
Design and implementation of a real-time embedded
application

Thomas Baron Philippe Jean Gaël Mercier

January 8, 2007

Departement of Computer Science, Aalborg University

:
Design and implementation of a real-time embedded application

P :
SSE3, September 4th 2006 - January 9th 2007

G :
Thomas Baron
Philippe Jean
Gaël Mercier

S:
Anders Peter Ravn

C :
Hans Søndergaard

N : 2

Abstract

This report states the steps of the development of a real-time embedded application using the
Object-Oriented Analysis & Design method. It implements an industrial case that illustrates the
use of an implementation of the Ravenscar-Java Profile.

Contents

1 Introduction 1

2 Problem Domain Analysis 3
2.1 Context . 3
2.2 System definition . 5
2.3 The FACTOR criteria . 5
2.4 Problem domain model . 5

3 Application Domain Analysis 9
3.1 Use cases . 9
3.2 Functionalities . 10

3.2.1 Turn On/Off . 10
3.2.2 Acquirement . 10
3.2.3 Temperature regulation . 11
3.2.4 Monitoring . 12

3.3 Interfaces . 12
3.3.1 MirrorEngine . 13
3.3.2 InfraRed . 13
3.3.3 InfraRedDetector . 13
3.3.4 TemperatureSensor . 13
3.3.5 Thermostat . 13
3.3.6 ExternalCommunicationDevice . 14

3.4 Summary . 15

4 Design 16
4.1 Design criteria . 16
4.2 Architecture . 17
4.3 Detailed Design . 19

4.3.1 Device component . 19
4.3.2 Logic component . 21
4.3.3 Check component . 29
4.3.4 Scheduling the Function Layer (Logic & Check) 30
4.3.5 Data component . 34
4.3.6 Communication component . 36

5 Implementation & Testing 37
5.1 Implementation . 37

5.1.1 Software usage . 37
5.1.2 Coding conventions . 37

5.2 Testing . 38
5.2.1 Unit Testing . 38
5.2.2 Integration Testing . 40
5.2.3 Results of the schedulability . 41
5.2.4 Acceptance Testing . 42
5.2.5 Environment Model . 43

i

6 Conclusion 45
6.1 Summary . 45
6.2 Discussion . 46
6.3 Further work . 46

Bibliography 47

A CD-ROM enclosed 49

ii

List of Figures

2.1 Analysis instrument . 3
2.2 FTIR system rich picture . 3
2.3 Interferometer principle . 4
2.4 FTIR physical module. 4
2.5 Overview of the classes in the system . 6
2.6 The TemperatureSensor Statechart Diagram . 6
2.7 The Thermostat Statechart Diagram . 6
2.8 The Interferometer Statechart Diagram . 7
2.9 The InfraRedDetector Statechart Diagram . 7
2.10 The MirrorEngine Statechart Diagram . 8
2.11 The InfraRed Statechart Diagram . 8
2.12 The ExternalCommunicationDevice Statechart Diagram 8

3.1 Use cases . 9
3.2 System states . 11
3.3 Acquire . 12

4.1 The layered Architecture . 18
4.2 Class Diagram of the temperature sensor . 19
4.3 Class Diagram of the thermostat . 19
4.4 Class Diagram of the mirror engine . 19
4.5 Class Diagram of the infrared . 20
4.6 Class Diagram of the infrared detector . 20
4.7 Class Diagram of the external communication device 20
4.8 Class Diagram of the temperature reading . 21
4.9 TemperatureReading Activity Diagram . 21
4.10 Class Diagram of the temperature regulation . 22
4.11 TemperatureRegulation Activity Diagram . 22
4.12 Class Diagram of the monitoring . 23
4.13 Monitoring Activity Diagram . 23
4.14 Class Diagram of the acquirement . 24
4.15 Acquirement Activity Diagram . 24
4.16 Scanning process Activity Diagram . 25
4.17 Finalisation process Activity Diagram . 25
4.18 Interrupting process Activity Diagram . 26
4.19 Class Diagram of the input communication . 27
4.20 InputCommunication Activity Diagram . 27
4.21 Class Diagram of the output communication . 28
4.22 OutputCommunication Activity Diagram . 28
4.23 Class Diagram of the check layer . 29
4.24 Watchdog Activity Diagram . 29
4.25 Class Diagram of the acquirement register . 34
4.26 Class Diagram of the acquirement mode . 34
4.27 Class Diagram of the interferogram . 35
4.28 Class Diagram of the logger and log . 35
4.29 Class Diagram of the temperature buffer . 35

iii

4.30 Class Diagram of the PID . 36
4.31 Class Diagram of the monitor register . 36
4.32 Class Diagram of the communication layer . 36

5.1 Classes Logger and LoggerTest . 39
5.2 Example testLogger . 39
5.3 LoggerTest standard output . 39
5.4 Scenario Temperature Regulation . 40
5.5 class TemperatureRegulationTest . 41
5.6 Trace command line . 41
5.7 TemperatureRegulationTest standard output . 42

iv

List of Tables

3.1 MirrorEngine operations . 13
3.2 InfraRed operations . 13
3.3 InfraRedDetector operations . 13
3.4 TemperatureSensor operations . 13
3.5 Thermostat operations . 14
3.6 ExternalCommunicationDevice operations . 14

4.1 Priority of design criteria . 16
4.2 Table of priorities using the DMS. 31
4.3 Worst-case execution time for each shared resource 32
4.4 Blocking time for processes . 33
4.5 Worst case response time (R) of the processes . 34

5.1 Thread capacities . 42

v

Chapter 1

Introduction

The work discussed in this report is part of the Ravenscar-Java Development project [4]. The
aim of this project is to analyse whether the Ravenscar-Java profile is a realistic Java profile for
industrial-time systems, to show how Real-Time UML is used as a design tool and to compare a
Ravenscar-Java solution with a C++ solution.

The main aim of this project is to design an application to manage a part of an embedded
system for the hardware provided by FOSS Analytical and to assess if it is suitable for it. It has to
use new technologies as Java for Real-Time and modern methods of design oriented object.

In order to redesign and implement the solution, the Ravenscar-Java Profile will be used. The
Ravenscar-Java Profile is a subset of Java language features designed for hard real-time systems.
It is made as a subset that simplifies the RTSJ1 [9], and has a lot of interesting properties for
designing real-time systems, as for example predictability or analysable memory utilisation.

The first part of the Ravenscar-Java Development project was to implement the Ravenscar-Java
profile in the way that it can be suitable for industrial cases. In order to meet with the project goal,
the Ravenscar-Java profile was implemented on a Java processor, the aJ-100 [28]. This processor is
developed by aJile Systems. The aJ-100 processor from aJile Systems is a 100 MHz direct execution
Java processor. It is a pure Java micro controller that uses Java bytecode as its native instruction
set. The implementation of the Ravenscar-Java profile only uses one of two JVM units.

However, a Real-Time Platform does not say how to design, implement and test an application.
We need to follow a analysis and development method, adapting the HRT HOOD2 [13] one.

We have to answer in the work to :

1. How to design a system with an object oriented method ?

2. How to use the Ravenscar-Java Profile in this industrial case ?

3. Is the implementation suitable for the case (testing results. . .) ?

Related work

Our work is established on some fundamental documents about the Java Ravenscar profile [16],
[22]. They are themselves based on the RTSJ (Real-Time Specification for Java) [10] and the Ada
Ravenscar profile [7], [12]. We can also find articles about the Real Time Object Oriented Design
itself [13], [19]. All these articles are the theoretical background of our subject.

One of our lecture was about a comparison of Ada and Java for Real-Time [24] and we could
had some comment on it. Ada is used for a long time in embedded real time systems requiring a
high level of reliability and security, but its complexity is one of its problem. Java is widely used
for its many advantages and has got a large community. Many researches are made to put Java in
the Real-Time world [21], [11].

We use an implementation of the Ravenscar Java profile [28], [26] on the aJile-100, to develop
our application. Applications of Real Time Java are more and more made but this field is relatively

1Real Time Specification for Java
2Hard Real-Time Hierarchical Object Oriented Design

1

CHAPTER 1. INTRODUCTION

new, regarding to Ada use for instance. A bachelor’s thesis [25] talks about Real Time Java,
throught the development of a real time library using the Real-Time Linux KURT, and a small
application on it.

Real industrial applications seem to emerge slowly. For example, this implementation [29],
developed by a company, differs from ours because it is focused on communication protocol and
not on an embedded device, nevertheless the same type of real-time constraints is applied to each
of them.

Contribution

This project proposes an adaptation of OOAD3 [19] to HRT HOOD. We also give an implemented
and tested prototype on the aJ-100 processor platform, on a Jstick board [5].

Overview

This report is structured as followed : in chapter 2, we talk about the Problem Domain Analysis:
we explain the system’s purpose and the parts that system should help administrate, monitor, or
control. It is a a model of the real world. We also put the project in its context. The chapter 3
belongs to the Application Domain Analysis. We define all the criteria related the user organisation
(use cases). In this part we state all the functionalities and the interfaces of the system. Design of
the solution is dedicated to chapter 4, where is specified and detailed a structure in layers : it is the
architecture of the application. Moreover, we focus on the schedulability theory in the function
layer part to insure that all deadlines could be met. In chapter 5, we give an explanation about
our implementation and the testing, following an incremental process. Finally we conclude in
chapter 6, making an assessment of the work done.

3Object-Oriented Analysis and Design

2

Chapter 2

Problem Domain Analysis

In this section, we give the details of the activity involved at the first stage of the project. This
activity is analysis in which some items are taken apart and described. Basically, there are two
kinds of analysis named problem domain analysis and application domain analysis.

In this chapter, we focus on problem domain analysis which identify and model the problem
domain. The problem domain is a part of a context that is administrated, monitored or controlled
by a system. Our analysis is concentrated on what the system should deal with and is described
in the following sections.

2.1 Context

The FTIR (Fourier Transform InfraRed [2]) analyser is controlled by an embedded software.
It is an instrument for analysing and controlling the quality of agricultural production, food,
pharmaceutical and chemical products. Figure 2.1 is an example of this kind of instrument.

Figure 2.1: Analysis instrument

The FTIR system falls into three following modules (Figure 2.2):

Figure 2.2: FTIR system rich picture

3

2.1. CONTEXT CHAPTER 2. PROBLEM DOMAIN ANALYSIS

1. The interferometer module (Figure 2.3): In order to measure a sample, a beam of infrared
(IR) light is passed through a liquid sample and the interferometer produces a signal called an
interferogram. In the liquid sample some energy for specific frequencies is absorbed, which
gives a unique characteristic of the sample. The measurement is obtained by a detector.
Because the interferogram is composed of all infrared frequencies, it needs to process a
number of scans of different lengths. Thus the interferometer has a moveable mirror to
move to the next position in order to take a new measurement. These results are averaged
into an resulting interferogram, by the future application.

Figure 2.3: Interferometer principle

2. The temperature controller module: The FTIR instrument is enclosed in an isolated box
(Figure 2.4), a thermobox, in order to regulate the temperature of the instrument. The aim of
this thermobox is to keep a constant temperature around the interferometer. The temperature
inside the box is controlled at the following places: the thermobox, the IR-source (InfraRed
source), the interferometer and the sample cuvette. Each place has a temperature feeler
and a thermostat element for individual regulation. The software must implement a PID
regulator for this regulation.

Figure 2.4: FTIR physical module.

4

CHAPTER 2. PROBLEM DOMAIN ANALYSIS 2.2. SYSTEM DEFINITION

3. The external communication module: We know only that a measurement is started from
outside. When a measurement is finished the result is sent back along with some other
information. The communication follows a protocol which is not specified at the moment
but the access medium is a RJ45 cable.

2.2 System definition

The instrument in the production version is also called FTIR system. It is an instrument measuring
the infrared spectrum of liquid samples. This system has real-time constraints and it is aimed
at measuring the spectrum of a sample. The different parts of the system such as the interfer-
ometer, the temperature controller and the external communication should be controlled. Thus
the instrument should be able to launch a test on a sample and transmit the result to an external
computer.

2.3 The FACTOR criteria

The FACTOR [19] criteria helped us to validate our system definition:

F for end use: The first goal of the system is to measure the IR spectrum for a
sample. The system should be able to produce an interferogram or report error conditions that
prohibits it.

A D of end use: It is to launch the sampling of the spectrum and collect results
from the interferometer to transmit them. The software have also to report errors occurring in the
system and to monitor the correct behaviour of the system.

C for success: The system must be as dependable as the one currently produced. Fur-
themore the prototype must be designed for easy maintenance and adaptation to new hardware,
software and features.

T to be used: The aJ-100 real-time processor [6]. It uses Java as its native language.
The software shall be developed according to the Ravenscar-Java Profile [28](a subset of the Real-
Time Specification for Java [9]) and its implementation on the processor. Tools Software used
for this project are Eclipse, JEM Builder and Charade. Eclipse and its plugins enable to design of
real-time embedded system using Object-Oriented techniques. JEM Builder and Charade are used
to configure, load and start JVM1 on the aJ-100 processor. We have not chosen tools to test the
application but we think of using the UML 2.0 testing profile.

O S: Temperature control, Interferometer, external communication, data logging
modules.

R: To implement the functionalities ensuring the same behaviour as the existing
solution but with a Java real-time processor and a clear architecture.

2.4 Problem domain model

After reading Hans Søndergaard’s technical report [2], we have made out the models present
in this section. Models are characterized by the following objects which described the system.
Statechart diagrams are also shown to extend our class definitions by adding descriptions of their
behaviour.

1Java Virtual Machine

5

2.4. PROBLEM DOMAIN MODEL CHAPTER 2. PROBLEM DOMAIN ANALYSIS

FTIRSystem class

The FTIRSystem class models the entire instrument (Figure 2.5). It is composed of the Interferom-
eter, TemperatureSensor, Heater, Cooler and ExternalCommunicationDevice.

Figure 2.5: Overview of the classes in the system

TemperatureSensor class

The TemperatureSensor class models the working of the temperature feeler. It just consists of
reading the temperature.

Figure 2.6: The TemperatureSensor Statechart Diagram

Thermostat class

The Thermostat class describes how some thermoelectric modules works. It consists of cooling or
heating the place where the module is.

Figure 2.7: The Thermostat Statechart Diagram

6

CHAPTER 2. PROBLEM DOMAIN ANALYSIS 2.4. PROBLEM DOMAIN MODEL

Interferometer class

The Interferometer class models the working of the interferometer. It is composed of the Mir-
rorEngine, InfraRed and InfraRedDetector. The behaviour of these classes are described further.
The interferometer allows to scan a sample and can be interrupted.

Figure 2.8: The Interferometer Statechart Diagram

InfraRedDetector class

The InfraRedDetector class models the working of the InfraRed Detector. It consists of turning
on/off the detector and taking the measurements.

Figure 2.9: The InfraRedDetector Statechart Diagram

7

2.4. PROBLEM DOMAIN MODEL CHAPTER 2. PROBLEM DOMAIN ANALYSIS

MirrorEngine class

The MirrorEngine class models the working of mirror. It consists of controlling the move of mirror.

Figure 2.10: The MirrorEngine Statechart Diagram

InfraRed class

The InfraRed class models the working of the InfraRed. It consists of trurning on/off the beam.

Figure 2.11: The InfraRed Statechart Diagram

ExternalCommunicationDevice class

The ExternalCommunicationDevice class models the working of the communication with external
devices. It consists of sending messages about interferogram results and information relating to
the monitoring of the system and receiving messages from outside.

Figure 2.12: The ExternalCommunicationDevice Statechart Diagram

8

Chapter 3

Application Domain Analysis

This part discusses Application Domain Analysis. The purpose of this part is to determine a
system’s usage requirements.

3.1 Use cases

The purpose of this section is to determine how actors interact with the future application. An
actor is an abstraction of users or other systems that interact with the target application. A use
case is defined as a pattern for interaction between the application and actors in the application
domain. As expected results, we will get a description for each use case and actor.

The system has only one actor which interacts with it. Behind this actor – external system –,
we assume there is an operator or somebody who monitors and controls the entire measurement
and analysis process including the FTIR system. First of all, the system just observes the power
switch. Then, as its action, the external system can acquire an interferogram. As a result the external
system receives data from the measurement like analog values combined with their bounds, or
errors that occur during the measurement. Figure 3.1 shows the application use cases.

Figure 3.1: Use cases

External System The external system is the abstraction of a system (or an operator) who controls
the entire measurement and analysis process including the FTIR system.

Interferometer The interferometer is an element composed by theMirrorEngine, theInfraRedDetector
and the InfraRed.

9

3.2. FUNCTIONALITIES CHAPTER 3. APPLICATION DOMAIN ANALYSIS

TemperatureSensor The temperature sensor is the device from which temperatures are read.

Thermostat The thermostat is the device which is used to control either the heater and the cooler.

Turn On/Off The turn on/off use case is the action of turning on/off the system.

Acquirement The acquirement use case is the action of starting an entire measurement of a liquid
sample.

TemperatureRegulation The temperature regulation use case is the action of regulating the tem-
perature at the four defined places.

Monitoring The monitoring use case is the action of gathering all defined and useful information
and sending them to the external system.

3.2 Functionalities

The purpose of this section is to determine the system’s information processing capabilities. As
expected results, we will get a complete list of functions with specification of complex functions.

3.2.1 Turn On/Off

When the external system – or certainly the person behind it – turns the system on, it observes
the power switch and starts regulating the temperature. When all the temperatures are within
bounds, the system is ready to acquire an interferogram. If at any time, whether the system is
acquiring an interferogram or not, a physical module is not at the ideal temperature, then the
current acquirement — if there is one – will be stated as failed and the system will go back to the
state where it waits for all the temperatures to be within bounds. Figure 3.2 shows the system
states.

3.2.2 Acquirement

The acquirement use case is the only one which is directly initiated by the external system actor. It is
composed of two functions. The first one is the acquire function. It is used to start an acquirement of
an interferogram. The second one is the interrupt function. It is used to interrupt an acquirement.

Acquire

The acquire function is the main one of the system. We can notice that a complete measurement
of a sample is composed of 32 scans where each scan has up to 3200 measurements. When the
system is ready – all physical modules are at the right temperature – an interferogram can be
acquired. The prerequisite is that the system is fully initialized. The function returns a table of the
interferometer results to the external system actor. Figure 3.3 shows the sequencing of the acquire
activity.

Interrupt

The interrupt function is available when the system is proceeding a measurement. It basically
stops the interferometer during its acquisition process and reinitialize all the system. As the
acquire function, this one is initiated by the external system actor. After the interrupt function has
been activated, no result is produced. It represents a change of state in the model, thus it is an
“update” function.

10

CHAPTER 3. APPLICATION DOMAIN ANALYSIS 3.2. FUNCTIONALITIES

Figure 3.2: System states

3.2.3 Temperature regulation

The temperature regulation use case is a parallel one of the acquirement use case. It is initiated when
the system is turned on. It is composed of two functions. The first one is the temperature read
function. It is aimed at reading from thermometers. The second one is the temperature regulate
function. It is used to regulate the temperature with a Thermostat device according to the values
read by the temperature read function.

Temperature read

The aim of the temperature read function is to take measurements periodically of four parts in the
system: The thermobox, the InfraRed source, the interferometer and the sample cuvette.

Temperature regulate

The aim of the temperature regulate function is to control the heating and the cooling of the physical
modules of the system. This periodic routine use an average of five temperatures to regulate the
temperature in each place. The type of this function is “compute”: it manipulates the heater and
the cooler when a temperature is different (c.f. PID regulation) from its reference. It results in a
direct intervention in the problem domain: the need is to maintain constants temperatures (34◦C
in the thermobox, 30◦C at the infrared place and 42◦C inside the interferometer and at the cuvette)
for the interferogram acquirement.

11

3.3. INTERFACES CHAPTER 3. APPLICATION DOMAIN ANALYSIS

Figure 3.3: Acquire

3.2.4 Monitoring

As the temperature regulation use case, this one is initiated when the system is turned on. It is
aimed at checking the state of the system in a general manner. It is composed of two functions:
the monitor function which checks that the system is in the normal conditions of working and the
function aliveness check function which checks that all processes of the system are running.

Monitor

The monitor function is used to save all the analog values such as temperatures and mirror speed
in order to send them to the external system. It checks that each temperature value is between its
bounds. If it is not the case, an error is saved which will be sent to the external system. The speed of
the mirror is processed in a similar way. The monitor function also saves how many measurements
have been taken and how many have failed. The type of this function is “compute”: it results in
data which will be sent to the external system actor.

Function aliveness check

It is the watchdog that checks the aliveness of functions. It controls that all the system functions
have registered themselves to it. If it is not the case, it saves an error which will be sent to the
external system actor.

3.3 Interfaces

The purpose of this section is to determine a system’s interfaces. As expected results, we will get
list of operations for each external device and protocols for interaction with other systems.

12

CHAPTER 3. APPLICATION DOMAIN ANALYSIS 3.3. INTERFACES

Every error that occurs when calling the methods below are registered. Such errors are saved
by the functions that caught them in order send them to the external system.

3.3.1 MirrorEngine

We assume that the mirror engine is a synchronous stepper motor [3] of which the displacement
length between two steps is negligible compared the system time constraints. Table 3.1 shows
MirrorEngine operations.

GetPosition Used to get the current position of the mirror.
The range is between 0 and 3199.

MoveForwards Used to move forwards the mirror to its next
position.

MoveBackwards Used to move backwards the mirror to its next
position.

Table 3.1: MirrorEngine operations

3.3.2 InfraRed

Table 3.2 shows InfraRed operations.

SetOn Used to turn the InfraRed on.
SetOff Used to turn the InfraRed off.

Table 3.2: InfraRed operations

3.3.3 InfraRedDetector

Table 3.3 shows InfraRedDetector operations.

SetOn Used to turn the InfraRedDetector on.
SetOff Used to turn the InfraRedDetector off.
Read Used to get the value of the beam caught by

the detector. The returned value is a 16 bits
integer.

Table 3.3: InfraRedDetector operations

3.3.4 TemperatureSensor

Table 3.4 shows TemperatureSensor operations.

Read Used to read the value from the thermometer.
The returned value is a 32 bits floating point
value depicting a temperature in Celsius de-
grees.

Table 3.4: TemperatureSensor operations

3.3.5 Thermostat

Table 3.5 shows Thermostat operations.

13

3.3. INTERFACES CHAPTER 3. APPLICATION DOMAIN ANALYSIS

SetLevel Used to set the level of the Thermostat. The
range depends on the implementation of the
Thermostat. However, the range must be be-
tween 0 and n, with n greater than 0.

Table 3.5: Thermostat operations

3.3.6 ExternalCommunicationDevice

We assume that the protocol between the External System and the system itself is CLDC1 and the
data format is UTF-8. Table 3.6 shows ExternalCommunicationDevice operations. The incoming
protocol is straightforward as there are only two expected messages. Thus, the messages are
coded on one byte. The expected values are 00 for the acquire message and 01 for the interrupt
message. The outgoing protocol is just to send data to the outside. There are four kinds of
outgoing messages — three for the logs and one for the interferogram — that are susceptible to
be sent. However, they are all using the same pattern. A message can be divided into three parts.
The first part is the type of the message. It is a byte; 00 for an ERROR message, 01 for a WARNING
message, 02 for an INFORMATION message and 03 for an interferogram. The second part is the
count of bytes of the third part; it is coded on two bytes. The third part is the message. It can be
either a log message coded in UTF-8 or a raw part of an interferogram.

Receive Used to receive data from the external system.
Send Used to send data to the external system.

Table 3.6: ExternalCommunicationDevice operations

Incoming communication

The only two incoming messages are acquire and interrupt.

Outgoing communication

The outgoing messages are:

• errors

• speed and its bounds

• temperature regulation informations:

– temperatures and their bounds

– difference with the reference temperature

– result of PID regulation and details of its computation

• interferometer:

– how many time the FTIR module has been on

– how many measurements has been taken

– how many measurements failed

• watchdog

• interferogram

1Connected Limited Device Configuration

14

CHAPTER 3. APPLICATION DOMAIN ANALYSIS 3.4. SUMMARY

3.4 Summary

In this section, we have seen what the use cases of the application are, its functionalities and the
interfaces of the components it interacts with. The elaboration of the application domain was quite
straightforward without significant uncertainties. For instance, we do not know yet the length of
an outgoing message, but it does not matter as we had defined a variable message length. This
part will be used as an entry point of the design part.

15

Chapter 4

Design

The purpose of the design is to specify a solution which can be easily converted into programs and
tests. The process design can be divided into three categories: criteria, architectural and detailed
design. Criteria selection specifies criteria for the specific application. Architectural design details
the largest software structures, such as subsystems, packages and tasks. Detailed design specifies
attributes and methods within individual classes for each functionality of our application.

4.1 Design criteria

Object Oriented Analysis & Design [19] emphasizes three general criteria which are usability,
flexibility, comprehensibility. There are also many quality criteria proposed by researchers over
the past years (usable, secure, efficient, correct, reliable, maintainable, testable, ...). Of course,
we do not use all these criteria because criteria are often in conflict or not relevant to the specific
project. Design have to accentuate essential criteria for the application.

Having considered the general object-oriented criteria, we can give a priority for each criteria:

Criterion Very Important Less Irrelevant Easily
important important fulfilled

Usable 6

Secure 6

Efficient 6

Correct 6

Reliable 6

Maintainable 6

Testable 6

Flexible 6

Comprehensible 6

Reusable 6

Portable 6

Interoperable 6

Temporal
6correctness

Table 4.1: Priority of design criteria

Table 4.1 shows the priority of design criteria. We placed special emphasis on correctness
and temporal correctness, because without these characteristics, the system cannot be used at
all; these aspects without which the system is considered incorrect or incomplete. Moreover,
temporal correcteness is essential to real-time systems. In order to verify whether the system
violates its specified timing constraints, we will make a schedulability test. Of course dynamic
testing is also a method to verify temporal behavior of the software. We also put some emphasis
on usability, maintainability, testability and comprehensibility because these characteristics are
much-valued in Object Oriented programming. These criteria allow the system’s adaptability, a

16

CHAPTER 4. DESIGN 4.2. ARCHITECTURE

low cost to locate and fix system defects, an easiness to ensure that the deployed system performs
its intended function and an easy understanding of the system. We gave all other characteristics
lower priority, except for reliability and portability which are irrelevant because we design a
real-time application bound to a specific technical platform.

4.2 Architecture

Software architecture is a process of designing the global organization of a software system. The
system should model the problem domain and implement all functional requirements. The aim
of this part is to create a comprehensible and flexible system structure with connections between
each component. A component architecture is a structural system view that makes the system
easier to understand and organize the design work.

Architecture design

The component architecture defines the overall system structure and models relationships be-
tween components as dependencies. These dependencies can later be realized in different ways
(aggregation, specialization or dynamic method calls). We defined a layered architecture with five
components as described below (Figure 4.1).

Device (System interface): This layer takes care of the control of the different devices.

Logic & Check (Function): This layer takes care of the control of the system in order to implement
all functional requirements (temperature regulation, interferometer measurement, monitoring, ...).

Data (Model): This layer stores the state of the problem domain, used by and generated by
the functional layer.

Communication (Technical platform): This layer implements the communication stack to com-
municate with other network devices.

17

4.2. ARCHITECTURE CHAPTER 4. DESIGN

Figure 4.1: The layered Architecture

18

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

4.3 Detailed Design

After designing the very high level structure of the system, we can work down to detailed deci-
sions. A component is any piece of software or hardware which has a clear role in the system. It
can be isolated, allowing to replace it with a different component that has equivalent functionality.
In figures below, we show the details of the different classes with their specifications and interfaces.
The specification of classes that contains essential attributes and non-trivial operations is as below.

4.3.1 Device component

Figure 4.2: Class Diagram of the temperature sensor

TemperatureSensor
– Purpose: Control the temperature sensor
– Operations: Read the temperature

Figure 4.3: Class Diagram of the thermostat

Thermostat
– Purpose: Control a thermostat to heat/cool
– Operations: Update the level of the thermostat

Figure 4.4: Class Diagram of the mirror engine

Mirror Engine
– Purpose: Control the motion of the mirror
– Operations: Update/read the position of the mirror

19

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Figure 4.5: Class Diagram of the infrared

InfraRed
– Purpose: Control the infrared
– Operations: Turn on/off infrared

Figure 4.6: Class Diagram of the infrared detector

InfraRedDetector
– Purpose: Control the infrared detector
– Operations: Turn on/off infrared detector, read the measurement

Figure 4.7: Class Diagram of the external communication device

ExternalCommunicationDevice
– Purpose: Control the communication device for all external communications
– Operations: Send/receive data

20

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

4.3.2 Logic component

Figure 4.8: Class Diagram of the temperature reading

TemperatureReading
– Purpose: Read and store the temperature
– Attributes: Thread id, temperature sensor, temperature buffer, message.

Figure 4.9: TemperatureReading Activity Diagram

21

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Figure 4.10: Class Diagram of the temperature regulation

TemperatureRegulation
– Purpose: Regulate the temperature according to the stored temperatures
– Attributes: Thread id, heater, cooler, mode, temperature buffer, temperature reference,
pid to compute the new temperature, message sent to the logger

Figure 4.11: TemperatureRegulation Activity Diagram

22

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

Figure 4.12: Class Diagram of the monitoring

Monitoring
– Purpose: Check temperatures and mirror speed in order to send errors if values are not
within bounds

– Attributes: Temperature buffer, message

Figure 4.13: Monitoring Activity Diagram

23

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Figure 4.14: Class Diagram of the acquirement

Acquirement
– Purpose: Start an acquirement of an interferogram
– Attributes: Mirror engine, infrared, infrared detector, message

Figure 4.15: Acquirement Activity Diagram

24

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

Figure 4.16 shows the scanning process:

Figure 4.16: Scanning process Activity Diagram

Figure 4.17 shows the finalisation process:

Figure 4.17: Finalisation process Activity Diagram

25

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Figure 4.18 shows the interrupting process:

Figure 4.18: Interrupting process Activity Diagram

26

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

Figure 4.19: Class Diagram of the input communication

InputCommunication
– Purpose: Receive message from the external communication device
– Attributes: Service which provides the communication, byte buffer to receive data,
message sent to the logger or command received

Figure 4.20: InputCommunication Activity Diagram

27

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Figure 4.21: Class Diagram of the output communication

OutputCommunication
– Purpose: Send message (error, warning, information or interferogram) to the external
communication device

– Attributes: Service, byte buffer to send data, log to send, message

Figure 4.22: OutputCommunication Activity Diagram

28

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

4.3.3 Check component

Figure 4.23: Class Diagram of the check layer

Watchdog
– Purpose: Check if all threads are always alive, have not missed their deadlines and log
an error whether a thread did not notify its aliveness

Figure 4.24: Watchdog Activity Diagram

AlivenessRegister
– Purpose: Register information about the aliveness of all threads
– Attributes: List which thread has notified its aliveness
– Operations: Update the state of a thread, read the list of thread states

29

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

4.3.4 Scheduling the Function Layer (Logic & Check)

The schedulability analysis is also a part of the logic and check components, because the de-
velopment of an embedded real-time application supposes that the processor and other shared
components need to be scheduled. First, we know that scheduling is based on three concepts:

- an algorithm for allocating the resources (scheduling mechanism)

- an algorithm for ordering access to resources (scheduling policy)

- a mean of predicting the worst-case behaviour of the system when the policy and mechanism
are applied (schedulability analysis)

Scheduling mechanism

We will use the Fixed Priority Scheduling (FPS) mechanism in a preemptive scheme for this
purpose, a common way to schedule real-time systems: it is used in Ravenscar-Java profile. A
static-priority algorithm assigns all priorities at design time, and those priorities remain constant
for the lifetime of the task : we are in this case [18].

Scheduling policy

Theoretical approach We have to follow five assumptions [15] in order to make the schedulabil-
ity analysis possible. These assumptions are as follows [18], p. 48 ; we can underline that “Not all
of these assumptions are absolutely necessary, and the effects of relaxing them will be discussed
in a later section.”

1. The requests for all tasks for which hard deadlines exist are periodic, with constant interval
between requests.

2. Deadlines consist of run-ability constraints only – i.e. each task must be completed before
the next request for it occurs.

3. The tasks are independent in that requests for a certain task do not depend on the initiation
or the completion of requests for other tasks.

4. Run-time for each task is a constant for that task and does not vary with time. Run-time here
refers to the time which is taken by a processor to execute the task without interruption.

5. Any aperiodic tasks in the system are special; they are initialization or failure recovery
routines; they displace periodic tasks while they themselves are being run, and do not
themselves have hard, critical deadlines.

The deadline monotonic conditions There exists some scheduling algorithms, as Rate Mono-
tonic (RM) policy. We can try ([14] p.474) to use the Deadline Monotonic policy [8]. We cannot use
RM for instance because it needs deterministic deadlines exactly equal to periods, and we have
some tasks with a deadline different from the period. Both (RM and DM) could be supported on
the implementation of the Ravenscar Java Profile as said in section 6.1 of [28]. We chose to use
a Wikipedia article as a start to verify some conditions of the Deadline monotonic scheduling.
From [1] it is written:

1. All tasks have deadlines less than or equal to their minimum inter-arrival times (or periods).
This condition is satisfied, according to the next section.

2. All tasks have worst case execution times that are less than or equal to their deadlines. We
can assume this condition is satisfied.

3. All tasks are independent and so do not block each others execution (for example by accessing
mutually exclusive shared resources). We have to consider this condition in our Response Time
Analysis by using a “Blocking” term in the equations.

30

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

4. No task voluntarily suspends itself. We do not have this kind of action in the system. This
condition is satisfied.

5. There is some point in time, referred to as a critical instant, where all of the tasks become
ready to execute simultaneously. Yes, we have this critical point in the system, at the start. This
condition is satisfied.

6. Scheduling overheads (switching from one task to another) are zero. According to the manual
of aJ-100 [6], Thread to thread yield in less than 1 µs. In our system, the smallest deadline is 200 µs.
We can assume that the Scheduling overhead is negligible, so it can be ignored. This condition is
satisfied.

7. All tasks have zero release jitter (the time from the task arriving to it becoming ready to
execute). We can assume this condition is satisfied.

We will use DM [14], p.484 (Scheduling) to give priorities to our tasks, because when D < T,
Deadline Monotonic priority ordering is optimal. The general principle is the fixed priority is
decided implies the following way [17] :

Di < D j ⇒ Pi > P j

Priorities of processes Note : If there is no deadline specified for a task we assumed that it is
equal to its period (for a periodic task) or minimal inter-arrival time (for a sporadic task) according
to [27]. Moreover we decide when deadlines are equals between tasks to assign a arbitrary priority.

Task Type T (ms) D (ms) C (ms) P U
Acquirement sporadic 0.333 0.2 0.04 13 0.2
Temperature
regulation
(×4)

periodic 1000 100 2.5 9..12 0.025×4

Temperature
reading (×4) periodic 200 200 1 5..8 0.01×4

Monitoring periodic 333 333 30 4 0.09
Output com-
munication periodic 333 333 15 3 0.045

Input com-
munication periodic 500 500 25 2 0.045

Watchdog periodic 8000 8000 80 1 0.01

Table 4.2: Table of priorities using the DMS. T is the period or inter-arrival minimal time, D the
deadline, C the worst case computation time, P the priority and U the Utilization.

Schedulability analysis

These are the shared resources we have : TemperatureBuffer(1 to 4), Logger, AlivenessRegister, Acquire-
mentRegister, Interferogram, AcquirementMode. So, we need to compute Bi, which is the maximum
blocking time that process i can suffer. K is the number of critical sections (resources).

Bi =

K∑
k=1

usage(k, i)C(k)

See Table 4.3 for C(k).
The worst blocking time (Bi) for each process is in Table 4.4. We followed the basic model to

compute Bi proposed in [14], p.489.

31

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Name of the shared resource C (worst-case execution time)
TemperatureBuffer4 0.1 ms
TemperatureBuffer3 0.1 ms
TemperatureBuffer2 0.1 ms
TemperatureBuffer1 0.1 ms
Logger 0.1 ms
AlivenessRegister 0.1 ms
Interferogram 0.01 ms
AquirementRegister 0.04 ms
AquirementMode 0.01 ms

Table 4.3: Worst-case execution time for each shared resource

We will use this formula to compute the response time of each tasks (we have to consider the
blocking Bi):

Ri = Ci + Bi +

i−1∑
j=1

⌈Ri

T j

⌉
C j

Applied to our example we can have the results (all results are in milliseconds) in Table 4.5.

Conclusion

All the results from the assessments (Response time analysis) prove that the system is schedulable,
or at least, seems to be a priori. The worst response time of each process is always less or equal to
its deadline, so that it indicates us that it is impossible to miss a deadline, with all the values we
have defined. We considered that we have chosen a quite pessimistic computation time for each
process; in the real case we expect to find lower values. Anyway, the response time analysis will
be also done a posteriori in the implementing and testing process (see 5.2.3).

32

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

Process Shared resources Worst-case
blocking time Bi

Acquirement

AcquirementMode

0,16 msAcquirementResister
AlivenessRegister
Interferogram

Temperature regulation #4 AlivenessRegister 0.2 msTemperatureBuffer#4

Temperature regulation #3 AlivenessRegister 0.2 msTemperatureBuffer#3

Temperature regulation #2 AlivenessRegister 0.2 msTemperatureBuffer#2

Temperature regulation #1 AlivenessRegister 0.2 msTemperatureBuffer#1

Temperature reading #4 AlivenessRegister 0.2 msTemperatureBuffer#4

Temperature reading #3 AlivenessRegister 0.2 msTemperatureBuffer#3

Temperature reading #2 AlivenessRegister 0.2 msTemperatureBuffer#2

Temperature reading #1 AlivenessRegister 0.2 msTemperatureBuffer#1

Monitoring

AcquirementMode

0.25 ms

AcquirementRegsiter
AlivenessRegister
Logger
TemperatureBuffer#1
TemperatureBuffer#2
TemperatureBuffer#3
TemperatureBuffer#4

Output Communication
AlivenessRegister

0.2 msInterferogram
Logger

Input Communication AcquirementMode 0.1 msAlivenessRegister

Watchdog AlivenessRegister 0 msLogger

Table 4.4: Blocking time for processes

33

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Task Priority T C D R B I
Watchdog 1 8000 80 8000 188.1 0 108.1
Input communication 2 500 25 500 97.32 0.1 72.22
Output communication 3 333 15 333 69.02 0.2 53.82
Monitoring 4 333 30 333 52.03 0.25 21.74
Temperature reading #1 5 200 1 200 17.86 0.2 15.74
Temperature reading #2 6 200 1 200 16.74 0.2 15.54
Temperature reading #3 7 200 1 200 15.58 0.2 14.38
Temperature reading #4 8 200 1 200 12.76 0.2 11.56
Temperature regulation #1 9 1000 2,5 100 11.6 0.2 8.9
Temperature regulation #2 10 1000 2,5 100 8.78 0.2 6.36
Temperature regulation #3 11 1000 2,5 100 5.92 0.2 3.22
Temperature regulation #4 12 1000 2,5 100 3.1 0.2 0.4
Acquirement 13 0.333 0,04 0.2 0.2 0.16 0

Table 4.5: Worst case response time (R) of the processes, according to an use and a modification
of an excel sheet [23]

4.3.5 Data component

Figure 4.25: Class Diagram of the acquirement register

AcquirementRegister
– Purpose: Register information about the acquirement (elapsed time, number of mea-
surements, min and max of the mirror speed, ...)

– Attributes: Initial time, measurement count, failed measurement count, minimal and
maximum mirror speed

– Operations: Read elapsed time, update/read measurements count, update/read min and
max of the mirror speed

Figure 4.26: Class Diagram of the acquirement mode

AcquirementMode
– Purpose: Register the mode of the acquirement
– Attributes: Mode
– Operations: Update/read the mode of the acquirement

34

CHAPTER 4. DESIGN 4.3. DETAILED DESIGN

Figure 4.27: Class Diagram of the interferogram

Interferogram
– Purpose: Register all measurements taken by the acquirement and compute the final
interferogram

– Attributes: State, table of all measurements, table of the interferogram’s values
– Operations: Update the interferogram’s state, compute the interferogram, add a mea-
surement, initialize the interferogram, give the interferogram values in byte

Figure 4.28: Class Diagram of the logger and log

Logger
– Purpose: Register all information which have to be sent by the external communication
device

– Attributes: A table of all logs
– Operations: Add a new log, read and remove the next log to send

Log
– Purpose: Register any information
– Attributes: Status of the message (error, warning, information,...), message
– Operations: Initialize a log, read status/message

Figure 4.29: Class Diagram of the temperature buffer

TemperatureBuffer
– Purpose: Register temperature values read by the sensor
– Attributes: Buffer to store temperature values
– Operations: Add a new temperature value, read the average of the temperature values

35

4.3. DETAILED DESIGN CHAPTER 4. DESIGN

Figure 4.30: Class Diagram of the PID

PID
– Purpose: Compute the Proportional Integral Derivative

Figure 4.31: Class Diagram of the monitor register

MonitorRegister
– Purpose: Register the environment state
– Attributes: Ready (true/false according to environment ready/not ready)
– Operations: Read/update the environment state

4.3.6 Communication component

Figure 4.32: Class Diagram of the communication layer

CDLCService
– Purpose: Send and receive data on a socket
– Attributes: Input and output stream to send data
– Operations: Send/receive data

36

Chapter 5

Implementation & Testing

This part discusses implementation & testing. The purpose of this part is to show how we have
developed the application and how we have tested it. Each part of the realisation has followed an
iterative process: implementation then testing, etc.

5.1 Implementation

This section discusses implementation. The section shows what kind of tools we used and the
coding conventions that we have chosen.

5.1.1 Software usage

We used various applications in order to run the project. Some of them are dependent of the aJ-100
processor.

Eclipse Eclipse is an IDE1 which allows computer application development. We used Eclipse to
write the Java source code and this report with a SVN2 server.

JEMBuilder JEMBuilder is an application provided by aJile Systems in order to compile Java
classes into a binary file which can be executed on the aJ-100 processor.

Charade Charade is a software provided by aJile Systems to handle the loading and the execution
of a program on the aJ-100 processor.

5.1.2 Coding conventions

Every class of our application follows the same coding conventions. All the documentation is
written with the javadoc standard. Each class file begins by its name, the package and the import
declarations and finally by the class documentation:

/*

* Logger.java

*/

package org.ftir.data;

/**

* Defines a <code>Logger</code>.

*

1Integrated Development Environment
2Subversion

37

5.2. TESTING CHAPTER 5. IMPLEMENTATION & TESTING

* @version 1.0.0 26/10/2006

* @author Thomas Baron

* @author Gael Mercier

* @author Philippe Jean

*/

The following is the standard Java file with every field and method documented.

5.2 Testing

This section discusses the testing phase. Testing is the process used to check the correctness,
completeness, security and quality of developed application. In our case, we have specified a set
of tests in order to verify the robustness of the embedded real-time application.

There are two major approaches to testing. The first one is called black box testing3 and the
second one is called white box testing4.

Black box testing Black box testing alludes to tests that are conducted at the software interface.
Test cases demonstrate that software functions are operational, that input is properly accepted
and output is correctly produced. Black box testing requires the software engineer to derive sets
of input conditions that will fully exercise all functional requirements for a program.

White box testing White box testing alludes to tests that are conducted with knowledge of the
program structure and it exercises every logical path of the software. Using white box testing
methods, the software engineer produces test cases that guarantee that all independent paths
within a module have been exercised at least once, exercise all logical decisions on their true and
false sides, execute all loops at their boundaries and within their operational bounds and exercise
internal data structures to assure their validity. All these tests should give expected results.

The unit testing and integration testing are white box testing. The acceptance testing is black
box testing.

5.2.1 Unit Testing

Unit testing aims at finding defects in individual classes. Unit test is procedure used to validate
that a particular module of source code is working properly. Ideally, each test case is independent
from the others; auxiliary objects can be used to assist in testing a module in isolation. Besides,
unit testing provides a sort of living document. Clients and other developers looking to learn how
to use a module can look at its unit test to determine how to use it to fit their needs and gain a
basic understanding of the interface.

Procedure

For our application, unit tests were developed for every relevant module. Unit testing were not
conducted for the functional part5 because that is covered by the first level of integration testing.
For the rest of the application, unit testing were conducted using the library JUnit. For each tested
class, another is created named in the same way with the suffix Test. Each test class can be run
independently from the others.

Example

Class Logger was tested as well as other classes of package org.ftir.data. First of all, a class
called LoggerTest was created. This class derives class TestCase of library JUnit. Then, three
test methods were developed in order to validate the whole class by passing through all logical

3Also called functional testing
4Also called structural testing
5Package org.ftir.logic and class org.ftir.check.Watchdog

38

CHAPTER 5. IMPLEMENTATION & TESTING 5.2. TESTING

paths. Figure 5.1 shows classes Logger and LoggerTest. Figure 5.2 shows the source code of
the first test of LoggerTest called testLogger. This test aims at testing the constructors of class
Logger. Figure 5.3 shows the execution trace of class LoggerTest. In that picture, the three dots
mean that there are three successful tests. If a test failed, the dot is replaced by a ‘F’.

Figure 5.1: Classes Logger and LoggerTest

public void testLogger() {

// constructs a Logger and tests whether the capacity // and the log

count are properly initialized Logger lgr1 = new Logger();

Assert.assertTrue(lgr1.getCapacity() == Logger.DEFAULT_CAPACITY);

Assert.assertTrue(lgr1.getLogCount() == 0);

Assert.assertFalse(lgr1.hasLog());

// the same as the previous one but while specifying the capacity int

capacity = 16; Logger lgr2 = new Logger(capacity);

Assert.assertTrue(lgr2.getCapacity() == capacity);

Assert.assertTrue(lgr2.getLogCount() == 0);

Assert.assertFalse(lgr2.hasLog());

}

Figure 5.2: Example testLogger

... Time: 0,11

OK (3 tests)

Figure 5.3: LoggerTest standard output

39

5.2. TESTING CHAPTER 5. IMPLEMENTATION & TESTING

5.2.2 Integration Testing

Integration testing is the phase in which individual software modules are combined and tested as
a group.

Procedure

In our application, integration testing were conducted in the functional layer6. Unit testing has
already covered the model layer. First of all, in order to test a function, a sequence diagram were
drawn to describe expected method calls between the function and other classes. Then, a test
class is created to activate the function. Finally, the test class is run with a trace library to get the
sequence of method calls. To validate the test, the sequence diagram and the method call trace
have to be compared manually. No automatic test validation is used for integration testing.

Example

Figure 5.4 shows the sequence diagram of the function TemperatureRegulation. Figure 5.5 shows
the test class of the function TemperatureRegulation. Figure 5.6 shows the command line to get
the method call trace. Figure 5.7 shows the trace of method calls. That is relevant at the level of
method run. Indeed, we can see expected messages: getAverage, compute, setLevel, setLevel
and notify.

Figure 5.4: Scenario Temperature Regulation

6Package org.ftir.logic and class org.ftir.check.Watchdog

40

CHAPTER 5. IMPLEMENTATION & TESTING 5.2. TESTING

/*

* TemperatureRegulationTest.java

*/

package org.ftir.logic;

import org.ftir.check.AlivenessRegister;

import org.ftir.data.FunctionIdentifiers;

import org.ftir.data.Logger;

import org.ftir.data.Reference;

import org.ftir.data.TemperatureBuffer;

import org.ftir.device.Cooler;

import org.ftir.device.DeviceException;

import org.ftir.device.Heater;

/**

* Defines the test used as integration test of the function

* <code>TemperatureRegulation</code>.

*

* @version 1.0.0 21/11/2006

* @author Thomas Baron

* @author Gael Mercier

* @author Philippe Jean

*/

public class TemperatureRegulationTest implements FunctionIdentifiers {

static public void main(String[] args) {

new AlivenessRegister();

new Logger();

TemperatureBuffer buffer = new TemperatureBuffer();

TemperatureRegulation regulation = new TemperatureRegulation(

TEMPERATURE_REGULATION_1,buffer,Reference.TEMPERATURE_1,

new HeaterCoolerImpl(),new HeaterCoolerImpl());

regulation.run();

}

static private class HeaterCoolerImpl implements Heater,Cooler {

public void setLevel(int level) throws DeviceException {}

}

} // class ------------------------- TemperatureRegulationTest

Figure 5.5: class TemperatureRegulationTest

java -jar ..\lib\trace.jar -classpath ..\classes -noID -exclude StringBuilder

-exclude DeviceException org.ftir.logic.TemperatureRegulationTest

Figure 5.6: Trace command line

5.2.3 Results of the schedulability

In order to check the schedulability analysis and its evaluation (see 4.3.4), we have a program for
each thread that compute its capacity time (the worst time capacity to be precise), to know if it is
in the good bound.

For instance, the worst case computation time we allowed for the Acquirement was 40 µs.

41

5.2. TESTING CHAPTER 5. IMPLEMENTATION & TESTING

|org.ftir.logic.TemperatureRegulationTest.main([Ljava.lang.String;)

||org.ftir.data.Reference.<clinit>() ||org.ftir.data.Reference.<clinit>

||getValue(org.ftir.data.Reference) ||getValue=34.0

||run(org.ftir.logic.TemperatureRegulation)

|||getAverage(org.ftir.data.TemperatureBuffer) |||getAverage=0.0

|||compute(org.ftir.data.PID, -34.0) |||compute=-170.0

|||setLevel(org.ftir.logic.TemperatureRegulationTest$HeaterCoolerImpl, 0)

|||setLevel

|||setLevel(org.ftir.logic.TemperatureRegulationTest$HeaterCoolerImpl, 5)

|||setLevel

|||org.ftir.check.AlivenessRegister.getInstance()

|||org.ftir.check.AlivenessRegister.getInstance=org.ftir.check.AlivenessRegister

|||notify(org.ftir.check.AlivenessRegister, 8)

|||notify

||run

|org.ftir.logic.TemperatureRegulationTest.main

Figure 5.7: TemperatureRegulationTest standard output

Thread Capacity
Watchdog 35 µs
Acquirement 35 µs
Monitoring 389 µs
TemperatureReading 28 µs
TemperatureRegulation 129 µs

Table 5.1: Thread capacities

We have tested each “branch” of the Acquirement thread and the worst case computation time is
35 µs, which is less than 40 µs. For the other results, the experience give us results under 10 or 100
times under the maximum we estimated (the Monitoring uses 389 µs of computation time, but in
our theorical approach it could use 30.000 µs).

We also had to make some modifications (e.g. priorities) to make our design fit with the
Ravenscar implementation [28].

5.2.4 Acceptance Testing

After the programmers have made the unit testing and the integration testing, the realisation of
a software product ends up by acceptance testing. It is the last test done, by the end user or the
customer. It is a suite of black box tests that demonstrates confirmity with requirements.

Customer’s point of view: It is the only test where the customer is responsible for. The tests
have to be done in the environment of the end user. This question is a bit complicated in our case,
because we have made a simulation, and the system is not exactly suitable to real instruments of
FOSS company.

Defining acceptance criteria: Before starting the acceptance test, we should know what criteria
(we can make a link with the design criteria we have defined in 4.1) will be used to decide whether
the system is acceptable or not. Does the system have to be perfect? No, but the acceptance criteria
should define how the decision will be made. We can assume that the customer can accept a type
of small errors related to a low level criteria, but there some other levels of errors that will make
the system unacceptable. The customer can also want to validate the other steps of testing [20]:
“Part of the acceptance criteria may be to revalidate some of the other system tests. For instance,
the customer may want to thoroughly test security, response times, functionality, etc. even if some
of these tests were done as a part of system testing.”

42

CHAPTER 5. IMPLEMENTATION & TESTING 5.2. TESTING

5.2.5 Environment Model

In order to test our application on the aJile processor, we implemented a mock environment that
allows us to simulate temperature variation at the different parts of an FTIR. This environment
includes formulas to calculate the temperature variation. Each of the four places has its own
formula more or less different from the others.

Thermobox The thermobox is the place which contains the three others. The formula of the
temperature variation is the following:

dX1

dt
= [C1 ·U1] − [D1 · V1 +DD1] +

[
E1 ·
(
Xavg − X1

)]
C1 = 0.12, Heating Coefficient
U1 = 0..n, Heating Level
D1 = 0.12, Cooling Coefficient
V1 = 0..n, Cooling Level
DD1 = 0.30, External Diffusion Constant
E1 = 0.06, Internal Diffusion Coefficient
Xavg, Current Temperature Average
X1, Current Temperature

Cuvette The cuvette is the place where the sample is located. The formula of the temperature
variation is the following:

dX2

dt
= [C2 ·U2] − [D2 · V2] +

[
E2 ·
(
Xavg − X2

)]
C2 = 0.12, Heating Coefficient
U2 = 0..n, Heating Level
D2 = 0.12, Cooling Coefficient
V2 = 0..n, Cooling Level
E2 = 0.06, Internal Diffusion Coefficient
Xavg, Current Temperature Average
X2, Current Temperature

Interferometer The interferometer is the place where the mirror is located. The formula of the
temperature variation is the following:

dX3

dt
= [C3 ·U3] − [D3 · V3] +

[
E3 ·
(
Xavg − X3

)]
C3 = 0.12, Heating Coefficient
U3 = 0..n, Heating Level
D3 = 0.12, Cooling Coefficient
V3 = 0..n, Cooling Level
E3 = 0.06, Internal Diffusion Coefficient
Xavg, Current Temperature Average
X3, Current Temperature

Infrared The infrared is the place where the infrared is located. The formula of the temperature
variation is the following:

dX4

dt
= [C4 ·U4] + [CC4 ·W4] − [D4 · V4] +

[
E4 ·
(
Xavg − X4

)]
C4 = 0.12, Heating Coefficient
U4 = 0..n, Heating Level
CC4 = 0.25, Infrared Heating Coefficient
W4 = 0..1, Infrared Activation (On/Off)
D4 = 0.12, Cooling Coefficient

43

5.2. TESTING CHAPTER 5. IMPLEMENTATION & TESTING

V4 = 0..n, Cooling Level
E4 = 0.06, Internal Diffusion Coefficient
Xavg, Current Temperature Average
X4, Current Temperature

44

Chapter 6

Conclusion

This part concludes this report and gives a perspective on our work on designing and implement-
ing an embedded real-time application.

6.1 Summary

At the beginning of this report, we have exposed the goal of our work through three questions.
After presenting to you the different aspects of our work, we are able to answer these questions.

How to design a system with an object-oriented method? We used an object-oriented method [19]
to design an embedded real-time system. This method provides a method to get an analysis doc-
ument and a design document. To develop an application during a project, it is very important to
get such a method and to follow it. In our case, chapters concerning the problem domain analysis,
the application domain analysis and the design were elaborated with this method. It allowed not
to be lost during the analysis and the design. Consequently, we can say that the Object-Oriented
Analysis & Design method was an asset for the realisation of this project.

How to use the Ravenscar-Java Profile in this industrial case? Since there is not much feedback
about developing industrial application using the Ravenscar-Java profile, our work was like
adding one of the first bricks to a wall. However, the profile appeared to be very straightforward
to understand and thus to use. Besides, the aim of the profile was to be more simple than the
Real-Time Specification for Java. Concretely, only one class is dependent of the profile. The rest
of the application is completely independent of the profile. This is due to the two phases of the
profile [28]. Indeed, there are the initialization phase and the mission phase. The class which is
dependent of the profile belongs to the initialization phase and the rest of the application belongs
to mission phase. The way to design this application based on the profile phases makes it usable,
maintainable, testable and comprehensible. In conclusion, we can say that using the Ravenscar-
Java profile in industrial case is very intuitive and efficient.

Is the implementation suitable for the case? Another purpose of our work was to know whether
the Ravenscar-Java profile implementation on the aJ-100 processor is suitable for industrial cases.
According to the results we get from our tests, we can say that the implementation is suitable
for our case. However, this implementation presented some restrictions opposite the original
Ravenscar-Java profile. Indeed, the implementation does not allow every memory management
that was originally defined in the Ravenscar-Java profile. Indeed, the implementation only allows
immortal memory management [28]. Consequently, we had to write Java code in a way that we were
not used to. However, this restriction was only a little constraint. Except the matter of memory
allocation, the Ravenscar-Java profile implementation was a straightforward API1 to design an
embedded real-time application. Indeed, we did not have to deal with the specific aJ-100 API.
Thanks to this implementation of the Ravenscar-Java profile, we can say that our application
meets the temporal correctness criterion.

1Application Programming Interface

45

6.2. DISCUSSION CHAPTER 6. CONCLUSION

6.2 Discussion

Analysis The analysis was conceived thanks to information bring by the custumer representa-
tive. However, we do not get all necessary information about devices used by the application like
the mirror or the thermostat. Consequently, we had to make a choice during the analysis phase in
order to finish it and to move further on. Except the matter of device behavior, we has followed
the information given by the custumer representative, as much as possible.

Environment model In order to test and to run our application, we had to develop an environ-
ment model including the temperature simulation environment. This model has been developed
only to run the application and cannot be interpreted as a fair representation of a real environment.
Thus, the weak point of the application is that it was developed with an environment model and
has been never tested with a real environement.

6.3 Further work

There are two further steps after the end of the work depicted in this report. They can be handled
at any time since our application is running.

The first one is to inquire FOSS about our work to get some feedback. A feedback from FOSS
can allow to validate or not our choices concerning the devices used by the application. Indeed, it
misses some details about the behavior of those devices. To handle this, it requires to modify the
analysis part, then the design part and finally the implementation part.

The second step is to test the application with the real environment. Indeed, we have only
tested the application with a simulated environment. It should be very interesting to see how the
application react with a real environment. The aim of this step is to validate or not our choices
regarding the temperature regulation. So, a consequence of this could be the modification of the
temperature regulation part in order to work with a real environment.

46

Bibliography

[1] http://en.wikipedia.org/wiki/Deadline-monotonic_scheduling.

[2] http://en.wikipedia.org/wiki/Fourier_transform_spectroscopy.

[3] http://en.wikipedia.org/wiki/Stepper_motor.

[4] http://www.cs.aau.dk/ravenscar.

[5] http://www.jstik.com. Systronix homepage: http://www.systronix.com/.

[6] Inc. aJile Systems. aJ-100 Reference Manual, December 2001. Version 2.1. Web page : http:
//www.ajile.com/downloads/aJ-100ReferenceManual.pdf.

[7] P. Amey and B. Dobbing. High integrity Ravenscar. In 8th International Conference on Reliable
Software Technologies – Ada-Europe 2003 (AE03), Toulouse, France, 2003.

[8] N. Audsley. Deadline monotonic scheduling (department of computer science, University of
York), 1990.

[9] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, M. Turnbull, and R. Belliardi.
JSR 1: Real-time specification for Java. Java Community Process, 11/12/2001.

[10] G. Bollella and J. Gosling. The Real-Time Specification for Java. Computer, 33(6):47–54, 2000.

[11] B. M. Brosgol. A comparison of the concurrency features of Ada 95 and Java. ACM SIGADA
Ada Letters, 18(6):175–192, November/December 1998.

[12] A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the Ada Ravenscar profile in
high integrity systems, 2003.

[13] A. Burns and A. J. Wellings. HRT-HOOD: A structured design method for hard real-time
systems. Real-Time Systems, 6(1):73–114, 1994.

[14] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison Wesley,
1997.

[15] P. S. Heidmann. Rate monotonic analysis, an overview. Paul S. Heidmann is also the
writer of “A Statistical Model for Designers of Rate Monotonic System” Homepage: http:
//www.heidmann.com/paul/.

[16] J. Kwon, A. J. Wellings, and S. King. Ravenscar-Java: A high integrity profile for real-time
Java, 2002.

[17] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation North Holland, 2:237–250, 1982.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[19] L. Mathiassen, A. Munk-Madsen, P. A. Nielsen, and J. Stage. Object Oriented Analysis and
Design. Marko Publishing ApS, Aalborg, Denmark, 2000.

47

BIBLIOGRAPHY BIBLIOGRAPHY

[20] T. Mochal. Acceptance testing: The customer is the ultimate judge. http://builder.com.
com/ , 2001.

[21] L. M. Pinho and F. Vasques. To Ada or not to Ada: Adaing vs. Javaing in real-time systems.
ACM SIGADA Ada Letters, 19(4):37–43, December 1999.

[22] P. P. Puschner and A. J. Wellings. A profile for high-integrity real-time Java programs. In
Fourth International Symposium on Object-Oriented Real-Time Distributed Computing, pages 15–
22. IEEE Computer Society, 2001.

[23] A. P. Ravn. Response time calculation, http://www.cs.aau.dk/˜apr/RTS/responsetime.
xls.

[24] B. I. Sandén. Real-time programming safety in Java and Ada. Ada Lett., XXIII(2):32–46, 2003.

[25] D. Selvarajan. Implementation of real time Java using KURT (report of Bachelor of engineer-
ing, Bharathiar University, Coimbatore, India), 2000.

[26] H. Søndergaard. Periodic threads on aJ-100. Technical report, University College - Vitus
Bering Denmark, 2004.

[27] H. Søndergaard. FOSS Case : FTIR. Technical report, University College - Vitus Bering
Denmark, 2006. version 1.4.

[28] H. Søndergaard, B. Thomsen, and A. P. Ravn. A Ravenscar-Java profile implementation.
In JTRES ’06: Proceedings of the 4th international workshop on Java technologies for real-time and
embedded systems, pages 38–47, New York, NY, USA, 2006. ACM Press.

[29] V. S. Warrier. Java based implementation of communication protocol stacks for utility indus-
try, http:www.kalkitech.com/downindex/JavaStackWP1.0.pdf.

48

Appendix A

CD-ROM enclosed

The attached CD-ROM contains the following:

• Source code

• Test batch files

• UML diagrams

• Javadoc

• Readme

• build.xml

• PDF files of references

• Latex files of this report

49

