
TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011 1

Design and Implementation of a Parallel

Turbo-Decoder ASIC for 3GPP-LTE
Christoph Studer, Student Member, IEEE, Christian Benkeser Member, IEEE,

Sandro Belfanti, and Qiuting Huang Fellow, IEEE

Abstract—Turbo-decoding for the 3GPP-LTE (Long Term
Evolution) wireless communication standard is among the most
challenging tasks in terms of computational complexity and
power consumption of corresponding cellular devices. This paper
addresses design and implementation aspects of parallel turbo-
decoders that reach the 326.4 Mb/s LTE peak data-rate using
multiple soft-input soft-output decoders that operate in parallel.
To highlight the effectiveness of our design-approach, we realized
a 3.57 mm2 radix-4-based 8× parallel turbo-decoder ASIC in
0.13 µm CMOS technology achieving 390 Mb/s. At the more
realistic 100 Mb/s LTE milestone targeted by industry today, the
turbo-decoder consumes only 69 mW.

Index Terms—3G mobile communication, LTE, parallel turbo-
decoder, ASIC implementation, low-power, radix-4

I. INTRODUCTION

D
URING the last few years, 3G wireless communication

standards, such as HSDPA [2], firmly established them-

selves as an enabling technology for data-centric communica-

tion. The advent of smart-phones, netbooks, and other mobile

broadband devices finally ushered in an era of throughput-

intensive wireless applications. The rapid increase in wireless

data traffic now begins to strain the network capacity and

operators are looking for novel technologies enabling even

higher data-rates than those achieved by HSDPA. Recently,

the new air interface standard LTE (Long Term Evolution) [3]

has been defined by the standards body 3GPP and aims at

improving the data-rates by more than 30× (compared to that

of HSDPA) in the next few years. Theoretically, LTE supports

up to 326.4 Mb/s [4], whereas the industry plans to realize the

first milestone at about 100 Mb/s in 1-or-2 years.

LTE specifies the use of turbo-codes to ensure reliable com-

munication. Parallel turbo-decoding, which deploys multiple

soft-input soft-output (SISO) decoders operating concurrently,

will be the key for achieving the high data-rates offered by

LTE. However, the implementation of such will be among

the main challenges in terms of computational intensity and

This paper was presented in part at the IEEE International Solid-State
Circuits Conference (ISSCC), San Francisco, CA, USA, Feb. 2009 [1].

C. Studer is with the Communication Technology Laboratory (CTL),
ETH Zurich, 8092 Zurich, Switzerland, (e-mail: studerc@nari.ee.ethz.ch).
C. Benkeser and Q. Huang are with the Integrated Systems Laboratory
(IIS), ETH Zurich, 8092 Zurich, Switzerland (e-mail: benkeser@iis.ee.ethz.ch;
huang@iis.ee.ethz.ch).

The authors would like to thank S. Schläpfer and F. Gürkaynak for
their assistance during the ASIC design. Furthermore, the authors gratefully
acknowledge the support of H. Bölcskei, A. Burg, N. Felber, W. Fichter, and
H. Kaeslin.

Digital Object Identifier XXX-XXX-XXX

power consumption. The fact that none of the recently reported

parallel turbo-decoders [5]–[7] achieves the LTE peak data-rate

or provides desirable power consumption for battery-powered

devices of less than 100 mW at the 100 Mb/s milestone,

indicates that the architecture design for such decoders is a

challenging task.

1) Contributions: In this work, we discuss concepts and

architectures which allow for the power-efficient implemen-

tation of high-throughput parallel turbo-decoding for LTE.

To this end, we investigate the associated throughput/area

tradeoffs for the identification of the key design parameters

and optimize the most crucial design blocks. To alleviate the

design-inherent interleaver bottleneck, we describe a memory

architecture that supports the bandwidth required by LTE and

present a general architecture solution—referred to as Master-

Slave Batcher network—suitable for maximally-vectorizable

contention-free interleavers. We furthermore detail a radix-4-

based SISO decoder architecture that enables high-throughput

turbo-decoding. As a proof-of-concept, we show an 8× par-

allel ASIC prototype achieving the LTE peak data-rate and

the 100 Mb/s milestone at low power, and finally compare the

key characteristics to that of other measured turbo-decoder

ASICs [5]–[7].

2) Outline: The remainder of the paper is organized as

follows. Section II reviews the principles of turbo-decoding

and details the algorithm used for SISO decoding. The parallel

turbo-decoder architecture is presented in Section III and

the corresponding throughput/area tradeoffs are studied. The

interleaver architecture is detailed in Section IV and Section V

describes the architecture of the SISO decoder. Section VI

provides ASIC-implementation results and a comparison with

existing turbo-decoders. We conclude in Section VII.

II. TURBO-DECODING FOR LTE

Turbo codes [8], capable of achieving close-to-Shannon

capacity and amenable to hardware-efficient implementation,

have been adopted by many wireless communication stan-

dards, including HSDPA [2] and LTE [3]. The turbo encoder

specified in the LTE standard is illustrated in the left-hand side

(LHS) of Fig. 1 and consists of a feed-through, two 8-state

recursive convolutional encoders (CEs), and an interleaver.

The feed-through passes one block of K information bits xk,

k = 0, . . . ,K − 1, to the output of the encoder, which are then

referred to as systematic bits xs
k = xk. From the systematic

bits, the first CE generates a sequence of parity bits xp1
k . The

XXXXX.00 © 2011 IEEE

2 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

SISO

decoder

SISO

decoder

iterations
inter-

leaver

inter-

leaver

de-inter-

leaver

inter-

leaver

1st conv.

encoder

2nd conv.

encoder w
ir
e
le

s
s
 t
ra

n
s
m

is
s
io

n

Fig. 1. Left: Parallel-concatenated turbo-encoder. Right: Simplified block-
diagram of a turbo-decoder.

second CE receives an interleaved sequence of the information

bits xπ(k), where π(k) stands for the interleaved address

associated with address k, and generates a second sequence of

parity bits xp2. The systematic bits are then transmitted, along

with both parity-bit sequences, over the wireless channel.

In the receiver, a soft-output detector computes reliability

information in the form of log-likelihood ratios (LLRs) for

the transmitted bits xs
k, xp1

k and xp2
k [8]; the resulting LLRs

Ls
k, Lp1

k and Lp2
k indicate the probability of the corresponding

bits being a binary 1 or 0.

A. Turbo-Decoding Algorithm

Decoding of turbo-codes is usually performed with the

algorithm proposed in [8]. The main idea is depicted on the

right-hand side (RHS) of Fig. 1 and amounts to iteratively

exchanging extrinsic LLRs LE1
k and LE2

k between the two

SISO decoders (SDs) to improve the error-rate performance

successively. The first and second SD perform decoding of

the convolutional code generated by the first or the second CE,

respectively. One pass by both the first and the second SD is

referred to as a full-iteration; the operation performed by a

single SD a half-iteration. The total number of full-iterations

for each code block is denoted by I (e.g., 11 half-iterations

correspond to I = 5.5).

Each SD computes intrinsic a-posteriori LLRs LD1
k

and LD2
k , for the transmitted bits, based on the systematic

LLRs in natural Ls
k or interleaved order Ls

π(k), on the parity

LLRs Lp1
k or Lp2

k , and on the so-called a-priori LLRs LA1
k

or LA2
k . For the first half-iteration, the a-priori LLRs are set

to zero (i.e., LA1
k = 0, ∀k). In subsequent iterations, each SD

i ∈ {1, 2} uses the extrinsic LLRs LEi
k = LDi

k −
(

Ls
k + LAi

k

)

computed by the other SD in the previous half-iteration as

a-priori LLRs, i.e., LA1
k = LE2

π−1(k) and LA2
k = LE1

π(k) (see

Fig. 1). After a given number of half-iterations, the turbo-

decoder generates estimates for the information bits based on

the sign of the intrinsic LLRs.

B. Radix-4 Max-Log M-BCJR Algorithm

The maximum a-posteriori (MAP) SISO decoding algorithm

developed by Bahl, Cocke, Jelinek, and Raviv (BCJR) [9]

forms the basis of the SD used in this work. The BCJR

algorithm resembles the Viterbi algorithm [10] and traverses

a trellis representing the convolutional code to compute the

intrinsic LLRs LD1,D2
k . Fig. 2 shows such a trellis, with nodes

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Fig. 2. Left: Radix-2 forward state-metric recursion for two trellis-steps.
Right: Radix-4 forward state-metric recursion.

corresponding to the states of the CEs and branches indicating

admissible state-transitions. Each transition from a state s′

(trellis-step k − 1) to s (trellis-step k) is associated with a

branch-metric γk(s′, s) (refer to [11], [12] for details). The

BCJR algorithm in its original form is impractical due to large

memory requirements and the computation of transcendental

functions. We adopt an approximate algorithm [11], [13], as

briefly described below.

1) Max-log approximation: The BCJR algorithm traverses

the trellis in both forward and backward directions to compute

the state-metrics αk(s) and βk(s) recursively for all eight

states. To avoid transcendental functions, we apply the max-

log approximation to the forward state-metric recursions [11]

αk(s) =max
{

αk−1(s
′

0) + γk(s′0, s),

αk−1(s
′

2) + γk(s′2, s)
}

(1)

where s′0 and s′2 correspond to the two possible predecessor

states of s (see Fig. 2). The backward state-metrics βk(s′)
are computed similarly to (1) in the opposite direction. Both

recursions can be performed efficiently based on hardware-

friendly add-compare-select (ACS) operations.

After all forward and backward state-metrics, the intrinsic

LLRs are calculated. To this end, the SD considers the state

transitions (s′, s) associated with xs
k = 0 and those with xs

k =
1 and computes the intrinsic LLRs according to

LD1,D2
k ≈ max

(s′,s):xs

k
=0

{

αk−1(s
′) + γk(s′, s) + βk(s)

}

− max
(s′,s):xs

k
=1

{

αk−1(s
′) + γk(s′, s) + βk(s)

}

. (2)

The max-log approximation entails a mismatch in the output

LLRs, which can (at least partially) be compensated by a tech-

nique known as extrinsic scaling [14], [15] (cf. Section VI-A).

2) Windowing: Computation of the intrinsic LLRs (2)

requires storage of either all forward or all backward state-

metrics. For the maximum code-block length specified in LTE,

K = 6144, 8×6144 state-metrics need to be stored. To signif-

icantly reduce such large memory requirements, windowing is

usually employed [13]. In this approach the trellis is processed

in small windows of M trellis-steps and the intrinsic LLRs are

computed only on the basis of the state-metrics obtained within

each window. The corresponding procedure, summarized next,

will be referred to as the M-BCJR algorithm.

STUDER, BENKESER, BELFANTI, AND HUANG 3

The forward recursion computes the αk(s) as in (1) and

stores the M forward state-metrics associated with the mth

window. Since the backward recursion progresses from the

end of a window to its beginning, suitable initial values have

to be generated. To this end, a dummy backward recursion

is carried out in the next window m + 1 to provide initial

values for the backward state-metrics βk(s) computed in

window m. With the aid of the stored forward state-metrics

of the mth window, the intrinsic LLRs (2) are computed

simultaneously with the backward state-metric recursion. As

a consequence of windowing, the M-BCJR algorithm can be

started at arbitrary steps in the trellis, an ability essential for

parallel turbo-decoding (see Section III). To this end, a dummy

forward-recursion is carried out once to compute the state-

metrics α′

k(s) for one window, which are then used as initial

state-metrics for the remaining forward recursions.

Numerical simulations for the rate-1/3 LTE turbo-code

show that a window length of M = 30 yields close-to-optimal

performance (see Fig. 9). Code rates closer to 1 have also been

specified in LTE to take advantage of any exceptionally high-

SNR/low-EVM scenarios to achieve additional throughput

improvements. To support such higher code-rates, our radix-

4 M-BCJR architecture can be easily reconfigured to support

2-to-3 times larger window lengths that will be required for

optimal performance [16]. This mainly involves increasing the

capacity of the M-BCJR memories by a factor of 2-to-3, which

will lead to about 30% increase in the overall chip area.

3) Radix-4 recursion: The throughput of LTE turbo-

decoders can be enhanced by radix-4 state-metric recur-

sions [17]. This is illustrated in the RHS of Fig. 2 for the

forward recursion1 where two trellis-steps are processed at a

time, skipping odd-numbered steps. Specifically, the forward

state-metrics αk(s) are computed on the basis of its four

admissible predecessor states s′′0 , s′′1 , s′′2 , and s′′3 (at step k−2)

according to

αk(s) =max
{

αk−2(s
′

0) + γk(s′′0 , s), αk−2(s
′′

1) + γk(s′′1 , s),

αk−2(s
′′

2) + γk(s′′2 , s), αk−2(s
′′

3) + γk(s′′3 , s)
}

. (3)

The radix-4 branch-metrics required in (3) are computed

according to

γk(s′′i , s) = γk−1(s
′′

i , s′j) + γk(s′j , s) (4)

using the six branch-metrics associated with the trellis-steps k
and k − 1 required in the radix-2 recursion (see Fig. 2).

C. LTE Interleaver

Interleavers scramble data in a pseudo-random order to

minimize the correlation of neighboring bits at the input

of the convolutional encoders (see Fig. 1). Some (e.g., the

one specified in HSDPA [2]) can present a challenge for

on-the-fly address-computation and lead to rather complex

circuits [12]. LTE, on the other hand, specifies the use of

a quadratic polynomial permutation (QPP) interleaver [18],

[19] that allows efficient computation of interleaved addresses

1The radix-4 backward and dummy backward state-metric recursions are
carried out in a similar fashion.

in hardware. Specifically, address-computation for QPP inter-

leavers is carried out according to

π(k) =
(

f1k + f2k
2
)

mod K (5)

where f1 and f2 are suitably chosen interleaver parameters that

depend on the code-block length K. For k ∈ {0, 1, . . . ,K −
1}, interleaved addresses can be generated by means of the

following recursion [20]

π(k + 1) =
(

π(k) + δ(k)
)

mod K

δ(k + 1) =
(

δ(k) + b
)

mod K (6)

where π(0) = 0, δ(0) = f1 + f2, and b = 2f2. The

recursion can be implemented efficiently in hardware because

only additions and modulo operations are involved. Indeed, as

QPP interleavers map even addresses to even addresses and

odd to odd [19], they facilitate efficient address-generation for

radix-4 recursions; in addition, (6) can also be formulated for

other address-increments (e.g., for even-numbered addresses).

III. PARALLEL TURBO-DECODER ARCHITECTURE

The critical path of non-parallel turbo-decoders is usu-

ally in the state-metric recursion units, since the associated

recursive computations exacerbate pipelining. Corresponding

speed-optimized implementations achieve not more than tens

of Mb/s, e.g., [12], [21], and hence, to meet the 326.4 Mb/s

LTE peak data-rate, the decoding time per half-iteration must

therefore be reduced. A promising solution is to instantiate N
M-BCJR units and to perform N -fold parallel decoding of

the trellis [22]. To this end, the trellis is divided into N trellis

segments of equal2 length S and parallel SISO decoding is car-

ried out in the assigned trellis-segment in parallel fashion. This

approach roughly increases the turbo-decoding throughput by

a factor of N compared to (non-parallel) turbo-decoders.3

A. High-Level Architecture

The proposed architecture shown in Fig. 3 is based on the

(non-parallel) HSDPA turbo-decoder in [12]. SISO decoding

is performed by alternating between non-interleaved and inter-

leaved phases which decode the first and second convolutional

code, respectively.

1) Overview: The architecture contains N max-log M-

BCJR instances, input memories for the storage of the sys-

tematic and parity LLRs, and one intermediate memory for the

storage of the extrinsic LLRs. The LTE interleaver consists of

an address-generator unit for the computation of all interleaved

and non-interleaved addresses, and of dedicated permutation

networks located at the input and intermediate memories. Each

M-BCJR instance processes one trellis-step per clock cycle

for radix-2 and two steps when using radix-4 recursions. We

note that the use of radix-4 recursions entails 2× increased

memory-bandwidth, since the LLRs associated with even-

and odd-numbered trellis-steps are required per clock cycle.

2NS = K is guaranteed for all code-block lengths specified in LTE with
N ∈ {1, 2, 4, 8}.

3The overhead caused by the dummy forward-recursions and by latencies
present in the M-BCJR decoders prevents linear scaling of the throughput in
the number of parallel SD instances N .

4 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

parity-1
LLRs

1st
M-BCJR
decoder

address
generator

output data

parity-2
LLRs

half-
iteration

in
p

u
t

d
a

ta

input RAM

inter-
leaver

inter-
leaver

2nd
M-BCJR
decoder

Nth
M-BCJR
decoder

systematic
LLRs

input RAM

intermediate
RAM

extrinsic LLRs

Fig. 3. High-level architecture of the proposed parallel turbo-decoder for LTE.

To cope with this (potentially) high memory-bandwidth, the

following memory architecture is used.

2) Memory architecture: The instantiated input and inter-

mediate memories store up to 6144 LLRs in support of the

maximum LTE code-block length. Each memory contains N
LLR-values per address (see Section IV for details). When

performing radix-2 computations, the systematic, parity 1-and-

2, and extrinsic LLRs are stored in separate RAMs. Since

access to either the parity-1 or parity-2 LLRs is required (in

the non-interleaved or interleaved phase), one single-port (SP)

RAM storing both sets of parity LLRs is used to minimize

silicon area. The systematic RAM only requires SP-capability,

whereas the intermediate memory requires two-port (TP) ca-

pability to provide the required memory bandwidth. The 2×
higher memory-bandwidth required by radix-4 recursions can

be provided by instantiating two RAMs for the systematic

LLRs and two for the extrinsic LLRs, all providing half the

amount of storage. One RAM instance is then used for the

LLRs associated to the even-numbered and the other for the

odd-numbered trellis-steps. This partitioning enables the 2×N
LLRs to be read per clock cycle. Note that splitting of the

parity RAM can be avoided by storing the two sets of LLRs

for k and k − 1 per address.

B. Implementation Tradeoffs

The key design parameters of the parallel turbo-decoder

architecture in Fig. 3 are the number of parallel M-BCJR

instances N and the use of either radix-2 or radix-4 recursions.

In order to determine the most efficient configuration that

meets the throughput requirements of LTE, we study the

associated throughput/area tradeoffs in Fig. 4 for 0.13µm

CMOS technology.4

4The throughput is given for 5.5 full-iterations and a block-length of K =
3200. The area and throughput correspond to synthesis results that have been
scaled to match with the measured area and throughput of the 8× parallel
radix-4 turbo-decoder ASIC presented in Section VI.

3GPP-LTE
peak data-rate

radix-2

radix-4

co
nsta

nt

hard
ware

-e
ffic

iency

1

4

2

8

1
2

4

8

[12]

this
work

number of parallel
component decoders

Throughput [Mb/s]

Fig. 4. Throughput/area tradeoffs for parallel radix-2 and radix-4 turbo-
decoders for maximum clock frequency in 0.13µm CMOS technology.

Fig. 4 shows that the architectures employing radix-2 com-

putations achieve a throughput ranging from 28 Mb/s (N = 1)

to 180 Mb/s (N = 8). Note that the HSDPA implementa-

tion [12] exhibits similar throughput and area as the N = 1
radix-2 LTE design. Since N = 8 is the maximum parallelism

supported for decoding of all code-block lengths in LTE,

we switch from radix-2 to radix-4 to reach higher through-

puts. The 326.4 Mb/s LTE peak data-rate (indicated by the

horizontal line in Fig. 4) can only be achieved for N = 8
in combination with radix-4 computations and therefore, we

consider the use of this configuration in the remainder of the

paper. We emphasize that these parameters additionally lead

to best hardware-efficiency (in terms of throughput per area),

which is due to the fact that the parallelization improves the

throughput almost linearly in N while only increasing the

STUDER, BENKESER, BELFANTI, AND HUANG 5

permutation

address
decoding

interleaved
addresses for eight
component decoders:

b
,g

,h
,e

,f
,c

,d
,a

6,31,36,21,26,11,16,1
a

,b
,c

,d
,e

,f
,g

,h

3 8 13 18 23 28 33 38

2 7 12 17 22 27 32 37

1 6 11 16 21 26 31 36

0 5 10 15 20 25 30 35

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

folded-memory
address: 1

folded
memory

address generator

Fig. 5. Architectural principle of the contention-free interleaver for N = 8
and S = 5. Address-decoding generates the sorting-order that is required to
assign the LLRs from the folded memory to the corresponding SISO decoders.

area associated with the M-BCJR instances (and interleaver-

related circuitry) but not the area of the rather large (input and

intermediate) memories. Hence, increasing the parallelism N
reduces the (detrimental) influence of the memories to the

overall hardware-efficiency.

We finally note that the general throughput/area tradeoffs

remain valid for other technology nodes. However, if a more

advanced technology node is used, less parallelism would be

necessary or radix-2 recursions might be sufficient to meet the

LTE peak data-rate.

IV. ALLEVIATING THE INTERLEAVER BOTTLENECK

Providing interleaved memory access at the high band-

width required by eight parallel radix-4 M-BCJR units is a

challenging task. For most interleavers, e.g., the one speci-

fied in HSDPA [2], parallel and interleaved memory access

leads to an interleaver bottleneck which is caused by access-

contentions, eventually resulting in rather inefficient imple-

mentations (see [23] for details). In the ensuing discussion,

we propose an architecture solution for LTE that alleviates the

interleaver bottleneck arising from parallel turbo-decoding.

A. Contention-Free Interleaving for LTE

The LTE interleaver exhibits two properties that allow for

bandwidth-efficient access to the memories in interleaved and

natural order. First, the interleaver is contention-free [24],

which ensures that—if N divides all code-block lengths K
without remainder, i.e., for N ∈ {1, 2, 4, 8}—the LLR-

values required by the N SDs can always (in interleaved as

well as non-interleaved decoding phases) be read out of N
different memories. Second, the interleaver is maximally-

vectorizable [19], which implies that the address-distance be-

tween each of the N interleaved addresses is always an integer

multiple of the trellis-segment length S. We next describe a

general architecture solution that exploits both properties to

avoid the interleaver bottleneck.

1) Memory folding: As is illustrated in Fig. 5, the sequence

of K LLRs associated with one code-block is stored in a

folded-memory, which consists of S addresses, contains N
LLR-values per address, and provides storage for K = NS
LLRs.5 The LLRs are written column-wise, such that the nth

trellis-segment corresponds to the nth column of the memory.

In the non-interleaved phase, N -fold parallel access to the

folded memory is straightforward. Starting from the folded-

memory address 0 in incrementing fashion, one reads out

all N LLR values residing at the current address and assigns

the LLR-value located at the nth column to the nth M-BCJR

instance for n = 1, . . . , N . This access scheme ensures that

each M-BCJR instance obtains the LLRs corresponding to its

assigned trellis-segment in the right order.

2) Interleaving: In the interleaved phase, each M-BCJR

instance is associated with an address-generator computing the

corresponding interleaved address. Since the LTE interleaver

is maximally-vectorizable, the N interleaved addresses always

point at the same row in the folded memory. The address

for the folded memory is immediately given by the smallest

address among the N interleaved addresses. The assignment

of the N LLR-values to the M-BCJR instances is more in-

volved and is performed in two stages. First, address-decoding

extracts the sorting-order that is required to assign the N
LLRs of the folded memory to the N M-BCJR instances

in the right order. Second, a permutation according to the

extracted sorting-order is applied to the N LLR values, which

are then passed to the corresponding M-BCJR instances. This

concept enables N× parallel and interleaved access to the

folded memory while avoiding access-contentions.

B. Master-Slave Batcher Network

On-the-fly address-generation for the LTE interleaver is—

thanks to the recursion (6)—not hardware-critical. However,

interleaved memory-access additionally requires i) the permu-

tation signals that enable the network to reverse the interleaved

order of the N addresses to its original order to be worked

out and ii) the LLRs to be assigned to the corresponding M-

BCJR unit. Both tasks are critical from a hardware-perspective,

since complex address-decoding logic and signal routing for

the distribution of the LLRs to the M-BCJR units are in-

volved. Multiplexers (MUXs), for example, offer an obvious

solution for the permutation in hardware, but require rather

complex address-decoding circuits and cause large fan-out and

wiring overhead for N > 4 with N MUXs each having N
inputs. In addition, achieving high throughput with pipelining

is rather inefficient, because many flip-flops are required to

cover all paths. We next propose an efficient solution that can

be used not only for the LTE interleaver, but also for arbitrary

contention-free interleavers that are maximally-vectorizable.

1) General idea: The proposed architecture implements the

two-step approach outlined in Section IV-A2. The first step

performs address-decoding, which amounts to sorting of the N
interleaved addresses in ascending order and extracting the

5In our radix-4 implementation, even- and odd-numbered systematic and ex-
trinsic LLRs are stored in separate RAMs with S/2 addresses (cf. Section III).

6 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

slave network

SW
a

b

c

d

e

f

g

h

6

31

36

21

26

11

16

1

master network

permutation signals

1

6

11

16

21

26

31

36

SO

SO

SO

SO SO

SO

SO SO

SO

SO

SO

SO

SO

SO

SO

SO

SO

SO

SO

SW

SW

SW

SW

SW

SW SW

SW

SW

SW

SW

SW SW

SW

SW

SW

SW

SW

input

b

g

h

e

f

c

d

a

output input

no outputs
generated

(a) MS Batcher network for N = 8.

>

2
-i
n
p
u
t
s
o
rt

e
r

(S
O

) permutation signal

2
-i
n
p
u
t
s
w

it
c
h
 (

S
W

)

permutation signal

(b) 2-input sorter (SO) and 2-input switch (SW) units.

Fig. 6. Address-decoding and permutation for maximally-vectorizable
contention-free interleavers based on the proposed master-slave (MS) Batcher
network.

corresponding sorting-order. The second step realizes the per-

mutation, which is obtained through sorting of the N LLRs

using the inverse sorting-order. The inverse sorting-order pro-

vides the permutation that generates the sequence of inter-

leaved addresses from the sorted address-sequence. Finally,

the nth output of the permutation stage is assigned to the nth

M-BCJR unit for n = 1, . . . , N .

2) Architecture: Our architecture, which is based on two

Batcher sorting networks [25], is shown in Fig. 6. Address-

decoding is carried out in the master network consisting of a

small number of 2-input sorter (SO) units to perform sorting

of the interleaved addresses in ascending order. As depicted in

Fig. 6(b), each 2-input sorter generates a permutation signal

indicating whether the inputs have been swapped or not. The

slave network performs the permutation by applying the in-

verse sorting-order to the N LLRs (see Fig. 6(a)). To this end,

we use a second network having the same interconnections as

the master network and consisting of 2-input switches (SW)

instead of sorters. The permutation signals generated in the

master network control the switches in the slave network. In

order for the slave network to implement the inverse sorting-

order, the LLRs are fed into the slave network from the op-

posite direction.6

3) Properties: The proposed master-slave (MS) Batcher net-

work offers an area-efficient way to perform address-decoding

and permutation in hardware and accommodates pipelining

with little hardware resources, which is essential to achiev-

ing high-throughput interleaving. In addition, the architectural

concept enables the use of asymptotically optimal sorting net-

works for an arbitrary number of inputs N .7 Consequently,

our solution allows for the economic implementation of inter-

leavers for highly-parallel turbo-decoders. Note that another

efficient permutation network, applicable to QPP interleavers

only, has been proposed in [7].

V. RADIX-4 MAX-LOG M-BCJR ARCHITECTURE

Pipelining applied to the MS Batcher network removes the

critical path from the interleaver. Hence, the maximum clock

frequency of the turbo-decoder will be determined by the crit-

ical path of the M-BCJR architecture. In addition, the eight

M-BCJR instances will carry out almost all computations and

hence, dominate the circuit area and power consumption of the

whole turbo-decoder. Therefore, to meet the LTE peak data-

rate while remaining area- and power-efficient, optimization

of the M-BCJR units is of paramount importance.

A. VLSI Architecture

The radix-2 M-BCJR unit of [12] forms the basis of the

radix-4 architecture depicted in Fig. 7. We implemented radix-

4 computations and applied further optimizations to improve

throughput and hardware-efficiency. The computation of two

trellis-steps is performed per clock cycle using three paral-

lel state-metric recursion units. These units implement the

forward, backward, and dummy backward state-metric recur-

sions, and contain one radix-4 ACS circuit for each of the

eight trellis-states. This processing scheme allows the radix-4

M-BCJR unit to compute two LLR values (associated with an

even- and odd-numbered trellis-step) per clock cycle, so that

each M = 30 trellis-step window is computed sequentially in

15 clock cycles.

In order to reduce storage requirements, the branch-metric

preprocessing unit computes LA
k + Ls

k (for k and k − 1)

and stores this intermediate result together with the corre-

sponding Lp1,p2
k in one of the three γ-memories [12]. The

γ-memories are realized by arrays of latches (requiring ap-

proximately the same area compared to SRAM macrocells) to

simplify placing of the eight M-BCJR units during the back-

end design. The radix-4 branch-metric computation units first

6In [1], the slave Batcher Network was implemented incorrectly, so that
only a subset of code-block lengths specified in LTE can be decoded.

7The number of required sorters scales with O
`

N log(N)
´

and the depth of

such networks (i.e., the number of sorters in the critical path) is O
`

log(N)
´

,
e.g., [26].

STUDER, BENKESER, BELFANTI, AND HUANG 7

radix-4
ACS
unit

init

forward
state-metric-
recursion unit G G

backward
state-metric-
recursion unit G

dummy
state-metric-
recursion unit

extrinsic/intrinsic
LLR computation

init

8x radix-4
ACS units

radix-4
branch-metric
computation

reuse of inter-
mediate values

radix-4
ACS
unit

radix-4
ACS
unit

output
data

input
data

branch-metric
preprocessing

-memory

-memory

-memory-memory

Fig. 7. Architecture of the implemented radix-4 max-log M-BCJR core.

parallel radix-4 ACS

comparison circuit for
modulo-normalization

>

MSB-1..0 MSB

MSB-1..0 MSB

+

+

+

+

L
U

TCMP

CMP

CMP

CMP

CMP

CMP

+

CMP

+

radix-2 ACS

Fig. 8. Radix-2 (left) and radix-4 (right) ACS architectures based on modulo-
normalization.

work out the radix-2 branch-metrics and then calculate the

radix-4 branch metrics (4). The forward state-metric recursion

unit starts with a dummy recursion for one window to obtain

initial forward state-metrics and then, computes the αk(s) for

each window, which are cached within the α-memory (realized

using latches only). The backward state-metric recursion unit

computes the βk(s) for each window. The initial backward

state-metrics required at the beginning of each window are

generated by the dummy state-metric recursion unit. The

cached forward state-metrics, the intermediate results obtained

in the backward recursion, and the radix-2 branch-metrics are

finally used to compute the intrinsic LLRs (2).

B. Radix-4 ACS Units with Modulo-Normalization

To arrive at a short critical path in the ACS units, (ex-

pensive) re-normalization circuitry is avoided by employing

modulo-normalization [27], [28], which only requires minor

modifications of the comparison circuit involved [12]. Fig. 8

shows corresponding radix-2 and radix-4 ACS architectures.

The critical path of the presented (parallel) radix-4 ACS unit is

optimized for throughput. Here, the selection signal is carried

out by six parallel comparators followed by a look-up table

(LUT). This architecture shortens the critical path-delay by

about 50% compared to a tree-like radix-4 ACS implemen-

tation. We finally note that radix-4 recursions require one bit

more for the state-metrics (as for radix-2) to ensure proper

functioning of modulo-normalization, which is due to the fact

that the radix-4 branch-metrics (4) have 2× larger dynamic

range.

Our implementation results have shown that radix-4 M-

BCJR units achieve approximately 40% higher throughput

(at 0.7× lower clock frequency) while being only 15% less

hardware-efficient (in terms of Mb/s per area) compared

to radix-2-based designs. We therefore conclude the use of

radix-4 is essential for turbo-decoders aiming at maximum

throughput and considerably relax the corresponding design

constraints due to the reduced clock frequency.

C. LLR Computation Unit

The LLR computation unit shown in Fig. 7 computes the

intrinsic and extrinsic LLRs for the trellis-steps k − 1 and k
in each clock cycle. Since radix-4 computations only obtain

the state- and branch-metrics associated with even trellis-steps

k = 2k′, computation of the (intermediate) state- and branch-

metrics associated with the odd trellis-steps k = 2k′ + 1 is

required. These values can be derived from the state-metrics

αk−2(s) stored in the α-memory, from the intermediate results

of the backward state-metric recursion γk(s′′i , s) + βk(s), and

from the (radix-2) branch metrics γk(s′i, s) and γk−1(s
′′

j , s′i).
LLR computation first works out the forward αk−1(s) and

backward βk−1(s) state-metrics associated with the odd trellis-

step k − 1 and then—with the aid of the radix-2 branch-

metrics—calculates the intrinsic LLRs (2). Computation of (2)

is realized using two maximization trees, which have been

pipelined to ensure that the critical path of the M-BCJR block

is in one of the three state-metric recursion units.

VI. IMPLEMENTATION RESULTS AND COMPARISON

In this section, we summarize the key characteristics of the

8× parallel LTE turbo-decoder designed in this paper and

compare our ASIC implementation results to that of other

turbo-decoder implementations.

A. Error-Rate Performance

To achieve near-optimal error-rate performance, the input

LLRs are quantized to 5 bit, the extrinsic LLRs to 6 bit, all

state-metrics in the radix-4 ACS units require 10 bit, and ex-

trinsic scaling with a hardware-friendly constant of 0.6875

was used. Fig. 9 shows the resulting bit error-rate (BER) of

the hardware implementation and provides a comparison to

the ideal turbo-decoding algorithm (i.e., employing floating-

point arithmetics and using the BCJR algorithm) at 5.5 full-

iterations. One can observe that the use of extrinsic scaling

leads to a 0.2 dB improvement compared to the standard max-

log M-BCJR algorithm and the final implementation loss is

8 TO APPEAR IN IEEE JOURNAL OF SOLID-STATE CIRCUITS 2011

implementation
loss: 0.14dB

impact of
extrinsic
scaling

Ideal turbo-decoding algorithm (I=5.5)

Hardware implementation (I=5.5)

Max-log-MAP turbo decoder (I=5.5)

Fig. 9. BER performance in AWGN channel for code-block length 3200.

parity 1 and 2 memorysystematic
memories

extrinsic
memories

a
d

d
re

s
s
-

g
e
n

e
ra

to
rs

 a
n

d
B

a
tc

h
e
r

n
e
tw

o
rk

s

BCJR 1

BCJR 2

BCJR 3

BCJR 4

BCJR 5

B
C

J
R

 6

BCJR 7

B
C

J
R

 8

Fig. 10. Turbo-decoder ASIC micrograph with highlighted units.

smaller than 0.14 dB (in terms of Eb/N0) compared to that

achieved by the ideal turbo-decoding algorithm.

B. Key Characteristics and Comparison

Table I summarizes the key characteristics of the imple-

mented turbo-decoder prototype [1] in 0.13 µm (1P/8M) CMOS

technology. The corresponding ASIC micrograph is shown in

Fig. 10. About 2/3 of the area is occupied by the eight radix-4

max-log M-BCJR instances, which confirms that optimization

of the M-BCJR unit is of paramount importance during the

design of a parallel turbo-decoder.

Normalized hardware efficiency (in Mb/s/mm2) of our ASIC

prototype is best in class. The active area of the chip is

3.57 mm2, comprises 553 kGE (excluding the memories), and

uses 129 kb of RAM. The maximum measured clock frequency

is 302 MHz, at which a throughput of 390.6 Mb/s at 5.5

iterations has been measured. Our ASIC prototype is therefore

the first reported in the open literature that achieves the

theoretical 326.4 Mb/s LTE peak data-rate (with a 20% safety-

TABLE II
POWER CONSUMPTION WITH SUPPLY-VOLTAGE SCALING

Throughput Supply Leakage Power Energy eff.
[Mb/s] voltage [Vdd] current consumption [nJ/bit/iter.]

326.4 1.06 V 0.98 mA 503 mW 0.28

100.0 0.71 V 0.56 mA 68.6 mW 0.13

margin). The power consumption (measured at maximum

throughput) is 788.9 mW, leading to an energy-efficiency of

0.37 nJ/bit/iteration.8 Note that only [5] reports a slightly better

energy-efficiency at less than half the throughput and about 5×
larger silicon area.

Table II shows the power consumption required for the

326.4 Mb/s LTE peak data-rate and the more realistic 100 Mb/s

throughput targeted by industry today. The supply voltage was

scaled to meet the specified throughputs, leading to 503 mW

for the LTE peak data-rate and only 68.6 mW for the 100 Mb/s

milestone. A comparison of the 0.13 nJ/bit/iteration energy-

efficiency with other turbo-decoders in Table I highlights the

effectiveness of our implementation concept.

VII. CONCLUSIONS

In this paper, we detailed the design of a parallel

turbo-decoder for the 3GPP-LTE standard. The analysis of

the throughput/area tradeoffs associated with parallel turbo-

decoders have shown that radix-4 in combination with eight

M-BCJR instances are necessary for the LTE peak data-

rate in 0.13 µm CMOS technology. Parallel and interleaved

access to the memories at high throughput was achieved

through the development of a master-slave Batcher network.

Optimizations in the radix-4 M-BCJR unit finally led to a

high-performance and low-area turbo-decoder architecture. In

addition to setting a record in turbo-decoding throughput, both

ultra low-power and cost-effectiveness have been demonstrated

by the presented implementation concept.

REFERENCES

[1] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2

3GPP-LTE turbo decoder ASIC in 0.13µm CMOS,” in IEEE ISSCC dig.

tech. papers, vol. 1, San Francisco, CA, USA, Feb. 2010, pp. 274–275.

[2] 3rd Generation Partnership Project; Technical Specification Group

Radio Access Network; Channel Coding and Multiplexing Examples,
3GPP Organizational Partners TS 25.944, Rev. 4.1.0, Jun. 2001.

[3] 3rd Generation Partnership Project; Technical Specification Group

Radio Access Network; Evolved Universal Terrestrial Radio Access (E-

UTRA); Multiplexing and channel coding (Release 9), 3GPP Organiza-
tional Partners TS 36.212, Rev. 8.3.0, May 2008.

[4] 3GPP TR25.912 V8.0.0, “Feasibility study for evolved universal terres-
trial radio access (UTRA) and universal terrestrial radio access network
(UTRAN),” Feb. 2009.

[5] C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Turbo
decoder using contention-free interleaver and parallel architecture,”
IEEE JSSC, vol. 45, no. 2, pp. 422–432, Feb. 2010.

[6] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for
mobile WiMAX and 3GPP-LTE,” in Proc. CICC, San Jose, CA, USA,
Sept. 2009, pp. 487–490.

8All power measurements are performed at T = 300 K for a code-block
length K = 3200 and 5.5 full-iterations using typical stimuli generated at
Eb/N0 = 0.6 dB.

STUDER, BENKESER, BELFANTI, AND HUANG 9

TABLE I
KEY CHARACTERISTICS AND COMPARISON TO OTHER MEASURED TURBO-DECODER ASICS

Publication This work
Wong Kim and Park Wong Benkeser Bickerstaff

et al. [5] [6] et al. [7] et al. [12] et al. [21]

Standard LTE — LTE / WiMAX LTE HSDPA HSDPA

Radix/parallel decoders 4/8 2/16 4/8 2/8 2/1 4/1

CMOS technology [nm] 130 130 130 90 130 180

Supply voltage [V] 1.2 1.32 1.2 1.0 1.2 1.8

Gate count 553 k 2.67a M 800a k — 44.1 k 410 k

Memory [kb] 129 — — — 122 410

Active area [mm2] 3.57 17.81 10.7 2.1 (4.3b) 1.2 14.5 (7.3b)

Maximum throughput
390.6 233c 271c 188c

20.3
26.2c

at 5.5 iterations [Mb/s] (133bc) (37bc)

Normalized hardware-
109.4 13.1 25.3 30.9 16.9 5.07

efficiencyb [Mb/s/mm2]

Leakage current [mA] 1.23d — — — 1.73 —

Power consumption 788.9d 275
—

219 (619b) 57.8 956 (338b)
in [mW] at [Mb/s] at 390.6 at 160 at 129 at 10.8 at 10.8

Normalized energy
0.37d 0.22 0.61 0.59 0.7 3.9

efficiencybc [nJ/bit/iter.]

aIncluding the gate count of the memories.
bTechnology scaling to 0.13 µm CMOS assuming: A ∼ 1/s2, tpd ∼ 1/s, and Pdyn ∼ 1/s3.
cThroughput linearly scaled to 5.5 iterations.
dMeasured at Vdd = 1.2 V and T = 300 K.

[7] C.-C. Wong and H.-C. C. Y.-Yu Lee, “A 188-size 2.1mm2 reconfigurable
turbo decoder chip with parallel architecture for 3GPP LTE system,” in
Symp. VLSI circuits dig. tech. papers, Kyoto, Japan, June 2009, pp.
288–289.

[8] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo-codes,” IEEE Trans. Comm., vol. 44, no. 10, pp. 1261–
1271, Oct. 1996.

[9] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Th., vol. 20,
no. 2, pp. 284–287, Mar. 1974.

[10] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Th., vol. 13, no. 2,
pp. 260–269, Apr. 1967.

[11] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding
techniques: an overview,” IEEE Trans. Vehicular Tech., vol. 49, no. 6,
pp. 2208–2233, Nov. 2000.

[12] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and
optimization of an HSDPA turbo decoder ASIC,” IEEE JSSC, vol. 44,
no. 1, pp. 98–106, Jan. 2008.

[13] V. Franz and J. B. Anderson, “Concatenated decoding with a reduced-
search BCJR algorithm,” IEEE J. Sel. Areas in Comm., vol. 16, no. 2,
pp. 186–195, Feb. 1998.

[14] M. van Dijk, A. J. E. M. Janssen, and A. G. C. Koppelaar, “Correcting
systematic mismatches in computed log-likelihood ratios,” Europ. Trans.

Telecomm., vol. 14, no. 3, pp. 227–244, Jul. 2003.

[15] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”
Elec. Letters, vol. 36, no. 23, pp. 1937–1939, Nov. 2000.

[16] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150MBit/s 3GPP LTE
turbo code decoder,” in Proc. DATE, Dresden, Germany, Mar. 2010.

[17] G. Fettweiss and H. Meyr, “Parallel Viterbi algorithm implementation:
breaking the ACS-bottleneck,” IEEE Trans. Comm., vol. 37, no. 8, pp.
785–790, Aug. 1989.

[18] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permu-
tation polynomials over integer rings,” IEEE Trans. Inf. Th., vol. 51,
no. 1, pp. 101–119, Jan. 2005.

[19] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “ARP
and QPP interleavers for LTE turbo coding,” in Proc. IEEE WCNC, Las
Vegas, NV, USA, Mar. 2008, pp. 1032–1037.

[20] B. Moision and J. Hamkins, “Coded modulation for the deep-space

optical channel: Serially concatenated pulse-position modulation,” IPN

Progess Report 41-161, pp. 1–25, May 2005.
[21] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A

24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wire-
less,” in IEEE ISSCC dig. tech. papers, vol. 1, San Francisco, CA, USA,
Feb. 2003, pp. 150–484.

[22] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecture for
MAP turbo decoder,” in Proc. IEEE Int. Symp. PIMRC, vol. 1, Sept.
2002, pp. 384–388.

[23] C. Benkeser, “Power efficiency and the mapping of communication
algorithms into VLSI,” Ph.D. dissertation, ETH Zürich, Switzerland,
Series in Microelectronics, vol. 209, Hartung-Gorre Verlag Konstanz,
2010.

[24] O. Y. Takeshita, “On maximum contention-free interleavers and permu-
tation polynomials over integer rings,” IEEE Trans. Inf. Th., vol. 52,
no. 3, pp. 1249–1253, Mar. 2006.

[25] K. E. Batcher, “Sorting networks and their applications,” in Proc. of 32th

AFIPS Spring Joint Computer Conf., Atlantic City, NJ, USA, 1968, pp.
307–314.

[26] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n log n) sorting net-
work,” Ann. ACS Symp. Theory of Comp., pp. 1–9, 1983.

[27] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,”
IEEE Trans. Comm., vol. 37, no. 11, pp. 1220–1222, Nov. 1989.

[28] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI
architectures for metric normalization in the Viterbi algorithm,” in Proc.

IEEE ICC, vol. 4, Atlanta, GA, USA, Apr. 1990, pp. 1723–1728.

