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DESIGN AND IMPLEMENTATION OF
A SECURE MODBUS PROTOCOL

Igor Nai Fovino, Andrea Carcano, Marcelo Masera and Alberto Trom-
betta

Abstract The interconnectivity of modern and legacy supervisory control and
data acquisition (SCADA) systems with corporate networks and the In-
ternet has significantly increased the threats to critical infrastructure
assets. Meanwhile, traditional IT security solutions such as firewalls,
intrusion detection systems and antivirus software are relatively inef-
fective against attacks that specifically target vulnerabilities in SCADA
protocols. This paper describes a secure version of the Modbus SCADA
protocol that incorporates integrity, authentication, non-repudiation
and anti-replay mechanisms. Experimental results using a power plant
testbed indicate that the augmented protocol provides good security
functionality without significant overhead.
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1. Introduction
Information and communications technology (ICT) systems are prone to

vulnerabilities that can be exploited by malicious software and agents. Modern
critical infrastructure assets (e.g., power plants, refineries and water supply
systems) use ICT systems to provide reliable services and offer new features.
Many maintenance and management operations at these installations involve
the use of supervisory control and data acquisition (SCADA) systems, and are
conducted remotely using public networks, including the Internet. While the
automation and interconnectivity contribute to increased efficiency and reduced
costs, they expose critical installations to new threats.

Several studies (see, e.g., [7, 15]) have discussed the threats to critical in-
frastructure assets. According to Carcano, et al. [4], critical infrastructures are
exposed to serious ad hoc attacks that can interfere with – or even seize control
of – process control networks at industrial installations. When one considers
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the criticality of the activities performed by a process control network (e.g.,
gas turbine operation or refinery control), an attack could have devastating
consequences to the installation itself as well as other infrastructures due to
cascading effects.

The use of traditional ICT security techniques (e.g., firewalls, intrusion de-
tection systems and antivirus software) are effective at dealing with vulnera-
bilities in corporate networks [15]. However, they do not address attacks that
specifically target process control networks. A major concern is the intrinsic
weakness of communication protocols used in the SCADA systems that monitor
and control field devices in critical infrastructure installations.

SCADA protocols such as Modbus, DNP3 and PROFIBUS were designed
decades ago for serial communications between SCADA devices (masters and
slaves). Because of network isolation and low threat levels, security features
such as authentication, integrity and confidentiality were not considered in
SCADA protocol design and implementation. However, with the advent of the
Internet era, SCADA vendors began to port SCADA protocols over TCP/IP,
offering flexible, economical solutions that also provided interoperability with
legacy SCADA implementations. As a result, SCADA networks are highly vul-
nerable to attacks that would be considered obsolete in the ICT context. For
example, as Carcano, et al. [4] have demonstrated, the lack of authentication,
integrity and non-repudiation mechanisms in SCADA protocols makes it pos-
sible to create ad hoc viruses that compromise master devices and cause them
to send potentially destructive messages to sensors and actuators.

This paper describes the design and implementation of a “secure” Modbus
protocol that satisfies the basic security requirements of modern ICT protocols.
Experiments with the new protocol demonstrate that it is feasible to augment
existing SCADA protocols with security mechanisms without incurring signifi-
cant real-time performance penalties.

2. Related Work
Most critical infrastructure components adopt network architectures that

are tailor-made to the specific systems being operated. These systems also use
dedicated SCADA architectures and protocols whose vulnerabilities and attack
patterns are different from traditional ICT systems and networks.

Creery and Byres [6] present a detailed analysis of the threats affecting
a power plant. In particular, they categorize the devices used in the plant
and discuss intrinsic vulnerabilities in the devices and how they relate to the
overall power plant architecture. Chandia, et al. [5] describe several strategies
for securing SCADA networks; their strategies are designed to reduce overhead
and to accommodate legacy SCADA systems.

Other researchers have focused on securing SCADA communication proto-
cols. For example, Majdalawieh, et al. [13] present an extension of the DNP3
protocol (DNPSec) that attempts to address some of the well-known secu-
rity problems of master-slave control protocols such as device authentication,
message integrity and message non-repudiation. A similar approach has been
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adopted by Heo, et al. [8]. On the other hand, Mander, et al. [14] present
a proxy filtering solution that attempts to identify and mitigate anomalous
control traffic. The BACnet protocol [2] implements several security features;
however, its authentication mechanism is vulnerable to man-in-the-middle at-
tacks, parallel interleaving attacks and replay attacks [9]. Wright, et al. [19]
present a low latency encryption protocol for SCADA link protection based on
CRC. This protocol is very effective for serial SCADA communications; how-
ever, no updates related to this research effort have been released since 2006.

3. SCADA Systems
This section discusses the main concepts related to information assurance

and SCADA security.
First, we clarify the concepts of “threat,” “vulnerability” and “attack.” As

defined in [11], a “threat” is the potential for a violation of security; it exists
when there is a circumstance, capability, action or event that could breach
security and cause harm. A “vulnerability” is a weakness in the architecture,
design or implementation of an application or service [1, 3]. An “attack” occurs
when a threat agent exploits a system by targeting one or more vulnerabilities.

SCADA systems are widely used to control process systems in industrial
plants. They rely on sensors to gather data and actuators to perform control
actions. A SCADA system typically involves the following actors/components:

Operator: A human operator monitors the SCADA system and performs
supervisory control functions over plant operations.

Human-Machine Interface (HMI): This system presents process data
to the human operator and enables the operator to control the process.
The SCADA system gathers information from PLCs and other controllers
over a network using dedicated application layer protocols. An HMI can
also be connected to a database, which records trends, diagnostic data
and management information (scheduled maintenance procedures, logistic
information, etc.).

Master Terminal Unit (MTU): This master device gathers data from
remote PLCs and actuators, presents the data to the operator via the HMI
and transmits control signals. It contains the high-level control logic for
the system.

Remote Terminal Unit (RTU): This device acts as a slave in the
master/slave architecture. It sends control signals to the device under
control, acquires data from devices, receives commands from the MTU
and transmits the data gathered to the MTU. An RTU could be a PLC.

Securing SCADA systems is an important problem (see, e.g., [15]). How-
ever, while the majority of research efforts have concentrated on addressing
traditional ICT system vulnerabilities, we focus our efforts on the SCADA
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communication protocols that are used by MTUs to send commands and re-
ceive data from RTUs. Several SCADA protocols, e.g., Modbus, DNP3 and
PROFIBUS, have been developed for industrial control applications. We focus
on Modbus, the predominant protocol in the oil and gas sector. The security
flaws of Modbus are well established (see, e.g., [10]).

4. Modbus Protocol
Modbus is an application layer protocol that provides client/server commu-

nications between devices connected on different buses or networks. Modbus
communications are of two types: (i) query/response (communications between
a master and a slave), or (ii) broadcast (a master sends a command to all the
slaves). A Modbus transaction comprises a single query or response frame, or
a single broadcast frame. A Modbus frame message contains the address of the
intended receiver, the command the receiver must execute and the data needed
to execute the command. Modbus TCP basically embeds a Modbus frame into
a TCP frame [16]. The Modbus protocol defines several function codes, each
of which corresponds to a specific command. Example function codes are:

Read Coils (0x01): This function code is used to read the status of
the coils in a remote device. The request specifies the starting address
(address of the first coil) and the number of coils. The coils in the response
message are packed as one coil per bit in the data field. Status is indicated
as 1 = ON and 0 = OFF.

Write Single Coil (0x05): This function code is used to write a single
output in a remote device to ON or OFF. The requested ON/OFF state
is specified by a constant in the request data field. A value of 0xFF00
requests that the output be ON; 0x0000 requests that it be OFF. All
other values are illegal and do not affect the output.

Write Multiple Coils (0x0F): This function code is used to force each
coil in a sequence of coils in a remote device to the status of ON or
OFF. The normal response returns the function code, starting address
and quantity of coils forced.

Most SCADA protocols in use today were designed decades ago, when the
technological infrastructure and threat landscape were quite different from how
they are today. For example, Modbus was originally published in 1979 for a
multidrop network with a master/slave architecture. Because Modbus networks
were isolated and free from security threats, key aspects such as integrity, au-
thentication and non-repudiation were not taken into consideration in the de-
sign of the protocol. The next section discusses Modbus vulnerabilities and
how the vulnerabilities could be exploited by an attacker.
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5. Modbus Vulnerabilities
The transportation of Modbus messages using TCP introduces new levels of

complexity with regard to managing the reliable delivery of control packets in
a process control environment with strong real-time constraints. In addition,
it provides attackers with new avenues to target industrial systems.

Modbus TCP lacks mechanisms for protecting confidentiality and for veri-
fying the integrity of messages sent between a master and slaves (i.e., it is not
possible to discover if the original message contents have been modified by an
attacker). Modbus TCP does not authenticate the master and slaves (i.e., a
compromised device could claim to be the master and send commands to the
slaves). Moreover, the protocol does not incorporate any anti-repudiation or
anti-replay mechanisms.

The security limitations of Modbus can be exploited by attackers to wreak
havoc on industrial control systems. Some key attacks are:

Unauthorized Command Execution: The lack of authentication of
the master and slaves means that an attacker can send forged Modbus
messages to a pool of slaves. In order to execute this attack, the attacker
must be able to access the network that hosts the SCADA servers or the
field network that hosts the slaves. Carcano, et al. [4] show that the
attack can be launched by creating malware that infects the network and
causes malicious messages to be sent automatically to the slaves.

Modbus Denial-of-Service Attacks: An example attack involves im-
personating the master and sending meaningless messages to RTUs that
cause them to expend processing resources.

Man-in-the-Middle Attacks: The lack of integrity checks enables an
attacker who has access to the production network to modify legitimate
messages or fabricate messages and send them to slave devices.

Replay Attacks: The lack of security mechanisms enables an attacker
to reuse legitimate Modbus messages sent to or from slave devices.

Firewalls and intrusion/anomaly detection systems can defend against ad
hoc exploits that target Modbus vulnerabilities. However, it is always possible
to circumvent these security controls. The best way to address the security
threats is to solve them at their origin – by attempting to “repair” the security
holes in the Modbus protocol. But such a solution is difficult to implement
because it requires significant changes to the control system architecture and
configuration. Instead, we adopt a practical approach in which a small number
of security mechanisms are introduced into the protocol to protect against the
attacks described above.

6. Secure Modbus Protocol
A communications protocol is generally considered to be “secure” if it satis-

fies traditional security requirements such as confidentiality, integrity and non-
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Figure 1. Modbus application data unit.

repudiation [3]. In other words, a “secure” Modbus protocol should guarantee
that:

No unauthorized entity is allowed to access the content of a message.

No unauthorized entity is allowed to modify the content of a message.

No entity is allowed to impersonate another entity.

No entity is allowed to negate a performed action.

No entity is allowed to reuse a captured message to perform an unautho-
rized action.

In this work, we do not consider the confidentiality requirement for Modbus
messages for two reasons. First, enforcing confidentiality does not mitigate any
of the attack scenarios presented above. Second, confidentiality is generally
implemented using encryption, which is expensive and introduces considerable
overhead that can impact real-time performance.

The original Modbus Serial protocol defines a simple protocol data unit
(PDU), which is independent of the underlying communication layer (Figure
1). The mapping of Modbus messages to specific buses or networks introduces
additional fields in an application data unit (ADU).

The Modbus TCP protocol introduces a dedicated Modbus application pro-
tocol (MBAP) header. The Slave Address field in a Modbus Serial message is
replaced by a one-byte Unit Identifier in the MBAP Header. Also, the error
checking field is removed and additional length information is stored in the
MBAP header to enable the recipient to identify message boundaries when a
message is split into multiple packets for transmission. All Modbus requests
and responses are designed so that the recipient can verify that the complete
message is received. This is accomplished by simply referring to the function
code for function codes whose Modbus PDUs have fixed lengths. Request and
response messages with function codes that can carry variable amounts of data
incorporate a field containing the byte count.

The proposed Secure Modbus protocol is intended to satisfy the following
security requirements:

Integrity: The integrity of a Secure Modbus packet is guaranteed using
a secure hashing function. The well-known SHA2 hash function is used
to compute a secure digest of the packet, which is transmitted along with
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Figure 2. Secure Modbus application data unit.

the packet. The integrity of the received packet is verified by the receiver
who computes the SHA2 value of the received packet and compares it
with the received digest.

Authentication: The integrity mechanism described above does not
prevent an attacker from creating a malicious Modbus packet, computing
its SHA2 digest, and sending the malicious packet and the digest to the
receiver. To address this issue, the Secure Modbus protocol employs
an RSA-based signature scheme [17]. Specifically, the originator of the
Secure Modbus packet computes the SHA2 digest, signs the digest with
its RSA private key, and sends the packet and the signed digest to the
receiver. The receiver verifies the authenticity of the digest (and the
packet) using the sender’s public key. Thus, the receiver can ensure that
the Secure Modbus packet was created by the purported sender and was
not modified en route.

Non-Repudiation: The RSA-based signature scheme also provides a
non-repudiation mechanism – only the owner of the RSA private key
could have sent the Secure Modbus packet.

Replay Protection: The SHA2 hashing and RSA signature schemes do
not prevent an attacker from re-using a “sniffed” Modbus packet signed by
an authorized sender. Thus, the Secure Modbus protocol needs a mech-
anism that enables the receiver to discriminate between a “new packet”
and a “used packet.” This is accomplished by incorporating a time stamp
(TS) in the Secure Modbus application data unit (Figure 2). The time
stamp is used by the receiver in combination with an internal “time win-
dow” to check the “freshness” of the received packet. Our initial solution
employed a simple two-byte sequence number and provided all Modbus
devices with time windows of limited size to verify freshness. However,
this solution was neither elegant nor completely secure. Consequently, our
current implementation uses NTP time stamps that facilitate the evalu-
ation of freshness with high precision. Of course, employing NTP time
stamps requires an NTP server in the SCADA architecture to provide a
reliable clock for all communicating devices.

The Secure Modbus protocol satisfies the minimum requirements of a “se-
cure” protocol. However, it is just as important to ensure that the protocol can
be implemented efficiently in real-world SCADA environments. Secure Mod-
bus can be readily deployed in SCADA systems with adequate computing re-
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sources, network bandwidth and modern, upgradeable slave devices. However,
many critical infrastructure assets employ decades-old equipment; therefore, it
is important to ensure that legacy systems can be retrofitted (at low cost) to
support Secure Modbus.

We designed the Modbus Secure Gateway to facilitate the deployment of
Secure Modbus in legacy SCADA environments. Figure 3 presents a schematic
diagram of the Modbus Secure Gateway. It is a dedicated multi-homed gateway
that hosts a TCP/IP interface connected to the process network and a set of
point-to-point TCP or serial links connected to legacy slaves. The Modbus
Secure Gateway operates as follows:

When the Modbus Secure Gateway receives a packet on the process net-
work interface:

– It accepts only authenticated Secure Modbus TCP traffic from al-
lowed masters.

– It extracts the Modbus packet from the Secure Modbus packet.

– It forwards the packet to the appropriate slave using the related
point-to-point (serial or TCP) link.

When the Modbus Secure Gateway receives a packet on one of the point-
to-point links connected with a slave:

– It creates a Secure Modbus packet containing the received original
Modbus packet.

– It signs the packet digest with the private key associated with the
slave.
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– It forwards the new packet to the appropriate master through its
process network interface.

The Modbus Secure Gateway constitutes a single point of failure in the
SCADA architecture. Therefore, it should be installed only when the “pure”
Secure Modbus implementation is not feasible.

Next, we summarize the steps involved in sending and verifying a Secure
Modbus request message:

The master creates a valid Modbus request (Mreq) with a time stamp
and the serial slave address.

The master computes the digest of the Modbus request, encrypts the
digest with its private key (pKm) and sends the request along with the
encrypted digest to a slave or to the Modbus Secure Gateway:

C = [TS|Modbus]{SHA2(TS|Modbus)}pKm (1)

The slave or the Modbus Secure Gateway verifies that the Modbus request
is genuine using the master’s public key (sKm):

Mreq = {C}sKm (2)

Note that after verifying that the request is genuine, the Modbus Secure
Gateway reads the unit identifier in the MBAP header and sends the
Modbus request to the addressed slave.

Similar steps are involved when a slave sends a response to the master.

7. Secure Modbus Implementation
The basic communication layer between the operating system and a Secure

Modbus device is implemented using sockets (Level 1). All Secure Modbus pro-
tocol communications send and receive data via sockets. The TCP/IP library
only provides stream sockets using TCP and a connection-based communica-
tion service. Consequently, sockets are created using the socket() function,
which returns a number that is used by the creator to access the socket.

Figure 4 presents the architecture of the Secure Modbus module that im-
plements socket-based communications. The TCP/IP level manages the estab-
lishment and termination of connections, and the data flow in an established
connection. The TCP Stream Builder sets up the connection parameters ac-
cording to the following constraints:

KEEP-ALIVE: Client-server applications use the KEEP-ALIVE time to
detect inactivity in order to close a connection or to identify a com-
munication problem. Using a short KEEP-ALIVE time can cause good
connections to be dropped.
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TCP-NODELAY: The TCP-NODELAY parameter is used for real-time
systems.

TIME OUT CONNECTIONS: By default, a TCP connection is timed
out after 75 seconds. The default value may be adjusted according to the
real-time constraints imposed by the system.

The Secure Modbus module has four main components:

Modbus Stream Builder: This component extracts the Secure Modbus
packet contained in the TCP payload and sends it to the RSA Encryp-
tion/Decryption Unit that verifies the authenticity of the SHA2 digest.
The Modbus Stream Builder then sends the digest to the SHA2 Validator
to verify packet integrity. Finally, it sends the time stamp to the Time
Stamp Analyzer to verify the freshness of the data. If all these conditions
are satisfied, the Modbus Stream Builder sends the Modbus packet to the
appropriate application.

RSA Encryption/Decryption Unit: This unit uses the public key of
the sender to verify the authenticity of the digest and the private key of
the sender to sign the hash message.

SHA2 Validator: This component calculates and validates the hash
values of Secure Modbus request and response messages.
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Modbus ADU Builder/Reader: This unit constructs and manages
Secure Modbus application data units (ADUs). Also, it communicates
with the SHA2 Validator and the RSA Encryption/Decryption Unit to
authenticate packets.

Time Stamp Analyzer: This component verifies the validity of time
stamps using time windows or an NTP service.

The prototype was written in C# (MS.NET Framework version 2.0) under
Microsoft Windows, and was then ported to a standard Linux environment
(Ubuntu 10.0).

8. Experimental Results
The Secure Modbus protocol was tested using an experimental power plant

testbed. Figure 5 shows the components of the SCADA testbed. The principal
components are:

Field Network: This network interconnects the sensors and actuators
that interact with electromechanical devices in the power plant.

Process Network: This network hosts all the SCADA systems. Plant
operators use these systems to manage the power plant, send commands
to sensors and actuators in the field network, and gather plant data and
status information.
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Table 1. Comparison of communication latency.

Modbus TCP Secure Modbus

Scan Rate 500 ms Scan Rate 500 ms
Connection Time Out 1,200 ms Connection Time Out 1,200 ms
Latency 26 ms Latency 27 ms

Scan Rate 200 ms Scan Rate 200 ms
Connection Time Out 500 ms Connection Time Out 500 ms
Latency 29 ms Latency 31 ms

Observer Network: This is a network of sensors that gathers informa-
tion about the system during the experiments.

Horizontal Services Network: This network provides support features
such as backup and disaster recovery.

Intranet: This internal private network connects company PCs and
servers. Some portions of the intranet are connected to the power plant
via the process network.

Data Exchange Network: This network hosts data exchange servers
that receive data from the process network and make it available to op-
erators who use the corporate intranet.

We conducted two experiments to evaluate the performance of the Secure
Modbus protocol. The first experiment examined the latency resulting from
the use of the SHA2 hashing and RSA-based signature schemes. The second
examined the increased size of Secure Modbus packets for various function
codes.

Table 1 compares the communication latency for Modbus TCP and Secure
Modbus. The first set of results, corresponding to a master scan rate of 500
ms and a connection timeout of 1,200 ms, show a latency of 26 ms for Modbus
and 27 ms for Secure Modbus – a negligible difference. A negligible latency
difference of 2 ms (29 ms for Modbus TCP and 31 ms for Secure Modbus) is
also observed for a master scan rate of 200 ms and a connection timeout of 500
ms.

Table 2 compares the size of Modbus TCP and Secure Modbus packets for
four function codes. Secure Modbus packets are larger than the corresponding
Modbus TCP packets. However, the increased size is not a significant issue
even for SCADA networks with low bandwidth.

9. Conclusions
The Secure Modbus protocol offers key security features without introduc-

ing significant overhead that can impact real-time performance. The Modbus
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Table 2. Comparison of packet size.

Function Modbus Secure Overhead
TCP Modbus

Write Coil (0x05) 11 bytes 43 bytes 291%
Write Register (0x06) 12 bytes 44 bytes 267%
Write Multiple Coils (0x0F) 260 bytes 292 bytes 12%
Write Multiple Registers (0x10) 260 bytes 292 bytes 12%

Secure Gateway facilitates the deployment of Secure Modbus in legacy SCADA
environments. While the new protocol helps protect against several attacks,
it does not address scenarios where an attacker seizes control of a master and
sends malicious Modbus messages to slave devices, or where an attacker cap-
tures the master unit’s private key and forges malicious Modbus messages that
are signed with the stolen key. To address the first attack scenario, we are work-
ing on a dedicated filtering unit that will identify suspect Modbus messages.
Our solution to the second scenario is to use a trusted computing platform to
protect key rings. Our future research will also attempt to refine the signature
scheme to improve real-time performance.
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