses for future memory refer-
ences, and dynamic instrumentation instruments instructions to store the collected runtime
profiles. These optimizations require the use of registers. In our system, although trace
selection translates the binary instructions into IRs, all instructions still keep their origi-
nal register mapping. To acquire new registers on the Itanium system, we look at three
approaches: (a) Spill/Restore registers. (b) Reserve registers by compiler (c) Allocate reg-
isters using the IA64’s alloc instruction [22]. The first approach itself needs one register to
store spill address and also has the highest overhead, hence it becomes the last choice. In
our current work, the optimizer assumes that static compilers reserve some free registers
for dynamic optimization. But the number of the free registers is limited because reserv-
ing too many registers will incur noticeable performance degradation of statically compiled
binaries. In addition, we have evaluated using alloc to allocate up to 16 registers for trace
optimization. Details of this method and its relative overhead are discussed in subsequent
paragraphs.

8

Design and Implementation of a Lightweight Dynamic Optimization System

runtime reg-alloc overhead

0.00%

0.50%

1.00%

1.50%

2.00%

bz
ip

2

vp
r

vo
rt

ex

cr
af

ty

ga
p

gc
c

pa
rs

er

m
cf ar
t

eq
ua

ke

fm
a3

d

fa
ce

re
c

am
m

p

ap
pl

u

m
es

a

lu
ca

s

G
eo

-
M

ea
n

Figure 7: Overhead of using alloc to allocate registers at runtime for trace optimization (y
axis is the percentage of cost on execution time.

Runtime Register Allocation Scheme IA64 ISA provides a special instruction called
alloc for programs to setup the current register stack frame [22]. It can also be used in
runtime to adjust the current stack frame. We give an example here to illustrate the dynamic
register allocation scheme used in ADORE. In a loop-type trace, certain optimizations need
m registers. By scanning backwards within the code in the current function’s scope, one
alloc for the whole function at the function’s entry point can be located. ADORE duplicates
this alloc at the entry of this loop trace and increases the number of output registers from
the original number n to n + m. Since a trace is a single entry, multi-exit code block, this
ensures that anytime this trace is executed, the code inside the loop body will always have
m free registers. The overhead of this approach is usually trivial, because this instruction
only executes once outside the loop body for each execution of the trace. This process is
invoked only when the trace demands an optimization that requires registers. To handle the
case where there are multiple traces in the same function scope, we build a small hash-table
to speedup the scanning for the alloc instruction.

Runtime Register Allocation Overhead Figure 7 shows the overhead of using alloc
to allocate registers. The overhead here includes the overhead of scanning for the alloc
instructions, and the overhead of executing the alloc itself after deploying the trace into
the trace cache (i.e. the alloc is inserted in the trace). We observe no noticeable overhead
across all the tested benchmarks, except for gcc, gap and mesa.

Implementation Issues However, there are some shortcomings of using alloc to dy-
namically allocate registers. First, there is no coding convention that forces a compiler
to generate only one alloc at the beginning of each subroutine. Second, if the trace to be
optimized is a loop and has calls to other functions, the callee functions can possibly change
the values of the new registers being used by the optimization (because of register stack
overlapping between caller and callee functions). This may cause the optimization to fail
completely. Finally, if the current function already uses all registers, there will be nothing
left for the alloc. Therefore, although so far we haven’t encountered any problem with this
method, we still have to explore safer and better methods for allocating registers.

9

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

void Matrix_Multiply(long A[N][N], long B[N][N], long C[N][N])
{ int i, j, k;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j) {

A[i][j] = 0;
for (k = 0; k < N; ++k)

A[i][j] += B[i][k] * C[k][j];
}

}

Figure 8: Matrix Multiplication

3.2 Runtime Data Cache Prefetching

3.2.1 Motivation

As we know, software controlled data cache prefetching [23] is an efficient way to hide cache
miss latency. It has been very successful for dense matrix-oriented numerical applications.
However, for other applications that include indirect memory references, complicated control
structures and recursive data structures, the performance of software cache prefetching is
often limited due to the lack of precise cache miss profiles and miss-address information.
In this section, we will discuss challenges faced in static data prefetching. From section
3.2.2 we will describe how to keep the efficacy of software data prefetching by using runtime
cache-miss profiles in the ADORE system.

Impact of Program Structures We first give a simple example to illustrate several
issues involved in software controlled data cache prefetching. Fig. 8 shows a typical loop
nest used to perform a matrix multiplication. Experienced programmers know how to use
cache blocking, loop interchange, unroll and jam, or library routines to increase performance.
However, typical programmers rely on the compiler to conduct optimizations. In this simple
example, the innermost loop is a candidate for static cache prefetching. Note that the
three arrays in the example are passed as parameters to the function. This introduces the
possibility of aliasing, and results in less precise data dependency analysis. We used two
compilers for the Itanium 2 system in this study: the Intel r©C/C++ Itanium TMCompiler
(i.e. ECC V 7.0) [24] and the ORC r©open research compiler 2.0 [25]. Both compilers have
implemented static cache prefetching optimizations that are turned on at O3. For the above
example function, the ECC compiler generates cache prefetches for the innermost loop, but
the ORC compiler does not. Moreover, if the above example is re-coded to declare the
three arrays as global variables, the ECC compiler generates much more efficient code (over
five times faster on an Itanium 2 machine) by using loop unrolling. This simple example
shows that program structure has a significant impact on the performance of static cache
prefetching. Some program structures require more complicated analysis (such as inter-
procedural analysis) to conduct efficient and effective cache prefetching.

Impact of Runtime Memory Behavior It is, in general, difficult to predict memory
working set size and reference behaviors at compile time. Consider Gaussian Elimination,

10

Design and Implementation of a Lightweight Dynamic Optimization System

void daxpy(double *x, double *y, double a, int n)
{

int i;
for (i = 0; i < n; ++i)

y[i] += a * x[i];
}

Figure 9: DAXPY

for example. The execution of the loop nest usually generates frequent cache misses at the
beginning of the execution and few cache misses near the end. The reason is, very often
the sub-matrix to be processed is initially too large to fit in the data caches; hence frequent
cache misses will be generated. As the sub-matrices to be processed get smaller, they may
fit in the cache and produce fewer cache misses. It is hard for the compiler to generate one
binary that meets the cache prefetch requirements for both ends. Another such well-known
example is the memcpy library routine 1.

Impact of Micro-architectural Constraints Micro-architecture can also limit the ef-
fectiveness of software controlled cache prefetching. For example, the issue bandwidth
of memory operations, the memory bus and bank bandwidth, the miss latency, the non-
blocking degree of caches, and memory request buffer size will affect the effectiveness of
software cache prefetching. Consider the DAXPY loop in Figure 9, for example. On the
latest Itanium 2 processor, two iterations of this loop can be computed in one cycle (2 ldfpds,
2 stfds, 2 fmas, which can fit in two MMF bundles). If prefetches must be generated for
both x and y arrays, the requirement of two extra memory operations per iteration would
exceed the “two bundles per cycle” constraint. Since the array references in this example
exhibit unit stride, the compiler could unroll the loop to reduce the number of prefetch
instructions. For non-unit stride loops, prefetch instructions are more difficult to reduce.

In general, stride-based prefetching is easy to perform efficiently. Prefetching for pointer
chasing references and indirect memory references [26],[27],[28],[29],[30] are relatively chal-
lenging, since they incur a higher overhead and must be used more carefully. A typical
compiler would not attempt high overhead prefetching unless there is sufficient evidence
that a code region has frequent data cache misses. Profile-guided software prefetching
may attain greater performance if the profiles provide sufficient evidence and information
to guide more aggressive but expensive prefetching transformations, but this assumes the
cache miss profiles collected by training runs are able to reliably predict the actual data
references.

Due to the above reasons, we attempt to conduct data cache prefetching at runtime
through a dynamic optimization system.

3.2.2 Runtime Prefetching Overview

The purpose of runtime software prefetching is to insert prefetch instructions into the binary
code to hide memory latency. In the current version of ADORE, data cache prefetching

1. A compiler may generate multiple versions of memcpy

11

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

 �� ���� �� �������
�� �� �� �����

	

��
��� ���� �� ���
��� ����� � ���� �
��� ��� � ����
��� ��� � �� ���
��!"
#� 	

�

�� " � ����$��� % ���

	

��
��� �������& ' ���� ��(� ��(� ���
��� ��(� %�� ��(
��� ��)����)
��!"
#� 	

�

�� ���* � ��"�#→
���*�

�� ��"�# � ���*
→ +��$�

	

��
��� ���� ���� �,�
*�- ���� �����
��. �/�� ����
��!"
#� 	

�

 A. direct array B. indirect array C. pointer chasing

Figure 10: Data Reference Patterns and Dependence Code Slices

is the major optimization that has been implemented. Just as the traditional software
prefetching, our runtime optimizer inserts the prefetching code directly into the traces to
hide large cache miss latency after identifying delinquent loads in hot loops. The approach
of runtime prefetching in ADORE is as follows: (a) Use performance samples to locate the
most recent delinquent loads. (b) If the load instruction is in a loop-type trace, extract its
dependent instructions for address calculation. (c) Determine its data reference pattern.
(d) Calculate the stride if it has spatial or structural locality. Otherwise, insert special
codes to predict strides for pointer-chasing references. (e) Schedule the prefetches.

3.2.3 Tracking Delinquent Loads

In the current sampling module, each collected sample contains the latest data cache miss
event with latency greater than 8 cycles. On Itanium based systems, this latency implies
an L2 or L3 cache miss. In general, there are more L1 cache misses. However, the perfor-
mance loss due to L2/L3 cache misses is usually higher because of the greater miss latency.
Therefore prefetching for L2 and L3 cache misses can be more cost-effective.

To track a delinquent load, the instruction address, the latency and the miss address of
each cache miss event are mapped to the corresponding load instruction in a selected trace
(if any). Prefetching is applied only to those delinquent loads with the greatest percentage
of overall latency (e.g. ≥ 2% of total miss latency of the program).

3.2.4 Data Reference Pattern Detection

For software prefetching, there are three important data reference patterns in loops: direct
array reference, indirect array reference and pointer-based reference. Figure 10 gives ex-
amples of these three data reference patterns. Delinquent loads are highlighted with bold
fonts. To recognize which patterns they belong to, the runtime prefetcher analyzes the
dependent instructions for the address calculation of each delinquent load. For stride-based
array references, prefetcher usually prefetches data for a few loop iterations ahead. For
pointer-based references, since they are usually difficult for software prefetching, a dynamic
solution similar to the profile-guided prefetching technique proposed by Youfeng Wu [30]
is used to help approximate the data traversal of pointer-chasing references in a sequen-

12

Design and Implementation of a Lightweight Dynamic Optimization System

tial way. In contrast, our approach doesn’t require pre-run profiling because the runtime
prefetcher knows which load instruction has large cache miss penalty.

3.2.5 Prefetch Generation

On many RISC machines with base+offset addressing mode, the computation of prefetching
address can be avoided by folding the prefetch distance into the base address (e.g. “lfetch
[r11+80]”). However, due to the lack of this addressing mode in IA64 ISA, we must gener-
ate explicit instructions to calculate the prefetching address. Moreover, for cases A and B
in Figure 10, initialization codes are usually required to preset the prefetch distance prior
to the loop. Since an accurate miss latency of each cache miss event is available in ADORE,
the prefetch distance can be easily computed as:

distance = daverage miss latency/cycles per iteratione

For small strides in integer programs, prefetch distances are aligned to L1D cache line
size (not for FP codes, because fp loads bypass L1 cache on the Itanium 2 processor).

3.2.6 Prefetch Code Optimization and Scheduling

Prefetch code often exhibits redundancy, and hence should be optimized as well. Such
optimizations as complexity reduction will reduce the number of instructions executed and
save execution cycles. Secondly, on Itanium processor, prefetch code should be scheduled
at otherwise wasted empty slots so that the introduced cost is kept as small as possible.
Ineffective insertion of prefetches may increase the number of bundles and cause significant
performance loss. Details of the Itanium micro-architecture can be found in [22] and [13].

3.3 Trace Layout

Code layout or code positioning is a commonly used technique by both static and dynamic
compilation to move related code fragments closer and improve locality. For the same
concern, trace layout is implemented in our system to sustain the I-Cache performance. This
is particularly useful for programs having huge code footprints during execution because
ADORE may generate a large number of traces for them. The algorithm for trace-layout
is similar to the one for procedure ordering proposed in [31] by Kark Pettis and Robert
Hansen: (1) Build an undirected graph, in which every node represents one trace and every
edge represents a branch between two traces. (2) Attach weight (branch frequency) to each
edge. (3) Find the edge with the largest weight. (4) Merge its head node and tail node into
one node. All the edges starting from and stopping at them are also merged. (5) Continue
step 3, 4 until there is only one node in the graph. Finally, the grouping sequence of the
traces when they are deployed into the trace cache should be the same as that of the nodes
in the merged groups.

3.4 Implementation Issues

Among the critical issues to be solved in real-world dynamic optimization systems, archi-
tectural state preservation and precise exception handling [32] are the hardest to address.

13

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

Fortunately, the two existing optimizations, trace layout and prefetching, are considered
architecturally safe. Prefetch instructions use free registers and non-faulting loads ld.s, so
they do not generate exceptions or change the architecture state. The original program’s
execution sequence has not been changed either, because the traces are only duplicates
of the original code, and the current optimizer does not schedule instructions. For future
optimization such as Code Scheduling or Partial Dead Code Elimination, precise exception
handling becomes an issue because the original instruction sequences might be changed.
Many aggressive optimizations have this same property, hence need to be dealt with in a
unified way in our future work.

3.5 Trace Patching

Trace patching (deployment) involves writing optimized traces into the trace cache. At
this stage, the trace-patcher prepares an unused memory area in the trace cache for each
trace. The starting addresses of traces are aligned to the page size. In the next step,
traces are encoded from IRs to binary instructions placed in the trace cache. Finally, to
let the optimizations take effect, the execution must be redirected from the original code
to the trace cache. Trace cache size is not a big concern in ADORE as the HPM model of
optimization only selects a small set of hot traces (far less than 10% of code size).

3.5.1 First Bundle Patching

Intuitively, we intend to redirect execution from the original code to traces in our trace cache
by changing the target addresses of the frequently executed branch instructions. However,
this requires that all branches to a hot trace be remembered beforehand, because if we
plan to relinquish the trace at a later time (e.g. flushing the trace cache), all patched
branches must be restored. To keep the system efficient, the current version of ADORE
does patching by replacing only the first bundle of the original code of each trace. The first
bundle is replaced by a new bundle, which has only one branch instruction jumping to the
trace cache. The replaced bundle is not thrown away. It is saved and ready for possible
reinstatement of the original code.

3.5.2 Memory Protection

The memory protection on the original code pages is read-only by default. When we wish
to modify instructions in the address space of existing code, we make a system-call to allow
writing to memory pages of the original code. After patching is done, the write-protection
to the original code is restored to protect the original code from accidental changes.

3.5.3 Atomic Writing

Another issue with replacing instruction bundles is that bundles are 128-bits long while
the processor only supports 64-bit atomic write instructions. This means that we need to
take steps to prevent partially modified bundles from being executed. To deal with this
case, we could first patch the first half of the bundle with an illegal bundle type and handle
the exception if the bundle is executed before we finish patching it. We then complete the
process by modifying the remaining portion of the bundle.

14

Design and Implementation of a Lightweight Dynamic Optimization System

There is an alternative way to deal with atomic patching. Since many programs are only
single threaded, we can register a signal handler for their main program when the ADORE
system starts up. At the patching stage, ADORE sends a PAUSE signal to the main thread
and its handler for this signal forces the main program to sleep. During its sleeping, patching
can be done as simply as writing regular data to the memory. This approach works well for
all CPU2000 benchmark programs.

4. Performance Evaluation

4.1 Methodology

To evaluate the performance of runtime optimization, nine SPECFP2000 benchmarks and
eight SPECINT2000 benchmarks [33] were tested with reference inputs. The command
line for running each benchmark’s input is listed in Table 1. Our test machine is a 2-CPU
900MHz Itanium 2 zx6000 workstation. The Operating system is RedHat r©Linux 7.2 (ker-
nel version 2.4.18.e25) with glibc 2.2.4. The ORC compiler v2.0 [25] was chosen to compile
the benchmark programs. The sampling interval used here is 400, 000 cycles/sample. We
only discuss the performance results of runtime data cache prefetching since it is currently
our major optimization technique. The performance results shown in the following graphs
also include code straightening (i.e. trace layout). However, since the hot traces that we
select for runtime optimization are usually less than 2% of the original binary size, the
benefit from code straightening is not obvious (around 1% on average). For some programs
like vortex, selecting more traces can improve the effectiveness of code straightening (3%
speedup), but temporarily it is not an encouraging optimization compared with runtime
data cache prefetching.

4.2 Runtime Prefetching

In our test, runtime prefetching is applied to the benchmark programs from the two most
commonly used compilations: O2 and O3. As mentioned, at O2 the ORC compiler does
not generate static prefetching while at O3 it does. For O2 binaries, we will show the
performance data with two different register allocation strategies: (1). The ORC compiler
reserves 5 global integer registers (r27 -r31). (2). The ORC compiler doesn’t reserve any
integer registers but ADORE uses alloc to dynamically allocate up to 16 registers. For O3
binaries, we only show the performance when the 5 registers are reserved. In all cases, the
ORC compiler disables the software pipelining loops, even though our current system can
generate traces for software-pipelined loops without difficulty. The reason that we disable
software-pipelining loops is because our dynamic optimization currently could not handle
rotation registers. The impact of having this limitation to the performance was evaluated
in our previous work [5].

All benchmark programs run reference data inputs. Figure 11 and Figure 12 illustrate
the performance impact of O2 + Runtime Prefetching and O3 + Runtime Prefetching. In
Figure 11, around half of the SPEC2000 benchmarks have speedup from 3% to 57%. For
the remaining programs that show no benefit from dynamic optimization, the performance
differences are around -2% to +1%. The performance gain achieved by using alloc is similar.
The difference is that some programs get more speedup while others get lower speed up than

15

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

Benchmark Command Line Input
ammp < ammp.in
applu < applu.in

art -scanfile c756hel.in -trainfile1 a10.img
-trainfile2 hc.img -stride 2 -startx 470
-starty 140 -endx 520 -endy 180 -objects 10

bzip2 input.program 58
equake < inp.in
facerec < ref.in
fma3d < fma3d.in

gap -l ./ -q -m 192M < ref.in
gcc 200.i -o 200.s
gzip input.source 60

lucas < lucas2.in
mcf inp.in

mesa -frames 1000 -meshfile mesa.in
-ppmfile mesa.ppm

parser 2.1.dict -batch < ref.in
sixtrack inp.in

swim < swim.in
vortex lendian1.raw

vpr net.in arch.in place.in route.out -nodisp
-route only -route chan width 15
-pres fac mult 2 -acc fac 1
-first iter pres fac 4
-initial pres fac 8

Table 1: Command line inputs used for running benchmarks.

16

Design and Implementation of a Lightweight Dynamic Optimization System

Speedup

-10%

0%

10%

20%

30%

40%

50%

60%

bz
ip

2

gz
ip

m
cf vp
r

pa
rs

er

ga
p

vo
rt

ex

gc
c

am
m

p

ar
t

ap
pl

u

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

sw
im

O2 + Runtime prefetching
(reserve 5 grs)

106.75%

-10%

0%

10%

20%

30%

40%

bz
ip

2

gz
ip

m
cf vp
r

pa
rs

er

ga
p

vo
rt

ex

gc
c

am
m

p

ar
t

ap
pl

u

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

sw
im

Speedup O2 + Runtime prefetching
(Use Alloc)

Figure 11: Performance of Runtime Prefetching on O2 Binary. The first method (upper
graph) assumes compilers reserve 5 general registers for dynamic optimization
to use, sacrificing part of the transparency. In the second method (lower graph),
the dynamic optimizer creates new free registers by using the alloc instruction
in the IA64 ISA. For some programs, having more registers does improve the
performance of runtime cache prefetching.

Speedup

-10%

0%

10%

20%

30%

40%

bz
ip

2

gz
ip

m
cf vp
r

pa
rs

er

ga
p

vo
rt

ex

gc
c

am
m

p

ar
t

ap
pl

u

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

sw
im

O3 + Runtime Prefetching
(Reserve 5 grs)

Figure 12: Performance of Runtime Prefetching on O3 Binary. Less performance gain can
be acquired since the static compiler already generates prefetches for data in-
tensive loops. Here, only the registers reservation model has been evaluated.

17

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

179.art

0

1

2

3

4

5

Execution Time

C
P

I

No Runtime Prefetching

With Runtime Prefetching

179.art

0

1

2

3

4

5

6

Execution Time

D
E

A
R

_C
A

C
H

E
_L

A
T

8

/ 1
00

0
In

st
ru

ct
io

ns

No Runtime Prefetching

With Runtime Prefetching

(a) (b)

Figure 13: Runtime prefetching for 179.art

in the case where free registers are reserved.
A further examination of the traces generated by the dynamic optimizer shows that our

runtime pre-fetcher did locate the right delinquent loads in applu, parser and gap. The
failure in improving the performance of these programs is due to three reasons. First, for
some programs, the cache misses are evenly distributed among hundreds of loads in several
large loops (e.g. applu). Each load may have only 2-3% of total latency and their miss
penalties are effectively overlapped through instruction scheduling. Second, some delinquent
loads have complex address calculation patterns (e.g. function call or fp-int conversion),
causing the dynamic optimizer to fail in computing the stride information (in lucas and gap).
Third, the optimizer may be unable to insert prefetches far enough to hide latencies if the
loop contains few instructions and has small iteration count. For integer benchmarks, except
for mcf, runtime data prefetching has only slight speedup. Gzip’s execution time is too short
(less than 1 minute) for ADORE to detect a stable phase. Vortex is sped up by 2% but that
is partly due to the improvement of I-cache locality from trace layout. Gcc, in contrast,
suffers from increased I-cache misses and ends up with a 3.8% performance loss. This may
be improved by further tuning on trace selection or I-cache prefetching. Furthermore, the
number of free registers available for prefetching is critical for some program. For instance,
we see the difference in vpr from no speedup to 6% speedup when more free registers are
used. applu and gcc get little more improvement if more registers are available. Art doubles
its speedup from 57% to 106%. However, fma3d has less speedup when using alloc since
some of its functions use all 128 grs up and leave none to alloc.

As expected, runtime prefetching shows different results when applied to the O3 binaries
(Figure 12). For programs like mcf, art and equake, the current static prefetching cannot
efficiently reduce the data miss latency, but runtime prefetching is able to. The performance
improvement is almost as much as those received from O2 binaries. However, the remaining
programs have been fully optimized by O3, so the runtime pre-fetcher skips many traces
to optimize since they either don’t have cache misses or already have compiler generated
lfetch. For this reason the performance differences for many programs are around -3% to
+2%.

Now let’s look at an example to understand how runtime prefetching works for these
benchmark programs. In Figure 13, the left graph shows the runtime CPI change for 179.art
with/without runtime prefetching (O2 binary). The right graph shows the change of Load
Miss Per 1000 instructions. There are two clear phases shown in both graphs. One is from

18

Design and Implementation of a Lightweight Dynamic Optimization System

181.mcf

0

2

4

6

8

10

Execution Time

C
P

I

No Runtime Prefetching

With Runtime Prefetching

181.mcf

0

2

4

6

8

10

12

Execution Time

D
E

A
R

_C
ac

he
_L

A
T

8
 /

10
00

 In
st

ru
ct

io
ns

No Runtime Prefetching

With Runtime Prefetching

(a) (b)

Figure 14: Runtime prefetching for 181.mcf

the beginning of the execution; the other starts at about one fourth of way in the execution.
Phase detection works effectively in this case. The first phase is detected after a few seconds
after startup and prefetching codes are applied immediately. Both CPI and Load Miss Per
1000 instructions are reduced by almost half. About one and a half minutes later, a phase
change occurs followed by the second stable phase till the end. The phase detector catches
this second phase too. Since the prefetching effectively reduces the running time, the second
lines in both graphs are shorter than the top lines. Figure 14 is the same type of graph for
181.mcf. Other programs like bzip2, facerec, swim and equake also exhibit similar patterns.

Only a small number of prefetches have been inserted into the trace code to achieve the
above speedup. The majority of speedup comes from prefetching for direct/indirect array
references. Prefetching for pointer chasing references is not widely applicable because not
many Linked Data Structure (LDS) intensive applications exhibit regular stride.

4.3 Two Thread Model

As mentioned, the dynamic optimization is carried out in the second thread created at
the main thread’s startup. Due to the HPM profiling and the periodically hibernation
strategy, the second thread is idle during most of the execution time. This fact is true on
both dual-processor machines and single-processor machines. However, this property can
be weakened in the future. Our current system is a lightweight system, i.e, the hot trace
optimizations (cache prefetching and trace layout) are of O(n) complexity. Nevertheless,
some of our research has already revealed that if more complex optimizations are added,
the overhead of the second thread will increase quickly and can only be amortized by using
the dual-processor model.

4.4 System Overhead

At the end of this section, we evaluate the runtime overhead incurred by our dynamic
optimization system. The major causes of overhead are continuous sampling, phase detec-
tion and trace optimization. Figure 15 shows the benchmark program’s “real time” when
prefetch insertion is disabled in ADORE (i.e. there will be no speedup). It is measured
using the shell command time. The “user time” is not shown here since they are always
smaller than “real time” in our experiment. These results demonstrate that the extra over-

19

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

0

200

400

600

800

1000

bz
ip

2

gz
ip

m
cf

vp
r

pa
rs

er

ga
p

vo
rt

ex gc
c

am
m

p

ar
t

ap
pl

u

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

sw
im

E
xe

cu
tio

n
T

im
e

(s
ec

)

O2 O2 + runtime prefetching w/o prefetch insertion

Figure 15: Overhead of Runtime Prefetching

head of ADORE system is trivial. The data was collected on the dual-processor machine.
We also evaluated the single-processor machine and got very close results.

5. Related Work

Runtime Optimization Systems are commonly seen in the Java Virtual Machines (JVM)
[34],[35], [36], where Just-In-Time (JIT) engines apply recompilation at runtime to achieve
higher performance. On these systems, JIT usually employs adaptive profile-feedback opti-
mization (e.g. by instrumentation or interpretation) to take advantages of Java programs’
dynamic nature.

Dynamic optimization has been presented in the past in frameworks such as Dynamo [1]
and Continuous Profiling and Optimization (CPO) [2]. Dynamo is a transparent dynamic
native-to-native optimization system. Dynamo starts running a statically compiled exe-
cutable by interpretation, waiting for hot traces to show up. Once hot traces are detected,
Dynamo stops the program and generates code fragments for these traces. Subsequent ex-
ecution on the same trace will be redirected to the newly optimized code in the fragment
cache. Since interpretation is expensive, Dynamo tries to avoid it by translating as many
hot traces as possible to the fragment cache. To achieve this goal, it uses a small threshold
to quickly determine whether a trace is hot. This approach often ends up with generating
too much code and less effective traces. In the recent work Dynamo RIO [6], this feature
has been changed. As a dynamic optimization system but with entirely different design
model and implementation, ADORE has many aspects that distinguish it from the above
two systems. In Table 2, some major differences between Dynamo and ADORE have been
listed.

CPO [2] presents a model closer to traditional PBO where the original code is instru-
mented, and the profile information is used to compile optimized versions of code. In CPO,
profiled information is used to drive PBO while the program is running and the compiled
result is hot-swapped into the program. The advantage of this scheme is that the IR infor-
mation makes application of many optimizations easier.

There are a lot of additional research topics on dynamic optimization. Many of them
are often seen in dynamic translation [8],[9],[12] and binary transformation [15].

20

Design and Implementation of a Lightweight Dynamic Optimization System

Tasks Dynamo/RIO ADORE
Observation(Profiling) Interpretation HPM and branch trace

/Instrumentation based sampling based
Major Optimization Trace layout and D-cache related

classic optimization optimizations
Code cache management Need large code cache Small cache (only

for hot traces)
Execution Redirection Interpretation and Patching only one

dynamic linking bundle per trace

Table 2: Dynamo vs. ADORE

6. Conclusion and Future Work

In this paper we present a lightweight runtime optimizer implemented on a real system
with existing hardware and software support. We discuss much detail of the design and
implementation including profiling, hot trace selection, phase detection, optimization and
code patching. The overhead of this system is very low due to the use of hardware per-
formance monitoring and sampling on the Itanium 2 processor. Using ADORE, we can
improve the runtime performance of several SPEC2000 benchmarks compiled at O2 and
O3 for Itanium-2 processors, especially those suffering from data cache misses.

Future directions of our work seek to improve the detection, optimization, and deploy-
ment of our optimizations. Detection work includes monitoring current optimizations and
tracking the performance of generated traces, finding ideal metrics for detecting stable
phases, evaluating burst sampling techniques, and adapting the number of samples to the
size of the executable footprint in memory to minimize error. For optimization, we will look
at additional optimizations and applying optimizations in different micro-architectures and
across shared-libraries. For deployment, we will focus on efficient management of the trace
cache.

Acknowledgements

The authors wish to thank Dong-Yuan Chen, Rao Fu, Sagar Dalvi, Sourabh Joshi, Abhinav
Das, Jinpyo Kim and Bobbie Othmer for their assistance and advice. We also thank all the
anonymous reviewers for their comments.

References

[1] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A Transparent Dynamic Opti-
mization System,” in PLDI’00, pp. 1–12, ACM Press, 2000.

[2] T. Kistler and M. Franz, “Continuous Program Optimization: Design and Evaluation,”
IEEE Trans. Comput., vol. 50, no. 6, pp. 549–566, 2001.

[3] T. Kistler and M. Franz, “Continuous Program Optimization: A Case Study,” ACM
Trans. Program. Lang. Syst., vol. 25, no. 4, pp. 500–548, 2003.

21

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

[4] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and W.-M. W. Hwu, “A
Hardware Mechanism for Dynamic Extraction and Relayout of Program Hot Spots,”
in Proceedings of the 27th Annual International Symposium on Computer Architecture,
pp. 59–70, ACM Press, 2000.

[5] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen, “The
Performance of Runtime Data Cache Prefetching in a Dynamic Optimization System,”
in Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, p. 180, IEEE Computer Society, 2003.

[6] D. Bruening, T. Garnett, and S. Amarasinghe, “An Infrastructure for Adaptive Dy-
namic Optimization,” in Proceedings of the International Symposium on Code Gener-
ation and Optimization, pp. 265–275, IEEE Computer Society, 2003.

[7] http://www.hpl.hp.com/research/linux/perfmon.

[8] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Yadavalli, and
J. Yates, “FX!32: A Profile-Directed Binary Translator,” IEEE Micro, vol. 18, no. 2,
pp. 56–64, 1998.

[9] R. S. Cohn, D. W. Goodwin, and P. G. Lowney, “Optimizing Alpha Executables on
Windows NT with Spike,” Digital Tech. J., vol. 9, no. 4, pp. 3–20, 1998.

[10] Kemal Ebcioğlu and Erik R. Altman, “DAISY: Dynamic Compilation for 100% Archi-
tectural Compatibility,” in Proceedings of the 24th Annual International Symposium
on Computer Architecture, pp. 26–37, ACM Press, 1997.

[11] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary Transformation in a Dis-
tributed Environment,” Tech. Rep. MSR-TR-2001-50, April 2001.

[12] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and Y. Zemach,
“IA-32 Execution Layer: A Two-phase Dynamic Translator Designed to Support IA-
32 Applications on Itanium TMbased Systems,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, p. 191, IEEE Computer
Society, 2003.

[13] Intel Corp., Intel r©Itanium r©2 Processor Reference Manual for Software Development
and Optimization, Jun 2002.

[14] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, “The Superblock: An Effective Technique for VLIW and Superscalar Compi-
lation,” J. Supercomput., vol. 7, no. 1-2, pp. 229–248, 1993.

[15] S. J. Patel and S. S. Lumetta, “rePLay: A Hardware Framework for Dynamic Opti-
mization,” IEEE Trans. Comput., vol. 50, no. 6, pp. 590–608, 2001.

[16] T. Ball and J. R. Larus, “Efficient Path Profiling,” in Micro-29, pp. 46–57, IEEE
Computer Society Press, 1996.

22

Design and Implementation of a Lightweight Dynamic Optimization System

[17] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and
J. Mattson, “The Transmeta Code Morphing TMSoftware: Using Speculation, Recov-
ery, and Adaptive Retranslation to Address Real-life Challenges,” in Proceedings of
the International Symposium on Code Generation and Optimization, pp. 15–24, IEEE
Computer Society, 2003.

[18] T. Sherwood, S. Sair, and B. Calder, “Phase Tracking and Prediction,” in Proceedings
of the 30th Annual International Symposium on Computer Architecture, pp. 336–349,
ACM Press, 2003.

[19] A. S. Dhodapkar and J. E. Smith, “Managing Multi-Configuration Hardware via Dy-
namic Working Set Analysis,” in ISCA-29, pp. 233–244, IEEE Computer Society, 2002.

[20] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Memory
Hierarchy Reconfiguration for Energy and Performance in General-Purpose Processor
Architectures,” in Proceedings of the 33rd Annual ACM/IEEE International Sympo-
sium on Microarchitecture, pp. 245–257, ACM Press, 2000.

[21] A. S. Dhodapkar and J. E. Smith, “Comparing program phase detection techniques,”
in Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, p. 217, IEEE Computer Society, 2003.

[22] Intel Corp., Intel r©IA-64 Architecture Software Developer’s Manual, revision 2.1 ed.,
Oct 2002.

[23] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and Evaluation of A Compiler
Algorithm for Prefetching,” in ASPLOS-5, pp. 62–73, ACM Press, 1992.

[24] Intel r©C++ Compiler for Linux,
http://www.intel.com/software/products/compilers/clin/.

[25] Open Research Compiler for ItaniumTMProcessor Family,
http://ipf-orc.sourceforge.net.

[26] C.-K. Luk and T. C. Mowry, “Compiler-Based Prefetching For Recursive Data Struc-
tures,” in ASPLOS-7, pp. 222–233, ACM Press, 1996.

[27] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn, “Profile-Guided
Post-link Stride Prefetching,” in ICS-16, pp. 167–178, ACM Press, 2002.

[28] T. C. Mowry and C.-K. Luk, “Predicting Data Cache Misses in Non-Numeric Appli-
cations Through Correlation Profiling,” in Micro-30, pp. 314–320, IEEE Computer
Society Press, 1997.

[29] A. Roth and G. S. Sohi, “Effective Jump-Pointer Prefetching for Linked Data Struc-
tures,” in ISCA-26, pp. 111–121, IEEE Computer Society Press, 1999.

[30] Y. Wu, “Efficient Discovery of Regular Stride Patterns in Irregular Programs and Its
Use in Compiler Prefetching,” in PLDI’02, pp. 210–221, ACM Press, 2002.

23

Jiwei Lu, Howard Chen, Pen-Chung Yew, & Wei-Chung Hsu

[31] K. Pettis and R. C. Hansen, “Profile Guided Code Positioning,” in Proceedings of the
ACM SIGPLAN 1990 Conference on Programming Language Design and Implemen-
tation, pp. 16–27, ACM Press, 1990.

[32] M. Gschwind and E. Altman, “Optimization and Precise Exceptions in Dynamic Com-
pilation,” ACM SIGARCH Computer Architecture News, vol. 29, no. 1, pp. 66–74,
2001.

[33] SPEC: http://www.spec.org/cpu2000.

[34] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth, “Practicing JUDO: Java Under Dynamic
Optimizations,” in PLDI’00, pp. 13–26, ACM Press, 2000.

[35] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive Optimization
in the Jalapeño JVM,” in OOPSLA’00, pp. 47–65, ACM Press, 2000.

[36] M. Paleczny, C. Vick, and C. Click, “The JavaTMHotSpot Server Compiler,” in
JavaTMVM’02, 2001.

24

