
Design and Implementation of a Sensor Network
System for Vehicle Tracking and Autonomous

Interception

Cory Sharp Shawn Schaffert Alec Woo Naveen Sastry Chris Karlof
Shankar Sastry David Culler

University of California at Berkeley, USA

Abstract

We describe the design and implementation of PEG, a net-
worked system of distributed sensor nodes that detects an un-
cooperative agent called theevaderand assists an autonomous
robot called thepursuerin capturing the evader. PEG requires
embedded network services such as leader election, routing,
network aggregation, and closed loop control. Instead of using
general purpose distributed system solutions for these services,
we employ whole-system analysis and rely on spatial and
physical properties to create simple and efficient mechanisms.
We believe this approach advances sensor network design,
yielding pragmatic solutions that leverage physical properties
to simplify design of embedded distributed systems.

We deployed PEG on a 400 square meter field using 100
sensor nodes, and successfully intercepted the evader in all
runs. We confronted practical issues such as node breakage,
packaging decisions, in situ debugging, network reprogram-
ming, and system reconfiguration. We discuss the approaches
we took to cope with these issues and share our experiences
in deploying a realistic outdoor sensor network system.

I. I NTRODUCTION

The problem of vehicle tracking with autonomous
interception provides a concrete setting in which to ad-
vance sensor network and control system design. In our
case, wireless sensor nodes containing magnetometers
are distributed throughout an outdoor area to form a
diffuse sensing field. An uncooperative agent, theevader,
enters and moves within this area, where it is detected by
the magnetometers. Unlike environmental monitoring, it
is not sufficient to obtain measurements of the physical
disturbance caused by evader; we want to process the
readings within the network and take action in a timely
matter. Thepursuer, a cooperative mobile agent, enters
the field and attempts to intercept the evader using
information obtained from the sensor network and its
own autonomous control capabilities.

Local signal processing can be performed at each
node to distill higher-level events from magnetic-field
measurements due to motions of multiple vehicles. Clus-
ters of nodes that sense sufficiently strong events can
collectively compute an estimate of the position of the
vehicle causing the disturbance. These potentially noisy
estimations from multiple objects must be disambiguated
and used to make continual pursuer course corrections.

The autonomous interception problem concretely
manifests many of the capabilities envisioned for sensor
networks [1], [2], including several levels of in-network
processing, routing to mobile agents, distributed coordi-
nation, and closed-loop control. We address these issues
in terms of the whole system design, rather than as
isolated subproblems. Indeed, this whole-system view
yields pragmatic solutions that are more simple than
what is generally found in the literature for individual
subproblems.

We built and demonstrated a working purser/evader
system comprising a field of 100 motes spread over
a 400m2 area in July 2003. The evader was a four-
wheeled robot driven by a person using remote control.
The pursuer was an identical robot with laptop-class
computing resources. This paper describes the design,
implementation, and experience with PEG.

Our main contributions are:
• We describe the design and implementation of PEG,

a networked system of distributed sensor nodes that
detects an evader and aids a pursuer in capturing the
evader.

• We employ whole-system analysis and utilize spa-
tial and physical properties to design efficient and
simple distributed algorithms. We believe this ap-
proach is applicable to a variety of applications.

• We demonstrate one of the first realistic outdoor
tracking and pursing system that uses computation-
ally and bandwidth limited sensor nodes.

Fig. 1. Illustration of an intruder interception system using sensor
networks to detect the intruder (arrow) and convey such information
to the pursuing robots. Each pursuer matches the sensor data to its
local map for path estimation and interception of the intruder.

• We share practical advice for deploying realis-
tic outdoor sensor network applications, including
package design, debugging techniques, and high-
level network management services.

II. A PPROACH

Variants of the pursuer-evader problems have been
well studied from a theoretical point of view [3], [4]
and have been used for distributed systems research [5].
Sophisticated algorithms [6], [7] have been developed to
associate readings with logical tracks of multiple objects.
Elaborate data structures are used to deal with dynamic
track creation and elimination of potential tracks caused
by input noise. In addition, there is work [8] on closed
loop control for the autonomous pursuer starting with
various assumptions about what information is provided
to the robot.

The early work on wireless sensor networks observed
that distributing intelligence throughout the sensor array
dramatically simplified the tracking problem [2]. When
dense sensing is employed, each patch of sensors only
has to deal with a few objects in a limited spatial
region. Signal processing is greatly simplified because
the sensors are close to the source, so the SNR is high.
Physical constraints, such as speed of movement, allow
for low-level filtering of false positives.

Others have studied a decentralized form of the
problem where object tracking, classification, and path
estimation are performed by a network of wireless sen-
sors [9], [10]. In this formulation, sensing and detec-
tion are performed by local collaborative groups, each
responsible for tracking a single target. The solution
is cast in traditional distributed system terms with an

explicit representation of the group associated with each
object. Movement of the object involves nodes joining
and leaving the group. Leader election is performed so
that a particular node represents the object at any point in
time and typically as the root of the collaborative signal
processing. Recent work optimizes a single objective
function that combines the cost of signal processing
and tracking with the benefits of obtaining the given
data [11]. Sophisticated programming environments have
been proposed [12], [13] to maintain the distributed data
structure representing each logical entity and the set of
nodes associated with its track. Unsurprisingly, these
studies suggest that quite powerful nodes are required to
perform distributed tracking. In addition, [14] proposes a
higher-level programming environment that uses abstract
regions to simplify development of sensor applications.
Recently, other researchers have begun to focus on the
use of very simple outputs from dense networks of
sensors. For example, [15] explores tracking where each
sensor reports only a single bit of information of whether
the disturbance is getting closer.

We adopt a lightweight approach that stems from
two key observations. First, the autonomous interception
problem admits a natural two-tier hierarchy. The lower
tier of nodes, which are the most numerous and most
resource constrained, are responsible for simple detection
functions and for providing distilled information to a
higher tier. The higher tier is capable of doing more
substantial processing and initiating actions based on the
information. In a basic tracking problem, the higher tier
might include computer-controlled cameras, whereas in
the interception problem it is a mobile pursuer. Elements
in the lower tier generally do not need to know much
about the track or the identity of the object, as their
behavior does not change based on that information. The
robots are power intensive and require substantial local
processing, hence they are a natural point of concentrated
processing.

Second, in-network processing at the lower tier is
essential to conserve bandwidth, thereby reducing con-
tention and keeping notification latency low. The pro-
cessed results need not be perfect as they will be further
analyzed by the higher tier. For example, an inconsistent
leader election may cause two closely related position
estimations for an object at nearly the same time. This is
easily addressed in the higher level processing. Inconsis-
tency is far more benign here than in the settings where
distributed consensus is typically used, for example to
avoid multiple financial transactions [16], [17].

Calibration &
Sensing

Leader Election &
Data Aggregation

Data Filtering Interception
Planning

Pursuer
Navigation

Route to Mobile Pursuer

Nodes near evader

Pursuer

Fig. 2. Logical flow of information in PEG. After the nodes calibrate
their sensors, they listen for events in the network. When events are
sensed near several nodes, a leader is elected to aggregate the data
into one packet. This packet is routed to the moving pursuer via
multi-hop routing. After data filtering and interception planning, the
pursuer chases the evader.

III. SYSTEM ARCHITECTURE

To provide pursuers with accurate detection events
quickly and often, we developed services for detection,
routing, data processing, and pursuit. We provide a sense
of the overall information flow and describe the con-
stituent system services. Power management and security
are beyond the scope of this paper.

A. Software Services

Figure 2 illustrates the information flow from the
lower tier sensing field to the higher tier processing unit
at the pursuer. The sensor network detects the evader and
routes this information to the pursuer, and the pursuer
acts on this data to intercept the evader. Figure 3 shows
the overall system architecture of the services required
to implement PEG.

When a vehicle is present, the sensing and detec-
tion component (Section IV-B) of nearby nodes will
trigger detection events and invoke the leader election
algorithm (Section IV-D) for data aggregation. The pro-
cess of leader election is realized over a tuple-space
neighborhood service (Section IV-C). The elected leader
will propagate the aggregated data as detections to the
pursuers using landmark routing, which operates over a
simple tree building mechanism (Section V).

When detections reach the pursuer, the pursuer uses
an entity disambiguation service to determine the cause
of the event: the evader, the pursuer, or noise. Detections
that are determined to correspond to the evader are sent
to the evader position estimation service. The pursuer
position estimation service uses data from the GPS
unit to determine an estimate of the pursuer position.
Estimates of the position of the pursuer and evader
are sent to the interception service, which generates a
interception destination for the pursuer. This destination
is processed by the path planning service to generate a

Path Following Pursuit
Services

Pu
rs

ue
r

A
rc

hi
te

ct
ur

e

Interception Planning Path Planning

Pursuer Position Estimation Estimation
Services

Entity Disambiguation Evader Position Estimation

Application
ServicesLocalization Leader Election and Aggregation

Se
ns

or
 N

et
w

or
k

A
rc

hi
te

ct
ur

e

Landmark Routing Tree Building Node Management Network
ServicesNetwork Reprogramming Config Neighborhood

Ranging Sensing and Entity Detection Intra-mote
servicesHardware Abstraction Messaging

Fig. 3. Hardware and functional division of services. The dotted
line separates services running on the pursuer from services running
in the sensor network.

feasible route. Finally, the route is submitted to the path
following service that tightly controls the pursuer along
this route. These mechanisms are further developed in
Section VI.

Beside the core functionally required for PEG, new
system services are also implemented to ease the dif-
ficulty in managing and configuring the network at the
time of deployment. The Config component allows run-
time configuration of system parameters that are useful
for system tunings. The node management component
is used for node identification, debugging, and network-
wide power cycle management. Finally, network repro-
gramming allows rapid reprogramming the entire system
over the wireless medium, which is valuable for rapid
update of code image. We discuss these deployment
issues in Section VIII.

We originally intended to use a self-localization ser-
vice to determine each node’s position. This service
would have used time-of-flight ultrasonic ranging tech-
nology with an anchor-based localization algorithm.
However, due to sporadic errors, we did not use self-
localization in the live demonstration, and instead hard-
coded node positions. For more information on our
localization service, refer to work by Whitehouse et
al. [18], [19].

B. Sensor Tier Platform

The sensor tier of our system consists of Berkeley
Mica2Dot motes [20], a quarter-sized unit with an 8-
bit 4 MHz Atmel ATMEGA128L CPU with 128 kB
of instruction memory and 4 kB of RAM. Its radio
is a low power Chipcon CC1000 radio that delivers
about 15 kbit/sec application bandwidth with a maximum
communication range of around 30 meters using a piano-

Exposed
components

Watertight
compartment

Ultrasound

Battery

Collision
absorption

CPU / Radio
Mag Sense

Power

Reflector

Fig. 4. Photograph of a PEG sensor deployed in the field on the
day of the demonstration (left), and a schematic of its basic elements
(right). The height between the plastic end caps is 3.0 inches (7.6 cm),
and the height from the bottom spring base and top of the ultrasonic
cone is slight less than twice that distance.

wire antenna placed a few inches from the ground in a
grassy field. Each node uses a magnetometer to detect
changes in a magnetic field, presumably caused by a
nearby moving vehicle. We included a 25kHz ultrasound
transceiver for time-of-flight ranging. A reflector cone is
situated above the transceiver to diffuse the ultrasonic
waves for omni-directional ranging which significantly
reduces the ranging radius to about 2 meters.

Figure 4 shows the complete packaging of a sensor
node. At the bottom of the node is a base that secures
the node to the ground and extends it a few inches
above the ground. The battery, voltage conversion board,
magnetic sensor, and the Mica2Dot are all protected by
the plastic enclosure. The side of the enclosure has a hole
that allows the quarter-wavelength piano wire antenna to
be connected to the Mica2Dot. The only sensor exposed
is the ultrasound transceiver at the top, with the cone
securely mounted above it. The package is robust against
impact from vehicles, and the spring at the base keeps
the node upright even after collisions to elevate the node
a few inches above the ground plane for effective radio
communication.

All nodes at the sensor tier run TinyOS [20], an event-
driven operating system for networked applications in
wireless embedded systems. The implementation of all
the core services shown in Figure 3 consumes about
60 kB of program memory and about 3 kB of RAM.

C. Higher Tier Platform

Our ground robots are essentially mobile off-road
laptops equipped with GPS. Each robot runs Linux on a
266 MHz Pentium2 CPU with 128 MB of RAM, 802.11
wireless radio, a 20 GB hard drive, all-terrain off-road
tires, a motor-controller subsystem, and high-precision
differential GPS. This platform is sufficient to execute

the simple higher-tier services shown in Figure 3. The
GPS typically provides estimates every 0.1 seconds with
an accuracy of about 0.02 meters. The top speed of the
robot is about 0.5m/s, with independent velocity control
for each wheel. In our deployment, we used one pursuer
and one evader, each the same model robot.

IV. V EHICLE DETECTION

Detecting a vehicle in the network begins with a node
gathering and processing data leading up to the formation
of a position estimate report. In this section, we show
how a bandwidth analysis of the overall system drives
the design of our architecture.

A. Bandwidth-Driven Design

We design our sensor network to provide full, redun-
dant sensor coverage – for sensors placed in a grid,
a vehicle excites at least four and up to nine sensors.
From this coverage requirement, we design the rest of
the detection system with an understanding of the impact
of low-level decisions on regional bandwidth limits.

Presuming a local aggregate bandwidth of forty 36-
byte packets per second, a single node can provide up
to four reports per second before a region of nine nodes
saturates the shared channel. If each node sends these
detection events, the local channel will be saturated
leaving no bandwidth for other communications such
as routing these readings to the pursuer. Additionally,
as more vehicles are added to the system, routing the
data will increasingly tax the bandwidth of the system.
Clearly, we must use some techniques to conserve band-
width.

We use local aggregation to reduce many detection
events into one position estimate report. We allocate
half the total bandwidth for exchanging local detec-
tion reports and the remaining bandwidth for system
wide behaviors such as routing position estimates to
pursuers. Even though sharing local detections uses a
significant portion of the local bandwidth, the pursuer
still receives frequent position updates. We decompose
this overall process into three distinct phases: calibration
and sensing, local detection reports, and leader election
and position estimation.

B. Calibration and Sensing

The magnetometer measures the entire magnetic en-
vironment. This includes static structures such as the
Earth’s magnetic field and other metal in the surround-
ings. To detect changes in the magnetic field caused
by a moving vehicle, this static environment must be

accounted for in each node’s measurements. Each node
biases each reading given a moving average of the sensor
readings. This sets a minimum detectable speed on a
vehicle, because a sufficiently slowly moving object will
be indistinguishable from the static environment.

One interaction that we did not expect is a relationship
between the radio communication and the magnetometer.
Because of the proximity of the radio chip and the
magnetometer chip, which is in part a result of the small
package design but also exacerbated by our hardware
design, radio transmissions excite significant readings
from the magnetometer. As a workaround, we invalidate
magnetometer readings for a short period whenever a
radio packet is sent or received at the node.

C. Local Detection Reports

To decide if a node should share its calibrated reading
with its neighbors, the node compares the 1-norm of
its magnetic reading against a preset threshold value.
If the detected value exceeds this threshold, the node
sends a message including the magnetic magnitude and
its own (x, y)-position in meters. To limit a node’s local
detection report rate to 2 packets per second, each node
is subject to a reading timeout of 0.5 seconds during
which it is not allowed to share a new reading.

To share data among a neighborhood of nodes, we
evolved a new programming primitive called Hood [21].
A neighborhood in Hood defines a set of criteria
for choosing neighbors and a set of variables to be
shared. The neighborhood membership, data sharing,
data caching, and messaging is managed by the Hood
abstraction, allowing the developer to focus on the
properties of a neighborhood instead of its mechanics.
Hood exploits the cheap broadcast mechanism of a
sensor network to allow asymmetric membership – a
node broadcasts changes to its neighborhood values and
doesn’t know or care what other nodes consider it a
member, which is different from the group collabo-
ration work found in [9], [10]. Hood is well suited
for unreliable communication channels such as those in
sensor networks, and defers concerns of reliability and
consistency to the application level.

For PEG, we created aMagHood that manages the
messaging and caching of local detection reports and
prescribes the neighborhood membership criteria. Be-
cause the magnetometer neighborhood represents a local
physical relationship, and because radio connectivity
doesn’t have a clean relationship with respect to physical
distance, membership in the neighborhood is restricted
to only those nodes within 3 meters. And, similar to the

report timeout, readings are invalidated after timeout of
0.5 seconds, which sets a time window on the validity
of a neighbor’s reading.

D. Leader Election and Position Estimation

We cast leader election as primarily a bandwidth
reduction technique and relax the usual requirement of
correlating a single leader with a single entity, unlike
[9], [10] where vehicle classification is done on the
sensor node. High level processing on the pursuers
imposes model constraints to correlate position estimates
with individual entities. This decomposition allows us to
construct a significantly more simple and robust leader
election protocol.

UsingMagHood, each node gains a view of the recent
detection reports from nodes in its neighborhood. At this
point, the leader election protocol requires no additional
communication – a node elects itself leader if it has the
maximum magnetometer magnitude among the nodes in
its neighborhood. This lightweight mechanism embodies
the idea of loose consistency: in the worst case, every
node that detects the location of a vehicle reports it.

The pursuer receives reports about all position es-
timates in the network – those caused by the evader,
by itself, or by noise. Even with this policy, redundant
leaders for a single object are the exception not the rule,
because leadership changes smoothly over time given the
physical interactions. Additionally, this design implicitly
supports multi-object tracking by providing all the data
necessary for the pursuer to do centralized filtering and
correspondence.

The position estimate report contains the(x, y)-
position calculated as a center of mass, the total number
of nodes contributing to the report, and the sum of
the detection magnitudes. Similar to previous timeouts,
a node is only allowed to become leader and send a
position estimate report at most every 0.5 seconds. This
estimated position is again a loosely consistent value
– instead of using a time synchronization service to
guarantee that all readings happen within a strict epoch,
the cache timeout establishes a notion of a weak epoch.

Within each weak epoch, a node elects itself leader
the instant it determines it has the largest detection
magnitude. As an alternative, if a node would have
waited a period of time for additional readings, there
exist certain vehicle paths that prevent any node from
becoming a leader, which would produce no position
estimates for the pursuer. Furthermore, this protocol
ensures that a node can become a leader if its detection
exceeds the threshold, meaning that the maximum speed

of the vehicle is only a function of the properties of the
sensor and the allocated bandwidth for position reports.

V. ROUTING

The primary routing requirement in PEG is to deliver
the evader detection events, as sensed by the network,
to the mobile pursuers. That is, we must route packets
from many sources to a few mobile destinations. This
differs from the typical many-to-one data collection
traffic model found in other sensor network applications
[22], [23], [24]. However, it resembles some of the work
found in the mobile computing literature, which provides
different approaches to support this mobile routing ser-
vice. In this section, we first explore these approaches
and then discuss a simple and efficient landmark routing
approach to arrive with a solution, which is potentially
applicable to systems other than PEG.

A. Design Approaches

One design approach is to treat the entire network and
the mobile pursuers as one ad-hoc mobile system, and
deploy well-known mobile routing algorithms, such as
DSR, AODV, and TORA [25], [26], [27], which require
O(N) of communication complexity to provide an any-
to-any routing service. These protocols are designed to
support any pairs of independent traffic flows while the
traffic in PEG is correlated and directed only to a few
moving end points (the pursuers).

Another approach is to decouple the network from the
mobile pursuers and exploit the static network topology
to decrease the communication complexity for routing.
This resembles the home-agent work found in mobile
computing [28], where every pursuer is assigned a home-
agent. For example, recent work supports group com-
munication among a set of moving agents over a sensor
network in a bounding box [29]. It assumes that any-
to-any routing comes free by using geographical routing
and maintains a horizontal backbone to support commu-
nication among moving agents within the bounding box.
The communication complexity depends on the overhead
of backbone maintenance and home agent migration
frequency.

For efficiency and simplicity, the approach we use
also exploits the static network topology, but we do not
assume any geographical routing support or grid location
information as in [30]. We use a variant oflandmark
routing [31] to split the many-to-few routing problem
into two subproblems: many-to-landmark and landmark-
to-few. Landmark routing is a simple mechanism that
uses a known rendezvous point to route packets from

many sources to a few destinations. For a node in the
spanning tree to route a detection event to a pursuer,
it first sends a message up a spanning tree to the root
node, the landmark. Then the landmark forwards the
message to the pursuer. The original landmark paper
discusses a hierarchy of landmarks for scalability. In this
work, we only consider a single landmark. Landmark
routing results in longer routing paths as traffic must go
through the landmark, which hurts latency, but requires
less control bandwidth to maintain routes to the moving
target than other protocols such as AODV.

B. Building Good Trees

For many-to-landmark routing, we rely on a spanning
tree rooted at the landmark. All packets are forwarded
along the tree towards the landmark. A common ap-
proach to building a spanning tree is to flood the network
with a beacon, and each node marks its parent in the tree
as the first node from which it receives the beacon, and
then rebroadcasts the beacon. This approach of flooding
the network and routing using the reversed paths is used
in ad-hoc routing algorithms such as AODV [26] and
DSR [25] to build a topology quickly and trade off
optimality for handling mobility.

Such a flooding process must address two poten-
tial problems: quality route selection and the broadcast
storm problem [32]. The routing protocol must avoid
selecting bad links for routing; in particular, asymmetric
connectivity should be avoided since the reverse paths
are used for routing. Route selection solely using hop
count cannot address these issues. The second issue,
broadcast storms, occurs when many nodes receive a
beacon simultaneously and attempt to rebroadcast the
beacon immediately. As a result, a storm of packet
collisions is created and significant message loss would
occur, which leads to an ill-formed topology containing
many back edges. Back edges occur when nodes miss
a beacon message because of collisions, but later over-
hear it from nodes further down the tree. Back edges
create unnecessarily long routes. Empirical data in [33]
provides evidence of these issues.

Our first challenge is route selection. A node must
consider both the link quality and tree depth of the
potential parent. Without any rapid link estimation mech-
anism, we rely on the received signal strength indicator
(RSSI). Recent studies in [34] and [35] show that RSSI
is not always a good predictor of link quality. However,
we can exploit spatial information to our advantage
to rely on RSSI values. With all nodes on roughly
on a grid configured to transmit at the same power

and the fact that signal strength decays at least1/d2

when close to the ground, it is possible to use RSSI
threshold filter to scope the neighborhood relative to
the physical distance. By empirically measuring the
relationship between link reliability and RSSI values
among nodes at different grid distances beforehand, we
determine a high confidence RSSI value for the entire
network that maximizes communication distance while
reliably preserving bidirectional link reachability for our
reverse path routing. A node only accepts a message if
its RSSI value is greater than the threshold, even if it
was able to properly decode the message. The routing
layer can be a simple algorithm that selects the shortest
hop-count parent that passed the RSSI filter. Section VII
presents measurements of the end-to-end reliability of
the routing paths discovered by this approach.

The second challenge is to alleviate the broadcast
storm problem. We used a time-delayed back-off that
adapts to the observed cell density. Broadcast storms
occur because several nodes simultaneously attempt to
rebroadcast the beacon. Instead, if each node waits a
random time before re-broadcasting the beacon, then
network congestion decreases. With random back-off,
the number of potential wait times should be propor-
tional to the number of nodes in a radio cell; as node
density increases, nodes must wait longer periods of
time. Choosing the maximum wait time, then, requires
knowledge of the density. An alternative idea is to
employ a more adaptive technique. Upon the reception
of a broadcast message, each receiver starts a timer to
fire in a random amount of time less thanR. Every
time the node receives a broadcast message before its
timer expires, it resets the timer to fire in a new random
time. Thus, theR interval from which nodes wait is
significantly smaller than in the naive protocol. The total
wait time is now adaptive and inversely proportional to
the radio cell density, which is the number of times the
same broadcast message is heard. In both sparse and
dense networks, propagation within local cells finishes
in R · n/2 time, wheren is the cell density.

One typical spanning tree is in Figure 5. The data
was collected from 100 mica2dots with 2m spacing. The
landmark is near the center of the field, at position (8,8).
The tree has depth three, considerably less than if grid
routing were used. Four nodes did not join the spanning
tree because they were broken; Section VIII addresses
breakage. Additionally, the parents of most nodes are
physically closer to the landmark. In those cases where
this is not true, such as at (0,10), the physically closer
parent is not any closer by the hopcount metric.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

to (4,0)
3 hops

to (4,0)
3 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (10,2)
2 hops

to (10,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (10,2)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (12,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (8,8)
1 hop

to (6,4)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (12,4)
2 hops

no conn. to (14,6)
2 hops

to (2,6)
3 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (14,6)
2 hops

to (14,6)
2 hops

to (2,8)
3 hops

to (6,10)
2 hops

no conn.no conn.landmark to (8,8)
1 hop

to (8,8)
1 hop

to (14,6)
2 hops

to (14,6)
2 hops

to (14,6)
2 hops

to (0,12)
3 hops

to (8,10)
2 hops

to (6,10)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (14,12)
2 hops

to (14,12)
2 hops

to (14,12)
2 hops

to (8,10)
2 hops

to (8,10)
2 hops

to (6,12)
3 hops

to (8,12)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (12,14)
2 hops

to (8,8)
1 hop

to (14,12)
2 hops

to (14,12)
2 hops

to (0,12)
3 hops

to (8,12)
2 hops

to (8,12)
2 hops

to (8,12)
2 hops

to (10,14)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (14,12)
2 hops

to (14,12)
2 hops

to (14,12)
2 hops

to (2,14)
3 hops

to (4,16)
3 hops

to (8,12)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (12,14)
2 hops

to (12,14)
2 hops

to (12,14)
2 hops

to (16,16)
3 hops

to (4,16)
3 hops

to (4,16)
3 hops

to (4,16)
3 hops

to (10,14)
2 hops

no conn.to (10,14)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (16,18)
3 hops

x position (meters)

y
po

si
tio

n
(m

et
er

s)

Fig. 5. Spanning tree generated by PEG using 100 mica2dot nodes.
PEG uses a basic flooding algorithm that adapts to different node
densities.

C. Efficient Landmark Routing

With the spanning tree built using the previous mech-
anism, any nodes in the network can send messages
to the landmark, which forwards them to the moving
pursuers. To accomplish this, the pursuer periodically
informs the network of its position by picking a node in
its proximity to route a special message to the landmark,
thereby laying a “crumb trail.” Instead of maintaining all
the routing states at the landmark, this message deposits
a “crumb” with each intermediate router on the spanning
tree so that messages destined to the pursuers at the
landmark can travel along the crumb trail created by the
crumb message. Each crumb trail is identified by the
pursuer’s ID when it deposits its crumb to distinguish
from multiple concurrent crumb trails. The pursuer in-
crements a sequence number to give a time dimension to
these crumb trails so these paths can dynamically track
the pursuer’s position. Routing states are soft in that they
become stale over time, and thus, stale crumb trails prune
themselves automatically.

Our approach to solving the many-to-few routing
problem is efficient. The tree-building overhead is an
O(N) operation. As discussed earlier, ad-hoc protocols
requireO(N) overhead to route to a mobile destination.
In our landmark scheme, the overhead in maintaining
mobility is solely the crumb messages, which has a
communication complexity ofO(d), where d is the
network diameter. This means that we can route to a
pursuer with significantly less overhead.

Note that there is no explicit coupling between the

landmark and the moving pursuers as in the case of
the home-agent approach. In fact, the pursuers do not
even know the address of the landmark. This is a nice
property, allowing the landmark to become another node
if the first fails.

A shortcoming of this approach is that the landmark is
a central point of failure. However, there are many tech-
niques to eliminate this vulnerability. Since the crumb
trails and the spanning tree can be built rapidly, it is easy
to switch over to another landmark if the original fails.
Additionally, it is simple to maintain multiple separate
instances of landmark routing with independent crumb
trails and landmarks. This quick failover capability is
important to cope with the flakiness inherent in sensor
networks.

VI. NAVIGATION AND CONTROL

The pursuer must decide how to assimilate an aggre-
gated sensor packet to minimize evader capture time. In
this section, we will describe the difficulties in designing
this control system, the techniques used to overcome
these difficulties, and the final architecture. Although the
control architecture we present is not new, the modality
of the sensor network data is significantly different than
those of traditional control systems. We will discuss how
these concerns are addressed with our implementation.

A. Design Issues

Classical feedback control design [36] typically as-
sumes that periodic sensor readings occur and arrive at
their destination in zero time, that the computation of the
control law is instantaneous, and that control signals are
applied to the actuators immediately. These requirements
are typically necessary to analyze a controller’s stability
and performance. Several techniques have been studied
to relax these assumptions [37], and some researchers
have suggested that new techniques need to be de-
veloped [38]. However, in practice, these constraints
are typically approximated by using a sufficiently high
frequency of sensor readings, by minimizing timing jitter
and latency, and by reducing computation time of the
control law. Typical implementations of control systems
achieve these approximations through the use of locally
resident sensors, actuators, and powerful computational
hardware. However, due to the distributed nature and
limited capabilities of sensor networks, many of these
assumptions are violated.

In PEG, we can approximate instantaneous control
computation by assuming that the pursuer is a powerful

node that performs all the control computation. How-
ever, the application of classical control techniques is
frustrated by the tendency of the sensor network data
to be noisy, arrive late, lack time-stamps, and arrive
without periodicity. High speed controllers, such as a
path follower, further highlight the difficulty of control
using only sensor network data. In our case, a feedback
implementation using only sensor network data would
require artificially slowing down the dynamics of the
system.

Furthermore, nodes will fail at times due in part to
faulty hardware and collisions with robots. This presents
another characteristic of sensor networks that differ from
a typical control setting. When operating in a sensor
network, a controller must additionally compensate for
sporadic sensor readings due to badly behaving nodes.
For such problems, it is not always possible for a
controller to maintain a constant level of performance.
We seek to provide high performance of the controller
while allowing for a graceful degradation in performance
as the data qualitatively deteriorates and ensuring safety
properties such as not leaving the field.

B. Design Choices

To overcome the aforementioned difficulties, we make
several design choices for the pursuer control. First,
we cleanly separate the control system from the sensor
network as much as possible. To this end, the network
provides sensor readings to the pursuer, but all pro-
cessing and control computation occurs on the pursuer.
Second, we apply more traditional control techniques
to the pursuit algorithm, changing the design where
necessary for sensor network data.

A pursuit control system ultimately consists of a sys-
tem for estimating the position of the evader, strategically
deciding where the pursuer should go next, planning a
path to the next destination, and following that path. To
achieve the best estimation of the evader’s position, we
prefer a model for the evader’s dynamics with unknown
control input. However, this is an unnecessary burden
considering the specification of our system. For instance,
the robots can quickly change the velocity of each of
their wheels independently (within about 0.2 seconds),
which, as far as a sensor network that reports every 1-
3 seconds is concerned, allows the robot to virtually
change its speed and direction instantly.

In PEG, the pursuer only needs data every few sec-
onds from the sensor network, but requires much more
timely location information for navigation. We use GPS

Strategic
Controller

Point Navigation
Controller

Motor
Controller

Coordinate
Transformation

State
Estimation

Sensor
Network

State
Estimation

GPS

Filter

motors

High
Speed

Dynamics

Low Speed
Dynamics

Fig. 6. Block diagram view of the hierarchical multi-rate pursuer
controller. All variables except those with aGPSsuperscript represent
values relative to the mote coordinate system. Furthermore, the
subscriptsp ande, indicate pursuer and evader respectively. Finally,
wk represents the set-point for velocity of thekth wheel

for navigation which provides updates about every 0.1
seconds with an accuracy of about 2cm.

C. Implementation Overview

In this section, we outline our final controller design
which is illustrated in Figure 6. First, two different
coordinate systems must be addressed: the GPS co-
ordinate system and the coordinate system relative to
the mote network. To work within a single coordinate
system as quickly as possible, we immediately convert
GPS measurements into the mote coordinate system.
GPS provides estimates of the pursuer’s position in
GPS coordinates,[xgps

p , ygps
p]T . Using a fixed, known

homogeneous coordinate transformationΦ, we compute
the pursuer’s estimated position in the mote coordinate
system as[xp, yp, 1]T = Φ ∗ [xgps

p , ygps
p , 1]T . Using a

trace of these values,(. . . , [xk
p, y

k
p]T , [xk+1

p , yk+1
p]T , . . .),

we can compute a full state estimation for the pursuer,
which includes estimations of the position, the velocity,
and the orientation.

Although any techniques exist for state estima-
tion [39], [40], in our case, it is enough to use simple
techniques. For the estimated position [x̂p, ŷp]T , we
simply use an average of the two most recent GPS
positions. These estimated positions then form another
trace Λ = (. . . , [x̂k

p, ŷ
k
p]T , [x̂k+1

p , ŷk+1
p]T , . . .). For the

orientation estimatêθp, we use an average of the angle
between pairwise combinations of the last four estimated
positions, i.e., the four most recent entries inΛ. The
magnitude and direction of the velocitŷνp is estimated

by using the two most recent entries inΛ. The number
of readings used for estimation was chosen by trial and
error.

Turning to the evader’s state estimation, we first
receive an estimate of an unknown object’s position in
the network,(x?, y?). Using a previous estimation of
the evader’s position(x̂e, ŷe) and a current estimation
of the pursuer’s position(x̂p, ŷp), a filter determines if
the reading corresponds to the evader, the pursuer, or
noise in the system. If we letα be the average error
of the sensor network due to true positives, i.e., not
including error due to false positives. Then, we can
safely disregard sensor reports withinα of the pursuer’s
estimated location, since these reports must correspond
to the pursuer or a captured evader (assuming that our
capture radius is greater thanα). Sensor reports within
2∗α+ |νmax| ∗ t of the previous estimate of the evader’s
position are assumed to be the evader, wheret is the
elapsed time since the previous estimate andνmax is the
maximum velocity of the evader.

If the new sensor reading is determined to be the
evader, this value is used to update the state estimate
of the evader using techniques similar to those for the
pursuer. In this case, our estimate of the velocity and
orientation will be of much lower quality. However,
because the strategic controller only updates every time
it receives a new evader state estimate (at a much lower
rate than the actual velocity and heading of the evader
can change) it is unnecessary to exploit knowledge of
the evader’s orientation and velocity.

Using position estimates of the pursuer and evader, the
strategic controller chooses the pursuer’s next destination
[xnav, ynav]T and interception speedνnav. In making
this choice, the strategic controller attempts to minimize
capture time. Again, we use a simple strategy: the
pursuer moves to the estimated position of the evader.
Finally, the point navigation controller will compute a
path to the new destination. This path is realized by
continually issuing new set points(ω1, ω2, ω3, ω4) for the
velocity of each robot wheel, such that the robot moves
forward enacting turns as needed to reach its destination.

In conjunction with the aforementioned processes, the
controller maintains safety specifications by applying
hard constraints to the controller at various points. To
ensure that the pursuer never leaves the network, the
point navigation controller always compares the pur-
suer’s estimated state with the fixed, known values of the
network boundary. If the pursuer is leaving the network,
the point navigation controller directs the pursuer to the
center of the network until further notice. Additionally,

4 5 6 7 8 9 10 11 12
150

200

250

300

350

400

450

500

550

600

650

R
ou

te
 ti

m
e

(m
s)

Number of hops

Fig. 7. Latency of packets routed through PEG’s landmark routing
algorithm. Each data point represents the average time to route 200
packets through the given number of hops on a 36 node indoor
Mica 2.

if the strategic controller notices that the pursuer’s esti-
mated state is within the capture radius of the evader’s
estimated state, it has the point navigation controller stop
the pursuer. The pursuer remains there until a new evader
update farther away appears; at which time the control
system reinitiates pursuit of the evader.

VII. E VALUATION

A. Routing Service

One of the most important metrics for evaluating the
multihop routing service is end-to-end reliability, espe-
cially when the topology is built over many unreliable
links during a network-wide flooding. We created a set
of micro-benchmark experiments to measure end-to-end
success rate of packet delivery of any random pair of
nodes in the network using our landmark routing. We do
not use link retransmissions because of the time sensitive
nature of the data. Link retransmissions could have
improved end-to-end reliability, but the received tracking
data would have been stale. For latency tests, there is no
contention on the channel because only one packet is
being sent at a time. The end result is very promising.
For paths with lengths between 4 to 6 hops, the average
end-to-end success rate falls in the range of 95% to 98%.
This implies our topology formation can build trees that
are reliable for bi-directional communication.

Another metric that is important to PEG is the end-to-
end latency in delivering the detection events to the mov-
ing pursuers. Our landmark routing approach trades off
route efficiency for simplicity and low protocol overhead.
The simplicity of the landmark routing scheme produces
routes that may be longer than necessary since the

message must pass through the landmark. For example,
for a neighbor to route a message to an adjacent node, it
must traverse through the landmark which could be far
away. There could be delays from many sources: the time
it takes a packet to travel, the processing time, MAC back
off time, and routing decision time. By observing the
packet size and extra synchronization overhead coupled
with the radio bandwidth, we can conclude that a packet
occupies the channel for 26.2 ms. The MAC waits a
uniformly random time between 0.4 ms and 13.0 ms
before sending a packet, averaging in a 6.7 ms delay.
We measured the latency that it takes for our algorithm
to route packets in Figure 7 on a field of 36 sensor
nodes. For a least squares minimum fit on the data in
the figure, we find the slope of the line is 53 ms/hop,
so we conclude processing time is consistently around
20 ms. Even if the landmark route is 6 hops while the
optimal path is a single hop, the landmark routing will
take 225 ms longer than necessary. In this time, the
evader can only travel 13 cm, an insignificant distance
compared to the precision of the measurements. Thus,
even though landmark routing may choose longer routes,
the extra routing time is within our requirements.

B. Tracking and Interception

To evaluate the system in a realistic outdoor demon-
stration on July 14, 2003, we deployed a field of 100
nodes and performed a half-dozen runs1. The evader was
controlled by a driver not affiliated with PEG. The evader
can leave the sensor grid area, but the pursuer cannot.
The pursuer was able to successfully capture the evader
in all cases; we define success when the pursuer arrives
within a grid square of the evader. Figure 8 displays one
such interception. Initially, the pursuer is in a different
orientation from the evader. It first orients itself towards
the evader before capturing the evader. The sequence
spans 26 seconds and ends when the pursuer touches
the evader.

In order to display more quantitative data, we would
like to analyze network traces from an actual run from
our July 2003 demo. Unfortunately, our demonstration
was not sufficiently instrumented to collect data, and we
have subsequently instrumented and re-deployed PEG.
Figure 9 demonstrates our efforts on a 7x7 field of sensor
motes with a 2m spacing. The grid displays the actual
track of the evader in a solid line demarcated with 10s
intervals in squares, as determined by GPS. Each star

1A movie of all runs is available athttp://webs.cs.
berkeley.edu/nestdemo.mpg

Fig. 8. This sequence taken from a video of the live July 2003 demonstration shows a successful capture of the evader (foreground) by
the pursuer (background). This sequence spans 26 seconds.

shows the leader node that sent a packet to the moving
pursuer after aggregating the detection data. We draw a
dashed line from the leader to the corresponding point
on the evader’s path when it makes the detection report.
When the dashed line is short, it indicates a successful,
low error detection reading. There are no reports when
the evader leaves the playing field around time 100s.

The results also indicate a few noisy nodes. The pur-
suer must filter out this noise in estimating the evader’s
position. For example, node (12,12) detects a spurious
reading at around 4 seconds. In analyzing this plot, we
found 4-5 spurious readings. Additionally, we manually
squelched the output of nodes (4,10) and (4,12). Their
magnetometers were not properly calibrated and would
generate a false reading every few seconds. Just as in
our original run, we found that a few nodes in every
deployment would not act properly when deployed; in
such situations, we needed to suppress a handful of
nodes from reporting. For larger or longer deployments,
we foresee an automatic health monitoring service that,
in its simplest form, reboots or powers down a node
when it behaves outside specified tolerances. As we
discuss in Section VIII, accurate debugging and network
analysis tools are a necessity for large sensor network
deployments.

VIII. D EPLOYMENT EXPERIENCES

Through the course of designing and implementing
PEG, we faced various system issues, including system
breakage, packaging, in situ debugging, network pro-
gramming, and system reconfiguration. In this section,

−2 0 2 4 6 8 10 12 14 16 18
−2

0

2

4

6

8

10

12

14

(0,0) (2,0) (4,0) (6,0) (8,0) (10,0) (12,0)

(0,2) (2,2) (4,2) (6,2) (8,2) (10,2) (12,2)

(0,4) (2,4) (4,4) (6,4) (8,4) (10,4) (12,4)

(0,6) (2,6) (4,6) (6,6) (8,6) (10,6) (12,6)

(0,8) (2,8) (4,8) (6,8) (8,8) (10,8) (12,8)

(0,10) (2,10) (4,10) (6,10) (8,10) (10,10) (12,10)

(0,12) (2,12) (4,12) (6,12) (8,12) (10,12) (12,12)

0s

10s

20s 30s

40s

50s
60s

70s

80s

90s

100s

110s

120s
130s

140s

x physical position (meters)

y
ph

ys
ic

al
 p

os
iti

on
 (m

et
er

s)

Fig. 9. Intruder tracking using PEG. Evader GPS position is shown
as a solid line. Detection event leaders are shown as stars. The dotted
lines link the leaders to the evader’s position at the time of detection.

we discuss the approach we took to cope with each of
these issues. These implementation experiences apply to
many kinds of realistic outdoor sensor network applica-
tions.

A. Breakage

In the course of deploying and operating PEG, we
noticed a moderate rate of breakage in terms of node
failure, similar to the experience reported in other sensor
networking deployments [24]. Some of this is due to our
inexperience as packaging engineers. However, in the

course of disassembling the packaging, reprogramming,
charging the battery, reassembling, and re-deploying, we
noticed a trend of a few percent of the nodes failing at
run time. Out of this experience came the maxim that
“Every touch breaks.” This reinforces our design phi-
losophy of maintaining soft state, loose consistency for
inter-nodal coordinations, and rapid fail over in network
topology formation. Furthermore, the system services for
in situ testing and development, as shown in Figure 3,
are therefore sought to eliminateany need to physically
handle nodes. We believe that these system services
are useful even when future sensor nodes become more
robust.

B. Packaging

A real-world sensor deployment must carefully con-
sider node packaging, and we discovered that that pack-
aging requirements for deployment are different from
those for development. For development, the packaging
should expose access for convenient debugging, repro-
gramming, and battery recharging. However, we did not
properly anticipate such need, and during development,
we would frequently need to disassemble the packaging
in order to fix broken components, reprogram the nodes,
or recharge the batteries. If we had better foresight
in our design, we would have designed the packaging
to support reprogramming and recharging without full
package disassembly.

After deployment we discovered that the packaging
was interfering with the magnetometer. The piano wire
antenna, battery, and metallic spring base all align the
magnetic field in the proximity of the magnetometer,
significantly reducing its sensitivity and overall range
of detection. The design process should accommodate
a series of revisions, because defects may only become
apparent when the complete design is implemented and
deployed in the sensing environment.

C. Debugging

Debugging large sensor network applications at
deployment time is a challenging experience. Pre-
deployment testing using simulations and controlled ex-
periments over testbeds are extremely useful as they
allow us to extract information about the external and
internal states of each node. However, in a real deploy-
ment, collecting state information can be difficult, espe-
cially when the packaging is designed for deployment.
For example, even if the EEPROM fully logs the tran-
sient internal states of each node, correlating them in a
network-wide temporal order can be difficult, especially

without time synchronization. In our deployment, we did
not have adequate time to explore this option.

Instead, we exploit a large antenna to snoop on
network traffic. This non-intrusive approach allows the
collection of as much external states of the network as
possible, does not affect the application, and enables
a direct communication with each of the node in the
network.

A set of services under the node management category
in Figure 3 are implemented to address in situ debugging.
Additionally, we place a version control number into
each binary to ensure code compatibility across all the
nodes in the network. We use a basic “ping” like service
to verify that a node is up. The ping reply also reports
the version control number of its code binary, allowing
us to detect incompatible binaries. In addition, some of
the basic primitives for node management such as node
reset, sleep, and active mode control are also supported
over wireless control.

The big antenna allows us to remotely control and
debug each node in the network. We implement a set of
management scripts on a PC computer to invoke the sen-
sor node management services to administrate the system
through the antenna. Packet traces are archived for off-
line debugging and visualization of the entire system
to understand the global behavior, which is extremely
useful in system tuning. Nodes can send packets with
an ASCII text payload to act as a “printf” to signal the
occurrence of some critical debugging events in a human
readable form.

For larger, real world deployments, we have since
developed a multi-hop system management architec-
ture [41] to subsume the role of the big antenna. This
lower layer can perform system health monitoring, re-
mote control, and data logging; and, it integrates seam-
lessly with a dispersed, higher power second tier to
optimize data gathering. We look forward to reporting
on the success of this architecture for real deployments
in future work.

D. Hierarchy of Programming and Reconfiguration

In sensor networks, the need for a form ofin situ
programming presents a new kind of requirement for
remote configuration tools. Besides the common need
for wireless network-wide reprogramming, there is also
a need to perform in situ protocol parameter tuning since
analytical analysis is often insufficient to accommodate
environmental effects. For example, there are configura-
tion options of the code that need to be decided at the
time of deployment, including the application’s sensing

policy, sensor calibrations, and communications param-
eters that rely on the cell density. Furthermore, some
of these configurations may need to be set on varying
granularities, ranging from individual nodes, a select few
subset of nodes, to the entire set of nodes en masse. We
have implemented both the network reprogramming and
config services as shown in Figure 3 to address these
needs.

Our design supports wireless network programming,
which is an alternative solution to installing new binaries
over many nodes by hand. For a team of five people
working with one hundred nodes, manual programming
takes two hours with an additional two hours to re-
deploy the nodes in the field. This approach is clearly
not amenable to a rapid debug and test cycle.

Using network programming, nodes receive the binary
image over the radio. By exploiting the shared wireless
medium, many nodes can be reprogrammed simulta-
neously and selectively. We anticipated using network
reprogramming for our deployment, but we could not
develop a sufficiently reliable network reprogramming
mechanism for our purposes2. Given the problems we
encountered at the time, the entire process would have
taken longer than individually reprogramming each node.

Interestingly, with a network service we call Config,
the limitations of manually programming each node and
our inability to use network reprogramming did not pose
a great hindrance in our deployment. We spend the ma-
jority of our time tuning the algorithms to work properly
at scale in the environment. The Config service addresses
this issue efficiently and allows run-time adjustments of
the internal states of each node. For example, Config
allows us to selectively enable sections of the code,
adjust parameters, modify calibration values, and adjust
variables at run time.

Config is a smart configuration system that takes the
place of a traditional approach to using a local config-
uration file per node. Configuration values are declared
in the code with a specific configuration identifier, as
shown in this example:

//!! Config 31 {uint16_t RFThreshold = 200;}

In this case, the RFThreshold parameter, with a default
value of 200, is preprocessed with compilation tools
to convert it to be a member in a global Config data
structure. Config is tightly integrated with the scripting
environment in Matlab, allowing the large antenna to
be used for debugging. Therefore, it is easy to change

2Subsequent work has improved upon our initial foray [42].

configuration values for a subset of the nodes or all the
nodes from a PC in run time.

When a user changes a node’s configuration value, the
change is automatically reflected in that node’s global
Config data structure. And, the application is notified
through an asynchronous event of the change to the
data value. Config also supports queries of the current
set of configuration values on each node. With a rich
configuration capability in place and a bit of creative
programming to utilize it, the resulting application is
quite malleable, saving us a lot of time from installing
new code images.

IX. CONCLUSION

Designing and implementing PEG enables us to es-
tablish relevant system design principles that are useful
to other sensor networking systems. Our whole-system
design analysis provides a clean process of problem
decomposition. It allows complexity to be placed at
the appropriate levels of the system to achieve overall
simplicity in system implementation. Simplicity is fur-
ther achieved by exploiting environmental and physical
characteristics of the application at deployment time.
Protocols should exploit soft state, loose consistency, and
rapid failover when appropriate to cope with the lossy
wireless channel and the somewhat unreliable sensor
network hardware platform. The system management
and debugging infrastructure should be well designed
to anticipate the need of system reconfigurations at
deployment time.

Our system decomposition allows each of the sub-
systems to be reusable by a wide variety of sensor
network applications. The neighborhood abstraction and
leader election mechanisms apply to any monitoring
system requiring local data aggregation. The density
adaptive flooding mechanism avoids the broadcast storm
problem for other data dissemination protocols. The
landmark routing subsystem is useful for any application
with moving entities. The network management and
debugging services are useful for deploying other sensor
networks. The data filter and robustness of the control
system design are applicable to other sensor network
applications with embedded actuators.

We demonstrate a working system that not only mon-
itors sensory data but also tracks and controls a higher
tier system to accomplish a cooperative task in real
time. The system assumes very little processing and
communication requirements on the sensor tier. Further-
more, throughout our design we exploit the physical
properties of PEG to achieve a functional, simple design

that is robust to failures. We believe the same design
philosophy should be followed in building future sensing
and actuating systems.

In the near future, we will deploy an order of magni-
tude larger network to achieve many of the same goals
as this work. We will leverage the lessons from this work
to establish a platform well suited for long lifetime and
large scale remote reprogramming, re-parameterization,
and system management. The overall goal of this rede-
ployment is to focus on data gathering and methodical
system study. In this new deployment, we will be able
to introduce and measure greater variation: robot speed,
node spacing, node topology, GPS resolution, sensing
fidelity, and sensing period. This initial effort described
in this work has been invaluable for the experience, and
we hope to extend that with a breadth of experiments
that describe in detail the behavior of the many facets of
this kind of system and application.

ACKNOWLEDGMENTS

We’d like to thank everyone who worked on PEG, including:
Phoebus Chen, Fred Jiang, Jaein Jong, Sukun Kim, Phil Levis,
Neil Patel, Joe Polastre, Robert Szewczyk, Terrence Tong, Rob von
Behren, and Kamin Whitehouse. This work is funded in part by the
DARPA NEST contract F33615-01-C-1895 and Intel Research.

REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting
the world with wireless sensor networks,” inInternational Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP
2001), 2001.

[2] G. Pottie and W. Kaiser, “Wireless integrated network sensors,”
in Communications of the ACM, May 2000.

[3] T. Parsons, “Pursuit-evasion in a graph,” inTheory and Applica-
tion of Graphs (Y. Alani and D.R. Lick, eds.). Springer-Verlag,
1976, pp. 426–441.

[4] I. Suzuki and M. Yamashita, “Searching for a mobile intruder
in a polygonal region,” inSIAM J. Comput., vol. 21, October
1992, pp. 863–888.

[5] R. Vidal and S. Sastry, “Vision-based detection of autonomous
vehicles for pursuit-evasion games,” inIFAC World Congress
on Automatic Control, 2002.

[6] H. Pasula, S. Russel, M. Ostland, and Y. Ritov, “Tracking many
objects with many sensors,” inIn Proceedings of IJCAI-99,
1999.

[7] D. Reid, “An algorithm for tracking multiple targets,” inIEEE
Transactions on Automatic Control, vol. 24:6, 1979.

[8] J. Hespanha and M. Prandini, “Optimal pursuit under partial
information,” in In Proceedings of the 10th Mediterranean
Conference on Control and Automation, July 2002.

[9] R. R. Brooks and P. Ramanthan, “Distributed target classifica-
tion and tracking in sensor networks,” inProceedings of the
IEEE, August 2003, pp. 1163–1171.

[10] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed
group management for track initiation and maintenance in target
localization applications,” inProceedings of the 2nd Workshop
on Information Processing in Sensor Networks (IPSN ’03),
April 2003.

[11] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative
signal and information processing: An information directed
approach,” inProceedings of the IEEE, 2003, pp. 91(8):1999–
1209.

[12] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and
J. Stankovic, “An entity maintenance and connection service
for sensor networks,” inThe First International Conference on
Mobile Systems, Applications, and Services (MOBISYS ‘03),
California, May 2003., 2003.

[13] T. Abdelzaher, B. Blum, and et al., “Envirotrack: Towards
an environmental computing paradigm for distributed sensor
networks,” in IEEE International Conference on Distributed
Computing Systems, March 2004.

[14] M. Welsh and G. Mainland, “Programming sensor net-
works using abstract regions,” inIn Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI’ 04), March 2004.

[15] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko,
and D. Rus, “Tracking a moving object with a binary sensor
network,” in Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems, 2003, pp. 150–161.

[16] K. Birman, “The process group approach to reliable distributed
computing,” inCommuniation of the ACM, vol. 36(12), 1993,
pp. 37–53.

[17] D. Cheriton, “Understanding the limitations of causally and
totally ordered communication,” inSOSP. ACM, December
1993.

[18] K. Whitehouse, F. Chen, C. Karlof, A. Woo, and D. Culler,
“Sensor field localization: A deployment and empirical analy-
sis,” no. UCB//CSD-04-1349, April 2004.

[19] K. Whitehouse, C. Karlof, and D. Culler, “Getting radio signal
strength localization to actually work,” UC-Berkeley, Tech. Rep.
UCB//CSD-04-1348, May 2004.

[20] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter, “System architecture directions for networked sensors,” in
Proceedings of ACM ASPLOS IX, November 2000, pp. 93–104.

[21] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a
neighborhood abstraction for sensor networks,” inProceedings
of ACM International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’04), June 2004.

[22] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and
J. Zhao, “Habitat monitoring: Application driver for wireless
communications technology,” inACM SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean,
April 2001.

[23] S. Madden, “The design and evaluation of a query process-
ing architecture for sensor networks,” Ph.D. dissertation, UC
Berkeley, 2003.

[24] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler,
“Lessons from a sensor netowkr expedition,” inProceedings
of the 1st European Workshop on Wireless Sensor Networks
(EWSN 04), January 2004.

[25] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc
wireless networks,” inMobile Computing. Kluwer Academic
Publishers, 1996, pp. 153–181.

[26] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance-
vector (aodv) routing,” inProceedings of the 2nd IEEE Work-
shop on Mobile Computing Systems and Applications, 1999.

[27] V. Park and M. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” inProceedings of the
IEEE INFOCOM ’97, April 1997.

[28] C. E. Perkins, B. Woolf, and S. R. Alpert, “Mobile ip design
principles and practices,” January 1998.

[29] Q. Fang, J. Li, L. Guiba, and F. Zha, “Roamhba: maintaining
group connectivity in sensor networks,” inProceedings of the
Third International Symposium on Information Processing in
Sensor Networks, 2004, pp. 151–160.

[30] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang,
V. Naik, V. Mittal, H. Cao, M. Gouda, Y. Choi, T. Her-
man, S. Kularni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita, “Line in the sand: A wireless sensor network for
target detection, classification, and tracking,” inOSU-CISRC-
12/03-TR71, 2003.

[31] P. Tsuchiya, “The landmark hierarchy, a new hierarchy for
routing in very large networks,” inSpecial Interest Group on
Data Communication (SIGCOMM), 1988, pp. 36–42.

[32] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broad-
cast storm problem in a mobile ad hoc network,”Wireless
Networks, vol. 8, no. 2/3, pp. 153–167, 2002.

[33] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin,
and S. Wicker, “Complex behavior at scale: An experimental
study of low-power wireless sensor networks,” inTechnical
Report UCLA/CSD-TR 02-0013, February 2002.

[34] J. Zhao and R. Govindan, “Understanding Packet Delivery Per-
formance in Dense Wireless Sensor Networks,” inProceedings
of the First ACM Conference on Embedded Networked Sensor
Systems. ACM Press, 2003, pp. 1–13.

[35] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A
high-throughput path metric for multi-hop wireless routing,”
in Proceedings of the 9th annual International Conference on
Mobile Computing and Networking. ACM Press, 2003, pp.
134–146.

[36] W. J. Rugh,Linear System Theory, 2nd ed., ser. Information
and System Sciences Series. Upper Saddle River, New Jersey
07458: Prentice Hall, 1996.

[37] P. Martí, G. Fohler, K. Ramamritham, , and J. M. Fuertes,
“Jitter compensation for real-time control systems,” in22nd
IEEE Real-Time Systems Symposium, London, December 2001.

[38] P. Martí, R. Villa,́ J. M. Fuertes, and G. Fohler, “Stability of
on-line compensated real-time scheduled control tasks.” inIFAC
Conference on New Technologies for Computer Control, Hong
Kong, November 2001.

[39] B. Ristic, S. Arulampalam, and N. Gordon,Beyond the Kalman
Filter: Particle Filters for Tracking Applications. Artech
House, February 2004.

[40] P. Varaiya and P. Kumar,Stochastic Systems: Estimation, Iden-
tification, and Adaptive Control, ser. Information and System
Sciences Series. Upper Saddle River, New Jersey 07458:
Prentice Hall, 1986.

[41] G. Tolle and D. Culler, “Design of an application-cooperative
management system for wireless sensor networks,” inProceed-
ings of the Second European Workshop on Wireless Sensor
Networks (EWSN 05), January 2005.

[42] J. W. Hui and D. Culler, “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale,” in
The Second ACM Conference on Embedded Networked Sensor
Systems, 2004.

